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Dissipative particle dynamics: A useful thermostat for equilibrium and nonequilibrium molecular
dynamics simulations
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We discuss dissipative particle dynamics as a thermostat to molecular dynamics, and highlight some of its
virtues: (i) universal applicability irrespective of the interatomic potentfa); correct and unscreened repro-
duction of hydrodynamic correlation§iji) stabilization of the numerical integration of the equations of mo-
tion; and (iv) the avoidance of a profile bias in boundary-driven nonequilibrium simulations of shear flow.
Numerical results on a repulsive Lennard-Jones fluid illustrate our arguments.
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[. INTRODUCTION is a modification of the old SD thermostat, which keeps prac-
tically all of its virtues, while avoiding its most severe
The natural thermodynamic ensemble of molecular dy-disadvantage—the lack of momentum conservation and con-
namics(MD) simulations[1,2] is the microcanonicaNVE  comitant incorrect reproduction of hydrodynamics, i.e., un-
ensemble l is the number of particle®/ is volume, ancEis  Physical screening of hydrodynamic interacti¢@s]. Actu-
energy. Nevertheless, in many cases one wants to modif@lly, DPD was originally developed in order to simulate
the equations of motion such that the simulation runs in thdluids on a mesoscopic scale with correct hydrodynamic in-

canonicalNV'T ensemble T denoting the absolute tempera- teractions. The idea was to use rather soft particles, which,
ture), i.e., to apply a so-called “thermostat” to the Sys’tem.vaguely spoken, should represent a cluster of atoms. This

This may be desirable for various reasons listed below. permits a large MD_tlme step. Fu_rthermore_:, a momentum-
(i) In equilibrium situations, some thermodynamic rela- cONServing stochastic thermostat is added in order to model

. . . . . ... _the internal degrees of freedom, which result in dissipation.
tions (in particular fluctuation relations, e.g., for the specific

heal t traiaht d to deri dt I tWhile the original formulation 9] violated the fluctuation-
eal are often more straightforward to derive and to evalua E'dissipation theorem, the more recent implementations based

than forNVE. - _ _on the work by Espasi and Warrerf11] satisfy it, and hence

(if) The thermostat may tend to stabilize the simulation,, oqyce a well-definedl VT ensemble. The thermostat thus
such that a larger time step is permitted. This is true foryows even more increased time steps. However, it turned
Langevin-type stochastic thermostdtee below, and is a oyt rather soon that running these soft systems with very
Serious iSSUe |f a Vel’y |Ong Observation t|me iS required. Forarge time Steps is less advantageous than Origina”y ex-
example, when studying the dynamics of dense bead-springected: While the algorithm as such does remain stable, there
polymer melts, one needs to observe the system over mamyte substantial discretization errors involved, such as that the
millions of steps. Comparing the two simulations(esen- measured temperature deviates significantly from the desired
tially) the same model, where one was run in M¥E en-  value. There have been many attempts to improve this situ-
semble[3], using the Verlet algorithni1,2], while the other  ation by implementing more sophisticated integration
[4] employed a stochastic dynamiSD) Langevin thermo-  schemes; this is currently a rather active field of research
stat[5], one sees that tHéVT ensemble permits a time step [15-2(. Interestingly enough, the time step issue is a very
of 0.012r, while stability in the microcanonical ensemble different one for hard potentials. In that case, the mere re-
requires a time step as small as 0.80Blere 7 denotes the quirement of stability automatically enforces a rather small
natural time unit derived from the purely repulsive Lennard-time step, under which condition the accuracy of the numeri-
Jones potential to model the bed@s4]. cal solution is usually quite acceptable.

(i) In nonequilibrium molecular dynamic$NEMD) Unfortunately, many outlines of DPD discuss these two
simulations[6] of steady states, the thermostat is of para-aspectgsoft particles on one hand, thermostat on the other
mount importance. The system is driven by an external forceasoneunified method. However, as a matter of fact, they are
i.e., energy is pumped into the system and dissipated intoompletely independent, and thus it is perfectly legitimate to
heat. The thermostat is needed to remove this heat, just as irse the DPD thermostat also for simulations with “hard”
an experiment. It is, however, possible to combine the drivparticles. Such potentials are often desired in order to take
ing and thermostatting into one simple algorithii8], see  molecular packing effects realistically into account, e.g., in
below. the formation of mesophases of low molecular weight am-

