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A nonlinear Schrdinger equation with periodic coefficients, as it appears, e.g., in nonlinear optics, is
considered. The high-frequency, variable part of the dispersion may be even much larger than the mean value.
The ratio of the length of the dispersion map to the period of a solution is assumed as one small parameter. The
second one corresponds to the integral over the variable part of the dispersion. For the averaged dynamics, we
propose a procedure based on the Bogolyubov method. As a result, we obtain the asymptotic equation in the
dominating order, as well as with the next corrections. The equation is valid for all combinations of the small
parameters. The explicit forms of the coefficients are presented for a two-step dispersion map with an expo-
nential loss function. The forms of the bright and black soliton solutions are discussed. The results are
compared to those from other averaging methods, namely, the multiple-scale method and the method based on
Lie transformations.
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[. INTRODUCTION applied to study the DM soliton power enhancement. Correc-

tions to the bright soliton were obtained analytically. In those

Dispersion management is a novel technique in high-bitinvestigations the dispersion variation can be of the order of

rate optical data transmission. The dispersion-manépbt)  the mean value. Also, a normal form theory was applied to

transmission systems use periodic alternations of fiber piec&iminate some nonimportant terms for the long-distance be-

with positive and negative dispersion coefficients, respechavior. The elimination reflects the fact that the averaged

tively. The idea of dispersion management is to minimize theequation is not of Ham|lton|an.form, and.the nonlinear terms
path-averaged dispersion of a line, keeping high enough Iodependent on a phase. The final equations for the averaged

cal dispersion. Pulse propagation in optical fibers is generigynamlcs contain fifth power nonlinearities. The assumption

cally modeled by a nonlinear Scltiager equatio(NLSE) was made that the averaged dispersion is of zeroth order. The

[1,2]. Dispersion management results in a NLSE model withhultile-scale technique was applied in Ref] to the Fou-
periodic coefficients. Usually, one is interested in the Iong-r'er transformed problem. The Fourier transformation helps

. . e via the Floquet-Lyapunov transformation to eliminate the
distance dynamics of pulses when the averaged variations afgrge variable part of the dispersion. Then, the so-called
slow compared to the variations of the dispersion. Then i i ’

. . AV abitov-Turitsyn equation in spectral forh0] appears. Im-

eraging methods should be applied. portant in theypregent contex{) is also REFL]. Rlphere, the

The question, to which extent treveragedpulse propa-  ayeraged equation was obtained using the Fourier expansion
gation is robust, is of high practical relevance in dispersiony the periodic coefficients. However, it was assumed that the
managed fiber optics communication systems. Although ariable part of the dispersion is small. Another approach to
pulse will locally change its form when propagating throughstudy existence and stability of DM solitons was made in
one fiber piecédispersion map on an averagévhen propa-  Ref.[12]. For an averaged integral NLS equation, using av-
gating through many fiber pieceis can be quite stable. One eraging methods, the first correction to the Hamiltonian was
would like to know the(order of magnitude of thedistance  derived to describe the long-range behavior via canonical
up to which the averaged pulse shape is practically unequations.
changed. That distance will depend on the parameters of the Here, we will present another averaging method. We shall
dispersion compensation. The idea to answer the question abmpare its result with those of the other two known ones,
robustaveragedpulse propagation is based on transforma-i.e., the direct or multiple-scale method and the Lie-
tions to equations for the averaged pulseliton). If the  transform technique, respectively. The present method is
latter have a dominating integrable part, the estimate of thenuch more systematic than the direct method. The method
relevant distances can be explicitly performed and comparegroposed here is based on a Bogolyubov transformation. The
with experiments. latter is very elegant in practice, but requires the standard

One averaging technique being applicable to this problenfiorm for a correct application. The results of all the known
is the guiding-center theory based on the Lie transformaveraging methods will be compared for the NLSE with fast
[2—4]. At the beginning, only small variations of the disper- varying coefficients.
sion were considered. Recently, the revised guiding-center The main aims of this paper are twofold. First, we want to
theory was developeldb], but without a detailed analysis of find an averaged equation whose validity allows for a maxi-
different limits for the coefficients. Another approach wasmum range of parameter variation. Second, we intend to
used in Refs[6-8|. There, the multiple-scale method was evaluate the corrections to the fundamental soliton solutions
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in detail. The paper is organized as follows. In Sec. Il, the P
model is presented. Section Il defines the Bogolyubov trans- A:=—, R(z2)=[d](2)+Ry. (5)
form. Explicit results for the averaged equation are obtained at?
in Sec. IV. The corresponding soliton solutions are discusse
in Sec. V. The paper is concluded by a short summary an
outlook. In the Appendix we compare the present findings

g\/e have introduced the notations

Z~ ~
with those by other methods. [d](z)::f d(s)ds, d(2):=d(z2)—{d),
0
Il. MODEL 1
. . . <d>=:J d(z)dz (6)
We consider a NLSE in dimensionless form 0

iu,+d(2)u,+ec(2)|ul2u=0, (1) ~ The angular brackets denote an averaging over one period.
The tilde denotes the mean-free variable part of the corre-
sponding variable. Finally, the square brackets denote the
integral operator important in the theory of averaging.

