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We justify and evaluate backflow three-body wave functions for a two-component system of electrons and
protons. Based on the generalized Feynman-Kacs formula, many-body perturbation theory, and band structure
calculations, we analyze the use and the analytical form of the backflow function from different points of view.
The resulting wave functions are used in variational and diffusion Monte Carlo calculations of the electron gas
and of solid and liquid metallic hydrogen. For the electron gas, the purely analytic backflow and three-body
form gives lower energies than those of previous calculations. For bcc hydrogen, analytical and optimized
backflow-three-body wave functions lead to energies nearly as low as those from using local density approxi-
mation orbitals in the trial wave function. However, compared to wave functions constructed from density
functional solutions, backflow wave functions have the advantage of only few parameters to estimate, the
ability to include easily and accurately electron-electron correlations, and that they can be directly generalized
from the crystal to a disordered liquid of protons.
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I. INTRODUCTION computed from either local density functiondlDA) or
Hartree-FockHF) calculations, are required. Because these

This paper concerns the form of the ground state waverbitals are calculated assuming fixed ionic positions, inclu-
function of metallic hydrogen at high enough density so thation of ionic motions, such as those from the zero-point mo-
all the hydrogen molecules are dissociated and the electroridn of the ions in the crystal, is difficult.
are delocalized. Neglecting possible quantum effects on the Recently, there have been new attenipt$] to calculate
protonic motion, the many-body wave function can be re-properties of disordered systems such as liquid hydrogen
garded as the ground state of an electron gas under the imdthin QMC. In the coupled electron ion Monte CarlGE-
fluence of an external potential due to the actual positions ofMC) method[5] the protons are moved based on the results
the protons. Quantum Monte Car[@MC) techniques are of a QMC calculation of the electronic energy. This approach
currently one of the most powerful methods to calculate acrequires accurate trial functions that can be obtained quickly
curately the properties of such a many-body quantum systems the ionic positions are changed; methods involving the
[1]. However, since ground state QMC is based on trial wavesolution of mean field equations such as LDA and HF, or
functions, QMC typically demands compagtidaccurate de- even optimizing a parametrized trial function, can greatly
scriptions of the ground state wave function. In this paper weslow down the overall performance of the CEIMC simula-
review different approaches to obtain and improve trial waveion [5]. Further, combining the orbitals obtained from LDA
functions, compare the qualities of the resulting many-bodyor HF with a pair correlatioriJastrovy factor to improve the
wave functions with previous QMC calculations for the elec-accuracy is not straightforward; substantial modification of
tron gas and metallic crystal hydrogen, and present resulthie orbitals might be necessary requiring a reoptimization of
using these wave functions for liquid metallic hydrogen.  the orbitals and the correlation factdrg], in principle, at

Most of the work within QMC has been done using aeach new ionic position. This optimization step creates a
pair-product(PP [or Slater-JastrowSJ)] wave function: a  bottleneck to coupling the QMC calculations with the ionic
Slater determinant of single electron spin orbits times a prodMonte Carlo.
uct of pair electron(Jastrow factors. Notwithstanding cer- One could consider obtaining the trial wave function from
tain deficiencies such as a lack of direct spin coupling, thisther variational approaches such as Fermi-hypernetted
wave function has proven to be quite accurate, in particulachain or correlated basis function methd8$ which would
within fixed-node diffusion Monte CarlgDMC) [1]. The not have the problems of optimization. However, in these
first calculation on many-body hydrogg2] used an even approaches based on explicit integration, one is in general
simpler form of this wave function; the single electron orbitslimited in the form of the trial function by the ease perform-
were taken to be free electron plane way®g/9. We refer  ing the integration, and these are typically much more time
to this as the SJ-PW trial function. Later, Nat{8i4] found  consuming than LDA calculations.
that determinants using these orbitals are inaccurate by 0.05 One of the biggest advantages of the QMC approach is
eV/atom within the fixed-node DMC calculations at the den-that one can use an arbitrary wave function without changing
sity corresponding to the transition between molecular andhe algorithm in an essential way. Fast algorithms will result
metallic hydrogeni(s=1.31). Hence, more accurate orbitals, if one can find concise and accurate forms. In this paper,
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instead of using one-body orbitals from mean field theory oiis ke. Numerical results are given in atomic units where

integral equations, we propose to use trial functions which\=1/2 and\,=0 for classical protonsle|=m;=1. The

depend explicitly and continuously on the ionic variables.electron densityw=N/V is quoted in terms = a/a,, where

Such wave functions do not have to be reoptimized fora=(47n/3) ' anda,=7%2/m.e? is the Bohr radius. Ener-

movements of the ions, are easy to implement, and accuratges of the QMC calculations are given in Rydbergs per elec-

for disordered systems. These trial functions are a generaliron.

zation of the backflow three-body wave functions used very

successfully in highly correlated homogeneous quantum lig- ||, THE FEYNMAN-KACS APPROACH TO IMPROVING

uids: liquid ®He and the electron gd40]. There, backflow THE WAVE EUNCTION

trial functions show much improvement over the pair prod-

uct getting~75% of the energy missing at the PP level and The Feynman-Kacs formula expresses the exact wave

much more when done with the fixed-node method. function in terms of average over Brownian paths. We now
Backflow wave functions were deve|0ped by FeynmanreVieW how it can be generalized to random walks with

and Cohen9] for a single®He impurity in liquid *He when ~ “drift.”

it was recognized that without backflow, the mass of the We define the “importance-sampled” Green’s function as

impurity was equal to the bare mass. Pandharipande and ItdB,= yexp(—tH)y ! in operator notation where is an un-

[11] showed that the backflow arises from the momentunsymmetrical trial functionG, acting on a function has the
dependence of the correlation between the impurity and theffect of enhancing the component of lower energy states.
liquid. The backflow wave function was then extended t0Then the lowest energiexact Fermi wave functionpe(R)

bulk liquid *He[12,13 using an integral equation method to g given by

evaluate expectation values. The first use of backflow in

QMC was by Leeet al.[14] and otherd 15,16 with calcu- N ) N

lations on liquid *He. Moroni et al. [17] further optimized (r/’F(R)O‘Alﬁ(R)"mJ dR'(R'|G{|R) (2

the trial function within liquid®He. Kwonet al.[18,10 used o

bf"‘CkﬂO\.N funcnon; for th? e!eptron gas in both two and th.reeassuming only that the trial function has a nonzero overlap
dimensions, obtaining significantly lower energies and im-

proved excitation energies. Vitiellet al. [19] discuss an with ¢ and thalg. is nondegenerate. Hesis a projection
equivalence of backflow and spin-dependent correlations, afperator for fermion symmetry defined as
aspect we will not further consider in this paper. 1

Using different approaches, we generalize the backflow Af(R)=— > (—=1)Pf(PR) 3
three-body wave function to a two- component system of NP5
electrons and protons and derive approximate expressions for ) o ) )
the correlated trial function. We first present an argumenfdR={r1.,r2, ...} is a point in configuration space. The
based on the generalized Feynman-Kacs formula whicglectron spin |s'treated' by res}nctmg the'permutatmn in EqQ.
shows that backflow is the next order improvement beyond3) 0 be exclusively within spin up or spin down electrons.
the PP wave function. Using perturbation theory, we then Followm,g the derivation in diffusion Monte Carl@1],
discuss general features of the backflow functions and obtaif® Gréen’s function can be split into diffusion, drift, and
explicit expressions for the homogeneous electron gas arfanching processes. To show this, the master equation for
for the electron-proton plasma. A similar analysis using the>réen’s function is written as
Bohm-Pines method has been recently performed by 46
Gaudoin et al. [20], however, without going beyond the Y%t~ 1~ | (v , A
Slater-Jastrow wave function. Studying the problem of a  dt =YHYG= 2 AVi(Vi+ 25 ¢)+E(R)}Gt'
single electron in the potential generated by a simple cubic 4
lattice of protons, we show that the exact one-electron wave
function can be approximately rewritten by a backflow func-The local energyE, defined asE(R)= ¢ *Hy—E,, is the
tion. Finally, we optimize numerically simple functional residual error of the trial function, witE, the ground state
forms for the backflow functions in the full many-body prob- energy. It becomes zero function @sapproaches an exact
lem by variational Monte Carlo. We compare the quality of eigenvalue. Trotter’'s formula applies to the above master
the wave functions stemming from these different ap-equation, allowing us to split up the evolution into the first
proaches for the electron gas and for liquid and crystal hytwo terms describing a stochastic process, and the final term
drogen at the level of variational and diffusion Monte Carlo.which is a branching or “weighting” process. Thus we have