The present paper deals with one particular thermostaphiphiles or in the study of entangled polymer systems.
the method of dissipative particle dynami{@PD) [9-20]. It ~ Though it was already stated in R¢L3] that DPD can be

viewed just as a thermostat to MD, the possibility to apply it
to “hard” systems has not yet been widely exploit@kcep-
*Present address: Rechenzentrum Garching, BoltzmannstraRe tiopns are, e.g., Ref§22,23), and apparently its usefulness
D-85748 Garching, Germany. for such systems is not yet fully appreciated. The present
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paper is intended to fill this gap. vanishing mean and variandg?)=2dN(kgT)%M?2. This
We run a standard MD system with an added DPD therresyits in a typical time scale for the variation ff
mostat, thereby being able to afford a substantially larger

time step compared to pure MD, and nevertheless reproduc- (22) 172 M 12

ing hydrodynamic behavior correctly. This latter statement =\ oo =(—) 2
. i (2% 2dNksT

means, more precisely, that we correctly reproduce momen

tum propagation, which is often quite important in the dy- __. . . . . . .
namics of complex fluids. On the other hand, energy trans—Eﬁ'C".am. equmbratl?n reqwre? t_hat this matches typ|cal
tomic time scalesg‘resonance’, i.e., MxN. In turn, this

port is not simulated faithfully, as the temperature is being® ; 12

kept constant on a local scale. Formally, this may be viewe('inea(‘jns :Eat Otlhe typlcan values scale I'kd:jl : Inl\?ﬂ\:\ir .
as the limit of infinite thermal conductivity, which is not words, the dynamics becomes more and more fvewtonian
completely unrealistic, as for many systems the thermal conWhen the system size is increased, and th|§ means in turn b
ductivity is quite large. Furthermore, the “conventional” MD the method should reproduce hydrodynamics correctly if the

potentials force us to use a time step which is toatlarge system is chosen large enough. On the othe.r' hand, this aIsp
(actually rather small in comparison with many DPD simu-T€ans that the NH thermostat does not stabilize the numeri-

lations of soft particles and thus systematic discretization gal m(;egratl(l)nbofl ';hedet;}uaktlo:s (;]f motion, l?]ecausle Itis onlfy
errors are of negligible importance for our simulations. ased on aglobal feedback. Furthermore, the evaluation o

We have combined this approach with NEMD of shearthe total kinetic energy involves global communication over
flow, using a slight modification of the boundary-driven ap- all processors if the system is run on a parallel machine with

; ; i« domain decomposition. This is another disadvantage of the
h of Ref[8]. We th I h hich
proach of Ref{8]. We then arrive at an algorithm which is NH thermostat which should not be underestimated.

completely local. For parallelization, we use domain decom- S
position via a suitable adaptation of the method described in The SD thermostd6] works quite differently. Here every

detail in Ref.[24] particle is coupled to a viscous background and a stochastic
The remainder of the paper is organized as follows. mheat bath, such that
Sec. Il, we compare existing thermostats and NEMD -
schemes and state the arguments why we believe that our - Pi 3)
selected combination is useful. Section Il discusses our b my’
simulational details, and presents a few test results. In par-
ticular, we study the shear viscosity of a simple liquid, com- T 5i .
paring the SD to the DPD thermostat. Finally, we conclude in Pi=Fi={ fi,
Sec. IV. '
where{ is now aconstantfriction parameter, while the sto-
IIl. THERMOSTATS AND NEMD ALGORITHMS chastic forced; have zero mean and satisfy the fluctuation-
A. Thermostats dissipation theorem
There are several well-known MD thermostats which gen- <fiﬂ(t)fj5(t')> =2(KgT 8 8,58(t—t"), (4)

erate a well-definetl VT ensemble. The Nosdoover(NH)
thermosta{25,26] is a time-reversible deterministic scheme « and 8 denoting Cartesian indices. The effect of this algo-
in which the system is coupled to one additional degree ofithm is to thermostat the system on a local scale. Particles
freedom¢. In equilibrium, the equations of motion for an which are too “cold” are given more energy by the noise
N-particle system ird-dimensional space are term, while too “hot” particles are slowed down by the fric-
. tion. Numerical instabilities, which usually arise from inac-
pi curate calculation of a local collisionlike process, are thus
i o effectively kept under control and cannot propagate. This is
the reason why for this scheme a larger time step is possible
Lo - than for pure MD. On the other hand, the algorithm violates
pi=Fi—Zpi, () Galilean invariance, as the damping biases the velocities to-
wards the “laboratory” reference frame. This results in non-
conservation of momentuiithe center of mass of the overall
; system diffusesand in effective damping of the hydrody-
namic correlations on the length scale of a hydrodynamic
screening length

