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Robust soliton clusters in media with competing cubic and quintic nonlinearities
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Systematic results are reported for dynamics of circular pati€nesklaces”), composed of fundamental
solitons and carrying orbital angular momentum, in the two-dimensional model, which describes the propaga-
tion of light beams in bulk media combining self-focusing cubic and self-defocusing quintic nonlinearities.
Semianalytical predictions for the existence of quasistable necklace structures are obtained on the basis of an
effective interaction potential. Then, direct simulations are run. In the case when the initial pattern is far from
an equilibrium size predicted by the potential, it cannot maintain its shape. However, a necklace with the initial
shape close to the predicted equilibrium survives very long evolution, featuring persistent oscillations. The
guasistable evolution is not essentially disturbed by a large noise component added to the initial configuration.
Basic conclusions concerning the necklace dynamics in this model are qualitatively the same as in a recently
studied one which combines quadratic and self-defocusing cubic nonlinearities. Thus, we infer that a combi-
nation of competing self-focusing and self-defocusing nonlinearities enhances the robustness not only of vortex
solitons but also of vorticity-carrying necklace patterns.
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[. INTRODUCTION bations destabilize the cluster after passing only a few
diffraction lengths, and it eventually disintegrates into a set
Optical solitons, that is, self-supporting localized light of isolated 2D solitons. Soliton clusters in two and three
pulses and beams, have been predicted and observed in vatimensions, respectively, may be viewed as a nontrivial gen-
ous physical settings over the last three decdtleS]. They eralization of the 2D bright or dark vortex solitofkl—-16,
appear as one-dimensiondD) temporal solitons in nonlin- and 3D “spinning” solitons(vortex tor) [17—19. The con-
ear fibers, 1D and two-dimension&D) spatial solitons cept of soliton clusters has been also introduced in the study
(self-localized light beamsin planar and bulk waveguides, of non-Hamiltonian nonlinear systems such as externally
and three-dimensional 3D spatiotemporal solitof@dias  driven optical cavitied20]. In such systems, the simplest
“light bullets” [4]) in bulk optical media. The “bullets” are example is a two-dimensional clustered pattern observed in
completely localized traveling pulses of light, their 2D coun-the transverse plarf&0].
terparts being possible too as spatiotemporal solitons in pla- These new concepts of complex soliton structures may
nar waveguidesin fact, the only species of the light bullets apply to other nonlinear physical media, including the pre-
that were thus far created in a real experiment were quasi-2Biction of Skyrmiong21] in a two-component Bose-Einstein
solitons in bulk sampleg5]). Recently, interest in this area condensat€éBEC) [22] (for a recent comprehensive review
has been extended to the study of complex soliton structuresf BEC of atomic gases in a trap, see, for example, Ref.
composed of several interacting solitons in the form of[23]). We mention recent progress in the generation of topo-
necklace-ring beams,7] in self-focusing nonlinear media. logical stategvorticeg carrying different angular momenta
The existence of spiraling self-localized structures in[24] in a two-component BEJ25] and in a stirred BEC
Hamiltonian systems described by the cubic nonlinear Schrd 26], the observation of a regular triangular vortex lattice in
dinger (NLS) equations was analyzed in R¢B]. Later, a rotating BECs[27], formation and propagation of bright
rigorous criterion for the stability of solitary-wave structures matter-wave solitons trains in a quasi-1D optical tfag,
in Hamiltonian systems carrying orbital angular momentumthe theoretical prediction that a matter-wave bright soliton
was reported9], which is applicable to stationary structures can be stabilized in 2D geometries by causing the nonlinear-
with a broken rotational symmetry. ity strength to rapidly oscillate between positive and negative
Two-dimensional soliton clusters in saturable self-values(through the Feshbach resonani9,3d; still earlier
focusing media, which were recently introduced in R&€],  works on vortices and solitons in BECs were reviewed in
are ring-like soliton complexes in bulk media, having aRef.[31]. Closely related topics are the recently introduced
staircase-like phase distribution that induces a nonzero oeconcepts of globally linked vortex clusters in nonrotating
bital angular momentum leading to rotation of the clusterBEC with attractive interactiong32], of ring dark solitons
They are generally metastablee., in the absence of any and vortex necklaces in BE(Q83], and of soliton “mol-
perturbations they can propagate stably over many diffracecules” in optics and hybrid atomic-molecular BE[34,35.
tion lengths in the saturable mediyneventually experienc- The soliton-cluster concept is also relevant to the field of
ing a symmetry-breaking instability. However, initial pertur- mixed atomic-molecular BEC36—-43.
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In media with pure quadratic or cubic nonlinearity, soliton case, Eq.(1) governs the spatial evolution of the time-
clusters always tend to self-destroy through expansion oindependent complex amplitude of the electromagnetic wave
collapse, or, at best, they exist as metastable states which among the axisZ in a bulk medium with transverse coordi-
broken up too by small perturbatiof8,7,10,44—47. In the  natesX andY; soliton solutions to be found in this case then
presence of two competing optical nonlineariti¢self-  represent spatial solitons, i.e., self-trapped light beams in the
focusing and self-defocusing oneshe instability may be bulk medium.
greatly weakened, and the soliton complexes may propagate Before proceeding to the necklace patterns, we revisit the
stably over huge distances even in the presence of randorecently investigated problem of constructing spinning-
perturbations. The first example of the formation of both 2Dsoliton solutions to Eq(1). To this end, stationary solutions
and 3D robust soliton clusters was put forward in the case oére looked for in the form
competing quadratic and cubic nonlinearities; these soliton _ )
complexes are multicolored, they carry nonzero orbital angu- u=U(r)exp(iSe)expixZ), 2
lar momentum and are linked via a staircase-like phase dis-