The equation forA takes the standard Bogolyubov form
for a one-frequency system,

where the functionsl(z) andc(z) are periodic,d(z)=d(z
+1) andc(z)=c(z+1). Thezscale is made dimensionless
by using a common period, of the dimensional functions
d(z) andc(z). The parameted(z) describes a fast variation
of the local dispersion. The variation of the parametér) A,=sF(A,2):=¢(LA+ P[|QA2QA]), @
is, e.g., motivated by driving and damping in the original

system. The parametertakes care of the small ratio of the with the compact notations for operators

periodicity lengthz, to the so-called nonlinear lengfh]. Let

us assume that in the original fiber line damping is compen- L:=i(d)A, P:=ic(z)exp{—iR(2)A},

sated by lumped amplification in the form

Q:=expiR(z)A}. (8)
2
ia_W +d(2) ‘9_W +e|w|2w We assume that the meandifz) is small(of ordere). Then,
Jz oat? Eq. (7) is a one-frequency system, and it does not have any

resonances. Averaging methods can be applied with arbitrary
. ) accuracy. If the mean dod(z) is not small, resonances are
=—iyw+i(VG- 1)20 8(z=nzy)w,  (2)  possible, and one should apply the average theory for reso-
nant systems. The latter theory is much more complic&ed
least for partial differential equations

We underline the importance to put the system into the
standard fornm{13] before averaging. Otherwise, averaging
may lead to wrong results. See, e.g., the finite-dimensional
examples in Ref[14] which illustrate this statement.
N-1 The strength of the dispersion management is character-

(;—2+ y—(JG—1) ZO 8(z—nz,) |a=0, (3) ized byR(2),

N—-1

wherez, is the amplifier spacingy the damping, an¢ the
gain coefficient;z, is assumed to be small compared to the
dispersion length. By the transformationw(z,t)
=a(z)u(z,t) with

R(z)=[d](2) +Ro, (€)

the driven damped NLSR) is transformed into Eq1) with
c(z)=a(2)%.

For applications in nonlinear optics, the main aim is to
find a localized, periodic solution of Eql). We shall solve
this problem using averaging procedures and the method
normal forms.

whereRy is, at this point, an arbitrary constant. The opera-
torsP andQ are bounded for any real functid®(z). There-
fore, F(A,z) is bounded too, and the form of the function
(ﬁ(z) is not essential for performing the averaging. But the
smallness oR(z) will be helpful for a systematic simplifi-
cation of the averaged equations.

IIl. BOGOLYUBOV TRANSFORMATION B. Averaging

A. Standard form Next, we apply the Bogolyubov transformation

A naive averaging of Eq(l) fails since, in general, the

— 2 3
function d(z) is not small. To overcome this obstacle we ~(ZU=B(Z1)+2V(B,2)+e"W(B,2)+£7Y(B,2)+ - -.

apply the Floquet-Lyapunov transformation to eliminate the (10
large variationd of d(z), i.e., The ansatz is made to eliminate the variable parts in succes-
RA sive orders ok, and to transform Ed7) into an equation of
u(t,z)=e' 2 A(I,Z), (4) the form
where B,=&¢G(B), (11

046610-2
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with a zindependent functionab(B).
Substituting Eq(10) into Eqg.(7) leads to

A,=[E+eV+e2W+e3Y]B,+eV,+e2W,+£3Y,,
(12

where the vectoA, the unit operatoE, and the operatorg
are

NV
(A, 10 | B B
A:(A§)’ E:(O 1) e v=e av* o avE |
B sB*
13
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As a result, one obtains the averaged equation up to the third
order

B,=G(B)=e(Fo)+eX(F1)+&%(F,). (23)

The details folFg), (F,), and(F,) are
(Fo)=LB+(P(|QB|*QB)), (24)
(F1)=(P[2|QB[*QV+(QB)*(QV)*1]), (29

(F2)=(P[2|QV|?QB+(QV)%(QB)* +2|QB[?2QW
+(QB)2(QW)* ).

We emphasize that this general equation is obtained for
arbitrary R(z). However, it is impossible to obtain tractable

(26)

respectively. The notations for the other variables are similagorms without additional assumptions; E(3) cannot be

In the following, we keep the terms up to third ordersin
in the equation foB,

B,=e(Fo— V) + &2 [F1—W,—V(Fo—V,)]+e[F,-Y,
—V(F1—W,) —W(Fo—V,) +V2(Fo—V,)], (14

whereF, is thenth term of the expansion d¥ with respect

to the small parametes. Straightforward calculations lead

solved analytically. Thus it is important to reduce E2p) to

a simpler form. When only the lowest order term is taken
into account, Eq.(23) was solved numerically in Refs.
[9,15].