wherer, are the particle coordinateﬁ,i the particle mo-
menta,m; the massest; the forces resulting from the inter- I ( 7 ) 2

atomic potentialkg the Boltzmann constant, ard a mass- n¢ ®)
like parameter which sets the rate how quickly the system is

thermostatted. In equilibrium, the Varialﬂés Gaussian with where 7 is the shear Viscosity and the partic'e number
zero mean and variandg®) =kgT/M. Similarly, from the  density. This is seen quite straightforwardly by noticing that,

fluctuations of the kinetic energy one concludes thdtas  in the hydrodynamic picture, the algorithm introduces a fric-
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tion force per unit volume— gnﬁ, where u is the fluid  strengthwP andwR arer-dependent weight functions van-
streaming velocity. The random forces, on the other hand, arighing forr=r. 6, is a Gaussian white noise variable with

averaged to zero. Thus the tempu in the Stokes equation 6;;=6;; and first and second moments
is replaced bypAu— ¢nu. Setting this to zero, and replacing

A with | 2, yields Eq.(5). For a more formal derivation, see (6;;(1))=0, (10)
Ref.[21]. For {—0 the screening length diverges, as in this ) )
limit purely Newtonian dynamics is recovered. (05 (1) 0 (1)) = (G 8y + 8y dj) S(t—t').

The DPD algorithm is similar in spirit. There is also local
friction and noise, such that the thermostatting and stabilizF° and FR act along the interatomic axis and thus conserve
ing features of SD are retained. As shown in Sec. Ill, wethe momentum. There is an independent random function for
were able to run the DPD-thermostatted system with theeach pair of particles. In order to satisfy the fluctuation-
same large time step as with SD. However, in contrast to SDgissipation theorem, the relations
the friction does not dampen the “absolute” velocities of the
particles, but rather the velocitgifferencesof nearby par- 02=2KgT¢ (11
ticles. The method is thus sensitive to velodiadients as
it should, in order to be consistent with hydrodynamics.and
Similarly, the stochastic forces act quairs of nearby par-
ticles, such that Newton’s third law is strictly fulfilled. The [WR(r)]2=wP(r) (12
method thus satisfies the two basic requirements for repro-
ducing hydrodynamics on large length and time scales: lomust hold[11]. The usual choice is
cality and momentum conservation. Indeed, it was shown
formally that hydrodynamic behavior is recovered in that b R( 112 (1=rlrg)?, r<rg
limit [12]. Care has to be taken to satisfy the fluctuation- wWE(r) =[wr(r)] 0, r=r,. 3
dissipation theorem to obtain a well-defined temperature.
The original version of Hoogerbrugge and Koelnf@h did  Another possible choice, which might be computationally
this incorrectly[it violated Eq.(12), see belov; the neces- more efficient, would be
sary modification was introduced by ESparand Warren

[11]. ) ) i 1, r<rg
The DPD equations of motion are given by wP(r)=wR(r)= 0 r=r (14
’ =lc-
FF%, The scheme is thus seen to combine the positive aspects of
i

the two previous thermostats: Strict Galilean invariance and
. correct hydrodynamics, as NH for large systems, and nu-
pi=F+FP+FR, (6)  merical stabilization, as SD. We hence believe it to be the
ideal thermostat whenever one studies problems where hy-
where FP denotes the additional dampirigr dissipative  drodynamicsmomentum transport, butot heat flow is (or
force on particlei and FR the corresponding random force. IS Suspected to bémportant. ,
The latter are now based on particle pairs, i.e., Yet another approach for thermostattmg has been sug-
gested by Andersefi27]. Instead of solving a Langevin
. R equation, the procedure periodically picks some particle at
FiD: 2 Fﬁ, random and assigns a new random velocity from a Maxwell
distribution to it. This procedure generates a canonical dis-
tribution, and, like SD, it does not conserve the momentum.
FR= > |EFJe (7)  Unlike SD, however, it does not “smear out” the thermostat-
i(#0) ting homogeneouslywith respect to both space and time
but rather generates kicks which are localized and rather
strong(the trajectory is not continuous in phase spagais
is a property which we view as somewhat disadvantageous
-p_ D A s a compared to SOand this is why we do not use);itnever-
Fij= = awr(ri) (rij-vi)ry; (8) theless, in many cases the method has been applied very
successfully. The Andersen method is also computationally
slightly more efficient than SD, since only now and then a
©) single particle is involved.
In the same way as DPD can be viewed as the
- - - . . - momentum-conserving version of SD, one can also devise a
Here,v;; = viTvpIs the relative velocity between particles 5 meniym- -conserving version of the Andersen thermostat,
andj wh|Ie rIl denotes the unit vector of the interatomic axis which works along similar lines as DP@gain,relative ve-
r,J—rI . { is the friction constant andr the noise locities are thermostattedThis idea has been put forward by