In the following we consider the nonrelativistic Hamil- the generalized Feynman-Kacs form(@aFK):
tonian of N protons andN electrons:

¢F<R>wa<R><exr{— f:dtaR(t))D 5

- ee
A== NV (1)
i i<j Tij
where the brackets imply averaging over all drifting random
where\;=#%%/(2m;), i=1,...,N, andm;, ande; are the walks R(t) beginning at a poinR. The above relation is

electron or proton mass and charge. The Fermi wave vecta@xact for any real trial function. For trial functions having an
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imaginary component oV In ¢, the formalism goes through, 0 S AL IR L
however, Green’s function is no longer real and positive and
therefore cannot be treated as a probabi(fote that we do
not imply that real trial functions are needed in QWMCo -0.1
simplify the discussion of the derivation of the GFK formula,
we will assume the drift term is real. Later in this section, we
will comment on the conditions under which this assumption © 02
iS unnecessary.

To make further analytical progress, we take the average
into the exponent. For any stochastic process, one can write

the average of the exponent as the exponential of the cumu- =08
lant expansion, the first two terms of which are
. 2.'. -0. IIIIIIIIIIIIIIIIIIIlIII-
¢e(R)= AY(R)ex — (EN+(L2((ET)- 1. (6) 04o 0.02 0.04 0.06 0.08 0.1 0.12

The double brackets are defined @&))=([{dtE(R(t))) (s, G)*

with walks R(t) generated from the drift and diffusion start-  FIG. 1. (Color onling The electron-proton Jastrow facta’ vs
ing at a pointR. We truncate the cumulant expansion after(a,G) 2 from band calculations of solid cubic hydrogen rat
the first term. We then have an approximate method of im=1.31 (squarel Eq. (53). The rightmost square is the first recip-

proving the trial function: rocal lattice vector. This is compared with the Raskel) form
(solid line) Eq. (A1) and cumulant forn{dotted ling 1/G* and the

lﬂ(M 1)— w(n)e%(E(”)))n (7) improved analytic form{Eq. (A13)] (dashed ling
with the subscript indicating that the drift is given by S =g0), (12)

V In A", If we split the log of the trial function into its real
and imaginary partg/"=exp(~M®+iS") with MM and  In the above equation and the following discussion we drop,
S real, we are led to the following equations for a singlewithout mention, constant normalization terms. \{(R)
iteration: =2jv(ry;) is a pair potential, with a Fourier transform,
the averaging can be carried out analytically with a result
thatM ™) will also be a pair potential and will have a Fourier
transform given by, /(Ak?) whereh=\;+\;. For a Cou-
lomb potential the real-space corzrelatiolastrow function
will then have the formuc(r)=—e“r/2x.
+(ViS(”))2]>> ' (8) Hence, the form of the first-order wave function is of the
n SJ-PW or Slater-Jastrow form, with free particle orbitals. In
the remainder of the paper, the pair term will be denoted by
S(”+1)=S(”)+<<E )\i[VFS(“)—2ViM(”)ViS(”)]>> ] U with U=Z2;_;u(r;). Typically the form ofu is derived
i from a variational principle, chosen such that either the total
(99  energy or variance is minimized. This will, of course, give a
lower energy than the cumulant form derived above. The
HereV(R) is the total potential energy. above derivation does give the correct cusp condititie
Specializing to the case of a Fermi liquid, we take as adimit of u at largek or smallr). However, it does not give the
initial wave functionM (®=0 andS®=3k;-r;, i.e., singly  long-wavelength limit correctly because of the neglect of the
occupied free particle state€The usual spin functions are higher cumulants. Gaske[P2] proposed an analytic form
assumed but not explicitly writtenNote that this function is based on the random phase approximatiBfA) without
an unsymmetrical trial function, with a nonzero overlap with any parameters. It was fouf@3] for the homogeneous elec-
a fermion state as long as all tkgs are distinct. When the tron gas that the RPA form does, as well as, or better than
wave function is antisymmetrized, one gets a determinant o§imple assumed forms with parameters. Figure 1 shows a
plane waves. However, the antisymmetrization will be donecomparison of these correlation functions.
only once,after the trial function has gone through several Note that the cumulant approximation will not exist if the
iterations of Eq(7). This may simplify the procedure, since Fourier transform of the potential does not exist. Two ex-
the local energy of the unsymmetric trial function is muchamples of such potentials are the hard sphere and Lennard-
simpler than that of an antisymmetric trial function. Note Jones interactions. However, for the short-range part of a soft
that in Eq.(5) both the antisymmetrization and the averagingpotential which does have a Fourier transform such as the

MO =M 4 < <v+§_‘, N[VEM — (7, M(M)2
|

n

are linear operators and so can be interchanged. Yukawa potential, the cumulant approximation works quite
After the first iteration, the wave function will have the well (see remarks concerning the situation at finite tempera-
form: ture in Ref.[24]).
We now perform the next iteration of this procedure. To
MO =(V(R)))=U(R), (100  minimize the fluctuations in the local energy so that the cu-

046707-3



HOLZMANN et al. PHYSICAL REVIEW E 68, 046707 (2003

mulqnt approximation wiII.be more accurate_, we assume that ¢(F2)=de(exp' ;- (1, +Ari)]e‘U(R)+(VW>2_ (19
the first-order wave function has been optimized but it still
has a pair-product form. Using Eg&) and (9), neglecting  Recall that in the fixed-node or fixed-phase diffusion Monte
constants, and combining pair terms together, we get in se€arlo method, one obtains the exact energy subject to the
ond order a function of the form imposed constraittl,25]. The assumed node or phase limits
the ultimate accuracy for fermion systems. Since the correc-
M@ =0(R)- < < 2 )\i[ViU(R)]2> > (12) tion to the real part, the three-body term, is already symmet-
i ric, it is the backflow which is responsible for the change of
node or phase of the trial function and is, in that sense, more
and important than the Jastrow and polarization part.
In the above derivation we have neglected any effects of a
2)_ _ complex drift velocity. However, as already shown by Ortiz
s9= < < Z Ki- (1, ZA‘V‘U)>> : 13 and Ceperley26], a complex drift velocity does not affect
the corrections to the wave function to the order we have

HereU includes additional pair terms not containedun ?J’r:‘;iigﬁred; Eqsi8) and (9) are valid to improve the wave

At second order, we cannot perform the averaging analyti ) ) )
Now we consider how to treat possible long-range pair

cally, since it involves drift under the influence of the first- . s X h ;
order wave functionM (). We make the assumption that the functions. In periodic boundariger “supercells”) we need
to perform Ewald summations of the functionsU,W,Y.

averaging will not change the functional form of the quantity -~ F~ S , ;
being averaged but only smoothes out the individual func-T NiS IS MOSt convenient in Fourier space. We define the Fou-
tions. That is, our ansatz for the iterated wave function is '€ transform of a radial function as

1

1

MQ)ZU(R)—E (V,W)2 (14) ’;/k:J’ dr3e ™ Ty(r). (20
i
Using the Poisson sum formula, the “potential” of thtn
and particle in periodic boundary conditions is

(2)— (r—V. 1o~ s
s Z ki- (= Vi), A9 yi=vkEJ ye'® (i), (21)

whereU, W, andY are three different pair “potentials” to be herev is the volume of the supercell. For example, to find

optimized. In the following, we have adopted the convention,a packflow displacement, EL7), we simply take the gra-
that pair functions have the same signuggr), so that, for  Gient of the pair function:

example, a repulsive leads to a repulsivev andy.

