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Metastability of dark snoidal-type waves in quadratic nonlinear media
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We report the existence and basic properties of dark snoidal-type waves self-sustained in quadratic nonlinear
media. Using a stability analysis technique, we reveal that they are almost completely stable, or metastable, in
suitable ranges of input energy flows and material parameters. This opens the way to the experimental obser-
vation of dark-type multicolor periodic wave patterns supported by quadratic nonlinearities.
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The possibility of generation of multicolor dark-type soli- periodic nonlinear waves. We show that quadratic nonlineari-
ton light patterns in quadratic nonlinear media has been exties admit the existence of continuous families of dark peri-
plored since the early days of the field. A number of dark-OdiC waves yvith d'ifferent fupctional shapes and contrast, anq
type soliton solutions, including multihole, mixed dark- discuss their basic properties. The central result reported is
bright, and embedded solutions, are known to existe that the linear _s_tab|I|ty analysis demonstr_a’ges that, un_der ap-
Refs.[1-7]: for reviews, sed8,9]). Most of such solutions propriate conditions, such wavde not exhibit exponentially

have been shown to be highly unstable under evolution dugrc?wing Ii(nstablillitiesllnsteﬁ:j, we. fount;j_llt_hat tr;]ey exrﬂ(ibit
. 1. only weak small-scale oscillatory instabilities. The weakness
to the development of both dynamical and modulational in of the instabilities is verified by direct numerical simulations

stabilities. However, the study of the existence and stabilitymc the full dynamical wave evolution. Therefore, we found

of all possjble da_rk—type solutions is far from complete, andby numerical simulations that such snoidal-type waves are
the potential elucidation of stable, or at least metastable, gengp,st enough to be observed experimentally.

eral multicolor dark-type states is an important question that  For concreteness. we consider the case of pulsed light
remains open. In this regard, some dark-type solutions coulfropagation in a quadratic nonlinear crystal under conditions
have 03C|”at|ng tails and hence bound states of a few dar f Second_harmonic generation, Where a fundamental fre_
solitons could be formed due to mutual trapping in positionsguency (FF) wave and its second harmoni§H) interact
corresponding to the local minima of the effective interactionwith each other. The propagation of the corresponding
potential. Such bound states of several dark solitons could bslowly varying envelopes under conditions for noncritical
considered as “dark soliton molecules.” A fascinating imple- type | phase-matching is described by the system of coupled,
mentation of this concept is the realization of stable, or metareduced equations

stable, periodic dark-type soliton arrays, and some efforts

2
have been made to find analytical expressions for special i%: ﬂﬂ_ a¥ g, exp( —iBE)
bright and dark soliton arrays in quadratic media with the aid 9E 2 ant P ’
of direct substitutio 10], Hamiltonian formalism$11], and p 4, o2 (D)
Lie-group theoretical methodd.2]. However, the construc- i 2 _ %2 7G2 o expli BE).
tion of complete families of periodic solutions in quadratic g€ 2 gt
media usually requires numerical methods. We recently re: ere CI1=Ldisl('—n|1|-n|2/2)_1/2A1|51/2 and a0

ported the existence and fundamental properties of such / 530 di ionl | litud
whole families of stationary cnoidal-type and dnoidal—type_(l‘diSl L) Azl are dimensioniess complex amplitudes
of the fundamental ¢=wy) and second harmonica(

o e o e e s 200) WaVeS A (1,6 re he oy vaning ampdes
9 =(t=2z/ug1)/ 7o is the normalized running timeug

arrays with high contrasts seem to be.robust e_nough to bg(akmw) 1" 'is the group velocity of the fundamental
observed experimental[{L3]. Actually, a rigorous linear sta- Jwo=wg o ] .
bility analysis predicted that completely stable brightWave,o is the characteristic pulse durat'@j Z/L gis Is the
cnoidal-wave arrays do exist above a certain threshold erformalized propagation distance; sy 7= 7o/| 7Ky o/ |

ergy level[14], thus yielding an example of stable periodic are dispersion lengthk;=k(wo) andk,=k(2w,) are the
wave patterns in uniform media supporting bright solitonwave numbers; Ly, = c?ki/4mafly* P (wo) and Ly
solutions. This provides a renewed motivation to explore the= c?k,/4mw3l 3 ?(2wo) are nonlinear lengths; d,
possibility of finding self-sustained stabilized dark-type =sgn@Pk;/dw?) and d,=sgnEPk,/dw?)Lgs/Lys; are the
patterns. group-velocity  dispersion  coefficients; B=sgn(X;