The dissipative force in the formulation of ESjghand War-
ren[11] is given by

and the random force by

F [ = oW (r”)l9Il ij -
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Lowe [28]. Concerning the comparison with DPD, the samethe layers. A particularly simple and ingenious way to restrict
comments can be made as for the comparison of SD vdriving and thermostatting to boundary layers in one com-
Andersen. mon algorithm has recently been put forward by I
Plathe(for heat transport in Ref7], for shear simulations in
B. NEMD algorithms for shear Ref. [8]). One regularly selects pairs of particles with the
property that they reside in opposite layers, and that their
velocity differs particularly strongly from the desired veloc-
ity of the layer. Then the velocities are just exchanged. In
(15) case of a multicomponent fluid, one has to take care that the
pairs are selected in a way that the masses are identical. This
obviously conserves momentum and energy, and hence pro-
with uy=u,=0 for simple Couette flow is by modifying the duces a stable steady state, such that no additional thermo-
periodic boundary conditiond_ees-Edwards boundary con- statting is necessary. Surely enough, the cooling at the
ditions[29]). A particle that leaves the box indirection at  boundaries is indeed observig]. The easiest way to under-
the “top” and reenters at the “bottom” is displaced appro- stand this is to note that viscous heating is nothing but en-
priately both in position and velocity space. Furthermore, dropy production and that the algorithm actually removes en-
thermostat must be added in order to remove the viscougopy at the layers by artificially putting in informatioin
heat; this shall be discussed below. It should be noted thassence, the method is just a Maxwell demdine viscosity
this scheme explicitly breaks the translational invariancg in then results directly from the ratio between transported mo-
direction: The positions where “something happens” to thementum(or applied forcg and resulting shear gradient.
particles are well-defined layers in space. Hence, the method A slight technical difficulty arises with this algorithm
can be viewed as a boundary-driven method. Another popuvhen trying to apply it to small systems which are only
lar approach is to use the so-called Sllod equations of motioweakly sheared. This is particularly true when one attempts
[6] (so named because of its close relationship to the Dollto control the shear rate from the outset by a feedback pro-
tensor algorithm This is a homogeneou®r “synthetic”) cedure which enforces velocity exchanges from the criterion
method, where the effect of the imposed shear is rathepf the momentary shear being too small or too large. The
smeared out homogeneously over theixis, and a linear simplistic procedure to select within a layer just the particle
shear profile is enforce(.e., translational invariance is re- whose velocity differs most strongly from the desired layer
established velocity may lead to large overshoots of the layer velocity
Boundary-driven and homogeneous methods have botéfter the exchange, since even a single-particle exchange al-
advantages and disadvantages. The advantage of a homogeady may give a momentum transfer which is significantly
neous method is that there are no corrections to the bultoo large. This requires to either correct this in the subse-
behavior by boundary layers, such that rather small systenguent step, which results in undesirable oscillations, or to
can be studied. Homogeneous methods are therefore veparefully select the pair for exchange to reach the desired
well suited for the efficient calculation of linear transport result. In the latter case, a rather cumbersome search proce-
coefficients(although some care must be taken to verify thatdure is necessary.
the simulation is indeed in the linear regim&he disadvan- On the other hand, if the system is thermostatted in the
tage is that the linear profile is enforced such that the applibulk (in order to stabilize the integration of the equations of
cability is restricted to cases where the profile indeed is linimotion and to enforce a homogeneous temperature prafile
ear. This, however, is not always the case. Many compless not necessary to drive the system via a Maxwell demon.
fluids exhibit the phenomenon of “shear banding,” where theThis can rather be done by simply applying a uniform force
translational symmetry ity direction is spontaneously bro- on all the layer particles, which is adjusted every single time
ken as a result of a hydrodynamic instability. A homogeneoustep to keep the shear rate strictly constant. It is this latter
algorithm suppresses the occurrence of such instabilities, arptocedure which we have implemented in our tests, which
can therefore produce incorrect physics. Conversely, ave restricted to a rather small system of only 4096 particles.
boundary-driven method allows the system to choose its owhlere we used simple periodic boundary conditions in all
profile (if the thermostat does so, to@nd is hence able to three directions for a box of size, X L, XL,. Two thin lay-
study such phenomena. It must, however, be noted thairs perpendicular to thg axis, with distancel, /2, were
boundary-driven approaches tend to require larger systemshosen for driving in thet x and —x direction, respectively.
Nevertheless, as the emphasis of present day simulations This setup effectively generates two Couette cells with op-
more on nonlinear phenomena, we think that boundaryposite shear gradients. Compared to Lees-Edwards boundary
driven methods are preferable, and therefore we will not diseonditions, this procedure has the advantage that the driving
cuss homogeneous methods any further. occurs only in velocity space, such that it is quite readily
Let us now discuss the thermostat. Sticking to theimplemented as a modification of a parallelized equilibrium
“boundary-driven” philosophy, it is obviously the “clean- simulation. In our case, we used a straightforward adaptation
est” way to restrict the thermostatting to boundary layers,of the program described in Rd24].
too, while the interior of the sample is run with puk/E An important issue of thermostatting the system in the
dynamics. This implies cooling of the layers, and some heabulk is that one has to make sure that a so-called profile-
flows from the cente(where the viscous heat is produgéal  unbiased thermostdPUT) [6] is applied. For NH, one de-

