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Topology and computational performance of attractor neural networks
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To explore the relation between network structure and function, we studied the computational performance
of Hopfield-type attractor neural nets with regular lattice, random, small-world, and scale-free topologies. The
random configuration is the most efficient for storage and retrieval of patterns by the network as a whole.
However, in the scale-free case retrieval errors are not distributed uniformly among the nodes. The portion of
a pattern encoded by the subset of highly connected nodes is more robust and efficiently recognized than the
rest of the pattern. The scale-free network thus achieves a very strong partial recognition. The implications of
these findings for brain function and social dynamics are suggestive.
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While intense research activity is centered on structurahetwork, (3) a small-world (Watts-Strogat4 10]) net con-
and topological properties of social, biological and technostructed from a regular lattice by randomly rewiring local
logical networkg 1], the consequences of network structurelinks with probability r, and (4) a scale-free network with
for the dynamics of cooperative processes have been adegree distributiof®(k) ~ k2 with a lower cutoff of 25 gen-
dressed to a lesser extent. Topology is known to affect therated by the Barabasi-Albert algorithm of preferential at-
ordering and disordering of the Ising mod@-4] and the tachmen{18].

synchronization of coupled oscillatofs,6]. Another area of We measured two aspects of the performance of the asso-
burning interest is the relation between structure and funceiative memory networks: th&tability of the memorized pat-
tion in the organization of brain$7—9| terns (inversely related to the number of errors induced by

The goal of this report is to study the effect of structure oncrosstallk and the nework’sability to recognizeone of the
the dynamics of sparsely connected Hopfield-typ#—13  patterns from a state with a certain number of errors. These
attractor neural networks. It is known that randomly pruningtwo features of an associative memory are related but not
the connections of a Hopfield néiiN) increases the storage identical: a pattern can be stable but nonetheless have a small
capacity per synapge.4]. Amongst other questions we ask basin of attraction, while on the other hand it is possible for
whether there is an optimal topology, given a fixed numbeman attractor to have a large basin but nonetheless be imper-
of nodes and connections. The HN is of interest because fectly correlated with the memorized pattern. To quantify
provides a tractable toy model of collective computation andverall pattern retrieval we used the overlap order parameters
can also be viewed as an extension of the Ising model with
limited amounts of frustration and quenched disordis].
We hope therefore that our results lead to further insights mt=
into collective computation as well as ordering and disorder-
ing processes occurring on networks. )
Our computations involve Hopfield nets with asynchro-wherex;==*1 denotes the output of thieh node. To track
nous updating in random ordgt1,12, p random stored bi- the performance of particular subsets, we used partial over-
nary pattern vectors“, and Hebbian[16] connection lapSmM*(Kmin)=m(k>ky), defined as in Eq2) except that

N
21 i, )

Z| -

strengths the sum runs only over those nodes whose degree exceeds
Kmin @nd is normalized appropriateli,,, partitions the net-
p work into hubs and nonhubs, amd“(k,;,) measures recog-
W = a; > g, (1)  nition of the portion of the pattern encoded in the hubs. The
pw=1 stability of the memory patterns was measured by initializing

the network to a memory state,E &) and measuring
wherea;; is the adjacency matrixa(j=1 if i andj are con-  mf,, after the dynamics had converged. The departure of
nected, a;;=0 otherwis¢. The degree of nodé is k; mfi,o from Eq. (1) reflects the number of errors induced by
=E]N= 18ij - We always compare networks with the samecrosstalk. As an indicator of the network’s ability to retrieve
number of nodesN=5000 and average degre&)=50, a pattern from a randomly corrupted version, we measured
varying only the arrangement of connections. Each node is¥,,,,, when the initial overlap was;;;=0.5. We averaged
connected on average to 1% of the other nodes compared these quantities over several realizations of the topology and
~0.1% in the mouse corte¥]. The networks compared are patterns, varying the number of patteqngo see how the
(1) a regular one-dimensional ring of nodes each connectegerformance degrades with increasing loading.
to its 50 nearest neighbor&) a random(Erdos-Renyi[17]) With (k)=50 and p=50, the networks studied are far
from the commonly studied limit where bothandN simul-
taneously approach infinifyl1]. Therefore no discontinuous
*Electronic address: pmcgraw@chem.utoronto.ca overloading phase transition is apparent, but comparisons are
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still possible at finitep andN. Figure 1 shows results for the examines the partial overlaps”(k.,) of highly connected
networks as a whole. The most rapid degradation in botubsets, one finds that the errors are not distributed evenly
stability and retrievability occurs in the regular lattice ( among nodes. This is evident in Fig. 2, which shows
=0), and the slowest in the random={1) net. Not surpris-  m*(Kmn,p) for kmin=50, 100, 200, and 400. These represent
ingly, the addition of shortcuts to a regular lattice enhancesubsets having an average size of 1235, 333, 97, and 29
pattern stability and retrieval. The performance of small-nodes, respectively. The frequency of crosstalk-induced er-
world nets is intermediate between that of a regular and @ors decreases with increasing degree. For example, the
random net. The variation with rewiring probabilityis not  nodes withk>k.,;;=200 have very few errors even when
linear, however. A network with=0.4 behaves almost as a p=(k)=50. The nodes wittk>200 form a subset of ap-
random net. proximately 100 nodes. A network of 100 nodd#snewould