tribution [34,48. A fact which helps to understand the stabi- yvherer and¢ are the polar coordinates in thi,(¥) plane,x

lization of these clusters is the existencecompletely stable IS the. wave numbe_(rthe propagation con;;ta)nb}nd _the Inte-
2D bright vortex soliton$49] and 3D stable vortex tofil9] gerS|s the topol_oglcal charge of the S.O.I'tQWh'Ch IS some-
in the same media; intuitively, the clusters may thus be conJElmes (t:a"fe(tjh Sp'nb?i \lNavefoIrm(Z) exhltigﬁsagongelra c.(f)ms-
sidered as fragmented counterparts of these stable objectsponen of the orbital angular momen e below i

. - : #0.
Recently, it was shown that similar stable bright 2D and . .
3D spinning solitons, carrying nonzero orbital angular mo- The amplitude) may be assumed real, and it then obeys

mentum, also exist in media with competing cubic and quin-an equation

tic nonlinearities]50—54,18, which suggests searching for U110’ — S2r—2U — kU + U3— aU5=0, 3)
guasistable soliton clusters in the multidimensional NLS

models with the competing self-focusing cubic and self-where the wave number parametrizes the family of station-
defocusing quintic nonlinearities. A purport of such an inves-ary solutions.

tigation is to understand whether the stabilized clusters are Equation(1) conserves a dynamical invariant, which has
generic objects, by comparing their basic properties in thehe meaning of the net power of the light beam:
guadratic-cubic and cubic-quinti€Q) models(this way, it

has been demonstrated that the above-mentioned stable
“spinning” solitons are generic indeed, in both 2D and 3D
cases Besides that, the investigation of the clusters in the
CQ medium expands possibilities for experimental creatiorAnother dynamical invariants are the Hamiltonian,

of such structures. In this context, it is worth noticing that it

was recently suggested that dielectric response of several difH: fx fx [luxl2+ |uy|2= (1/2)|u]*+ (1/3) | u|f]d XY,

E= flfl|u(x,v)|2dXdY. (4)

ferent media may be modeled by the CQ nonlinearity, ac- —w

companied by significant two-photon absorpti@b]. The (5)
objective of this work is the search for quasistable soliton

clusters in the 2D model with the CQ nonlinearity. momentum(equal to zero for the solutions considered in this