A simple way to introduce a shear rate

. au,
=%y
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fines the so-called “peculiar velocities, [6] as the differ-
ence between the actual velocities and the expected linear
profile. These are used to define the kinetic temperature in
the equation of motion foZ. However, this scheme is a
typical example of a profile-biased thermost&BT) [6].
While the procedure is perfectly legitimate in the linear-
response regiméhere the profile is linear anywaysun-
physical results must be expectehd have been observed,
see Ref[6]) in the nonlinear regime: The PBT prefers the
linear profile and thus tends to suppress the occurrence of
hydrodynamic instabilities. The way out is to use a PUT
which does not single out a prescribed profile but rather al-
lows the system choose its own. To do this within the frame-
work of NH is possible, but implies a rather awkward self-
consistent proceduré].

For SD, a possible choice is to only thermostat the veloci-
ties iny andz direction(recallu,=u,=0 for Couette flow.
This should not pose any problem as long as one studies
simple shear in the linear regime. However, in the nonlinear N
regime such a procedure is Somewhat dangerous as it presupe . ¢ (8L ITIC SRR © 8 AR SEET A
poses a certain symmetry' of the steady state, Whlch.may bg-B interactions. The particle color is used to distinguish betw&en
broken (and usually the I_(md of SymmEtry_breaklng Is not andB. Direction of view is thex direction, i.e., the direction of the
known in a_dvanc_:)e qu S|m|_3Ie _shez_ir b_andlng, where only shear velocity. Direction up-down is thedirection, i.e., the direc-
the tran.slat|onal invariance ydirection is br(_)ken, the pro-_ tion of the shear gradient. The system organizes in lamellas whose
cedure is probably acceptable. The most naive approach, i-6ormal is oriented ire direction. The driving occurs at narrow lay-
to just apply the SD thermostat in all three directions, will grs at(i) the top/bottom andii) the center of the box. Near these
fail even in the linear regime and produce an incorrect aptayers, the velocity gradient is essentially zero, and the molecules
parent viscosity; this is outlined in the Appendix. The sameémove as a homogeneous “block.” The shear gradient is concen-
is true if one thinks of thermostatting the peculiar velocities;trated in small regions located in the middle between the driving
in this case the “friction” term— ¢c; would punish any ve- layers; in these regions the system is disordered.
locity which is not in accord with the prescribed velocity

profile, and actually drive the system in the bulk, which is _q g5 in standard reduced units where the particle mass as
clearly not desired. o well as the LJ parameteesand o are set to unityin a cubic

Conversely, the DPD thermostat, which is based uporyoy with periodic boundary conditions. The LJ potential was
relative yelocmes, do_es not presuppose any sort of symmest off at a separation.=2Y6 and shifted, so that only its
try, and is profile unbiasetly construction _ repulsive part is left. The thermostatting temperature was set

