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Averaged dynamics of optical pulses described by a nonlinear Schro¨dinger equation
with periodic coefficients
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A nonlinear Schro¨dinger equation with periodic coefficients, as it appears, e.g., in nonlinear optics, is
considered. The high-frequency, variable part of the dispersion may be even much larger than the mean value.
The ratio of the length of the dispersion map to the period of a solution is assumed as one small parameter. The
second one corresponds to the integral over the variable part of the dispersion. For the averaged dynamics, we
propose a procedure based on the Bogolyubov method. As a result, we obtain the asymptotic equation in the
dominating order, as well as with the next corrections. The equation is valid for all combinations of the small
parameters. The explicit forms of the coefficients are presented for a two-step dispersion map with an expo-
nential loss function. The forms of the bright and black soliton solutions are discussed. The results are
compared to those from other averaging methods, namely, the multiple-scale method and the method based on
Lie transformations.
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I. INTRODUCTION

Dispersion management is a novel technique in high-
rate optical data transmission. The dispersion-managed~DM!
transmission systems use periodic alternations of fiber pie
with positive and negative dispersion coefficients, resp
tively. The idea of dispersion management is to minimize
path-averaged dispersion of a line, keeping high enough
cal dispersion. Pulse propagation in optical fibers is gen
cally modeled by a nonlinear Schro¨dinger equation~NLSE!
@1,2#. Dispersion management results in a NLSE model w
periodic coefficients. Usually, one is interested in the lon
distance dynamics of pulses when the averaged variation
slow compared to the variations of the dispersion. Then
eraging methods should be applied.

The question, to which extent theaveragedpulse propa-
gation is robust, is of high practical relevance in dispersi
managed fiber optics communication systems. Althoug
pulse will locally change its form when propagating throu
one fiber piece~dispersion map!, on an average~when propa-
gating through many fiber pieces! it can be quite stable. On
would like to know the~order of magnitude of the! distance
up to which the averaged pulse shape is practically
changed. That distance will depend on the parameters o
dispersion compensation. The idea to answer the questio
robustaveragedpulse propagation is based on transform
tions to equations for the averaged pulse~soliton!. If the
latter have a dominating integrable part, the estimate of
relevant distances can be explicitly performed and compa
with experiments.

One averaging technique being applicable to this prob
is the guiding-center theory based on the Lie transfo
@2–4#. At the beginning, only small variations of the dispe
sion were considered. Recently, the revised guiding-ce
theory was developed@5#, but without a detailed analysis o
different limits for the coefficients. Another approach w
used in Refs.@6–8#. There, the multiple-scale method wa
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applied to study the DM soliton power enhancement. Corr
tions to the bright soliton were obtained analytically. In tho
investigations the dispersion variation can be of the orde
the mean value. Also, a normal form theory was applied
eliminate some nonimportant terms for the long-distance
havior. The elimination reflects the fact that the averag
equation is not of Hamiltonian form, and the nonlinear ter
dependent on a phase. The final equations for the avera
dynamics contain fifth power nonlinearities. The assumpt
was made that the averaged dispersion is of zeroth order.
multiple-scale technique was applied in Ref.@9# to the Fou-
rier transformed problem. The Fourier transformation he
via the Floquet-Lyapunov transformation to eliminate t
large, variable part of the dispersion. Then, the so-ca
Gabitov-Turitsyn equation in spectral form@10# appears. Im-
portant in the present context is also Ref.@11#. There, the
averaged equation was obtained using the Fourier expan
of the periodic coefficients. However, it was assumed that
variable part of the dispersion is small. Another approach
study existence and stability of DM solitons was made
Ref. @12#. For an averaged integral NLS equation, using a
eraging methods, the first correction to the Hamiltonian w
derived to describe the long-range behavior via canon
equations.

Here, we will present another averaging method. We s
compare its result with those of the other two known on
i.e., the direct or multiple-scale method and the L
transform technique, respectively. The present method
much more systematic than the direct method. The met
proposed here is based on a Bogolyubov transformation.
latter is very elegant in practice, but requires the stand
form for a correct application. The results of all the know
averaging methods will be compared for the NLSE with fa
varying coefficients.

The main aims of this paper are twofold. First, we want
find an averaged equation whose validity allows for a ma
mum range of parameter variation. Second, we intend
evaluate the corrections to the fundamental soliton soluti
©2003 The American Physical Society10-1
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in detail. The paper is organized as follows. In Sec. II,
model is presented. Section III defines the Bogolyubov tra
form. Explicit results for the averaged equation are obtain
in Sec. IV. The corresponding soliton solutions are discus
in Sec. V. The paper is concluded by a short summary
outlook. In the Appendix we compare the present findin
with those by other methods.

II. MODEL

We consider a NLSE in dimensionless form

iuz1d~z!utt1«c~z!uuu2u50, ~1!

where the functionsd(z) and c(z) are periodic,d(z)5d(z
11) andc(z)5c(z11). Thez scale is made dimensionles
by using a common periodz0 of the dimensional functions
d(z) andc(z). The parameterd(z) describes a fast variatio
of the local dispersion. The variation of the parameterc(z)
is, e.g., motivated by driving and damping in the origin
system. The parametere takes care of the small ratio of th
periodicity lengthz0 to the so-called nonlinear length@1#. Let
us assume that in the original fiber line damping is comp
sated by lumped amplification in the form

i
]w

]z
1d~z!