The two new functions appearing at second order are the 1 = ko)
backflow functionY and the three-body or polarization term Arj=— v kE ikye™ i, (22
W. The backflow potential is N

wherek ranges over the reciprocal lattice vectors of the su-
Y=2 y(ry)), (1)  percell I .
i<] The three-body potentialV is defined analogously in

) ) ) ) terms of a pair polarizatiow(r). This function is related to
wherey(r) is a spherically symmetric function and the sum iyt ysed in previous QMC worl6—18,1Q by
extends over all pairs of particles, including both electrons

and protons. The backflow displacement is defined as the 1 dw(r)
gradient of the backflow potential with respect to a particle JINlE(r) = T (23)
coordinate:
The overall sign ofv is not important because only its square
Ari:_ViY:E 2(r)(r=r;) (17) appears in the trial function, but the relative_sig_n o_f thg
IEal electron-electron to the electron-proton interaction is signifi-
cant.
where One of the simple ways of deriving conditions on the
backflow function is to look at the action of the Hamiltonian
(r)y=— E dy(r) (18) on the wave function, the local energy, and to minimize the
rodr fluctuations of the local energy. Here we focus on the imagi-

o _ nary part of the local energy and consider a single electron
corresponds to the definition in previous work for homoge-with phaseS=q-(r—VY). Setting to zero the imaginary

neous systemgl8,10. part of the local energy we obtain
With this ansatz, the antisymmetized trial function is a
determinant composed of “quasiparticle” coordinates: VV2y(r)+2Vu(r)—2Vu(r)VVy(r)=0. (29
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L L L L lll. PERTURBATION THEORY /ANALYTIC METHODS

In this section we follow another approach to obtaining
improved estimates of the many-body wave function. Many-
- body perturbation theory is a well studied approach to under-
1 standing the effects of weak correlation. Encouraged by the
. use of the RPA22] which gave an excellent analytic two-
body correlation function, we will extend this wave function
by perturbative expressions for the Jastrow, backflow, and
;i three-body potentials for the electron gas and for metallic
L g hydrogen. Rather than performing a systematic low or high
- . density expansion to derive analytical expressions for the
ri T variational wave function of the electron gas or metallic hy-

7(r)

ST drogen, we concentrate on improving this correlation factor.
0 2 4 6 8 The collective coordinate formulation of Bohm and Pines
r/a, [20,27) allows us to use Slater-Jastrow wave functions as

zeroth-order starting point. We obtain improved potentials
FIG. 2. Theu®P(r) using the RPAGaskel) form (dotted ling for the homogeneous electron gas and metallic hydrogen,
and 7(r) (solid ling) from smoothing it withk =2 for the ep corre-  which compare very well with numerically optimized forms.
lation atrs=1.31, both computed for an infinite system. Note that  Even if perturbation theory assumes a weak coupliorg
in this approximation they both tend to the same limit at large  high density expansion, we expect the derived properties to
be qualitatively valid as long as the corresponding perturba-

Neglecting the last term, since it is higher order in the inter-ion €xpansion remains regular, e.g., until there is a phase
action, we obtainv2y(r)=—2u(r). We have set the inte- {ransition to an insulating phase.

gration constant to zero in order to avoid a singular contri-

bution proportional tor ~* at the origin which would give A. Single-particle perturbation theory

rise to large fluctuations of the local energy. The solution in . . . : . .
Fouri C 2 . Consider a single electron interacting with an arbitrary
ourier space ig/,=2u,/k*. Therefore,y(r) is smoother

thanu(r) atr=0. We get the same smoothinig (%) that we exte_rnal potentialv (r) _ v_vith Fourier transformuo (k). To
observed at first order for the pair function. Shown in Fig. 28v0id the problems arising from the long-range behavior of
are theu(r) and 7(r) functions coming from this approach. t_he C_oulomb interaction, we restrict ?he_a_naly5|s to a poten-
Note that this approach is based on a single-electron descri@l With a Fourier transform which is finite at the origin,
tion and therefore does not correctly describe the longjv(0)|<w=, e.g., a screened Coulomb potential. We use the
wavelength(large r) behavior where the collective motion continuum notation in this sectigf1V) = [d3k/(27)3].
dominates. The solution of the Schdinger equationp,(r) of a particle

To obtain a simple form for the three-body potential, we with wave vectork,
note that the averages used in the definitiory @fre similar

to those forlW, see Eqs(12)—(15). Hence an estimate of the 1 3 .
polarization potential is bi(r)= (2m)° d°pcx(p)exdip-r], (26)
W= —\keY (25  can be written as
. 3 4mf(k,p)
where we have approximaté@(V;U)?))~((V;U))?/r, av- ck(p)=(2m)*o(k—p) + m (27

eraged over a “typical” timerw()\kﬁ)*l. This relates the
three-body contribution to the backflow potential.

The generalized Feynman-Kacs approach is good for sugwhere the off-shell scattering amplitudis,p) are given by
gesting corrections, but there are serious problems in using ihe integral equation
to find a good backflow function since the averaging is dif-
ficult to carry out, the linear cumulant approximation may be
inadequate, and the long-time effects of the imaginary drift
are being ignored. If one cannot analytically perform the
averaging, one does not know by what time to multiply the
local energy to get a wave function, nor the relative correc- ) )
tions at large versus small distances. We now discuss severhere\ =72/2m for the single electron in an external po-
other approaches which allow us to directly evaluate the Ja€ntial or, more generally, =\;+ \; for a two-particle prob-
strow, three-body, and backflow functions and give more in{ém. Using the Born approximation we can write down the
sight into their form. wave function to first order i,

37

(277_)3U(p_k,)ck(k,)y (28)

477)\f(k,p)=f
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de(N =)+ p{1(r) nonperturbative expressiof28) for the scattering ampli-
tudes: given an approximate expression for the bound state

e 17 d% ip-r v(p) wave function of energy,=—\k?, we can calculate the
=e - Xf (277)33 p-(p+2K) | (29) scattering amplitudes and obtain corrections from the bound

state to the pair and backflow potential in the same way as
If we expand the solution arourid=0 and assume that the shown above for the scattering states within the Born ap-
change in the wave function is small, we can write it in theproximation. In a similar way one should proceed to obtain
pair-product and backflow form, E¢L9). We obtain for the approximations for the pair and backflow potentials for sys-

pair potential tems where the interatomic potentials cannot be treated
3 ~ within the Born approximation, for example, potentials
u(r)~f d°p eip.,Lp) (3p) dominated by a hard core.
N 3 2’ Of course, in the case of a single electron in an external
(27) \p ) sing
) potential we can solve the Scliioger equation by other
and for the backflow potential means and obtain the “best” pair and backflow potentials
4 3(0) from the exactnumerical solution. This is done below for a
y(r)zzj _peipwﬂ_ (31)  perfect crystal using a band structure calculation. However,
(2m)° Ap? the simple perturbative approach above provides an easy

way to get some intuition for the pair and backflow potential,

and is already good enough to determine their asymptotic
properties. These properties are expected to hold in the
many-body case: the short-range properties are typically de-

the case of a weak potential, it becomes correct in the higﬁermmed by two-body collisions and the influence of the

momentum region and hence, gives the correct cusp Condllrgamaining _particles on the Ior?g-ran'ge prope.rties is usqally
tions. The derived form is identical to that obtained from theVe!l described by an effective _smgle-pgrtlcle potential.
Feynman-Kacs formula in the preceding section. For an ar¥iany-body perturbation theory, which we discuss next, leads

bitrary weak potential, we further get the long-range behay{© Similar expressions.

ior, uscp (0)/r and 7o 1/r® for r—oo, provided the potential

has a finite rangEv (q) —v(0)eq? for g— 0] and there is no B. Many-body perturbation theory

oth_?or ?ir:'dglgﬁrgy i?othfn;rzge?c:mdf.or the three-bodv function We now make an expansion of the exakparticle wave