IV. EXPANSION FOR SMALL R

Since one cannot evaluate the operat8f?2, in general,
we consider approximations for this operator. Formally, we

to can introduce the parameter
Fo=LB+P(|QB|?’QB), (15 p=maxR(2)| @27
F1=LV+P[2|QB|*QV+(QB)*(QV)*], (160  and renormalizeR(z)=pr(2). If the parametep is small,
) ) ) then we can expand the operat®randQ with respect t,

F,=LW+P[2|QV|*QB+(QV)*(QB)* +2|QB[“QW ie.,
2 *

T(QB)HQW)™]. A7 peic(2)exp—iprAl=ic(z)(1—iprA—p2r2A22+ - ),
Using this, one finds the bounded mean-free coefficient (28)
V(B,2) from QimexpliprAl=1+iprA—p2r2A22+ ... (29

V,=Fo=Fo—(Fq), (V)=0. (18)

Then Eq.(11) takes the form

1= W, = V(Fo))

(o212

N
Il

™
A

T
o
~

+

™
~

T

+e3[Fo—Y,—V(F1—W,) —W(F )+ VX(F)].
(19

The coefficientW(B,z) can be determined from

W,=F1=V(Fo), (W)=0, (20
and theB equation is simplified to

éz:8<|EO>+82<|El>+83(|E2_?z_\7<ﬁ1>_w<ﬁ0>)-
To reduce the variable part in third order, we demand

V=F-W(E)-W(Ey, (V)=0. (22

A. CaseR=0

In the limit R=0, we obtainP=ic(z) andQ=E. Sub-
stituting these expressions into W, (Fo), (F1), and(F,),
we get in the first order

Foo=i(d)AB+ic(z)|B|?B, (30)
V=iv¢(2)|BI?B, vo(2)=[c](2), (3D
F1o= —(d)uoA(|B|?B) —cu,/B|*B. (32

Hereinafter, the second index Bfdenotes the corresponding
order of an expansion with respect Ro(or more formally
with respect top).

It is easy to show that

(cug)=(cvo)=0 and (c[c])=(c)([c])

for arbitraryc(z). Therefore(F,)=0 in this limit.
For the next coefficient we have the equation

(33
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W, = —(dYooN,(B)—Co,|B|*B (34y I main order,p? contributions. These corrections can be
z ' neglected here. As a result, the main terms in @@ are
with the solution valid up to the accuracyp?.
W=Wo3(2)N1(B) +Wos(2)|B|*B, (39 C. Casec#c, and R(z)#0
where Now, we present expansions for smRllz) and arbitrary

¢(z). The dominating terms are
Woz= —(d)[vo], Wos=—[Cuvq]. (36)

The third term is

Fo=i(d)AB+ic(2)|B|?B+ pc(2)r(z)N,(B)

i 2 2
e o —5p°C(2)r(2)Ny(B). (46)
F20=1(d)Wg3A (N1(B))+i(d)wosA(|B|*B) 2
+icWod 2|B|?A(|B|?B) + B2A(|B|?B*) - 3|B|*AB] The averaged nonlinear term being proportionatt@an
be eliminated by choosingz) with {c(z)r(z))=0. The ex-
+ic[v3(2)+3wWes(2)]|B|®B, (37)  pansion of the first term leads to

leading to

(Fao=i({[c]®) = ([cD)®{(d)[2|B|*A(|B|?B)
+B2A(|B|?B*)—3|B|*AB]+{c)|B|°B}. (38

(F0)=i(d)AB+i<c(z))|B|ZB—i§p2(cr2)N2(B). (47)

It is obvious that(c(z)r?(z))=0 only if c(z)=0 or r(2)
=0. Therefore this correction is essential.

The first coefficient of the transformation is now

B. Casec(z)=c,
T IR|2 - .t 3

Next, assuming(z) =c, as constant, we present the ex- V=ivo|B|*B+p“v1N1(B)+ip“v,Ny(B) +O(p),
pansions for smalb. The first order gives (48)
i where
F0=i<d)AB+ico|B|ZB+pcorN1(B)—Epzcoerz(B),

(39

va(2)=[cr], va(2)=—3[cr?]. (49

The expansion oF 1, gives
where

N]_(B)ZA(|B|ZB)+BZAB*_2|B|2AB, (40) Fll:_<d>50A(|B|ZB)+|p<d>;1A(N1(B))

Nz(B)1=A2(|B|ZB)+ BZAZB* +2|B|2AZB_4B|AB|2 +ipcr;0[A(|B|4B)_ BZA(|B|ZB*)_2|B|2A(|B|ZB)

2|p|2 P 2 2
+2A(82AB*—2|B|2AB)+ZB*(AB)2 (41) +2B |B| AB*]+IpC01[B A(|B| B*)

2 2 4
The averaged nonlinear term being proportionat an be +2|BI*A(B|"B) —3(B|*AB]. (50
eliminated when choosing the free constagtsuch that oy jts averaged part we obtain
(ry=0. The expansion of the first term is

(Fiy=ip([c]cr)[A(|B|*B) —2B?A(|B|?B*)