Taking all these considerations together, we thus arrive g, keT=1. For the thermostatéoth SD and DPDuniform
what we believe to be a very suitable algorithm to study,anqom numbers were used, since it has been shown that
nonlinear effects in shear flow: Use a boundary-driveny,ey are just as good as Gaussian ones for Langevin simula-
method combined with the DPD thermostat. This results in Qjons [32]. For the weight functions of the DPD thermostat,
simple and easy-to-implement simulation with a straightfor- o ,sed the standard choifq. (13)] andr =26 for the

. . . c

ward PUT, which keeps the temperature profile constant, ot \we integrated the equations of motions with the ve-
and, as an additional bonus, stabilizes the integration of th%city Verlet algorithm[1,2], using a time step.t=0.01 both
equations of motion. If there is suspicion that heat flowsy. sp and DPD. As allre,ady mentioned. this is.large com-
might be important, one can instead avoid thermostatting a'faared to strict Newtonian MD. while s'mall compared to
together and drive the system by a Maxwell demon. DPD simulations with ultrasoft particles and ultralarge time

In order to demonstrate that it is really important to anowsteps. Therefore, our simulation was not hampered by the
the system to choose the profile of its own liking, we Show iny ica| |arge discretization errors of large time-step DPD
Fig. 1 th? configuration of a system Of_amph|ph|l|c_ mol- simulations[15—-2(. To test this, we measured the tempera-
ecules, simulated by the model outlined in R&0], using e in equilibrium and found it to converge from a high
ess.ef?“a”y the algorithm descrlbgd abc[@&]. The system value of kgT=10 to the simulation temperaturdesT=1
exhibits very strong shear banding: While the ordered re- ithin 400 time steps for DPD in comparison to somewhat
gions move essentially as “blocks,” the shear is concentrate ss than 600 for SD, at a damping constant’efl. The
in the narrow strips where it is disordered. More details of o - choice for SD I’ies in the range &5<1.5: th.is en-

this simulation will be published elsewhere. sures that the friction from the algorithm is still rather small
compared to the intrinsic friction from the surrounding par-
ticles for these dense systems.

The simulations were carried out with a system consisting We did not carefully analyze the equilibrium properties of
of 4096 Lennard-Jones$lJ) particles at a density op  the fluid, since they are essentially known from previous

Ill. SIMULATIONS
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Ao . . . order of 16 atomic layers, and this is probably not enough to
T B faithfully represent the strongly modified profile. Indeed, it is
¢ S smeon ; reasonable to assume that the atomic structure of the fluid
4 DPD,s.rate 0.01 { } - . .
3l Ly oo prohibits the decrease of the screening length below a value
L ]

of the order of a particle diameter. If we thus assumg,
=2 0r kmay=0.5, we find thatz,,,/ 7, cannot exceed the
value kyaly/4~2, which is roughly what we observe.
Strictly speaking, for the DPD case a constag},, is not
expected either. Rather the theoretical predictiofl

Tapp _ 2

FIG. 2. Apparent shear viscosity,, as a function of the fric- N 1+0(£5). (17
tion constant for different shear rates and thermostats, as indicated
in the plot. The line indicates the theoretical predicti&uy. (16)]. The prefactor of the correction term is nonuniversal and can

be written as a Green-Kubo integral over the autocorrelation
simulations: In Ref[33] the same model was studied in de- function of the dissipative stresses. The important point,
tail, however at a slightly different state poinp€0.864, however, is thatin contrast to SDit is an intensive quantity,
kgT=1.2). Taking the results from that simulation, we know i.e., doesnot depend on the system sikg. Indeed the data
that our fluid is characterized k) a highly structured pair  of Fig. 2 show no systematic increase 9f,, within our
correlation functiorg(r), (ii) a large pressurB~10, (iii) a  range ofZ, and within our error bars. For our system, whose
viscosity 7~2, and similarly(iv) a kinematic viscosityyv  behavior is dominated by the hard interatomic interactions,
~2, while (v) the particle diffusion constard is roughly  the correction due to the friction is below resolution within
D~0.07. From this, one sees that the Schmidt number Sthe studied range of values.
=v/D is roughly Se=30, which is a reasonable value for

real fluids(large Sc means that diffusive momentum trans- IV. CONCLUSIONS
port is substantially faster than mass transpdfor more ) ) )
details, see Ref33]. Our considerations and test results show that DPD is a

Concerning Computationa| efficiency, it is obvious thatVery useful thermostat for MD, which should be used when-