]2w

]t2
1«uwu2w

52 igw1 i ~AG21! (
n50

N21

d~z2nza!w, ~2!

whereza is the amplifier spacing,g the damping, andG the
gain coefficient;za is assumed to be small compared to t
dispersion length. By the transformationw(z,t)
5a(z)u(z,t) with

]a

]z
1Fg2~AG21! (

n50

N21

d~z2nza!Ga50, ~3!

the driven damped NLSE~2! is transformed into Eq.~1! with
c(z)5a(z)2.

For applications in nonlinear optics, the main aim is
find a localized, periodic solution of Eq.~1!. We shall solve
this problem using averaging procedures and the metho
normal forms.

III. BOGOLYUBOV TRANSFORMATION

A. Standard form

A naive averaging of Eq.~1! fails since, in general, the
function d(z) is not small. To overcome this obstacle w
apply the Floquet-Lyapunov transformation to eliminate
large variationd̃ of d(z), i.e.,

u~ t,z!5eiR(z)DA~ t,z!, ~4!

where
04661
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Dª

]2

]t2
, R~z!5@d#~z!1R0 . ~5!

We have introduced the notations

@d#~z!ªE
0

z

d̃~s!ds, d̃~z!ªd~z!2^d&,

^d&ªE
0

1

d~z!dz. ~6!

The angular brackets denote an averaging over one pe
The tilde denotes the mean-free variable part of the co
sponding variable. Finally, the square brackets denote
integral operator important in the theory of averaging.

The equation forA takes the standard Bogolyubov form
for a one-frequency system,

Az5«F~A,z!ª«~LA1P@ uQAu2QA# !, ~7!

with the compact notations for operators

Lª i ^d&D, Pª ic~z!exp$2 iR~z!D%,

Qªexp$ iR~z!D%. ~8!

We assume that the mean ofd(z) is small~of order«). Then,
Eq. ~7! is a one-frequency system, and it does not have
resonances. Averaging methods can be applied with arbit
accuracy. If the mean ofd(z) is not small, resonances ar
possible, and one should apply the average theory for re
nant systems. The latter theory is much more complicated~at
least for partial differential equations!.

We underline the importance to put the system into
standard form@13# before averaging. Otherwise, averagin
may lead to wrong results. See, e.g., the finite-dimensio
examples in Ref.@14# which illustrate this statement.

The strength of the dispersion management is charac
ized byR(z),

R~z!5@d#~z!1R0 , ~9!

whereR0 is, at this point, an arbitrary constant. The ope
torsP andQ are bounded for any real functionR(z). There-
fore, F(A,z) is bounded too, and the form of the functio
R(z) is not essential for performing the averaging. But t
smallness ofR(z) will be helpful for a systematic simplifi-
cation of the averaged equations.

B. Averaging

Next, we apply the Bogolyubov transformation

A~z,t !5B~z,t !1«V~B,z!1«2W~B,z!1«3Y~B,z!1•••.
~10!

The ansatz is made to eliminate the variable parts in suc
sive orders of«, and to transform Eq.~7! into an equation of
the form

Bz5«G~B!, ~11!
0-2
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with a z-independent functionalG(B).
Substituting Eq.~10! into Eq. ~7! leads to

AW z5@E1«V̂1«2Ŵ1«3Ŷ#BW z1«VW z1«2WW z1«3YW z ,
~12!

where the vectorAW , the unit operatorE, and the operatorsV̂
are

AW 5S Az

Az*
D , E5S 1 0

0 1D , and V̂5S ]V

]B

]V

]B*

]V*

]B

]V*

]B*

D ,

~13!

respectively. The notations for the other variables are sim
In the following, we keep the terms up to third order in«

in the equation forB,

BW z5«~FW 02VW z!1«2@FW 12WW z2V̂~FW 02VW z!#1«3@FW 22YW z

2V̂~FW 12WW z!2Ŵ~FW 02VW z!1V̂2~FW 02VW z!#, ~14!

whereFn is thenth term of the expansion ofF with respect
to the small parameter«. Straightforward calculations lea
to

F05LB1P~ uQBu2QB!, ~15!

F15LV1P@2uQBu2QV1~QB!2~QV!* #, ~16!

F25LW1P@2uQVu2QB1~QV!2~QB!* 12uQBu2QW

1~QB!2~QW!* #. ~17!

Using this, one finds the bounded mean-free coeffici
V(B,z) from

Vz5F̃05F02^F0&, ^V&50. ~18!

Then Eq.~11! takes the form

BW z5«^FW 0&1«2~FW 12WW z2V̂^FW 0&!

1«3@FW 22YW z2V̂~FW 12WW z!2Ŵ^FW 0&1V̂2^FW 0&#.

~19!

The coefficientW(B,z) can be determined from

WW z5FW̃ 12V̂^FW 0&, ^W&50, ~20!

and theBW equation is simplified to

BW z5«^FW 0&1«2^FW 1&1«3~FW 22YW z2V̂^FW 1&2Ŵ^FW 0&!.
~21!