. . i
(Fo)=i(d)AB+ico|BIB—5Cop(r*)No(B). (42 —4|B|2A(|B|?B) + 2B?B|2AB* + 3|B[*AB].
. 2 . . (51)
Obviously,(r“)=0 only if r(z)=0 Therefore this parameter
is essential. As a result, we arrive at an equation that contains all the
The first coefficient of the transformation is additional terms necessary for the relevant orderings in the
_ parameterg andp, namely,
V=pv;N;(B) +ipZ,Ny(B) +O(p?), (43)
B,=&(i(d)AB+i(c)[B|’B+p*(Fop) +ep(F1)+e%(Fa)),
where (52
vi(z)=colr], (44 where
v2(2)=—3Co[r?]. (45

[
(Fod == 5(C(2)r(2))No(B). (53)
Therefore, we conclude théF,)~ p?. However, this contri-
bution can be neglected when compared with the last term ofhe term(Fg,) is an essential term since it gives the first
the right-hand side of Eq42). The expansion ofF,) gives,  correction to the NLSE if &p>e¢. The term(F,,) appears

046610-4
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together with the other two terms on the right-hand side of D2k

Eq.(52), if p~e. Finally, the term(F o) has to be taken into  (R?)= 5 (R*hH=0 for k=123....
account forp<e and when the coefficierfc]2) —([c])? is (2k+1)4

not small. (58)

If the first term(R?) has the order of, then we get for the
V. SOLITON SOLUTIONS amplitudeD = \/48¢. The next term igR*) = 2¢2.
The two-step dispersion map used here is simple but im-
Equation(52) has the so-called fundamental soliton solu-portant, since most limits of short-scale or long-scale disper-
tions in the main order. The small perturbations induce corsion maps have the present asymptotic form of the two-step
rections to the fundamental soliton solution. First, we evaludispersion magp16].

ate the form of the coefficients of Eq52) for a given

dispersion map. Then we will consider the perturbed solu-

tions in the case of bright solitongd)>0) and black soli-
tons (d)<0), respectively. Now we are ready to solve the averaged equafk).

Becausep=+/e>¢, we include only the dominating term,
identify v =B, and write the simplified version of E¢2) in

B. Evaluation of soliton solutions

A. Two-step dispersion map

the form
To be specific, we consider a symmetric two-step disper- _ s 1,
sion mapd(z) iv+(d)vy+(c)|v|*v=3(cR)N,(v), (59)
g(d)+D, 0=<z<1/4 with (d)~0O(e), {c)~0O(e), andR~O(p). For bright soli-
d(z)=1 e(d)-D, L4<z<3/4 (54 tons we assuméd)>0. To find a suitable ansatz for the

perturbed soliton solution, we have to know the solution of
e(d)+D, 3/4=z<1 the unperturbed equation. Without the perturbation on the
right-hand side, Eq(59) is the integrable NLSE with con-
and the exponential loss functiar(z) on the unit length  stant coefficients. Such an equation has, among other solu-
c(z)=coexp(—2yz). Here £(d) is a normalized mean of tions, the bright one-soliton solution
d(z), D=0 is the amplitude of the variable part@fz), and

ll:i)smt.he loss coefficient. The parameteris equal top b(z)=7p /2<<Cd>>secm e D2 G (e 2. (60)
We denote the explicitlg-dependent factors appearing in
(Fo0), (F11), and(F,) (as functions ofy) by A proper ansatz for the solution of EGr9) is by perturbation
theory,
faol ) =(c)(([c]?)—([c])?), fu(m)=([c]cr), .
v(2,)=[G()+F(t) +H(t)]e! (@7, (62)
and fo(y)=(cr?)/2, (55)

with F(t)~0O(e), H(t)~0O(e?), andF as well asH being
respectively. Then, we compare them with the coefficieht ~ réal. Inserting this ansatz into E(59), the zeroth order is
of the main order nonlinear term. These ratios have the foltrivially satisfied. In the first order of we find
lowing asymptotics:

Fu+ 7%[6 secR(nt)—1]F ! <CR2>N (G). (62
sec - =-— .
fzo_cz 72 f11_C 7’2 e 7 2 (d) 2
TN 0_1 TN 0_7
{c) 180" ({c) 384 Next, we evaluatdN,(G) usingG=ksech(yt). A short cal-
¢ 1 132 culation leads to the inhomogeneous ordinary differential
fo2 [~ 2V equation(ODE)
(c) (96 5760 2 70 (56)
Fu+ 7°[6 secR(9t)—1]F
f 1 f 1 f 1 — ) 2 _
AEJS. 2, AP 2' ﬁz_z as yo. =\ 5?[ 76 secl( 5t) — 84 secA( nt) + 16 secA(t)]
(c) 48y (c) 16y (c) 8y (63)
(57)
_ o . for F(t), with
We recognize that for small lossesthe coefficientf, is
relevant. The other coefficients are close to zero. Beyond (cRZ) . (cR2> . 2(d)
some critical valuey* all the coefficients have the same A=2 @ 7 k°=4 © "N (64)
order, and all have to be taken into account. For very lasge
all coefficients decrease 3s 2, and can be neglected. To solve this ODE we introduce
In the case of a lossless system=(0), the coefficients
(R") take the forms y=sech nt) (65