The aim of this paper is to present the properties of dark—k,)Lis1/Lcon IS the phase mismatchy .= 1/ 2k, — k| is
sn-type periodic waves ig® media and to report the out- the coherence length. We neglect the group-velocity walk-
come of a comprehensive stability analysis based on a powsff and assume propagation in near-phase-matched
erful technique developed to elucidate the stability of generatonfigurations.
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The stationary solutions of Eqgl) have the form
01.2&, 1) =wq A n)explb, ,£), wherew, ,(7) are real func-
tions andb, , are real propagation constants that satisfy
=pB+2b;. The resulting system of equations far 4 7)
takes the well-known form

2 8 &
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which, in contrast to the case of fully localized soliton solu-

w, f=-3
tions, in the case of sn waves must be solved together with "0ST20 55 50 es 05 20 35 50 65
periodic boundary conditions. parameter by parameter by

It is well known that Eqs(2) take a simpler form in the .
large phase-mismatch limit, wheg|>1 and the field am- W U=300

~
>

w.
plitudes are such that there is a negligible conversion be- ! 2 ’

tween the fundamental wave and second harmonic. Using the 0
substitutionwz(n)=wf(77)/(,8+ 2b,) for the SH field, one 1 Slig
arrives at the approximate equation with cubic nonlinearity . (e) U=10 N () W
00 02 04 06 08 10 00 02 04 06 08 10

w, 2b, > nl(em) nl(am)
a2 td, " d(grapy V10 ®
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FIG. 1. (a) Dispersion curves for various phase mismatches.
Wave contrastb), integral width(c), and energy sharin@l) versus
Equation (3) has a specific periodic solution in the form propagation constant for various phase mismatckesand (f)
of a so-called snoidal wave w;(7)=m[d.(2b; show snoidal wave profiles with different energy flowsBat 0.
+B)1¥%sn(,m), where m=(2b,/d;—1)¥? is the Jacobi
parameter. This solution is valid for the following range of = The basic properties of the sn-type waves are summarized
parameters: d;=b;=d;/2 and D;+ >0, provided that in Fig. 1. The dispersion curvés$(b,) are shown in Fig. (a)
d;>0 and B8>—2d;. The periodT of the snoidal(or sn  for different phase mismatch¢gs There are cutoff values for
wave amounts to K(m), whereK(m) is the elliptic integral the propagation constant at different phase mismatches.
of the first kind which grows rapidly as— 1. In the limit of ~ Thus, for—1< 8<% one hash;>1/2 and both FF and SH
strong localization ih— 1) the snoidal wave transforms into waves disappear ds— 1/2, while for 8<—1, propagation
an array of out-of-phase dark solitons, while for weak local-constanb,= — /2, andw;— 0, w,— — (1+ 8)/2 at the cut-
ization (m—0) the sn wave transforms into a small ampli- off point. Among the important characteristics of the dark
tude sinusoidal wave. periodic waves is the contrast

From now on, we will assume material and pump light
conditions such that the FF lies in the normal dispersion IW1 ol max— W1 o min
region, while the SH frequency lies in the anomalous disper- Cl,2:|w ot W 'ﬂ = 4
sion region. For simplicity we set equal dispersion lengths 12imax T 1L 2min
for both frequencies and sd{=1, d,=—1. S .

The whole families of periodic solutions of Eq&) could which is directly related to the amplltude QT the constant
be obtained only numerically, for example, using a reIaXatiOIPackground, and hence to the potential stability or mstaplllty
method. The explicit analytical solution in the form of a of da_rk waves. The closer the contrast to 1, the smaller is the
snoidal wave serves as a good initial guess for the iterativgmpl'tUde of the cons_tant background. Notice that the FF
procedure. Despite the fact that the exact solutions of Eq vave does. not contain constant background and Bys
(2) at finite phase mismatchgsare not described by Jacobi =1 always; thus in Fig. (b) we show onl_y the CO”VaSt for
elliptic functions of sn type, by analogy, we will call them the SH wave. At'8_>0 Fhe contrasC, varies only sh_ghtly,
snoidal waves The snoidal wave families of Eqg2) are ~ Whereas foi3<0 it rapidly grows near the cutoff point and
defined by two parameters, namely, the transverse pdriod saturates to a constant limit \_Nlth increase pf the propagation
and the propagation constabt, for a fixed value of the cqnstant(or energy flow. Notice that.the higher the phase
phase mismatcl. Physicallyb, is related to the energy flow m|smatqh, the higher the contrast. Figure)lshows the in-
U=J"2,(w?+w2)d7 inside each transverse wave period, tegral width
Since one can use scaling transformations to obtain snoidal