To reduce the variable part in third order, we demand

YW z5FW̃ 22V̂^FW 1&2Ŵ^FW 0&, ^Y&50. ~22!
04661
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As a result, one obtains the averaged equation up to the t
order

BW z5«G~B!5«^FW 0&1«2^FW 1&1«3^FW 2&. ~23!

The details for̂ F0&, ^F1&, and^F2& are

^F0&5LB1^P~ uQBu2QB!&, ~24!

^F1&5^P@2uQBu2QV1~QB!2~QV!* #&, ~25!

^F2&5^P@2uQVu2QB1~QV!2~QB!* 12uQBu2QW

1~QB!2~QW!* #&. ~26!

We emphasize that this general equation is obtained
arbitraryR(z). However, it is impossible to obtain tractab
forms without additional assumptions; Eq.~23! cannot be
solved analytically. Thus it is important to reduce Eq.~23! to
a simpler form. When only the lowest order term is tak
into account, Eq.~23! was solved numerically in Refs
@9,15#.

IV. EXPANSION FOR SMALL R

Since one cannot evaluate the operatoreiR(z)D, in general,
we consider approximations for this operator. Formally,
can introduce the parameter

r5maxuR~z!u ~27!

and renormalizeR(z)5rr (z). If the parameterr is small,
then we can expand the operatorsP andQ with respect tor,
i.e.,

Pª ic~z!exp$2 irrD%5 ic~z!~12 irrD2r2r 2D2/21••• !,
~28!

Qªexp$ irrD%511 irrD2r2r 2D2/21•••. ~29!

A. CaseRÆ0

In the limit R50, we obtainP5 ic(z) and Q5E. Sub-
stituting these expressions intoV, W, ^F0&, ^F1&, and^F2&,
we get in the first order

F005 i ^d&DB1 ic~z!uBu2B, ~30!

V5 i ṽ0~z!uBu2B, v0~z!5@c#~z!, ~31!

F1052^d&ṽ0D~ uBu2B!2cṽ0uBu4B. ~32!

Hereinafter, the second index ofF denotes the correspondin
order of an expansion with respect toR ~or more formally
with respect tor).

It is easy to show that

^cṽ0&5^c̃ṽ0&50 and ^c@c#&5^c&^@c#& ~33!

for arbitraryc(z). Thereforê F1&50 in this limit.
For the next coefficient we have the equation
0-3
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Wz52^d&ṽ0N1~B!2 c̃ṽ0uBu4B, ~34!

with the solution

W5w̃03~z!N1~B!1w̃05~z!uBu4B, ~35!

where

w0352^d&@v0#, w0552@ c̃ṽ0#. ~36!

The third term is

F205 i ^d&w̃03D„N1~B!…1 i ^d&w̃05D~ uBu4B!

1 icw̃03@2uBu2D~ uBu2B!1B2D~ uBu2B* !23uBu4DB#

1 ic@ ṽ0
2~z!13w̃05~z!#uBu6B, ~37!

leading to

^F20&5 i ~^@c#2&2^@c#&2!$^d&@2uBu2D~ uBu2B!

1B2D~ uBu2B* !23uBu4DB#1^c&uBu6B%. ~38!

B. Casec„z…Æc0

Next, assumingc(z)5c0 as constant, we present the e
pansions for smallr. The first order gives

F05 i ^d&DB1 ic0uBu2B1rc0rN1~B!2
i

2
r2c0r 2N2~B!,

~39!

where

N1~B!ªD~ uBu2B!1B2DB* 22uBu2DB, ~40!

N2~B!ªD2~ uBu2B!1B2D2B* 12uBu2D2B24BuDBu2

12D~B2DB* 22uBu2DB!12B* ~DB!2. ~41!

The averaged nonlinear term being proportional tor can be
eliminated when choosing the free constantr 0 such that
^r &50. The expansion of the first term is

^F0&5 i ^d&DB1 ic0uBu2B2
i

2
c0r2^r 2&N2~B!. ~42!

Obviously,^r 2&50 only if r (z)[0 Therefore this paramete
is essential.

The first coefficient of the transformation is

V5r ṽ1N1~B!1 ir2ṽ2N2~B!1O~r3!, ~43!

where

v1~z!5c0@r #, ~44!

v2~z!52 1
2 c0@r 2#. ~45!

Therefore, we conclude that^F1&;r2. However, this contri-
bution can be neglected when compared with the last term
the right-hand side of Eq.~42!. The expansion of̂F2& gives,
04661
n

in main order,r2 contributions. These corrections can b
neglected here. As a result, the main terms in Eq.~42! are
valid up to the accuracy«r2.

C. CasecÆ” c0 and R„z…Æ” 0

Now, we present expansions for smallR(z) and arbitrary
c(z). The dominating terms are

F05 i ^d&DB1 ic~z!uBu2B1rc~z!r ~z!N1~B!

2
i

2
r2c~z!r 2~z!N2~B!. ~46!

The averaged nonlinear term being proportional tocr can
be eliminated by choosingr (z) with ^c(z)r (z)&50. The ex-
pansion of the first term leads to

^F0&5 i ^d&DB1 i ^c~z!&uBu2B2
i

2
r2^cr2&N2~B!. ~47!

It is obvious that^c(z)r 2(z)&50 only if c(z)50 or r (z)
50. Therefore this correction is essential.