046610-5
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to eliminate the trigonometric functions. For the time deriva-
tive we obtain the operator

2 2

Jd Jd
— =1 (y=2y3)— +y2A(1—-y3)—|, 66
e (y y)ﬁy y«( y)ng (66)
and the ODE reads
(y—2y3)Fy+y?(1—-y)F, +(6y*—1)F
=\(76y’—84y°+16y°). (67)

Using a power series expansii{y) =AX,_,c,y" we ob-
tain the solution of Eq(67) in the formF(y)=\(3y+ 3y3

—19y5) . After reinserting transformatiof65) into F(y) we
find the solution of Eq(63) for F(t),

4 4 19
F(t)= )\<§secm nt)+ §secﬁ’( nt)— Esecﬁ( nt))

_16(cR%)

=3 (o 1+ sech(nt)

7*G(t)

9
- gsecl‘i( nt)) .

(68)

The second-ordefin &) equation forH can be solved in a
similar manner. Starting with
Hy+ %[ 6 secR(yt)—1]H

1 (cR?

=5 d ) No(G+F)— 3<>

(d)

or after proper expansion of the right-hand side,

GF?, (69

Hy+ 7°[6 secR(7t)—1]H

, [66557

=mX

secHi( nt)+ 25 7253ecr"?( nt)

2

— 4916 sech( 7t) + 116 sech( 5t) + 40 sech( nt)} ,

(70)
with
2\2
X:§4’79<(:>2> \/% (71
we find
H(t)=x 62?;7secﬁ(nt)— ggzsecﬁ( nt)

09 & 1024 E 998
70 ——sech(nt)+ 05s,ec (mt)— 1053echj77t)

(72

Inserting all these results into E¢61), we obtain the solu-
tion of the averaged equatidb9) of the form

PHYSICAL REVIEW E68, 046610(2003

12{d
v(z,t)=7 %S(—:‘Chnt)e”7 |

1
4 1+ secR(yt)— Egsecl’f( nt)}

16 (cR?)
1+ g <C>

64<cR2>2 998 1024 2
HERRY: oz 7| 108" 105 Secf(mt)
4 10372 P
+%sec (nt)—wsec (mt)
66557 g 23
672 sechi(nt)|r. (73

Note that only the phase & dependent. Otherwise, we
havez-independent factors which indicate that theeragey
pulse amplitudes should be constant during propagation. Let
us now compare this expression with the solution of the
original equation(1). For that we take into account all cor-
rections up to ordep®. Note that the next correction t0is
of orderp®. We choose the special casig)=(c)=e for the
reason of demonstration. We obtain for

u(z,t)=v(z,t) +iRAv(z,t)— tR?A[vo(z,t) +v1(Z,1)]
—2iR3A3(vo+vq) + HR*A% o+ 135iR°A %y,

+&[R]N1(vo), (74)

wherewvy(z,t) is the bright fundamental soliton and(z,t)
is the first correction.

Let us now calculate the explicit forms of the averaged
solitonv and compare with the actual solutiarfor different
values ofe and p=/e. For simplicity, we assume;=1.
Different values ofe correspond to different strengths of the
dispersion management. In the following, three cases will be
presented fore=0.01, e=0.04, ande=0.1. The averaged
soliton v is given by Eq.(73). The actual solitoru can be
calculated by inserting the averaged solitointo transfor-
mation (74) and using all terms up to the relevant order, as
shown in Eq.(74).

Figure 1 shows the squares of the absolute amplitudes of
v (broken ling and u (solid line) for e=0.01. The ampli-
tudes ofu andv are nearly identical. Both solutions have the
typical sech form. The expressionis the so-called guiding-
center soliton, whileu is called the dressed soliton. The
dressed soliton shows small variations over the period length
of the dispersion map during propagation. Breathing is only
a small perturbation and the main form of the dressed soliton
is dominated by the guiding-center soliton. This behavior is
the typical behavior for weak dispersion management.

Figure 2 shows the squares of the absolute amplitudes of
v (broken ling andu (solid line) for a stronger dispersion
managementg=0.04) compared to the previous case. Now
the averaged soliton and the soliton solutioare no longer
very close to each other. While the averaged soliostill
shows similarities to a sech pulse, the solutioinas a dip at
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16

-
(8]
T

o
@
T

lu(z=0,)[’, [v(z,t)

o
=
T

0.0

FIG. 1. Squared amplituddsi(z,t)|? of the actual soliton at
=0 (solid line) and of the averaged solitdn(z,t)|? (broken ling
for e=0.01 andnp=1.
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0.0, [viz,o|°

|u(z=

FIG. 3. Squared amplituddsi(z,t)|? of the actual soliton at
=0 (solid line) and of the averaged solitdn(z,t)|? (broken ling
in a logarithmic scale foe=0.1 andnp=1.