W(r) V\I/e must ggtoxhigher order in the interactior?/ buut O'nlyfunction |¢) of the interacting system around the noninter-

atk=0. Using Eqs.(27) and (28), we can write do,wn the ~ acting (ground state|¢o); the ground state vylthout _e|ther
d. d .t' Tt th, functi (2) ot the electron-electron or the electron-proton interaction. Let

second-order corrections in to the wave functiong™” a ay (al) be the annihilatioricreatior) operator for an electron

Note that the smalb part of the integral is usually cut off by

the finite size of the box. In addition, it ig(r), the deriva-

tive of y(r) [see Eq(18)] which enters in the trial function.
Although the first-order approximation is only reliable in

k=0: of wave vectork. Expanding in particle-hole excitations, we
5 1 qu d3p ;(q)eiq~r'l‘)'(p)eip~r have
W= 5] Gmr 2er @r? P
(32 | 4)= 1+q kEk a"l'kzxqa'zzfqakzalﬁqakl—i_ o ) | b0)-
1K1,Ko

(34)

j d’q  d’ v(qer
(2m)® (2m)®  Ag? The problem is reduced to determining the coefficients
2q-p\7(p)eP T ay, k,.q- Just as in the single-particle case, a further expan-
X(l__z)—Z' (33 sion of ay k, q aroundk,=0 or k,=0 together with an

q Ap exponentiation brings the wave function into the desired

This is almost in the form of the three-body correlation ob-functional form, thereby determining the pair and backflow
tained with the GFK approachV(w)2. Note, however, that Potentials. To avoid overcounting, we assume that the sum-

Eq.(33) is unsymmetrical irg andp so that in r space it will mat_io_n in Eq.(34) goes 0r_1|y over distinct states so that it is
be written as Ww,)- (Vw,) with w,(r)=u(r) and w,(r) sufficient to antisymmetrize the wave functpn at the very
~y(r). Therefore the polarization term is not a square but £nd, once we have calculated the perturbative corrections.

product of the gradients of two different functiorén the ~ We have limited the expansion in E(B4) to the leading
second order one will also find a contributierfu(r)]? to order corrections, particle-hole excitations; the generaliza-
the pair term). tion to include higher-order excitations is straightforward,

The perturbative expressiori80) and (31) are based on but not necessary to calculate the pair and backflow terms in
the Born approximation for scattering between free statedn® wave function. _ o _
However, an attractive potential as the electron-prdefa In orderT to deTtermme the coefficients, we write
fective) interaction might also lead to bound states. To in-l Pkikza) =8k, ¢k, 3, + q@,| o) and multiply these states
clude the effects of a possible bound state we can use tHay a constant phase
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Note that with this phase factor, the right hand side of Eq

A1 k2q= <(I)k1,k2,q| ¢)x
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TABLE |. Asymptotic properties of the Jastrow and backflow
functions for the 3D electron gaa.=#%2/2m,, n is the electron
density,y,~0.055 ¢, andc(rg)~1+0.075/r4/(1+0.8Jr).

(35) is given by the expectation value of an operator over the
true ground state and the coefficients can therefore be ide-

tified as anN-particle Green’s functiofi28]. By considering
only particle-hole excitations in Eq(34), the N-particle
Green'’s function reduces to a connected two-particle Green
function and the lowest order modifications to the ideal ga

ground state of the homogeneous electron gas are therefore

related to the two-particle Green’s functidd® at equal
times[28] or equivalently

< ¢| alz— qakzall-%— qakl| ¢>
(¢le)

Summing up particle-hole bubble diagrarworresponding
to the RPA results in an effective interactiongpa(p, ),

Ak1k2q™= (36)

v(p)

E(k,a)) ’ 5(klw)=1_;(p)D(paW),

;RPA(prw)z
(37)

whereD(p,w) is the Lindhard function. Perturbation theory
can now be arranged to be regulag]. We note that E¢(37)
already contains the correct short- and long-range limits o
the effective interaction.

Neglecting for the moment any contributions from plas-
mon  excitations coming from the poles where
e(kp,wp(ky))=0, we get

ay; ky,q= (1= N - )N (1= Ny 1) Nk,

URPA(qukl_ekl—q)+URPA(q:8k2_8k2+q)

X
2(ey, t &k, ~ €k —q Eky+q)

(38)

where n, are the occupation numbers of stéteén lowest
order. Expanding arounk, =k,=0, we get the Jastrow and
the backflow potential. Including the plasmon excitations
will give an important long-range contribution. However, in

the simplest approximation, this contribution describes only
the long-wavelength limit correctly, and destroys the correct H :E )\pi2+

short distance behavior. We will circumvent this problem in
the following section using the formalism of collective coor-
dinates.

As already shown in the preceding section, we expect a

more general form for the three-body potential,
pcdefexpik;- (r;+Ar;)Je Y RFW (39

with

w=$ (vjvvu><vjvvy>—2i2<j [Vwy(ri) LV, wy(rij)],
(40)

Function r—0 r—oo k—0 K— o0
e?lr e?/r 47e?lk?  4me?lK?
u e?r e 1 Uy Uy
Ug— —>— Y, = 1\ —
'S 4N\ 8mn\r 2Nk 2)k2
e? c(rs) c(rs) Uk
Vo= Yol 2+ —=—13 r— — 0
0 Y2n T agn 4mnr nié 20K
& c(rs)
7 SO 47nrd
where
wy(r)=u(r), wy(r)=y(r). (41)

For the interactions of the electrons with static protons, we
can use the static dielectric functios(k,0) to obtain the
effective electron-proton interaction, and use directly the re-
sults of the single-particle perturbation theory of the preced-
ing section with this screened potential.

The disadvantage of perturbation theory is that one gets
correct behavior at long and short distances, but it does not
provide a unique way to interpolate between these limits. In
Table | we summarize the asymptotic properties of the pair
and backflow potentials for the three-dimensio(&D) elec-
tron gas.

C. The Bohm-Pines collective coordinate approach

Instead of replacing the established form for the Jastrow
part proposed by GaskdlR2] by the direct use of Eq.38),
we prefer to improve the RPA form of Gaskell by extending
it using perturbative formulas. This is most easily done
within the framework of the collective coordinate description
of Bohm and Pines using additional field variabJ&g]. In
this approach, the original Hamiltonian of electrons interact-
ing with each other and with static protons is extended by an
additional boson field with generalized momentum variables
IT, coupling to the electron and proton density fluctuations

1 1.
>y % vk(pSok—N)— Ek vip® kof

1
Y

I
2

> +M g+ PITfpf |, (42)
k

wherepy, (pf) is the Fourier transform of the electrépro-

ton) density, p,==;e '*"i, and M, and P, are variational
parameters. By imposing the extra conditidig¥? =0 on

the wave function, the ground state wave function of the new
extended Hamiltonian will be identical to the original one.
For a detailed description of this approach we refer to the
original literature[27]; we will only describe the main steps.

Carrying out the following canonical transformation:
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, 1
Gola= XIS/ bnew,  S= 2 (Mt Pup)Qx,

(43

where Q, represents the field coordinate conjugatellp,
we obtain an equivalent Hamiltonian

+

nin
H= Ehep.+ IR

+HE A+ Hip+Hpy +HEP, (44)

+NeNK?MEQLQy

where

1 ~
=2y 2 @M wi-N), (49

1 (k~pj ik

Hint:i\_/kE’j o %)Mkaeik'ri, (46)

Hrw 2 QIQuMMk ke k)T (47)

V k=K' j

1 -
HgP:_\—/ ; (vk— M P P% k- (48)

Now the ground state of the additional field in the zeroth
order Hamiltonian, Eq(44), is simply given by harmonic

oscillator ground states of frequenciég=(nk?M2/m)*/,

+
k

11,11
#2.,=defexdik;- r]]exp{ ! E 2ﬁvk} (49)
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eliminatesH;,; to first order. Herew,(K) is the plasmon
frequency at wave vectok. Note that this transformation
brings the wave function into the backflow form. Further-
more, we treat the remaining terms of the Hamiltonian per-
turbatively as shown in the preceding section.