The first coefficient of the transformation is now

V5 i ṽ0uBu2B1r2ṽ1N1~B!1 ir2ṽ2N2~B!1O~r3!,
~48!

where

v1~z!5@cr#, v2~z!52 1
2 @cr2#. ~49!

The expansion ofF11 gives

F1152^d&ṽ0D~ uBu2B!1 ir^d&ṽ1D„N1~B!…

1 ircr ṽ0@D~ uBu4B!2B2D~ uBu2B* !22uBu2D~ uBu2B!

12B2uBu2DB* #1 ircṽ1@B2D~ uBu2B* !

12uBu2D~ uBu2B!23uBu4DB#. ~50!

For its averaged part we obtain

^F11&5 ir^@c#cr&@D~ uBu4B!22B2D~ uBu2B* !

24uBu2D~ uBu2B!12B2uBu2DB* 13uBu4DB#.

~51!

As a result, we arrive at an equation that contains all
additional terms necessary for the relevant orderings in
parameters« andr, namely,

Bz5«~ i ^d&DB1 i ^c&uBu2B1r2^F02&1«r^F11&1«2^F20&!,
~52!

where

^F02&52
i

2
^c~z!r 2~z!&N2~B!. ~53!

The term^F02& is an essential term since it gives the fir
correction to the NLSE if 1@r@«. The term^F11& appears
0-4
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together with the other two terms on the right-hand side
Eq. ~52!, if r;«. Finally, the term̂ F20& has to be taken into
account forr!« and when the coefficient^@c#2&2^@c#&2 is
not small.

V. SOLITON SOLUTIONS

Equation~52! has the so-called fundamental soliton so
tions in the main order. The small perturbations induce c
rections to the fundamental soliton solution. First, we eva
ate the form of the coefficients of Eq.~52! for a given
dispersion map. Then we will consider the perturbed so
tions in the case of bright solitons (^d&.0) and black soli-
tons (̂ d&,0), respectively.

A. Two-step dispersion map

To be specific, we consider a symmetric two-step disp
sion mapd(z)

d~z!5H «^d&1D, 0<z,1/4

«^d&2D, 1/4<z,3/4

«^d&1D, 3/4<z,1

~54!

and the exponential loss functionc(z) on the unit length
c(z)5c0exp(22gz). Here «^d& is a normalized mean o
d(z), D>0 is the amplitude of the variable part ofd(z), and
g is the loss coefficient. The parameterr is equal tor
5D/4.

We denote the explicitlyz-dependent factors appearing
^F20&, ^F11&, and^F02& ~as functions ofg) by

f 20~g!5^c&~^@c#2&2^@c#&2!, f 11~g!5^@c#cr&,

and f 02~g!5^cr2&/2, ~55!

respectively. Then, we compare them with the coefficient^c&
of the main order nonlinear term. These ratios have the
lowing asymptotics:

f 20

^c&
5c0

2 g2

180
,

f 11

^c&
5c0

g2

384
,

f 02

^c&
5S 1

96
2

13g2

5760D as g→0, ~56!

f 20

^c&
5c0

2 1

48g2
,

f 11

^c&
5c0

1

16g2
,

f 02

^c&
5

1

8g2
as g→`.

~57!

We recognize that for small lossesg the coefficientf 02 is
relevant. The other coefficients are close to zero. Bey
some critical valueg* all the coefficients have the sam
order, and all have to be taken into account. For very largeg,
all coefficients decrease asg22, and can be neglected.

In the case of a lossless system (g50), the coefficients
^Rn& take the forms
04661
f
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^R2k&5
D2k

~2k11!42k
, ^R2k21&50 for k51,2,3, . . . .

~58!

If the first term^R2& has the order of«, then we get for the
amplitudeD5A48«. The next term iŝ R4&5 9

5 «2.
The two-step dispersion map used here is simple but

portant, since most limits of short-scale or long-scale disp
sion maps have the present asymptotic form of the two-s
dispersion map@16#.

B. Evaluation of soliton solutions

Now we are ready to solve the averaged equation~52!.
Becauser5A«@«, we include only the dominating term
identify v[B, and write the simplified version of Eq.~52! in
the form

ivz1^d&v tt1^c&uvu2v5 1
2 ^cR2&N2~v !, ~59!

with ^d&;O(«), ^c&;O(«), andR;O(r). For bright soli-
tons we assumêd&.0. To find a suitable ansatz for th
perturbed soliton solution, we have to know the solution
the unperturbed equation. Without the perturbation on
right-hand side, Eq.~59! is the integrable NLSE with con
stant coefficients. Such an equation has, among other s
tions, the bright one-soliton solution

v~z,t !5hA2^d&

^c&
sech~ht !eih2^d&z5G~ t !eih2^d&z. ~60!

A proper ansatz for the solution of Eq.~59! is by perturbation
theory,

v~z,t !5@G~ t !1F~ t !1H~ t !#eih2^d&z, ~61!

with F(t);O(«), H(t);O(«2), andF as well asH being
real. Inserting this ansatz into Eq.~59!, the zeroth order is
trivially satisfied. In the first order of« we find

Ftt1h2@6 sech2~ht !21#F5
1

2

^cR2&

^d&
N2~G!. ~62!

Next, we evaluateN2(G) usingG5ksech(ht). A short cal-
culation leads to the inhomogeneous ordinary differen
equation~ODE!