each side, and even indicates a second dip. This change the dark solitons, since we did not restrict the boundary con-

the behavior characterizes the beginning of strong dispersicfitions dur2|ng any transformation. Using the ansgiz)

management effects. =e 2eda"zf (1) we find the fundamental soliton, in the
For even stronger dispersion management also the avemain order, and its first correction,

aged solitonv loses its sech form. Figure 3 shows the

squares of the absolute amplitudesvofbroken ling andu _ Py 2 _ @ 12

(solid line) on a logarithmic scale fos=0.1. The functions B(z.h)=exg~2is(d)a Z}a( (c) (tant(at)  (75)
u andv show the characteristic behaviors of strong disper-

sion management. In the past, the so-called dispersion- 2p®a?(cr?) 5 :

managed solitonéDM solitons were only investigated nu- + 3(cy ¢ (at)[3 sinf(at)

merically. An analytic formula was unknown. The typical

form of a DM soliton was presented in R¢17]. There we +22sint(at) — 12(at)cosi(at)]+---). (76)

recognize regular dips at each side of the pulse. Here we L - . .
achieved three dips at each side by using a perturbation To get the SOM'O” in the or|g|nall variable we again
theory. apply the expansion of the exponential operator

We conclude this section by some results on black soli-
tons. They can be treated in a similar fashiodf<0, then
the integrable NLSE has dark soliton solutions. We consider

u(z,t)=ug(z,t) —ipr(z)Aug(z,t)+u(zt)

—3p°r3(2)A%ug(z,), (77)
the black soliton. Equatiof62) describes the corrections to
whereug(z,t) is the black soliton,
. 2<d> 1/2
°r Uo(z,t) =exp{ — 2ie(d) a’z} a o tanh( at),
(78)
«Qa_ ‘T
S anduq(z,t) is the correction,
N
= Uq(z,t)=p-exp[—2i Zba| —
1.} neur I T
= A\ x secR(at)[ 3 sink at) + 22 sinf( at)
- // \ ~
1 s = —12(at)cost(at)]+icvo(z)ui(z,t)
e e +ep01(2)N1(Up(Z,1)). (79

For the black soliton, we have the opposite situation to the
bright soliton. Nowr(z)=0 corresponds to the maximum
black soliton width, and the maximum of(z) corresponds
to the minimal width.

FIG. 2. Squared amplituddsi(z,t)|? of the actual soliton at
=0 (solid line) and of the averaged solitdn(z,t)|? (broken ling
for e=0.04 andnp=1.
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VI. DISCUSSION AND CONCLUSIONS Sometimes it does not allow us to do a global transformation

. for additional small parameters. The Bogolyubov transfor-
Th? main result of the present paper are the averageg ation is the most elegant method; the main result is reached

equations(23) and (52) which generalize all previously oy fast Before applying the Bogolyubov transformation,

known models. Now, we discuss more details of the averyne should formulate the basic equation in standard form.

aged equations. A comparison with the previous results igyherwise the result may be wrof].
made in the Appendix. _ _ We considered the two-parameter situation, assuming that
The first term on the right-hand side of H@3) is known  the high-frequency, variable part of the dispersion is larger
and was obtained in Ref10]. It leads to the Gabitov- than the mean value. The first small parameter is the ratio of
Turitsyn equation which was also discussed in R®f. The  the length of the dispersion map to the length of a solution.
next order terms of Eq(23) are explicitly written out here. The second parameter is the value of tliean-fregintegral
The domain of applicability of the full equation is limited by for the variable part of a dispersion. This is an important
the required smallness of the ratio of the period of the coefdifference compared to previous assumptions on the ampli-
ficients to a characteristic length of a solution. The highertude of the variable part of dispersion. Note that, for short-
order approximations can be easly determined in arbitrargcale management, the amplitude can be very large while the
order since the initial system is a one-frequency sys$tEsh function R(z) has a small amplitudgl9]. We obtained the
Equation(52) is valid for all combinations of the small asymptotic equation in the main order, and with first correc-
parameters: and p, for arbitrary forms of the coefficients tions. The calculations are valid for all ranges of parameters
d(z) andc(z), and for an arbitrary value of the averaged s long as they are small. The coefficients of the obtained
dispersion(d). Equation(52), without the two last terms on €quation were evaluated for a two-step dispersion map with
the right-hand side, was obtained in REf1] for a small ~ a@n exponential loss function.

variation of the dispersion; the full equation is nétw the The corrections to the fundamental bright and black soli-
best of our knowledgeand has not been presented in litera-ton solutions were obtained. These corrections show differ-
ture so far. ent behaviors. The bright soliton has a minimal width at a