The rest of the paper is organized as follows. In Sec. IIWork) and thez component of the angular momentum,
2D necklace-like soliton complexes in the CQ medium are o
qonstruc_ted. Direct numerical simulat'ions of'their propaga- Lz:f f (a1 30)|ul2dXaY, (6)
tion, which proves that they are quasistable indeed, are pre- —o0J —

sented in Sec. Ill. The results of the work are summarized in . .
the concluding section. ¢ being the phase of the complex fialdUsing Eq.(3), one

can readily find that. ,=SE, and

Il. CONSTRUCTION OF TWO-DIMENSIONAL SOLITON .
CLUSTERS IN CUBIC-QUINTIC MEDIA H= _(zw/g)af US(r)rdr. @)
0

The equation governing the evolution of the field is a
ized form (N is an arbitrary positive scaling faciorby defining Z
iU+ Uyy+ Uy y+ |u|2u—a|ul*u=0, (1)  =NZ, X=AYX, Y=AY2y, U=\"Y2U. This leads to the
corresponding scaling of, E, andH:
where « is a parameter which characterizes the strength of
the quintic nonlinearity that can be scaled out from this equa- k=klI\; E=E; H=H/\.
tion (see below. This generic model, in its 1D and multidi- _ _ _
mensional variants, appears in various branches of nonlinedhe existence region for the 2D solitons that are sought for
science; for earlier work on this issue in the context of non4n form (2) is 0< k< x{%2~0.18/, regardless the value of
linear optics, see, for example, REB6]. In the most typical the topological chargéspin [50,57. Note that a soliton so-
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FIG. 1. The propagation constart(a) and HamiltoniarH (b)
of the two-dimensional solitons vs the pow€r Here and below,
the scaling factow in front of the cubic term in Eq(l) is fixed to
be 0.2.

lution to the 1D version of EqJ) is known in an exact form,

the corresponding offset wave number beingiio),

=3/(16a)=0.1875k, so that the above value ofZ2) is

offse
quite close to ifsee Ref[57]). Throughout this work, we fix

a=0.2.
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ues ofE. It is also relevant to mention that the minimum
energy necessary for the existence of the soliton drastically
increases witlS. Numerically, exact values of the threshold
are Ey,=11.734, 48.379, and 88.338 f@&=0, 1, and 2,
respectively.

In fact, all the results for the stationary spinning solitons
in the present model were already obtained in previous
works, see above. The nonlinear states that we investigate in
what follows are circular soliton necklaces, which we con-
structed starting with a superpositiondfundamenta(non-
spinning solitons set along a circumference of some radius
Rq, with a fixed phase difference between adjacent ones, so
that the overall phase change along the circumference is
27 M, whereM is the net topological charge of the soliton
complex[10]. Thus, the initial ansatz is

N
u(z:0)=n§1 Uo(|r—ry)e®n, 9

where U, is the stationary fundamentab€0) soliton, Fn

One-parameter families of the 2D spinning solutions carare positions of the soliton centers chosen as specified above,
be found in a numerical form. The solitons have the form ofand the soliton phases at these points épe=2n7M/N.

a ring vortex with a hole in the centésince the field must

The parameters that control the dynamics of the soliton clus-

vanish~r!Sl asr—0). In accordance with the results pre- ters are the topological chargé, the number of “beadsN
dicted by means of the semi-analytical variational approxiforming the “necklace,” its initial radiu®R,, and the power

mation developed in Ref50] (see also Ref57]), the solu-

E of each constituent soliton.

tions exist provided that their energy exceeds a certain Note that ansatf9) implies that the phase distribution in
threshold value. As a test for the accuracy of numerical comthe initial cluster has the shape of a staircase. Below, we will
putations, we used a relationship which can be obtained dialso consider another possibility, with a continuous initial

rectly from Eq.(3):

KE=wfmru4(r)dr—(2w/3)afooU6(r)rdr. (8
0 0

To quantify the 2D solitons, in Fig. 1 we show the non-

linear wave numbek and the Hamiltoniar for the solitons
with topological charges=0, S=1, andS=2 versus their

phase distribution that has a form of a ramp with a constant
slope,

N

u(z:0>=n§l Uo(Ir—raheM?, (10)

whereM is, as above, the net vorticity, artdis the angular

power E. In the figure, continuous and dashed lines corre-coordinate in the X,Y) plane.
spond to branches that, respectively, have been found to be Recall that the vortex solitons are stable in the present

stable and unstablgb2—-54. Moreover, a recent works3],

model if their power exceeds a threshold val6&-54. We

which was carried out by means of very accurate numericatherefore focused on the study of clusters whose initial total
methods applied to the computation of stability eigenvaluespower exceeds the corresponding stability-threshold value of

has shown the existence stable2D spinning solitons with
higher (>2) values ofSin the CQ model, the width of the
stability region decaying witts according to an empirically
found law, const®?. Note thatx corresponding to the vortex
solution monotonously increases wii) showing saturation