The detailed functions we used for the electron gas and
for metallic hydrogen are given in the Appendix and the
numerical tests are given in Sec. V.

IV. COMPARISON WITH THE BAND STRUCTURE
WAVE FUNCTION

In this section, we consider another approach of generat-
ing backflow functions. As in the discussion of the single-
particle perturbation theory in the last section, we consider a
perfect lattice of protons in which a single electron moves. It
is straightforward to expand the wave function in plane
waves and obtain a precise numerical solution of the one
electron problem by diagonalization of the Hamiltonian ma-
trix. We study to what extent we can recast the “band struc-
ture” wave function into a backflow form. The advantage of
this approach is that we are evaluating the entire nonlinear
effect of a lattice of protons on the electron wave function, or
orbital, which for a perfect lattice is a Bloch wave. However,
effects of electron correlation or screening are absent for this
model.

As was done in Eq(26), the exact one-electron wave
function is expanded in plane waves:

k(r):%: Cy, g€

i(G+k)-r, (52)

where G is a reciprocal vector of the lattice ardis the
crystal momentum. We then obtain numerical valuesfag

by conventional diagonalization of the Hamiltonian in this
basis.

Transforming back and applying the subsidiary conditions First, we study the wave function kt=0 to determine the
replaces the field operatbl, by M pg+ P, pf and the zeroth  pair part of the wave functiort). Neglecting the three-body

order wave function is in the Slater-Jastrow form

$d4=delexdik; ;1]

1 < MipSpit2MiPp® ook
< ex __2 kP —kPk kP kP —kPk
\Y 2V,

(50

up to a constant factor. Instead of usiy= (vy)26(k.

—k) for the long-wavelength part up tq,, and optimizing
the cutoff k., as done in the original work of Bohm and

Pines, we can use ¢and ukp for the electron-electrofee
and electron- protomep) Jastrow part taken in the RAR]

and relate these functions ¥, and P,.. The resulting re-
sidual electron-electron and electron-proton interaction i

screened, sinceMZ—v, and MP,—v, in the long-
wavelength limitk— 0.
A second unitary transformation using

k-p;
> M i e kT (51)

1
STV & KMaoy(K)[fiwy(0)+ €]

term we have

> u(|r—z)=—In[ ¢o(1)], (53)

wherez; are the proton positions. Then by Fourier transform-
ing and assuming a Bravais lattice,

uG=—fvd3re“e‘"ln[¢o(r)]. (54)

This is shown in Fig. 1 and compared to the RPA fasualid
line) and cumulant form. Note that we only obtain informa-

§|on aboutu, at values ofk on the reciprocal lattice. It is

seen that except for the first few reciprocal lattice vectors,
the pair wave function is determined by the cusp behavior.
The noncusp behavior is due to the neglect of higher-order
terms in the cumulant expansion. Some effects are picked up
by the three-body term of the wave function. We note that
even for the largest lattice vector, the values seem to follow
a smooth curve, independent of the lattice directions. The
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FIG. 3. (Color onling The backflow functiony, vs the ) ) .
wavevectorg in atomic units for solid cubic hydrogen lattice m FIG. 4. The error in the band energy of a single electron in a bcc

=1.31. The solid line is the cumulant approximatiop;= proton lattice forr=1.31 as a function ok (in the 100 direction
—16m/q°. The dashed line is the backflow function optimized for USing plane wavesdashed ling and using a BF functiorisolid

an interacting\-body hydrogen with a Gaussian form. The dotted line). Both approximations are exact at tfie point since a trial
line is from many-body perturbation theory, E@11), derived in function exact ak was used, but for the BF trial function, the error

the Appendix. The solid symbols a¥g , with ¢, determined with k* while in the PW casézero backflow the error isxk.

a band theory calculation. All values gfon the reciprocal lattice

are plotted and four different values kfare used having magni- (pecause the logarithm gfis shown. At intermediate values

tudes 0.0 k=0.05 and with four different directions. of g one does observe some “nonbackflow” behavior, how-
. ) ever, it is not clear how important these effects are. At large

k=0 component, though important, will not affect the many-q e see the “cumulant behavior}?qz877e2/)\q6, shown

body nodal structure or the correlation effects near the Fermig ihe solid line, as expected from the results of Secs. Il and
surface. i

Now, let us use the same procedure to estimate the back- |, Fig. 4 is shown the error in the band energies with a

flow function. First, we divide out the wave function et packflow (BF) wave function and the results for having no
=0 and define backflow functions for differektvectors,  packflow effects. For the comparison we used a BF function
Yi(r), Yq=YoeXxp(—bo) fitted to the lowq behavior. Since/, drops
. off rapidly with respect tog, it is primarily the effects at
k- VYD) =k-r+1In] di/ bol. (55 smaIIE th)ét are impgrtant?c% descr?ljjéO]. B);/ definition the
Assuming Y,(r) is the sum of contributions of proton- €nergies are identical &=0 and the curvature arounkl
electron terms on a Bravais lattice we get =0 s exactly put in by the backflow ansatz, at least assum-
ing cubic symmetry. We see that the errors in the band en-
1o or ergy go ask* instead ofk? for the nonbackflow trial func-
k-VYi(r)=y %‘4 iG-KYy,ce™" (56 tion. However, near the band edge there are serious problems
because our assumed form does not have mixing of the
Setting these two expressions equal and taking the Fourigrands required by lattice periodicity. We expect such an ef-
transform we arrive at fect to be much reduced for a disordered system since such
_ degeneracies will not occur.
—| _iG. This achieves our goal or showing that the dominant band
Ykﬁ:ﬁf dre™'In[ ¢x(1)/ do(1)]. 57 structure effects can be interpreted as backflow corrections,
particularly at smalk. This implies that the changes in the
In general, the functiorY, ¢ depends on botk andG. For  nodal surfaces due to an external potential of protons are
small values ofk, the ratio approaches a limity;  well approximated by backflow functions.
=lim_ oYy g, independent of both the magnitude and direc-  The backflow form is a much more succinct description of
tion of k. As with the pair term, we can only determipigat  the single-body wave function than the expansion in plane
reciprocal lattice vectorg, extrapolated fronk in the first ~ waves. In the Introduction, we emphasized that this improves
Brillouin zone. Shown in Fig. 3 i, 4 for several values of performance because we no longer have to perform the band
k evaluated for a simple cubic lattice plotted versudHow  structure calculation. However, there is also an improvement
well the values fall on a smooth curve independenk @ a  in speed of calculation of the orbitals using backflow. The
test of the extent to which the band structure orbitals can bexpansion in plane waves can be quite slow, since the accu-
cast into the form of a backflow function. Note that only for racy versus number of terms decreases quite slowly. In pre-
the smallest values af is the backflow function appreciable vious work on metallic hydrogef3], we divided the band
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structure orbital by an electron-proton Jastrow factor as an TABLE Il. Energies and variances for the 3D electron gas with
approximation to ¢y(r), and then reexpanded in plane N=54 unpolarized electrons in Rydbergs/electron. SJ means a
waves. The resulting expansion is much more quickly conSlater determinant of plane waves times an optimized Jastrow fac-
vergent in the number of plane waves since the cusp at tpr..BF.B-O are the result of the numericfal backflow three-body op-
=0 is in the Jastrow factor. It takes the sum of many plandimization [10]. BF-A are the results using the RPA Jastrow, Eq.
waves to recover this nonanalytic behavioratz,. Back- (AL together with the analytical backilow formula, E(A1L),

flow takes this even further by using the fact that nkar BF3-A with the additional asymmetric three-body wave function of

