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Bursting and large-scale intermittency in turbulent convection with differential rotation
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The tilting mechanism, which generates differential rotation in two-dimensional turbulent convection, is
shown to produce relaxation oscillations in the mean flow energy integral and bursts in the global fluctuation
level, akin to Lotka-Volterra oscillations. The basic reason for such behavior is the unidirectional and conser-
vative transfer of kinetic energy from the fluctuating motions to the mean component of the flows, and its
dissipation at large scales. Results from numerical simulations further demonstrate the intimate relation be-
tween these low-frequency modulations and the large-scale intermittency of convective turbulence, as mani-
fested by exponential tails in single-point probability distribution functions. Moreover, the spatio-temporal
evolution of convective structures illustrates the mechanism triggering avalanche events in the transport pro-
cess. The latter involves the overlap of delocalized mixing regions when the barrier to transport, produced by
the mean component of the flow, transiently disappears.

DOI: 10.1103/PhysReVvE.68.047301 PACS nunierd7.27.Eq, 47.27.Te, 52.35.Ra

Bursting in the fluctuation level and relaxation oscilla- fields ¢ and 6. We will presently consider the paradigmatic
tions in the kinetic energy of differential rotation have re- case of two-dimensional thermal convectid®—12
cently been observed in numerical simulations of a wide va-
riety of convectively driven systems, both plasmas and a0 P
ordinary fluids[1-5]. Moreover, the origin of large-scale in- Ly(4h,0)=~ PR@ TPV, Lo(y,0)=- ay +Vio,
termittency frequently measured in turbulent flow remains an (10
outstanding enigmg6—8]. In this paper, we present general
arguments supported by numerical simulations revealing therherex denotes the radial directiop represents the periodic
nature and intimate relation between these phenomena fazimuthal direction, and is the temperature deviation from
two-dimensional turbulent convection. the hydrostatic equilibrium. We have introduced the Prandtl
Strong magnetic fields in plasmas and fast solid body roand Rayleigh number® and R, and spatial and temporal
tation of ordinary fluids tend to make their low frequency scales are normalized to the fluid layer depth and the associ-
collective motions essentially two-dimensiodl10]. As a  ated thermal diffusion time, respectively. The same model
consequence, the equation of motion can be reduced to tleguations pertain to electrostatic flute modes in nonuni-
form of a vorticity equation formly magnetized plasmas.
An important property of many convection systems is that
J they are confined to geometries with spatial periodicity.
(5 +HZX V- V) VEU=Ly(1.6), (18 There is thus the freedom for differential fluid rotation in the
corresponding azimuthal directions. Generally, such symmet-
ric flows are not driven by linear instability mechanisms but
are subject to collisional damping. They can however be sus-
ained by linearly unstable fluctuating motions through a tilt-

where for simplicity we have applied slab coordinates wgith
in the direction of the magnetic field or the rotation axis, an

%} dlenf;)thes ?e_gragient _gperato:_ iF‘t thed pergendigtl;]lat;]plan?ng mechanisnj10-12. It is convenient to define the radial
€ left-nand side describes vorticity advection wi e Ve'profile of any field, denoted by a zero subscript, as its spatial

locity v, =zX V4, while the operatorl, contains model average over the periodic directions. In particular we intro-
dependent effects such as dissipation and coupling to othefyce the azimuthally mean flow component
fields through, e.g., buoyancy or electric currents. For mag-
netized plasmas the stream functi#(x,t) may be identified 1L ¢
with the electrostatic potential. vo(X,t)= Efo dy—
A self-consistent transport problem is settled when the
vorticity equation is coupled to the evolution of an advecte

thermal field@(x,t) governed by thereL is the periodicity length. Similarly, we define the

spatial fluctuation of any field as the deviation from its pro-

A file, and denote this by an overtilde. Note that the mean flow

—+2><V¢//-V> 6=Ly(1,6), (1b)  vo is intrinsically incapable of mediating convective trans-

ot port along the driving thermal gradients, and hence form a
benign path for fluctuation energy.