Ftt1h2@6 sech2~ht !21#F

5lh2@76 sech7~ht !284 sech5~ht !116 sech3~ht !#

~63!

for F(t), with

l52
^cR2&

^d&
h2k354

^cR2&

^c&
h5A2^d&

^c&
. ~64!

To solve this ODE we introduce

y5sech~ht ! ~65!
0-5



a

e

Let
the
r-

ed

e
l be

as

s of

e

e
gth
nly
iton

is

s of

w

WINGEN, SPATSCHEK, AND MEDVEDEV PHYSICAL REVIEW E68, 046610 ~2003!
to eliminate the trigonometric functions. For the time deriv
tive we obtain the operator

]2

]t2
5h2F ~y22y3!

]

]y
1y2~12y2!

]2

]y2G , ~66!

and the ODE reads

~y22y3!Fy1y2~12y2!Fyy1~6y221!F

5l~76y7284y5116y3!. ~67!

Using a power series expansionF(y)5l(n50
` cnyn we ob-

tain the solution of Eq.~67! in the formF(y)5l( 4
3 y1 4

3 y3

2 19
6 y5). After reinserting transformation~65! into F(y) we

find the solution of Eq.~63! for F(t),

F~ t !5lS 4

3
sech~ht !1

4

3
sech3~ht !2

19

6
sech5~ht ! D

5
16

3

^cR2&

^c&
h4G~ t !S 11sech2~ht !2

19

8
sech4~ht ! D .

~68!

The second-order~in «) equation forH can be solved in a
similar manner. Starting with

Htt1h2@6 sech2~ht !21#H

5
1

2

^cR2&

^d&
N2~G1F !23

^c&

^d&
GF2, ~69!

or after proper expansion of the right-hand side,

Htt1h2@6 sech2~ht !21#H

5h2xF66 557

8
sech11~ht !1

25 725

2
sech9~ht !

24916 sech7~ht !1116 sech5~ht !140 sech3~ht !G ,
~70!

with

x5
64

3
h9 ^cR2&2

^c&2
A2^d&

^c&
, ~71!

we find

H~ t !5xF66 557

672
sech9~ht !2

10 372

105
sech7~ht !

1
509

70
sech5~ht !1

1024

105
sech3~ht !2

998

105
sech~ht !G .

~72!

Inserting all these results into Eq.~61!, we obtain the solu-
tion of the averaged equation~59! of the form
04661
-
v~z,t !5hA2^d&

^c&
sech~ht !eih2^d&zH 11

16

3

^cR2&

^c&

3h4F11sech2~ht !2
19

8
sech4~ht !G

1
64

3

^cR2&2

^c&2
h8F2

998

105
1

1024

105
sech2~ht !

1
509

70
sech4~ht !2

10 372

105
sech6~ht !

1
66 557

672
sech8~ht !G J . ~73!

Note that only the phase isz dependent. Otherwise, w
havez-independent factors which indicate that the~averaged!
pulse amplitudes should be constant during propagation.
us now compare this expression with the solution of
original equation~1!. For that we take into account all co
rections up to orderr5. Note that the next correction tov is
of orderr6. We choose the special casec(z)[^c&[« for the
reason of demonstration. We obtain foru,

u~z,t !5v~z,t !1 iRDv~z,t !2 1
2 R2D2@v0~z,t !1v1~z,t !#

2 1
6 iR3D3~v01v1!1 1

24 R4D4v01 1
120 iR5D5v0

1«@R#N1~v0!, ~74!

wherev0(z,t) is the bright fundamental soliton andv1(z,t)
is the first correction.

Let us now calculate the explicit forms of the averag
solitonv and compare with the actual solutionu for different
values of« and r5A«. For simplicity, we assumeh51.
Different values of« correspond to different strengths of th
dispersion management. In the following, three cases wil
presented for«50.01, «50.04, and«50.1. The averaged
soliton v is given by Eq.~73!. The actual solitonu can be
calculated by inserting the averaged solitonv into transfor-
mation ~74! and using all terms up to the relevant order,
shown in Eq.~74!.

Figure 1 shows the squares of the absolute amplitude
v ~broken line! and u ~solid line! for «50.01. The ampli-
tudes ofu andv are nearly identical. Both solutions have th
typical sech form. The expressionv is the so-called guiding-
center soliton, whileu is called the dressed soliton. Th
dressed soliton shows small variations over the period len
of the dispersion map during propagation. Breathing is o
a small perturbation and the main form of the dressed sol
is dominated by the guiding-center soliton. This behavior
the typical behavior for weak dispersion management.

Figure 2 shows the squares of the absolute amplitude
v ~broken line! and u ~solid line! for a stronger dispersion
management («50.04) compared to the previous case. No
the averaged soliton and the soliton solutionu are no longer
very close to each other. While the averaged solitonv still
shows similarities to a sech pulse, the solutionu has a dip at
0-6
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each side, and even indicates a second dip. This chang
the behavior characterizes the beginning of strong disper
management effects.

For even stronger dispersion management also the a
aged solitonv loses its sech form. Figure 3 shows th
squares of the absolute amplitudes ofv ~broken line! andu
~solid line! on a logarithmic scale for«50.1. The functions
u and v show the characteristic behaviors of strong disp
sion management. In the past, the so-called dispers
managed solitons~DM solitons! were only investigated nu
merically. An analytic formula was unknown. The typic
form of a DM soliton was presented in Ref.@17#. There we
recognize regular dips at each side of the pulse. Here
achieved three dips at each side by using a perturba
theory.