The performance of the scale-free net as a whole degradég able to store only~14 patterns, even if they were fully
slightly faster than that of the random net. However, if oneconnected[11,19. Thus, even though the less connected
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nodes are more prone to errors, their presence is nonethelessl noise20], while even a few long range connections can
necessary to assist the hubs in retaining the patterns. Thiestore order at a finite temperatJr@]. Furthermore in a
enhanced performance of the well-connected subset margcale-free network the nodes with high degree are more
fests itself not only in the stability of the patterns but also instrongly magnetized than those with low degie@s. The

their retrieval, as seen in Fig.(®. The hubs are able to difference is that in the present case, the disorder is induced
distinguish clearly among a large number of patterns even iPY interference among the stored patterns and not by stochas-

the pattern reconstruction is incompleiee., limited to the fic noise. It is a quenched rather than thermal disorder.
hubs. While we found that the most efficient arrangement for

The lower rate of errors among the hubs is not surprisin torage and retrieval of patter_ns b_y the netvv_ork as awhole is
in view of the fact that their input comes from a larger num- he random network, connections in real brains do not appear

ber of nodes. It can be shown using arguments as in Ref&0 be fully random. One reason may lie in the economy of

[11] and[12] that if the state of the network is initially set to Wiring length[8]. The majority of connections in brains of
one of the patternsx= &) then an individual node with higher animals as well as i@. elegang10] appears to occur

degreek; experiences a crosstalk-induced noise-to-signal raP&tween nearby neurons, while fewer paths connect more

: N — o distant regions, suggesting a small-world topology. Our re-
tio (N/S);=+V(p—1)/k;. Hence the probability of a . .
crosstalk—ilnduced errolr in thith node decreases with in- Sults Imply that small-world networks with a moderate num-

creasing degree. The presence of one error reduces t}l?gr of shortcuts can be almost as computationally efficient as
strength of the signal and may increase the likelihood o random network while saving considerably on wiring costs.

additional errors, resulting in a cascade of the type respon—r:_e Su'tab'"tyl of small-wtoréd ne;(\r/]vorgs f_or cforrsﬁlex com;l)u-
sible for the abrupt overloading phase transition that occur%‘:’1 ions was also suggested on the basis of other mé8lels

in the fully connected Hopfield netwofid1,19. Cascades in o what extent scale-free structures play a role in real brains
the opposite direction may also play a role in the reconstrucremains to be seen, but our results suggest a mechanism by

tion of patterns from noisy input. The differences betWeenwhich information can be centralized in the more connected

differently connected networks thus lie not just in the initial nodes V‘_’h”_e the remaining nodes, alth.OUQh noisy, aré none-
signal-to-noise ratio but in the dynamics of the spread ofheless indispensable for the computation. It will be of inter-

error cascades. This dynamics differs from ordinary percola‘—a‘.St to study the implicati_ons of these notions for the form.a-
tion or epidemic propagation, since the susceptibility of at'o.n o.f. knowledge, opinions, and power structures in
node is inversely correlated with its degree. In most model§Clentlflc and social network21].
of epidemic propagation only one infected neighbor suffices ACKNOWLEDGMENTS
to infect a node, regardless of its degree.
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