=0 the wave function can be expanded in pair terms with aEqS'(4o and 41

higher-order cusp. These pair terms can be conveniently and . 2

. . . . Wave f E E
rapidly computed, since much of the computational effort is 5" o © unction v s pme
to map each pair of particldee or ep onto a grid value for 1 SJ 1.06666) 1.152) 1.06194)
a table lookup. The distances and grid values are then used BF3-0O 1.061%%) 0.0281) 1.06012)
for all of the pair terms: the potential, the Jastrow, the back- BF-A 1.06112) 0.0291) 1.05971)
flow, and the polarization terms. BF3-A 1.06032) 0.0221)

The problems concerning degeneracies of the unperturbegl sJ —0.15558(7) 0.0023) —0.15734(3)
plane wave functions near the edge of the Brillouin zone are BF3-O —0.15735(5) 0.00051) —0.15798(4)
common to all analytical approaches considered up to now. BE-A —0.15762(1) 0.00061) —0.15810(1)
Without a separate treatment @fearly degenerate zeroth- BE3-A ~0.15773(1) 0.0005Q)
order(plane wav_ézstates, neither tht_a cumulant meth&skc. 10 sJ ~0.10745(2) 0.0003%) —0.10849(2)
[I) nor perturbation theorySec. lll) is able to produce the

. o BF3-O —0.10835(2) 0.000145) —0.10882(2)
resulting energy splitting at the band edge. A degenerate case
. . . BF-A —0.10843(2) 0.00017Z) —0.10888(1)
will have to be treated by including all of the degenerate BE3.A —0.10846(2) 0.00014)
states in the unperturbed basis. ' ' (2) 0.
20 SJ —0.06333(1) 0.000064) —0.06388(1)
BF3-O —0.06378(2) 0.000027) —0.06403(1)
V. QUANTUM MONTE CARLO TESTING OF TRIAL BF-A —0.06372(2) 0.000042) —0.06408(1)
FUNCTION FORMS BF3-A —0.06358(1) 0.000058)

There are two principal simulation methods used to cal-
culate the ground state energies of quantum many-body sys-

tems: Variational Monte CarloVMC) and diffusion Monte Here we compare several different trial wave functions on

Carlo (DMC). In VMC, one samples the square of the WaVetwo systems: the_3D electron gas ar_1d metallic hydrogen_. We
function. and. in DMC. one uses a trial wave function andemploy three estimators of the quality of the wave function:

the imaginary-time evolution to project onto the groundthe variational energf, =(yHy), the variational variance
state. VMC is potentially very powerful because one can user?=(y7{?¢)—EZ?, and the DMC(fixed-nod¢ energy. The
any wave function, as long as one can easily compute itfrst two properties are sensitive to all aspects of a wave
values. One can add correlation directly to the wave funcfunction; the variance is particularly sensitive to short-range
tion, leading to a very compact accurate wave function. Thestructure since the energy fluctuations are larger. However,
resulting integrals are similar to that of the classical partitionthe DMC energy is determined only by the positions of the
function and therefore demand a simulation algorithm fortrial function node, not by the “bosonic” part of the trial
evaluation. The disadvantage of the variational approach itinction. The VMC/DMC calculations we performed were
that one needs to use the right functional space in order tetandard one$l]. All calculations are done with periodic
get satisfactory properties. Though DMC is much less deperboundary conditiong§PBC), equivalent to thd™ point for a
dent on details of the trial wave function than VMC, how- band structure calculation in a cubic unit cell. Hence all trial
ever, lacking an exact fermion algorithm, the results still de<functions were real. Though twist-averaged boundary condi-
pend to some extent on the positions of the n@atephas¢  tions [32] are useful in reducing size effects, tests showed
of the trial wave function. that the relative accuracy of various trial functions can be
The most straightforward and rigorous approach to deterdetermined with PBC using real trial functions.
mine the trial function is to propose a definite analytic form, First, we discuss the results using backflow and three-
containing some parameteasOne then uses VMC to evalu- body wave functions on the 3D electron gas as shown in
ate the variational energyy(a), an upper bound to the ex- Table Il. The results using analytic trial functions give results
act energy as a function af One can use various techniques comparable to the numerically optimized backflow results of
to optimize the parameters to obtain the lowest energy, th&won et al. [10]. We find that forr ;<20 the analytic wave
lowest variance or some combination of the two. Variationalfunction has a lower VMC energy than the numerically op-
optimization [18,10] has determined good backflow and timized wave function. This is mainly due to the inclusion of
three-body trial functions for the electron gas in both twothe long-range part of the backflow potential. For all values
and three dimensions. The disadvantage of optimization isf r¢ the analytic wave functions have a lower DMC energy,
that beyond general trends, it is hard to extract analytic beimplying a more accurate nodal surface than obtained by
havior because of the noisy behavior of the optimizationnumerical optimization. For,=20 the numerically opti-
method and the restriction to a limited functional form. mized VMC energy is lower than that of the analytic wave
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function, indicating that at least the three-body part of the TABLE Ill. Energies for bcc hydrogen ats=1.31. SJ-PW
wave function becomes inaccurate at strong correlations. means a Slater determinant of plane waves times an optimized Ja-
Now we consider the use of these same trial functions foptrow factor. LDA means LDA orbitals times an optimized one
a system composed of electrons and protons. To determirf@dy factor and Jastrow factg8], BF3-O ep means optimized ep
the properties using the optimization method, we used th&ackflow, ep poIarlz_atlc_)n, and Jastrow. Energies are given in har-
RPA form for both the ee and ep(r). We used optimized trees per atom. Periodic boundary conditiofisgoint) and Ewald

Gaussians for both the backflow and polarization terms: ~ SUMS Were usedr is the variance per electron. BF3-A ep are the
analytical wave functions using ep backflow three-body only,

whereas BF-A e¢ep are results with ee and ep backflow; BF3-A
eetep include also ee and ep three-body and backflow, BF-A ee
. ) +ept+b uses the same wave functions of BF-A+ep but the
Even though the optimal functions may have a |0ng-rang%|ectron-proton Jastrow and backflow is improved by taking into
tail, as shown earlier, the additional energy gained is smaliccount the effects of a bound state.

and we neglect the long-range terms in setting up the param

n(r)=N\exd — (r—rg)%/w?]. (58

etrized trial functions. An additional Gaussiemitn ro=0so N Wave function E, o? Epmc

as not to change the cusp valweas added to the pair term.

We did not include ee backflow or polarization terms in thel6 SJ-PW —0.4754(2) 0.077@5 —0.4857(1)

wave function. The resulting ten parameter wave function LDA —0.4870(10) —0.4890(5)

was then optimized to minimize a linear combinatj@3] of BF3-O ep —0.4857(1) 0.031(6) —0.4900(1)

its energy and varianceg, + ro%/2 with typically 7=0.1. BF3-Aep —0.4798(1) 0.051@)

Shown in Fig. 3 are the optimized backflow functions com- BF-Aeetep  —0.4850(1) 0.0232) —0.4905(1)

pared with the cumulant value, with the analytic form and BF3-Aeetep —0.4850(1) 0.022@)

with the band structure determination. The magnitude and BF-A eetept+b —0.4878(1) 0.018®)

shape are similar, though differences are apparent. 54 SJ-PW —0.5241(3) 0.064®) —0.5329(1)
We compare the results with three other wave functions. LDA —0.5365(5) —0.5390(5)