We conclude this section by some results on black s
tons. They can be treated in a similar fashion. If^d&,0, then
the integrable NLSE has dark soliton solutions. We consi
the black soliton. Equation~52! describes the corrections t

FIG. 1. Squared amplitudesuu(z,t)u2 of the actual soliton atz
50 ~solid line! and of the averaged solitonuv(z,t)u2 ~broken line!
for «50.01 andh51.

FIG. 2. Squared amplitudesuu(z,t)u2 of the actual soliton atz
50 ~solid line! and of the averaged solitonuv(z,t)u2 ~broken line!
for «50.04 andh51.
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the dark solitons, since we did not restrict the boundary c
ditions during any transformation. Using the ansatzB(z)
5e22i«^d&a2zf (t), we find the fundamental soliton, in th
main order, and its first correction,

B~z,t !5exp$22i«^d&a2z%aS 2
2^d&

^c& D 1/2

~ tanh~at ! ~75!

1
2r2a2^cr2&

3^c&
sech5~at !@3 sinh~at !

122 sinh3~at !212~at !cosh3~at !#1•••). ~76!

To get the solution in the original variableu, we again
apply the expansion of the exponential operator

u~z,t !5u0~z,t !2 irr ~z!Du0~z,t !1u1~z,t !

2 1
2 r2r 2~z!D2u0~z,t !, ~77!

whereu0(z,t) is the black soliton,

u0~z,t !5exp$22i«^d&a2z%aS 2
2^d&

^c& D 1/2

tanh~at !,

~78!

andu1(z,t) is the correction,

u1~z,t !5r2 exp$22ia2^d&z%aS 2
2^d&

^c& D 1/22a2^cr2&
3^c&

3sech5~at !@3 sinh~at !122 sinh3~at !

212~at !cosh3~at !#1 i« ṽ0~z!u0
2~z,t !

1«r ṽ1~z!N1„u0~z,t !…. ~79!

For the black soliton, we have the opposite situation to
bright soliton. Nowr (z)50 corresponds to the maximum
black soliton width, and the maximum ofr 2(z) corresponds
to the minimal width.

FIG. 3. Squared amplitudesuu(z,t)u2 of the actual soliton atz
50 ~solid line! and of the averaged solitonuv(z,t)u2 ~broken line!
in a logarithmic scale for«50.1 andh51.
0-7
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VI. DISCUSSION AND CONCLUSIONS

The main result of the present paper are the avera
equations~23! and ~52! which generalize all previously
known models. Now, we discuss more details of the av
aged equations. A comparison with the previous result
made in the Appendix.

The first term on the right-hand side of Eq.~23! is known
and was obtained in Ref.@10#. It leads to the Gabitov-
Turitsyn equation which was also discussed in Ref.@9#. The
next order terms of Eq.~23! are explicitly written out here.
The domain of applicability of the full equation is limited b
the required smallness of the ratio of the period of the co
ficients to a characteristic length of a solution. The high
order approximations can be easly determined in arbitr
order since the initial system is a one-frequency system@13#.

Equation~52! is valid for all combinations of the sma
parameters« and r, for arbitrary forms of the coefficients
d̃(z) and c(z), and for an arbitrary value of the average
dispersion̂ d&. Equation~52!, without the two last terms on
the right-hand side, was obtained in Ref.@11# for a small
variation of the dispersion; the full equation is new~to the
best of our knowledge! and has not been presented in liter
ture so far.

We remark that the equations obtained in Refs.@3,6# do
not coincide with Eq.~52!, even forc51. Actually, in the
latter case, the term̂F02& contains the third power nonlin
earity and the fourth-order differentiation. The equation d
rived in Ref. @3# has the fifth power nonlinearity and th
second-order differentiation. The Hasegawa-Kodama eq
tion was obtained under the assumption that the avera
dispersion has the same order as the coefficient in fron
the nonlinear term. Equation~9! from Ref. @6# has also the
third power nonlinearity and the fourth-order differentiatio
But not all terms are important for long-scale solutions; so
terms can be eliminated by a transformation of the depen
variable. It is easy to check that Eq.~52!, without the last two
terms, is Hamiltonian. Equation~17! from Ref. @11# is equal
to Eq. ~9! from Ref. @6#. Equation~52!, without the two last
terms on the right-hand-side, can be obtained from the eq
tions just mentioned by a quasi-identical transformation.

We remind the reader that for large parameters^d& ~in
comparison tô c&), Eq. ~A35! ~see Appendix! can be re-
duced to the classical NLSE@18#. For ^d&;^c&, Eq.~A35! is
identical with the Hasegawa-Kodama equation. For a sm
parameter̂ d&, Eq. ~A35! is valid but the soliton solutions
~73! and ~75! loose their applicability.