(to the above-mentioned limiting valug22)), at large val-

the vortex soliton, in anticipation that, for smaller values of
the net power, the necklaces have no chance to be stable.
Because the stability threshold for tBe=1 vortex soliton at
a=0.2 is E4,~180 (see Fig. 1, we have considered, for
instance, the clusters with net topological chaigde=1,
composed ofN=4,5, and 6 fundamental solitons, each hav-

05 05 1
N=4 N=6
S 00 0.0 FIG. 2. The effective interac-
é tion potential vs the radius for the
o 05 M= 035 necklaces composed &f=4, 5,
2 10l 2X 10 6, and 12 solitons, at different val-
% M=1,3 Mt ues of the vorticity carried by the
1% 10 26" 10 20 % 10 20 % 15 30 pattern.

cluster radius cluster radius cluster radius

cluster radius
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M=2

FIG. 5. Breakup of a cluster composed of four solitons under the
action of random noisé&op row), and robust evolution of a cluster
composed of five solitongottom row. In both casesM =1 and
Ry=4.5.

M=3

(1) by means of a finite-difference scheme based on the
FIG. 3. Propagation regimes of the soliton clusters vt 6 Crank-Nicholson method, followed by the Newton-Picard it-
and different values of the net vorticity (in the absence of noise  erative technique and the Gauss-Seidel method for solving
All the clusters in this plot and in the following ones are built up of the resulting linear system of equations. To achieve good
solitons with the poweE = 80. convergence, we needed, typically, five Picard iterations and
eight Gauss-Seidel iterations. In most cases, we employed
the transverse-grid stepsiaeX=AY =0.3 and the longitudi-
nal stepsiz&\Z=0.003. Transparent boundary conditions al-
lowing the radiation to escape from the computation window
were implemented, to prevent possible artificial effects
caused by radiation waves reentering the integration domain.

ing the powerE= 80, so that the net power of the cluster is
well within the stability region of the vortex soliton with the
topological charge&s=1.

For ansatZ9), the cluster’s interaction Hamiltonigialias
the effective potential of the interactipn defined as

H(Ro)/|H(Ro=2=)|, was numerically computed as a func- The evolution of the cluster’s mean radi$Z) and of

tion of RO andM [re_call Fhe Hamiltonian is defm_ed in Eq. the cluster's mean angular velociy(Z) was monitored.
(5)]. This quantity gives important clues concerning the ex-

istence and stability of bound states of solitdsse Refs. These quantities were defined as follows:
[58] and[10]). The result is that, for the cluster with=4
constituents, the interaction Hamiltonian does not have any
minimum for anyM (see Fig. 2, but forN=5, N=6, and
N=12, local minima of the Hamiltonian are found foA

=1 (as well as for some other valuesMf), which suggests and
the existence of quasistable necklace patterns in these cases.

R(Z)EE’lfx fx (X2+YHYu|2dXdY  (11)

_ — “ * 2 2 2
IIl. ROBUSTNESS OF THE SOLITON CLUSTERS IN THE w(Z)=Lz/|,|=Jimﬁm(X +Y?)|ul*dXdY, (12

CUBIC-QUINTIC MEDIUM

In order to check the predictions following from the com- wherelL, is thez component of the angular momentum, see
putation of the effective potential, we directly simulated Eqgs.Eqg. (6), andl is the cluster’s moment of inertia. Because the

30 e 30
6 M=0 6 M=1 = M=3
£
5 5 5 15 15
o
4 4 FIG. 4. The evolution of the
0 50 00 0 50 700 % 35 70 % 20 40 cluster's mean radiugtop row
; 0.004 . and mean angular velocitjbot-
> M=0 |%-082] M1 ' M= M=3 tom row) for different values of
g the vorticity M. Parameters are
© same as in Fig. 3.
>
Z 0 0
«
3
[+2}
=
©
0.016
1o 50 100 o0 50 10%'0000 35 70 o 20 40
distance distance distance distance
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s FIG. 8. Same as in Fig. 7, but with the continuous ramp-like