The simplest is the SJ-PW functiofig], which do not con- BF3-0 ep —0.5331(6) 0.03@) —0.5381(1)

tain backflow, three-body terms and the orbitals are simple BF3-A ep —-0.5261(1) 0.051®)

plane waves. We also used optimized Slater-Jastrow func- BF-Aeerep —0.5323(1) 0.0222) —0.5382(1)

tions with orbitals from a LDA calculatior{3]. Finally BF3-Aeetep —0.5325(1) 0.0214)

shown are various analytic backflow calculations: one con- BF-Aeeteptb —0.5353(2) 0.017@)

tains only ep backﬂoy(and thrge boqy_ the others have ee 4,g SJ-PW ~0.4818(2) 0.065@3 - 0.4900(2)

backflow(t_hree body included in addition. _ LDA ~0.4962(2) ~0.4978(2)
Shown in Table Il are both VMC and DMC calculations BF3-O ep -04934(2) 0038 —0.4958(3)

of various wave functions for metallic bcc hydrogenrat
=1.31, a density very close to the molecular-metallic transi-
tion. While the detailed results depend on the number of
particles, in general we find that the SJ-PW function is in
error within VMC by about 15 mH/atom while the BF is in
error by about 4 mH/atom and the LDA trial function by
about 2 mH/atom. Within DMC the SJ-PW is in error by optimized ones. Including ee backflow in the analytical
6mH/atom and the BF is as accurate at the LDA trial func-forms, they become comparable. One should note that the
tion within the statistical error. This analysis of errors is doneanalytical approaches derive ee and ep backflows at the same
with the assumption that the LDA-DMC energy is exact. Asorder of approximation; dropping one of them alone is not
another indication of the quality, the VMC wave function justified and might explain the importance of including ee
variance is roughly a factor of 3 smaller with the BF wave and ep backflows in the analytical functions. The inclusion of
function than with the SJ-PW wave function. three-body terms does not noticeably affect the energies.
We see that foN =16 the DMC backflow results are even This is similar to the results for the electron gas at compa-
lower than the LDA function. One reason for this could berable densitie$10]. Since the density is close to the transi-
thatN=16 has a degenerate ground state for a single Slateion from metallic to molecular hydrogen we tried to im-
determinant; many-body effects break the degeneracy. It mayrove our wave function by considering the effects of a
be that the current simulations, though similar to those okimple electron-proton bound state on Jastrow and backflow
Natoli, broke the degeneracy in a more favorable way andn our analytical formulagsee the Appendixand found sig-
thus have a lower energy. Thié=54 system has a nonde- nificantly lower energies within VMC.
generate ground state at the mean field level, a closed shell, Note that when ee backflow is included, it becomes nec-
so the results may be more typical. Finally degeneracy efessary to move all electrons together, and for reasonable ac-
fects are probably less importantiit= 128 sinceN is larger.  ceptance ratios one must choose an increasingly smaller time
We have tested the relative importance of including eestep as the system size increases. However, the more accu-
backflow in the case of metallic hydrogen. Using eprate nodal surface gives both a guantitative improvement in
backflow-three-body only, the analytical wave functions giveproperties and qualitative changes in some properties such as
considerably higher energies compared to the numericall{Fermi liquid parameterg31].

BF3-Aep  —0.4846(3) 0.05d)
BF-Aeerep —0.4928(2) 0.03Q) —0.4978(4)

BF3-Aeerep —0.4926(2) 0.02d)

BF-Aeeteptb —0.4947(2)  0.028)
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TABLE IV. Energy and variance of liquid metallic hydrogen at phase diagram of the electron gas and promising for metallic
rs=1.31, and\N=16. The notation of the trial function is described hydrogen.
in Table Il. The entries markegbco) are performed with the value An important consideration in Monte Carlo is computa-
of the parameters optimized on the perfect bcc lattice. The Otheﬁonal efficiency. For electron-electron backflow, the code
entries are optimized over 1000 independent protonic com‘igurar-LInS slower due to having to move all the particles together.
tions taken at thermal equilibrium at 5000 K. All results are usingFOr electron-proton backflow that is not the case. You can

VMC. . . . .
still move electrons one at a time since all the changes in the
Wave function E, o2 Slater matrix are confined to a single column; each such
matrix value is given by a term of the same form as a clas-
SJ-PW —0.4225(8) 0.081a) sical force, allowing it to be quickly computed once the ep
BF3-O-bcc ep —0.4418(5) 0.044() distance has been computed. Expansions of single-body or-
BF3-O-liq ep —0.4433(8) 0.071a0) bitals in a plane wave basis can be quite time consuming,
BF3-O-liq eetep —0.4462(8) 0.04838) especially when pseudopotentials are not used.
BF3-A eetep —0.4430(4) 0.054@) But the most important advantage of the backflow wave
BF3-A eeteptb —0.4464(6) 0.05@2) functions is that the form can be easily extended to put in

effects of electron-electron correlation on the nodes. The out-

standing problem in the simulation of quantum systems is the
We also used the CEIM{5] method to generate a collec- “fermion sign problem.” If the nodal surfaces are accurately

tion of proton positions appropriate to liquid metallic hydro- ; i » 0 A i
gen at 5000 K, far above the melting temperature of theapproxmated, then the “fixed-node” method will give accu

lattice. Using these configurations we tested the accuracy %ﬁtihrgsg;%k;g\?v p]fﬁr?;?gr\:;or;n?t?ﬁ&'sshIeesaggalt%tlcinr:;%?fargfs
the same trial functions described above. See Table IV. Th . ) .

: A rogress in understanding nodal surfaces. In particular, the
values marked BF3-O are obtained minimizing local energ)P : . o :
and variance for 1000 different equilibrium Configurations.,?hﬁe ecﬁég;?g%};:ggg 'igt?rrﬁggggﬁtrfsu:'g?gl;l?sﬁergf{:gﬁgogﬁotg_
we co mpar(_ad (o the other ways of determining the baCkfIOV\fange effects can be captured either by eneréy minimization
functions, either the analytic formuldsee the Appendixor by th dal rel lqorith hich ve for th
optimized on the lattice. While the optimized BF3 functions ©F PY th€ nodal release aigorithm, which can solve for the
have a slightly lower enerav in some cases. this does n (?xact wave function for relatively short projection times or

gnty energy TR > NYor small numbers of fermiong34]. Fixing the relationship

compensate _for the d!fflculty and reliability of perf_ormlng between the long-wavelength collective coordinates and the
the optimization. We find that the BF3 wave functions are

about 20 mH/atom lower in energy than from the SJ-PW aﬂodal surfaces could be crucial in obtaining accurate simula-

the VMC level, and have a lower variance. This comparison OT; {r?irsfe;m:ac;nvigsé?srzisse d the use of backflow functions
shows that disorder weakly affects the determined function§Or Paper,

a st n thisexperment. Ths supporis o belef hat T %01 I00en g pine waves 25 e rfeonce
BF3 wave function is “transferable” to a variety of protonic '

configurations. In addition, we expect the backflow wavelar hydrogen, an insulator, is straightforward. Let us take as

MW=st(r: -
function to be more effective in the disordered system, sinc h_el rfeferﬁnc.eust;tyl_ E'.t'(tr') + L.J(T) d‘.”‘ H:;\)rt;ﬁe Jastrgw
the energy degeneracies caused by crystal symmetry of fal tunc (Ij(t)n, (. ) is a Ip?lr ?.rm ||nc ul' mg 0 thii?\ and ep
perfect lattice are not present. Comparisons using optimize}](:"rms and;(r;) is a real function localized on mo-