where again the term on the right-hand side describes effects Averaging Eq.(1a) over the periodic direction we obtain

different from two-dimensional advection. The operatys  the generic equation for the mean flow component

and L, couple the two equations, and under the Boussinesq s

approximation the corresponding terms are linear in the ol ot + X (vyvy)o=P (0%v ol 9X?) .
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While the term on the right-hand side describes viscous difplitude decay, a consequence of the conservation of
fusion, the last term on the left-hand side shows the possienstrophy, shows that sheared structures will invariably loose
bility of local flow generation by Reynolds stress. Furthertheir kinetic energy after a possible transient growth. Hence
integrating over the radial domain, it is evident that thisstructures which are not forced to be tilted against the flow
mechanism does not create net angular momentum. Henahear give their energy to the mean flow.
the ensuing mean flows are intrinsically sheared correspond- Since individual azimuthal mode numbers are not directly
ing to differential rotation. affected by the presence of differential rotation, the kinetic
Based on these fundamental properties, it is natural tenergy transfer process can be described by decomposing

separate the kinetic energy into two components comprisedach mode into an amp||tude’/k (x)| and a phaseSk (x)
by the fluctuating and mean motions, defined respectively b¥vhose radial dependence g|ves the tilting of the mbge

- 1, The contribution from a spectrum of such modes to the mean
K(t)=J dXE(Vuﬁ) : U(t)=J dx5vo, flow acceleration is given by
where the integrals oveatx extend over the whole fluid vol- i(; Bu)o= E 4k (w, |2Mky)
ume under consideration. The evolution of these energy in- xZyom Yox | 17K

tegrals are readily derived from the vorticity equatidma),
) again indicating that a radially inhomogeneous phase is nec-
_ ~ I o~ 2 essary for mean flow modification by fluctuating motions.
J dx gLy(9.6) J dxvogs 0wy, (23 This gives the evolution of the mean flow energy integral

Y_ Jd Lo, J’d 55y, (@b du 5127 %
Go= | IXPLy(6)— | dxvoo(B,0,). (2D a:‘fdx%ﬁw‘f"xgo“”okv'*”ky'W

The first term on the right-hand side of the two equatlo_nsFor structures tilted by a sheared flow we intuitively expect

contain respectively the linear instability drive and colli- .
sional dissipation of the sheared mean flows. The last terr{’]he phase anglék to be proportional to the shear ratg.

on the right-hand side of either equation shows the consefdeed, for the passively advected plane wave considered
vative transfer of kinetic energy between these linearly2boveddy /dx=Kky—vokyt showing that the kinetic energy
forced and damped modes. Upon integration by parts, theansfer terms are proportional to the square of the shear rate

transfer term in Eq(2a may be written as and the amplitude of the fluctuating motions. Moreover, the
2 presence of a seed shear flow will result in a definite direc-

f dx ‘9_"[’% @ _J dx| == ‘9_‘/’) %. tion for a massive kinetic energy transfer from the linearly

X dy dx g\ Y X forced modes, the fluctuating motions, to the linearly

damped modes, the sheared mean flows. In the case of well-
The first expression above shows that convection cells tilte@onfined mode structures, the kinetic energy integrals evolve
such as to transport positive azimuthal momentum up th@ccording to the Lotka-\Volterra equations
gradient of a sheared mean flow will sustain the latter against
collisional dissipation. Alternatively, the second relation in-
dicates that modes with lines of constant phase which slope
with the flow shear will give their energy to the latter.

Let us further consider the linear evolution of a planeHere y corresponds to the linear growth of the fluctuation
wave componentV” exp(k.x+ikyy) of the stream function level in the absence of differential rotation, as described by
whose vorticity is subject to passive differential advection bythe first term on the right-hand side of EQa). The term
a uniformly sheared flow13]. Given the constant shear rate proportional tow. represents collisional damping of differen-
vy, the stream function at subsequent times is given by tial rotation energy while the parametermeasures the effi-
ciency of mean flow generation by fluctuating motions. The
quasilinear origin of this self-regulation process was recently
emphasized in Refl4].