hase distribution at the input.
0005 50 100 %0 50 100 P P
distance distance soliton (see the first row in Fig. 3 and the first column in Fig.
. . 4, corresponding ttN=6 andM =0).
FIG. 6. The evolution of the mean raditsp row and angular The cluster actually has zero angular momentum also for

ve:_c:cny (tF))ottom :OV\) in the clusters lczpmgosed of four and five o o\ N and M =(2n+1)N/2 (n=0,1,2 .. .). However, in
Solffons. Farameters are same as in F1g. . this case the phase difference between adjacent beads is

initial radius R~ of the cluster is large. it is easv to see thattimes an odd integer, hence the interaction between the soli-
the initial valu?a of the average rad?(lﬁl) amoun)t/s tR(0) tons is repulsivesee Fig. 2 Therefore, the clusters gradu-
9 ally expand in this casesee the fourth row in Fig. 3 and the

mRo. . . . _
KeepingM =1, we varied the initial cluster’s radiug, ffgr)th column in Fig. 4, corresponding t=6 and M

around the minimum value predicted by the effective poten- When N=6 andM=2. the cluster has a true nonzero
tial in Fig. 2. In th_'S.W?‘y- arange of optimum valueslﬁj ._angular momentum and the propagation shows gradual ex-
was found that minimize oscillations of the mean radius 'npansion and rotatioisee Figs. 3 and)4WhenM=1 and

the course of th? propagatiox (?‘"0'”“0’?' which implies N=6, the potential is attracti.vésee Fig. 2, however the
thafc the cluster is a nearly stationary state. Rbe6, .the nonzero net angular momentum of the structure prevents fu-
optimum vaIu_es are close ®=6, Whergas foN=>5, itis sion of the beads. In such cases, generic behavior is quasip-
R°:4‘.5' In Figs. 3 and 4 we show typical examples of theeriodic expansion and shrinking of the cluster, which persists
evolution of the clusters composed =6 beads. These over tens of diffraction lengths, as is shown in the second
necklace clusters are ‘nonstationary: they gradually fuse Yow in Fig. 3 and the second column in Fig. 4. The latter case
expand and r(_)tate during the evolution. may be naturally categorized as a truly robust one.

In the special casé =nN (n=0,1,7 . ... ) thecluster ac- To further study the cluster’s robustness, we ran numeri-
twally has_ Z€ro angula_r momentum, as the_ phase shifts b%‘al experiments, adding random noise to the input field con-
tween adjacent beads is a multiple af 2so it is tantamount
to being zero; in this case, the solitons attract each other ani™ @ 65 {b)

the cluster fuses into a single fundamentabnspinning

6.0 6.0

]

g 55 55

g
5.0 5.0
4'RO 500 10004'50 500 1000
0.04 (© 0.04 (d

0.03

0.02

angular velocity
° o
o <
N w

0.01
500 1000 0 500 1000

distance distance

<
=}
o

FIG. 9. The evolution of the mean raditt®p row) and angular

FIG. 7. Evolution of the cluster over long distance in the pres-velocity (bottom row for the clusters composed of six solitons,
ence of input noise. The net vorticity M =1, the input radius is  with the input radiudgR,=6. In (a) and(c), the initial staircase-like
Ry,=6, and the phase distribution in the initial cluster is in the form phase distribution was used, whereaghnand(d) it was the ramp-
of the staircase. like distribution.

046612-5



MIHALACHE et al. PHYSICAL REVIEW E 68, 046612 (2003

] .

FIG. 10. The evolution of clusters composed of six solitons in the presence of random input noise. Here, the net vartieity and
the input radius igRy=7. The initial phase distribution is the staircase-like one.

figuration (9) in two distinct ways:(i) multiplying it by [1 Thus, the value of the cluster’s initial radius is a crucially
+p(X,Y)], wherep is a Gaussian random function with important parameter which determines its subsequent evolu-
some variancer (usually we tooko=0.1) and zero mean tion. We have found that in the case of the cluster composed
value, or(ii) multiplying it by [1+e(p;+ip,)], wherep;,  of closely packedN=6 fundamental solitons having the net
are uniformly distributed random numbers in the interval vorticity M=1, with the initial radiusR,=6, the output
[-0.5,0.8 (usually we took 0.05€<0.2). Typical ex- field pattern is a stable vortex ring with the topological
amples of the evolution of the perturbed clusters composeghargeS=1, even if the input phase was a staircase-like one
of 4 and 5 solitons are shown in Figs. 5 and 6. In thesgsee Figs. 7 and)9However, if the initial radius is increased
examples, uniformly distributed noise with a moderate amyy R =7, the input field distribution is far from that corre-
plitude €=0.05 was added. The clusters composed of fouk,,hqing to the stabls=1 vortex ring, and the cluster even-