In conclusion, we demonstrated the applicability of thr
methods for averaging a nonlinear Schro¨dinger equation with
periodic coefficients. All methods arrive at the same res
~see Appendix!, although they are very different in practic
The multiple-scale method is difficult to handle and is ve
elaborate. It requires ana priori scaling of variables~for the
two small-parameter situation!. The Lie transformation is
highly systematical. The ansatz is straightforward, and eq
tion Eq.~A19! holds without any assumptions for the starti
equation. The method works fast and efficiently, but the c
culation of the Lie brackets is complex and elaborate. Al
the Lie method works with powers of small paramete
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Sometimes it does not allow us to do a global transformat
for additional small parameters. The Bogolyubov transf
mation is the most elegant method; the main result is reac
very fast. Before applying the Bogolyubov transformatio
one should formulate the basic equation in standard fo
Otherwise the result may be wrong@14#.

We considered the two-parameter situation, assuming
the high-frequency, variable part of the dispersion is lar
than the mean value. The first small parameter is the rati
the length of the dispersion map to the length of a soluti
The second parameter is the value of the~mean-free! integral
for the variable part of a dispersion. This is an importa
difference compared to previous assumptions on the am
tude of the variable part of dispersion. Note that, for sho
scale management, the amplitude can be very large while
function R(z) has a small amplitude@19#. We obtained the
asymptotic equation in the main order, and with first corre
tions. The calculations are valid for all ranges of paramet
as long as they are small. The coefficients of the obtai
equation were evaluated for a two-step dispersion map w
an exponential loss function.

The corrections to the fundamental bright and black s
ton solutions were obtained. These corrections show dif
ent behaviors. The bright soliton has a minimal width a
point whereR2(z)50 while the dark soliton has a maximum
width at this point.
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APPENDIX: COMPARISON WITH OTHER METHODS

In this Appendix we compare the Bogolyubov meth
with other averaging methods, such as the multiple-scale
eraging and a technique based on Lie transformation.

1. Multiple-scale averaging

We start with the NLSE in the form

iuz1@«^d&1dd̂~z!#utt1«c~z!uuu2u50, ~A1!

where d̂;1 and d̂(z)5d̂(z11). We are interested in rela
tively large variations of the dispersion. Therefore we a
sumed>«. Let us introduce the slow variablex5dz. Then
we get

iux1F«d ^d&1d̂S x

d D Gutt1
«

d
c~z!uuu2u50. ~A2!

The dependent variableu should have a derivativeux of the
order of 1. In addition, a fast oscillating coefficientd̂(x/d)
appears ford!1. In this case, the equation is ready for a
plication of a multiple-scale averaging.
0-8
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To be specific, we choosed5«1/2. The case withd5«
was considered by Yang and Kath@6#. We also choosec(z)
[1 for simplicity. Next, we expandu in a power series of
«1/2,

u5U1«1/2u11«u21•••, ~A3!

with the abbreviations U5U(z0 ,z1 ,z2 , . . . ) and uk
5uk(z,U) for k51,2, . . . . We use thescaleuk;O(«k/2),
introduce a fast variablej5«21/2x5z, and the slow vari-
ableszn5«k/2x. We assume thatU is independent of the fas
variablej, ^u&5U, and^uk&50. Substituting Eq.~A3! into
Eq. ~A2! and using

]U

]x
5

]U

]z0
1«1/2

]U

]z1
1«

]U

]z2
1••• ~A4!

we get

i F ]U

]z0
1

]u1

]j
1«1/2S ]U

]z1
1

]u1

]z0
1

]u2

]z D1«S ]U

]z2
1

]u1

]z1
1

]u2

]z0

1
]u3

]j D1•••G1«1/2^d&S ]2U

]t2
1«1/2

]2u1

]t2
1••• D

1d̃S ]2U

]t2
1«1/2

]2u1

]t2
1••• D 1«1/2@ uUu2U

1«1/2~2uUu2u11U2u1* !1«~U* u1
212uUu2u2

12Uuu1u21U2u2* !1•••#50. ~A5!

Next, we collect terms of the same orders and eliminate
secular terms. In the zeroth order one obtains

i
]U

]z0
1 i

]u1

]j
1d̃~j!

]2U

]t2
50. ~A6!

By averaging this equation, where the fast varying ter
cancel, we get

i
]U

]z0
50 and

]u1

]j
5 i d̃

]2U

]t2
. ~A7!

By integration overj, where the slowly varying terms ar
assumed to be constant during the integration, we achie

u15 i r̃ Utt;O~«1/2!, ~A8!

with r̃ 5r 2^r & andr 5*0
j(d2^d&) dj8. Using this result in

the next order«1/2, we find

i
]U

]z1
52^d&

]2U

]t2
2uUu2U and u252

1

2
Utttt~ r̃ 222M !,

~A9!

with M5 1
2 (^r 2&2^r &2).

In the first order we obtain
04661
e

s

]U

]z2
50 and

u352~s2^s&!@Ut
2U* 12UuUtu21U2Utt* #2

i

2
U6tP1~r !,

~A10!

wheres5@r #(j).
In the order 3/2 we finally arrive at

i
]U

]z3
54M @U2Utttt* 16UUtUttt* 17Ut

2Utt* 110uUtu2Utt

12Uttt~ uUu2! t15UuUttu21 5
2 U* Utt

2 #. ~A11!

By inserting all results into Eq.~A4! we get

iU x1«1/2^d&Utt1«1/2uUu2U

54«3/2M @U2Utttt* 16UUtUttt* 17Ut
2Utt* 110uUtu2Utt

12Uttt~ uUu2! t15UuUttu21 5
2 U* Utt

2 #1O~«2!.