To further demonstrate the occurrence of dynamical regu-
From the exponent we see that the radial wave numbé@tion, we next consider the thermal convection mode)
changes linearly in magnitude with time, corresponding to @nd begin by employing the method of modal truncation.
continuous increase of the tilting of the plane wave with theApart from providing significant physical insight, such low-
mean flow. This shearing effect will effectively channel fluc- dimensional approaches often capture the basic mechanisms
tuation kinetic energy to larger radial wave numbers, leadinghat continue to operate in the strongly nonlinear regime
to enhanced fluctuation dissipation. A broadening in ke [10-12. A sound truncation of Eq(1) is given by Ref[11]
direction of the energy spectrum is thus expected when the A
differential rotation builds up. This mechanism has been con- #=W¥;sin7xsin kyy+‘1’013|n mx+ W8I 2mx cosk,y,
sidered as the crucial one for the self-regulation of convec-
tion system$4,9,15. Note however that 17 asymptotic am- 0= .115In X COSKy + @023|n 27X+ 0 128iN 2mxsink,y.

t=(7—aU)K, —(p—aK)U. ©)

T
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005 measured in the center of the fluid layer, showing intermittent os-
' cillations.
S5E ]
4F] E sults for R=10° and unit Prandtl number and periodicity
fli‘ 35 E length. This example serves to demonstrate the general be-
S 2f 3 havior observed for a wide range of parameters. The spatial
1E . resolution is 256 grid points in either direction and the initial
0t condition is a periodic array of convection cells given by
0.0 0.2 04 0.6 0.8 1.0 - s _ )
t ¥,,=10". In Fig. 1, we present the temporal evolution of

FIG. 1. Evolution of the domain integrated radial convective the integrated radial convective heat fllix — 8 9/ dy and
flux 'y, the mean flow kinetic enerdy, and the fluctuation kinetic the kinetic energies. The mean flow energy displays relax-
energyK. ation oscillations, while the convective energy and transport
show quasiperiodic bursts separated by quiet phases. Similar
Here and in the following we invoke boundary conditions bursting is also observed for the temperature fluctuation
corresponding to free-slip and stress-free, while the temperdevel. This global behavior is readily understood in terms of
ture is assumed to be constant on the radial boundaries. Aphe Lotka-Volterra equation&). Initially the convective en-
parently, the tilting of the convection cells in the above trun-ergy grows exponentially due to the primary instability.
cation is given by the presence of azimuthally phase-shifte§vhen the fluctuation level becomes sufficiently large to sus-
higher radial harmonic$12) of the linearly driven modes tain the mean flows against collisional dissipatioak(
(11). This also provides a path to fluctuation dissipation. In> ), this flow energy grows at the expense of the convec-
the limit of largek,, the truncated evolution of the mode tive motions. The spatial fluctuations are effectively stabi-
amplitudes may be reduced to four coupled ordinary differdized at a sufficiently large mean flow levetJ > 7). Ki-
ential equations, which may be written [@<]: netic energy is however continuously transferred to the mean
flows as far aseK> u leading to an almost complete sup-
pression of the convective energy and thus the radial convec-
tive transport. Subsequently, there are no fluctuating motions
to sustain the sheared flows which hence decay on a viscous
time scale. Finally, as the mean flows become sufficiently
weak (@U<y), the convective energy again starts to grow
and the cycle repeats. This regulation results in a clear cau-
sality, manifested by a temporal phase-lag, between the two
dynamics as observed in all the recent numerical studies
A Lotka-Volterra model is now obtained by suppressing the[1_5]_
temperature profile back-reactiddo, and slaving the lin- The global bursting has profound influences on single-

early damped stream function mode,, to Wy, andWo;.  point recordings of the temperature and velocity fields as is
More generally, if we also slave the temperature médg,

®02: - ®02_\I’§1:
‘i'llz Y11V 111 V110 00— W1 ¥ 15,
Wor=— (P14) W+ {[3(1+P)1/4P} W11 ¥ 55,