sphtong do not survive the disturbed propagation over 1OQuaIIy disintegrates into several fragmefgse Fig. 10 for the
diffraction lengths(they eventually break up into two sepa- typical evolution over long distances in this case
rate fragments whereas clusters witN=5 show a remark-

able robustness over this and longer propagation distance.
We also compared the long-scale evolution of the clusters
perturbed by the random noise in the cases when the phase
mask, created by the initial phase distribution, had the stair-
case and ramp shapes, see Efsand(10), and the propa-

on di v h : di In this work, we have developed systematic dynamical
gation distance was extremely large. T e results are di analysis of circular patterns, built up of fundamental solitons
played, for the staircase and ramp profiles and identic

T L A . nd carrying angular momentum, in the 2D cubic-quintic
initial intensity distributions, in Figs. 7 and 8, respectively. ying ang q

Note that, in both cases, not only the propagation distanc model. Predictions for the existence of quasistable necklace

e . . . )
are very large, but also the uniformly distributed input noisefsstrl:ptur_est Wer$ madet mt? lse_lr_nhlanalé/pcalt fo_rm, lu?mg tk;]e ef-
has a large amplitude=0.2. We takeN=6, M=1, and the ective interaction potential. Then, direct simulations have

input radiusR,=6, a value slightly larger than that corre- shown that, in the case when the initial pattern is far from an

sponding to the minimum of the interaction Hamiltonian in €9uilibrium configuration predicted by the potential, it
this casesee Fig. 2 In both cases, the clusters show a trenddUickly collapses into a single zero-vorticity soliton, or de-
to slow fusioninto a quasiuniform ring, i.e., a stable vortex €@Ys into a set of noninteracting solitons. However, if the
soliton, with the same value of the vorticitg€ 1, in the necklace is sufficiently close to a predicted equilibrium, it
cases shown in Figs. 7 andl @hich the original cluster was Survives in the course of very long evolution, demonstrating
given. The eventual fusion into the single vortex soliton setdP@rsistent oscillations around the equilibrium configuration.
a limit for the robustness of the momentum-carrying clusters I his character of the evolution is not essentially disturbed by
Figure 9 additionally shows comparison of the evolution ofadding a large noise component to the initial condition.
the cluster’s mean radius and angular velocity for the same The basic conclusions concerning the necklace dynamics

two inputs. In both cases, we see quasiperiodic evolution df? this model are qualitatively the same as in a recently con-
the soliton complex. sidered model combining quadratic and self-defocusing cu-

Further, in Fig. 10 we display the case when the initialPiC nonlinearities. This makes it possible to infer that a com-

cluster’s radius was increased frdRg=6 to Ry=7 (in this bina;ion _o_f comp(.a'Fing self-focusing and ;elf-defocusing
case, only the cluster with the initial staircase-like phase distonlinearities stabilizes not only vortex solitons but also
tribution is showi. As is seen, the cluster survives about 50Vorticity-carrying circular multisoliton arrays.

diffraction lengths under the action of the input Gaussian

noise (with the variances=0.1). However, the difference

from the situation shown in Figs. 7—9 is that, in the present ACKNOWLEDGMENTS

case, the initial separation between the solitons forming the

cluster is farther from that which corresponds to the equilib- Support from the InstituCi€atalana de Recerca i Estudis
rium value predicted by the effective interaction Hamil- Avangts (ICREA), Spain, the Spanish government through
tonian. This difference turns out to be essential: the solitorContract No. BFM2002-2861, and Deutsche Forschungsge-
complex cannot eventually merge into a quasiuniform ring;meinschaft(DFG), Germany, is acknowledged. B.A.M. ap-
instead, it yields to the self-demolition azimuthal instability, preciates hospitality of the Department of Physics at Univer-
see Fig. 10. sitédt Erlangen-Nunberg(Germany.

IV. CONCLUSION
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