: - e . “lecular bond, e.gt;(r)=—In[¢(r)] where ¢;(r) is a non-
;I?Sjlrlg(;tfg}iscg%jﬁpport this hypothesis will be reported in orthogonal Wannier function. Ceperley and Ald&t used a

spherical Gaussian centered on the bond but a more general
function can be used. L&t; be the bond center, then we can
VI. CONCLUSION expandt;(r;)=(ri—Z;)A(ri—Z;). Applying the GFK itera-
What we have shown in this paper is that ideas fromtion, Eg. (8), the bond center becomes displaced by an
perturbation theory can be used to generate an explicit trigmountZ;—Z;+2x\{(V;U));. The bond center is offset by
wave function beyond the pair level. This gives us both anbackflow forces” coming from the other charges. The back-
insight into the form of the many-body wave function and aflow displacement is similar to that for metallic hydrogen,
more efficient quantum Monte Carlo simulation for disor- Ed. (13), but because the averaging has a different drift, the
dered systems. This approach has also given intuition on theptimal backflow potentia¥ (R) will differ. In addition, U,
effect of an external potential on the wave function, even forA are renormalized and a three-body/polarization té/(iR)
a single electron. We have shown that one can approximate generated. Preliminary calculations using these ideas are
the band wave functiorfa 3d table of numbers for each encouraging.
Bloch wave, with three 1D functionsy,w, andy) valid for Backflow ideas are also useful at finite temperature. In
all Bloch waves achieving reasonable accuracy. It should béhat case we need to know how density matrices will evolve
recalled that for the electron-proton system, there will begoing from high temperature to low temperatigs]. One
these three functions for the ee interaction and three fund<nows how to put in backflow at high temperature. The chal-
tions for the ep interaction. We have found analytical repredenge is to smoothly interpolate to zero temperature since it
sentations of these functions accurate throughout most of thie clear that the backflow potential must be a smooth func-
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tion of temperature. In the variational density matrix method int 2\MPq
[36] one uses a Hartree-Fock approach with a Gaussian basis yzp"“ ~w (Q[og(0)+ed]’
to determine the evolution of the nodal surface of the many- P P 9

body density matrix. The various approaches we have deynere we usedwg(q)=8w)\e2n+2.4k§)\sq+s§ for the

scribed here, in particular the Bohm-Pines method, will beplasma frequencies arg is the Fermi vector. The screened

useful in understanding the temperature dependence. interaction between electrons, E@5), and between elec-
Another important problem is to generalize these methodggns and protons, Eq48), can be treated by perturbation

to treat electrons with core states. The formalism should ge’lheory. Summing up the particle-hallubble diagrams, us-

erate good trial functions in the valence region and can bg,q only the zeroth-order plane waves, leads to coefficients
used with either all-electron methods or pseudopotentials i, for the electron gas, as given by E&8), but with

that region. We hope that with some modification the proce- r';l’k%’q tive interaction and dielectri nstant:
dures we have discussed will be useful in the core region 8N eftective interaction a electric constant.

well.

(A6)

Ve =vq—M],  €e(,0)=1-v5f(q)D(q, ),
(A7)
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Yo obtain this formula we have further approximated the sum
over occupiedunoccupied states by S(q)]%/4, whereS(q)
is the ideal gas structure factor,

APPENDIX: ANALYTIC EXPRESSIONS OF THE TRIAL 1[3a (q}® <2k
WAVE FUNCTION S(q) =1 2|2ke | 2ke) | q=2Kp (A9)
In this section we summarize the analytic two-body, back- 1, g=2kg.

flow, and polarization functions which describe the trial ) ] ) o
functions. We start from the pair-produ¢Slater-Jastroy ~ 1he screened electron-proton interaction gives a similar term

wave function based on the RPA, using ~ep
ep,sr_ 2 Ueff(q)

q _(‘;‘qq2 eeff(Qvo)

(A10)

2nugt=—1+

2no,| 2
1+ — q) (A1)
q

with the screened electron-proton interactia P(k)=

and _(;k_MkPk)-
Adding these two contributions, the total backflow is

2nvq

2= (1+2nvg/eq)Y?’ (A2) Yo =Ya " tYa o, (AL1)
Sq Uq Sq .
YaP=ygP " +ygPer. (A12)

wheree=%%q%/2m=\q°. Heremis the electron mass and _ _ -
nis the electronic density. Using a trial function with ee andWe also performed calculations with an additional ee Jastrow

ep Jastrow factors corresponds to the following extendedunction ~5§f‘f’(q)/[sqeeﬁ(q,0)] but this form did not lower

Hamiltonian, Eq.(44), with the energy. Assuming that this form disturbs the already cor-
rect limiting behavior of the Jastrow pauf® andug® for q
M3=(ug9?2ne,, (A3) —0 andg—o, we took only the portion around the loga-
rithmic singularity at X¢, by using the following additional
MqPq=TJ§WJ§@Znsq _ (Ad) Jastrow factor:
. . . ~ [S(9)]%- 1 1
Applying the unitary transformatiotb1) to the wave func- uge*e——— () — ,
. . ! 48q €eﬁ(q,8q) éeﬁ(0,0)
tion, it generates the backflow potentials, (A13)
: 2\M? 1 1
eg/int q ~ ~
= , A5 epadd_ _—~ep _
Yo wp@lwp(0)Foq] "o TR0 g aop) A1
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We usedﬁngrﬁgp’addfor the total electron-proton Jastrow O L B L e e B

potential, but only$®, since the additional term$®* did i
not improve the variational energies of the electron gas. We 0s L / \
used the unsymmetrical form of the polarization with differ- s
ent left and right components given by E§40) and (41): i

wiP(r)=uP24r),  weP(r)=y°*(r).  (A15) 0.2 H o7~ \

(r/a) n(r)
~

Analogous forms were used for the electron-electron part. ; \
For the case of metallic hydrogen we tried to take into 0.1 b 7 Y \
account the effects of a possible bound state on the electron- 1/:,:" AN
proton pair and backflow potential. The single-electron wave i e
function ¢y, considering only one bound state can be ap- 0
proximately written by

A 0 1 2 3
¢b=J—N2 en(r=ril), (A16) r/a
' FIG. 5. The change in the quasiparticle coordirmaigr) (ana-

wherer, is the position of théth proton and the sum extends Ytic backflow) caused by an electron a distancaway in the 3D
over allN protons. As single-particle orbital we will take the €/€Cron gas. Graphed is only the short-range partyofiith N

. 3y —1/ - . i =54. The four figures are far,=1,5,10,20 from the bottom to the
hydrogen ground stateg,=(7ap) Zexp( rlap), with en top of the figure. Compare to the optimized forms in Fig. 2 in Ref.

ergy eb=1/2ma§; A<1 is a normalization taking into ac- [10].
count the nonzero overlap between orbitals on different sites.
Using Eq.(28) we obtain for the scattering amplitude

All potentials were split into a short-range and long-range

Ae P 41re? part[37] in such a way as optimize the accuracy for a given
(A17) r-space and k-space cutoff. The short-range function is evalu-
ated in real space and the long-range part is then calculated

where we have taken a screened Coulomb interactiph Py summing over Fourier components. Figure 5 shows nu-
= —eze*kTFr/r with the Thomas-Fermi wave Vectck%': merical values Of’)?(l') for the 3D electron gas. Comparing
=2kee?/ 7\, and we have neglected overlap effects fromWwith the same figure of Kworet al. where these functions
different sites. From Eq27) we can finally derive the cor- were numerically optimized, we see that the short-ranged

f(ep,p)=—>,

T YNmad p?+(ag i+ krp)?

rections to the pair potential, functions are very similar for <10 but different at larger
rs. Figure 6 shows the three-body contribution to the wave
uerb— _ A function. It is a rapidly increasing function of and is some-
‘ ynmag[1+(a/2kee)’] what narrower and more structured than the numerically op-
timized form.
4e? (A18)
X
[0%+(ap "+ kr) ]l en+eg) T T T T
o 1 -
-0.02 K [ |
epb_ gme’A N [ ; ]
Yo = 3 2 El5 [ / ]
ynmag[ 1+ (a/2kre)?] JEN ; ]
B[ Y ! E
1 ore N ]
2 -1 212 T 0086 [ , 7
[a°+ (a, "+ krp) ][ epteq] [ 'l\ ’/ ]
N -0.08 | L .
+ - (A19) Lo ]
[q2+(ab1+kTF)2][eb+eq]2 _o.1 L A R
_ o 1 2 3
for the backflow potential. We have cut off the short-range r/a
part of the corrections by multiplying with[1 FIG. 6. The three-body contribution to the logarithm of the

+(a/2kye)?] " in order not to destroy the cusp conditions. wave function due to three electrons in the 3D electron gas. This is
Since we expect a higher energy for the ground state of thgist the short-range parts @i(r) for N=54. The solid line, for
screened Coulomb interaction than for the pure Coulomb =1, is close to zerdmaximum magnitude of 810°%). The

potential, we use@,~2a, andA~1 in the numerical cal- dotted line and dashed lines are fqre=5,10. Compare to the opti-
culations. mized forms in Fig. 1 if10].
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