W= —v1 Wt VW

this reduces to the supercritical extension of the Lotka- log10 PDF(6) logio PDF(vy)
\Volterra model in which the additional nonlinear tedi? 2T T AT
appears in the evolution equation for the fluctuation energy. { | g 1 sl o~
Similar equations were suggested by Diamandl. [15] as TINN T
a paradigmatic model for the transition to improved confine- 0} ,;,5 %\ 1 3 ,/ooo°° B \

. . . i . 5\ e XY
ment regimes in magnetized plasmas. Again we emphasiz M %M o o,
the role of the conservative transfer of kinetic energy from 17 ,’ v ) % ,’ Vo
the fluctuations to the mean flows involved in the reduction -2 L ! -5 L !

of radial convective transport, and do not allude to the tur- -6 4 -2 0 2 4 6

bulence shear decorrelation mechan[gh9,15.

0/6rms

6 4 2 0 2 4 6
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Finally, the fully nonlinear problem is addressed by means  FIG. 3. Probability distribution function of temperature to the
of numerical simulations of modé€ll). To this end we em- left and radial velocity to the right for the same signals as in Fig. 2.
ploy a hybrid finite difference—spectral code and present reThe broken lines show the fitted normal distributions.

047301-3



BRIEF REPORTS PHYSICAL REVIEW B8, 047301 (2003

logio|67[*

logio Ty| 6(r = 0.3), A = 0.0082 P(r=03), A =062

v

1 10 100 1000 1 10 100 1000 E— -
f f 0 x 1 0 x 1

FIG. 4. Frequency power spectrum of temperature to the left and
the flux spectral density to the right for the same signals as in
Fig. 2.

readily seen in Fig. 2. The former gives its fingerprint on
local probe measurements through a low-frequency modula-
tion, resulting in the repetitive occurrence of large-amplitude
events. Consequently, the associated probability distributions
strongly deviate from normal statistics. Figure 3 indeed dem-
onstrates the presence of large-scale intermittency mani-
fested by exponential tails, a characteristic of self-organized
turbulent convectiofi7,8]. The single-point recordings of the
central temperature and radial velocity give flatness factorgt ;
of 13 and 23, respectively, while there is no skewness due tg0.4)_ The contour level spacing is given by the increment
the radial symmetry. The low-frequency modulations are alsQ, e A

manifested in the spectral characteristics. This is observed as

a significant energy content at small frequencies in the pPoWegiated with the chaotic transport during the periodic overlap
spectra, presented in Fig. 4, which should not be confusegs -onvection cells in their azimuthal propagatic.
with the violent dynamics during individual bursts. |5 symmary, we have within a general context discussed
Typical spatial fluctuation structures are presented in Figang elucidated the self-regulating nature of convection—shear
5. In the quiet phases, the convection cells have small anyoy systems. The unidirectional and conservative transfer of
plitudes and are localized at the radial boundaries where thgnetic energy from the linearly forced fluctuating to the lin-
mean flow shear vanishes. These convection cells form r&sarly damped mean flow results in global dynamics akin to
gions of closed streamlines where mixing occurs. They arg gika-\olterra oscillations. Numerical simulations shows
separated by a zone of open streamlines in the azimuthghay this regulation is associated to the large-scale intermit-
direction which effectively inhibits the radial convective tency in strongly driven convective turbulence with differen-
transport. This transport barrier is produced by the meag| rotation. Finally, the spatio-temporal evolution of con-

component of the flow. As a consequence, when the Meafkctive structures illustrates the mechanism  triggering
flow is dissipated, the mixing regions overlap and merge INransport avalanches.

radially elongated convective cells, or streamers, while the

fluctuation energy drastically rises. This results in a strong O.E.G. was sponsored by financial subvention from the
heat pulse and a radial transport avalanche. The local peak Besearch Council of Norway while N.H.B. was sponsored by
large frequencies in the spectra seen in Fig. 4 may be assthe INFM, lItaly.

0 x 1 0 x 1
FIG. 5. Spatial fluctuation structure of the temperature and
eam function in a quiet phas¢=0.3) and during a burstt(
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