We remark that the equations obtained in Ré8&s6] do  Point whereR?(z) =0 while the dark soliton has a maximum
not coincide with Eq(52), even forc=1. Actually, in the ~ Width at this point.
latter case, the terriFo,) contains the third power nonlin-
earity and the fourth-order differentiation. The equation de- ACKNOWLEDGMENTS
rived in Ref.[3] has the fifth power nonlinearity and the
second-order differentiation. The Hasegawa-Kodama equa- The work was performed under the auspices of the
tion was obtained under the assumption that the averagedonderforschungsbereich No. 591. Discussions with Wolf-
dispersion has the same order as the coefficient in front ddang Laedke, Fabio Mancin, Alexander Posth, and Marcus
the nonlinear term. Equatiof®) from Ref.[6] has also the Neuer are gratefully acknowledged.
third power nonlinearity and the fourth-order differentiation.
But not all terms are important for Iong-sc_ale solutions; Some  AppENDIX: COMPARISON WITH OTHER METHODS
terms can be eliminated by a transformation of the dependent
variable. It is easy to check that E®2), without the last two In this Appendix we compare the Bogolyubov method
terms, is Hamiltonian. Equatiofi7) from Ref.[11] is equal  with other averaging methods, such as the multiple-scale av-
to Eq. (9) from Ref.[6]. Equation(52), without the two last eraging and a technique based on Lie transformation.
terms on the right-hand-side, can be obtained from the equa-
tions just mentioned by a quasi-identical transformation.

. . 1. Multiple-scale averaging
We remind the reader that for large paramet@s (in

comparison to(c)), Eq. (A35) (see Appendix can be re- We start with the NLSE in the form

duced to the classical NLSE8]. For(d)~(c), Eq.(A35) is i - )

identical with the Hasegawa-Kodama equation. For a small iU +[e(d)+6d(2)Jug+ec(2)|u[*u=0, (A1)
parameterd), Eq. (A35) is valid but the soliton solutions

(73) and (75) loose their applicability. whered~1 andd(z)=d(z+1). We are interested in rela-

In conclusion, we demonstrated the applicability of threetively large variations of the dispersion. Therefore we as-
methods for averaging a nonlinear Safirger equation with  sumeés=e¢. Let us introduce the slow variable= 6z. Then
periodic coefficients. All methods arrive at the same resultsve get
(see Appendix although they are very different in practice.

The multiple-scale method is difficult to handle and is very

elaborate. It requires aa priori scaling of variablegfor the iuy+
two small-parameter situatipnThe Lie transformation is

highly systematical. The ansatz is straightforward, and equa-

tion Eq.(A19) holds without any assumptions for the starting The dependent variableshould have a derivative, of the
equation. The method works fast and efficiently, but the calorder of 1. In addition, a fast oscillating coefficieth{x/ 5)
culation of the Lie brackets is complex and elaborate. Alsoappears fors<1. In this case, the equation is ready for ap-
the Lie method works with powers of small parameters.plication of a multiple-scale averaging.

() +4d X + & 2u=0 A2
5< > 5 utt 5C(Z)|U| u=~u. ( )
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To be specific, we choosé=¢2 The case withd=¢ U
was considered by Yang and Kdib]. We also choose(z) (?7=0 and
=1 for simplicity. Next, we expand in a power series of 2
1/2

i
Ug=2(s—(s))[UZU* +2U|U >+ U?U%]— s UgPy(1),
u:U+81/2u1+8u2+..‘, (AS) 3 < > t | t| tt 2 6t 1
(A10)
with the abbreviations U=U(zy,2;,25, ...) and uy _
=u(z,U) for k=12, .... We use thacaleu,~O(s¥?),  Wheres=[r](¢). _ _
introduce a fast variablé=¢~ Y%=z, and the slow vari- In the order 3/2 we finally arrive at
ablesz,=¢"?x. We assume thai is independent of the fast U
variable¢, (u)=U, and{u,)=0. Substituting Eq(A3) into i— =4M[U2U%, +6UUU% +7UULE + 10U |%Uy
Eq. (A2) and using 923
U AU U U +2U(JU])+5U|Uy[*+ 3U*URL. (ALY
—=— e te— . (A4) o _
X dzg Jz, 07y By inserting all results into Eq(A4) we get
we get iU +eY¥dyu,+eYqUl?U
i %Jr (Z_Ugl“m(% %+ %) +8(%+ % % =43 M[U?Uf, +6UU U+ 7UZUE + 10U |2U
0 Lo 2 T +2U4(|U[?)+5U| Uyl *+ 3U* URT+O(e?).
au 9?U d%u
+(9_§3 ... +81/2<d><—2+81/2—21+~--) (A12)
ot o Next, we multiply both sides of EqA12) with s=g*? to
[ 82U 52U rewrite
+d —+sl/2—l+ cee ) +81/2[|U|2U
a2 at? iU,+e(d)U,+e|UJ?U
+&Y4(2|U|2uy+ U%ud) +e(U*u2+2|U|2u, =48>M[U%U}, +6UU U+ 7TUUE + 10U, |2Uy
+2U]uy|2+U2u%)+---]1=0. (A5) +2U(|U[?)+5U[Uy| >+ 3U* U]+ O(%?).
Next, we collect terms of the same orders and eliminate the (A13)

secular terms. In the zeroth order one obtains The transformation between the averaged and actual vari-