DPD is somewhat more expensive than SD, since it involve§Vver hydrodynamicénomentum transports important. Un-
the calculation of velocity differences and of unit vectors,like SD, it does not screen the hydrodynamic correlations
plus the generation of substantially more random numbergand, unlike NH, it is completely local. To best of our knowl-
In our simulations, we found an average slowdown of 35% .€dge, it is the first thermostat which avoids profile biasing of
Note that one could optimize the DPD procedure further byNEMD simulations in a very natural and simple way, as it
(i) introducing the simpler weight functidiEq. (14)] and(ii)  introduces neither an absolute reference fraaee SD nor
applying friction and noise not every single time step, but,the concept of “peculiar velocitiestas NH. We think that it
say, every second or third stépushing this idea to its limits, S therefore the ideal thermostat for NEMD simulations—
one would arrive at the Lowe-Andersg28] thermostat with the caveat that its applicability is of course restricted to
In Fig. 2, we compare the apparent viscosify,,, as Phenomena where energy transport plays no fide ex-
obtained from naive SD and from DPD runs, varying the@mple, it would not be applicable for studying, say,
friction coefficient{ over a substantial range. The data show,FaY|e'gh;‘bBe”ar%_ Cogve_;t]")’nlu‘ SUCTI gases, SIU'C“){hN‘I?_W'

- . 'tonian MD, combined with a Maxwell demon along the lines
on one hand, that for shear rates 0.0_Ol, 0.01, 0.1 there is of Refs.[7.8], is most probably the method of choice. These
not yet a measurable dependence yrand, on the other qnqiderations are all in accord with our general belief that
hand, that,,, is independent of the friction coefficient only popjinear phenomena in nonequilibrium systems should be
for DPD but not for SD. In the latter case, there is a sizableyy,gied by methods which do not interfere with the system in
increase with, and the physical valug, is only recovered e pylk. From this perspective, the main advantage of DPD
in the limit {—0. The theoretical considerations of the Ap- compared to just Newtonian MD is the stabilization of the
pendix_explain this increase as a result of hydrodynami,merical integration scheme, which is also very important,

screening, which gives rise to an inhomogeneous shear prg; particular for simulations with long observation times.
file which is concentrated around the driving layers, with

thickness of the order of the hydrodynamic screening length
k~1=1 [see Eq(5)]. The resulting prediction

Napp KLy KLy 1/kLy
—_— —_— | = +_ _
o 4 Cmr( 7~ 3l 2
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APPENDIX: PROFILE BIASING AND APPARENT

is also shown in Fig. 2, using the valug=2. Obviously, VISCOSITY FOR THE LANGEVIN THERMOSTAT

the increase iny,,, is much weaker than expected. We do
not fully understand this deviation but believe that it is some In the boundary-driven method, the apparent viscosity is
sort of finite size effect. The system has a thickness of thebtained by measuring the average forEe(momentum
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transfer per unit timeexerted onto the boundary Iayers_ and Pfr=n§[62+3kBT/m]. (AB)
normalizing it by their ared_,L, and the shear gradient
=Juy/dy: Similarly, it is straightforward to show that the random dis-
_ placements in velocity space result in an average increase of
n=F/(yLL,). (A1) the kinetic energy, resulting in a terfg;= —3nZkgT/m.

Therefore, the total dissipative power per unit volume is
Here we have assumed apx L, XL, simulation cell and a
shear gradient ity direction, while the velocity flow field is P=n{u?, (A7)
in x direction. This procedure is, by definition, correct if the .
underlying dynamics in the bulk is Newtonigiee., thermo-  where we have assumed thatpoints inx direction. In the
statting occurs only at the boundaries, )tamd y is small ~ €quilibrium casei=0, P vanishes, as it should be. Equation
enough to exclude nonlinear effects. An equivalent procedur&?2) thus becomes
is obtained by realizing that the average dissipated energy

. Ly/2

per unit time and unit volume is given byy?, resulting in a Tapp _ 1 : 2f+ Y dy[ ,70(%
total dissipated power ofL,L,L,y% On the other hand, the Mo molyyt)-Lyi2 dy
power put into the system by extemal driving fu We now introduce reduced variablasand ¢ by writing y

EqF E/ALi/) By equating these expressions, one again obtalns: LN/ (27) andu= 'yLy¢>/4, and the screening parameter

o : , 2=n¢lny (k1 is just the hydrodynamic screening length
For a system which is subject to a bulk Langevin thermo-< nél o . .
stat, the apparent viscosity,,,, as measured by this proce- of the algorithm{21]). This transforms EqA8) to