~A12!

Next, we multiply both sides of Eq.~A12! with d5«1/2 to
rewrite

iU z1«^d&Utt1«uUu2U

54«2M @U2Utttt* 16UUtUttt* 17Ut
2Utt* 110uUtu2Utt

12Uttt~ uUu2! t15UuUttu21 5
2 U* Utt

2 #1O~«5/2!.

~A13!

The transformation between the averaged and actual v
ables is

u5U1 i ~R2^R&!Utt2
1
2 Utttt@~R2^R&!222M #

2 1
2 iU 6tP1~R!1«1/2S̃N11O~«2!. ~A14!

We have used the relationsR5«1/2r andS5«s. The expres-
sion P1(R);O(«3/2) is a polynomial inR.

2. Lie transformation

The Lie-transformation technique was developed for or
nary differential equations, but we can also use it for a par
differential equation, by interpreting the latter as a infin
system of ordinary differential equations. To use the L
transformation here, we rearrange Eq.~A2! in the form

]u

]z
5 i«1/2^d&utt1 i«1/2uuu2u1 i d̃utt5X01d̃X0D5X@u,u* #.

~A15!

Thereby, X depends on the infinite set of variable
(u,ut ,utt , . . . ,u* ,ut* ,utt* , . . . ), indicated byX@u,u* #.

Obviously it is

X0;O~«1/2!, X0D;O~1!. ~A16!
0-9
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The Lie transformation is applied in the form

u5efW ¹W v5v1f1
1

2!
~fW •¹W !f1

1

3!
@~fW •¹W !f•¹W #f1•••

~A17!

to transform Eq.~A15! into

]v
]z

5Y@v,v* #. ~A18!

Thereby fW 5(f,f t , . . . ) and ¹W 5(]/]v,]/]v t , . . . ) are
infinite-dimensional vectors.

Inserting transformation~A17! into Eq. ~A15!, we can
derive the following relation betweenY and X ~therebyX
5X@v,v* # holds!:

Y1
]f

]z
1

1

2! Ff,
]f

]z G1
1

3! Ff,Ff,
]f

]z G G1•••

5X1@f,X#1
1

2!
†f,@f,X#‡1•••. ~A19!

In this equation, the Lie bracket is introduced via

@A,B#5~AW •¹W !B2~BW •¹W !A, ~A20!

with

~AW •¹W !B5 (
n50

` S A(nt)

]

]v (nt)
1A~nt!*

]

]v ~nt!* D B. ~A21!

Next, we expandY andf,

Y5Y01Y11Y21Y31•••, f5f11f21f31•••,
~A22!

with the scalings

Yk;O~«k/2! and fk;O~«k/2!, ~A23!

respectively. Sincef scales with the fast variation, we a
sume

]fk

]z
;O~fk21!;O~« (k21)/2!. ~A24!

Using the expansion, we get in zeroth order

Y01
]f1

]z
5d̃X0D , ~A25!

and by averaging

Y050⇒ ]f1

]z
5d̃X0D⇒f15R̃X0D;O~«1/2!. ~A26!

The slowly varying terms will again be assumed to be c
stant during the integration. In next ordere1/2 we find
04661
-

Y15X0⇒
]f2

]z
50⇒f250. ~A27!

In first order we obtain

Y250⇒ ]f3

]z
5R̃@X0D ,X0#⇒f35S̃@X0D ,X0#;O~«2!.

~A28!

Ordere3/2 leads to

Y352
1

2
^d̃S̃&†X0D ,@X0D ,X0#‡;O~«2!. ~A29!

Finally, we obtain the following equation for the averag
dynamics:

]v
]x

5 i«1/2^d&v tt1 i«1/2uvu2v2
1

2

3^d̃~S2^S&!&†X0D ,@X0D ,X0#‡1O~«2!.

~A30!

Calculating the Lie brackets

@X0D ,X0#52«1/2~v tt* v21v t
2v* 12vv tv t* !5..«1/2N1~v !,

~A31!

†X0D ,@X0D ,X0#‡524i«1/2~v tttt* v214v ttt* vv t14v tt* v t
2

12vuv ttu214v ttuv tu21v tt
2v* !

5..2 i«1/2N2~v !, ~A32!

we obtain

^d̃S̃&522M 5
^R&50

2^R2&;O~«!. ~A33!

Thereby, we can choose^R&50, sinceR is only determined
modulo a constant. The averaged equation is

ivx1«1/2^d&v tt1«1/2uvu2v5 1
2 «1/2^R2&N21O~«2!.

~A34!

Next, we multiply with«1/2 to get

ivz1«^d&v tt1«uvu2v5 1
2 «^R2&N21O~«5/2!. ~A35!

The transformation is

u5v1 iRv tt2
1
2 R2v tttt2

1
6 iR3v6t1«1/2S̃N11O~«2!.

~A36!

We can transform from Eq.~A13! to Eq. ~A35! by

U5v2
1

2
^R2&v tttt1S 2

i

6
^R3&v6tD . ~A37!

The last term on the right-hand side is only necessary for
identification of the transformations, not for the averag
equations. Because of this, it follows that the different av
aging methods lead to the same results.
0-10
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