2 ables is
Mg )ﬁU 0 (A6)
i—+i—— —=0. .
dzg  9¢ (€ at? u=U+i(R—(R)HUy— Uy (R—(R))?—2M]
H 1/2& 2
By averaging this equation, where the fast varying terms —31UsP1(R)+ %N, +O(e?). (A14)
I t .
cancel, we ge We have used the relatiofs= e andS=¢s. The expres-
U L } au, _-a0zu . sion P;(R)~0(e%?) is a polynomial inR.
'azo_ an 9% =i pex (A7)

2. Lie transformation

By integration overé, where the slowly varying terms are ~ The Lie-transformation technique was developed for ordi-
assumed to be constant during the integration, we achieve nary differential equations, but we can also use it for a partial
differential equation, by interpreting the latter as a infinite
Uy =irUy~0(s'?), (A8) system of _ordinary differential equation_s. To use the Lie

transformation here, we rearrange E42) in the form

with T=r—(r) andr=[§(d—(d)) d&’. Using this resultin

the next ordee*?, we find E=is”z(d)uttJri81/2|u|2u+iaun=X0+(~jX0D=X[u,u*].
. d v U|?U and u,= 1u T2-2M e
Ia_zl__< >F_| "V and up= =5 Uuu(r"=2M), Thereby, X depends on the infinite set of variables
(A9)  (U,Ug, Uy, ... u*,uf,uf, ...), indicated byX[u,u*].
Obviously it is
with M=3((r?)—(r)?).
In the first order we obtain Xo~0(e'?), Xop~0O(1). (A16)

046610-9
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The Lie transformation is applied in the form

bV Lo Ovar Lra s Tl . ..
u=e"v=v+¢+ 57 (-V) g+ 5i[(d- V) Vit

(A17)

to transform Eq(A15) into
v Y * Al8
0z - [U U ] ( )

Thereby ¢= (¢, b, ...) and V=(3/dv,dldv,, ...) are
infinite-dimensional vectors.

Inserting transformatioA17) into Eqg. (A1l5), we can
derive the following relation betwee¥ and X (thereby X
=X[v,v*] holds:

ap 1| ap] 1 ad
Y+E+E[¢'E+T[¢'[¢’E e
1

:X+[¢1X]+E[¢![¢1X]]+ (Alg)

In this equation, the Lie bracket is introduced via
[A,B]=(A-V)B—(B-V)A, (A20)

with

. ” d J
(A~V)B:n2o Ay +A% ——|B. (A21)

‘9U(nt) U (nt)
Next, we expandr and ¢,
Y:Y0+Y1+Y2+Y3+", ¢:¢l+¢2+¢3+",
(A22)
with the scalings
Y ~0(e?) and ¢ ~0(¥?), (A23)
respectively. Sincep scales with the fast variation, we as-
sume
J
%~0(¢kfl>~0<s<k-1>’2>. (A24)
Using the expansion, we get in zeroth order
J ~
Yot % = UXgp s (A25)

and by averaging

PHYSICAL REVIEW E68, 046610(2003

p
VimXgms 222 oo g 0.

= (A27)

In first order we obtain

_ I3 _B _Z 2
Y,=0= oz R[Xop » Xo]= ¢3= Xop , Xo] ~O(£7).
(A28)

Order €2 leads to

1 ..
Y=~ §<ds>[xon [Xop , Xol]1~O(e?).  (A29)

Finally, we obtain the following equation for the averaged

dynamics:
v ) 1
vl ¥ dyv+iev|?v— >

X (d(S—(S)))[Xop .[ Xop . Xol1+O(£?).
(A30)

Calculating the Lie brackets

[Xop , Xol=2YAvEv2+v2v* + 20007 ) =N, (v),
(A31)

[Xoo .[ Xop - Xol1= — die™ (v w2+ dvfov +dvfvf
+2U|Utt|2+4vtt|vt|2+ Utztv*)
=:—ig¥N,(v), (A32)

we obtain

(R)=0

(dS=-2M = —(R?»~0(e). (A33)

Thereby, we can choog®)=0, sinceR is only determined
modulo a constant. The averaged equation is

v+ eHdyvy+eYv|?v=3YAR?)N,+ O(£?).
(A34)

Next, we multiply withe*? to get
iv,+e(dyvytelv|?v=3e(R®N,+0(£%?). (A35)
The transformation is

U=U+iRUn— %szlttt_ %iRSUGt"_ Sl/zéNl+ 0(82).
(A36)

We can transform from EqA13) to Eq. (A35) by

(A37)

1 2 i 3
U:U_§<R >Utttt+ _6<R >v6t .

_ I _7 -5 12
Yo=0= 77 =0Xop= ¢1=RXop~0(e ™). (A28) 10 a5t term on the right-hand side is only necessary for the

identification of the transformations, not for the averaged
The slowly varying terms will again be assumed to be con-equations. Because of this, it follows that the different aver-
stant during the integration. In next orde¥? we find aging methods lead to the same results.
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