2

+n§u2]. (A8)

dure, will in general differ from the true viscosity,. Since " 2 2

. . S Napp m m[de¢ 1 [kLy
the produced velocity profilei(y) will in general not be —=f d\ alan +2— e $?r. (A9)
linear, we generalize the above consideration to yield 7o o A m

We now turn to the minimization of this expression, taking
Napp 1 +Ly/2 du ) . ! g s )
Zepe_ _ © dy{ 7ol =—| +Pu(y));. into account the way in which the simulation is run. First, we
7o nOLyyz —Ly/2 dy have periodic boundary conditions in all three spatial direc-
(A2)  tions, which allows us to write the profile in terms of a Fou-
) ) rier expansion as
Here we assume that the simulation cell extends from
—Ly/2 to +L,/2, while P denotes the average energy per *
unit time and unit volume which is dissipated by the thermo- d(N)=Dbg+ E {a,sin(An)+b,cogAn)}. (A10)
stat. Following a general principle of linear nonequilibrium n=1
thermodynamics, we now assume thatill adjust in such a . . L .
N . L Inserting this expression into E¢A9), one finds after some
way that the above energy dissipation rate will be minimum.. - +forward aloebra
Further progress requires calculation”®fThe Langevin 9 9
equation for a single particle with mass (all particles are

2

2 o0
assumed to have identical mass written as ";pp:('(_l‘y b(2)+% > Cnh(a2+b?) (A11)
0 n=1
d. . -
mai=Fi—fvitfi, (A3)  with
2
where t_he s;oc_has_tic forces have zero mean and satisfy the Cn=3772n2+ K_Ly) _ (A12)
fluctuation-dissipation theorem 4 4
<fi”‘(t)fj5(t’)>:2ngT5ij S,p0(t—1"). (Ad) Second, the shear is imposed in the layers*=L,/4, such
o o thatu(L,/4)—u(—L,/4)=yL,/2 or
Therefore the average dissipation power by the friction term
is given by *
2, apea(~1)P=1. (A13)

Pir=nZ(vf), (A5)
where n denotes the particle density needed to transform'v"n"”r.]IZIng the d|SS|pa}t|pn rate with the constrqlm13),
Lo . LT , one finds that all coefficients except,as, . .. vanish. The
from dissipation per particle to dissipation per unit volume. L - )
L . nonvanishing coefficients are given by
We now decompose the velocity into the flow velocity and

the peculiar velocity, writingy;=u+c;, and note that for 2(-1)P kL, KLy

weak driving the variance in terms of peculiar velocities is Bapr1= g g O ) (A14)
still given by(Eiz)zskBT/m, as in the equilibrium case. We b

hence find here we have made use of the relatjGd]
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(A15)

i 1 14 r(KLy'

p=0 Cop+1

Inserting this solution into Eq(A11), and using Eq(A15)

again, one finds
i P
coth —~|=

KLy2
3\ 4

+0(x%).
(A16)

Wapp: K_Ly
70 4

PHYSICAL REVIEW E68, 046702 (2003

[note that¢ must be odd andp(w/2)=1]. This implies
cusps atn==*7/2. It is straightforward to check that the
Fourier coefficients of this profile are indeed given by Eq.
(A14). One also sees that in the Newtonian linkit=0, a
sawtooth profile is recovered. It should be noted that quite
analogous considerations have already been put forward in
Ref. [35].

The important point about this reasoning is that the modi-
fications become arbitrarily large when the system gize
increases. Indeed, in the linlit,— o, we just have

The profile can also be obtained as a closed expression by
noting that the Euler-Lagrange equation corresponding to

functional (A9) is given by the modified Stokes equation

md?¢ 1 kL 2

aeal e AL
with solution (between\ = — 77/2 and + 7/2)
L

sink(u)\
N=— 2T (A18)

N

Sin T

Mapp _ KLy

7o 7 (A19)

Furthermore, one sees from E418) that the shear is con-
centrated in a small layer, whose size is given by the hydro-
dynamic screening lengtk™ 1. In other words, the hydrody-
namic screening prevents the driving at the boundaries from
having any effect beyond that layer. The data analysis there-
fore underestimates the shear gradient by a factor of order
KfllLy, i.e., overestimates the viscosity by a factor of order
kL. This is the physical interpretation of EGAL9).
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