. . . . . T/4 1/2 T/4 -1/2
waves with dlffe_rent periods from a given _fam|ly, we select W=2 f (wf+w§)7;2d77 J (w§+w§)dn
the time scalery in such a way that the periotlequals 2r, ~Tl4 —Ti4
and vary the propagation constant. (5)
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versus propagation constant. The slow growth of the integradion in the presence of random input perturbations. To ad-
width with the increase of the energy flow is an indicationdress this issue we performed a rigorous linear stability
that dark intensity holes become narrower for high-energyanalysis using a method specially suited to these types of
snoidal waves. Notice that the integral width is almost inde-solutions. The method of stability analysis for periodic wave

pendent of the value of the phase mismatch at high energgatterns used here was introduced in R¢fgl, 15 for the

flows. The energy sharing per period,
T2
[
between the FF and the SH waves is shown in Fid) &s a
function ofb, for one particular case, at negative phase mis

1

Si=(; ©®)

wi d7,

match. At low energy levels and negative phase mismatche

the main part of the energy is concentrated in the SH wav
whereas at high energi&; is higher tharss,. In the case of
positive mismatch the FF wave always contains most of th

total energy. All this is similar to the general features of

guadratic solitons of different types. Typical profiles of the
dark periodic waves are displayed in Figge)land Xf) for

the low- and high-energy cases, respectively. Notice that

snoidal-type waves constitute the periodic analogs of th
bound states of a few dark solitons studied in Réi. In
other words, a twin-atom or multiatom “soliton molecule”
transforms into a one-dimensional “dark soliton crystal.”

case of bothy(® and y® nonlinear media; thus here only
the essential points necessary for discussion are recalled. We
seek for perturbed solutions of Eq4) in the form

QA 7,E)=[W1 A7)+ U A7, +iVA n,é)]exr(ibl,zég,?)

whereU; , andV, , are the real and imaginary parts of the

Shnall perturbation, respectively. Such perturbations are rep-

Sesented in the spectral-type integral form:

e

Ul,z(n,§)=R€{f 0(5)U1,2(77,5)9XF(5§)(15},
8

VA n,§>=R% | comaansrexsiands
e

where C(6) is the complex spectral amplitude antlis
the complex growth rate of the perturbation. Substitution of
expression(7) into Egs. (1) and linearization yields the

The central issue behind the existence of families of darksystem of ordinary differential equations for the perturbation
type sn waves is whether the binding energy of such “solitorvector ®(#7) ={u4, U,, vq, Vv,, du;/dz, du,/dz, dv,/dz7,
crystals” is big enough to render them stable under propagadv,/d#}" and can be written in the matrix form:

do o ¢
an P B:(N O)’
9
—2(by—w,)/d; 2w, /d, —26/d, 0
4w, /d, —2b,/d, 0 —26/d,
- 261d, 0 —2(by+wy)/d; 2w, /d;
0 25/d, 4w, /d, —2b,/d,

where O and £ are zero and unity X4 matrices, respec-
tively.

The general solution of Eq$9) is expressed in the matrix
form ®(n)=Z(7n,7n")P(7n'). Here the Cauchy matrix
I(7n,7n') satisfies the initial value problemaZ(#»,n')/dn
=B(9)Z(n,7m"), Z(n',n")=E. The translation matrix of the
perturbation eigenvecto® on one wave periodl is ex-
pressed in terms of the Cauchy matiX»)=Z(n+T, 7).
The perturbation eigenvectdr,( ) is finite along then axis

if the corresponding eigenvalue of the translation matrix

I\=1 (k=1,...,8). The eigenvalues, are given by the
roots of the characteristic polynomial

8
de(P—-rE)= 2, pA8 k=0 (10)
k=0

of the translation matrix, which is independent gf The

coefficients of the polynomial can be written in terms of the
tracesT = Tr[ PX(#)], which are also independent gf One
finds thatpe=1, py=—Ty, p.=(T3—T,)/2, ps=—Ti6

+ Ty To/2— T4/3, pa=T124—TiT o4+ T, To/3+ T2/8—T,/4,
Ps=P3, Ps=P2, P7=P1, Ps=pPo- Notice that four of the
eight eigenvalueg can be excluded, since it follows from
the structure of the characteristic polynomial thag
=1/ ;4 (k=1,...,4). One can show that the corresponding
eigenvectors satisfy the symmetry relatiobg(7) =Py 4
(—7n) (k=1,...,4).

To elucidate the outcome of the stability analysis, we
thoroughly scanned the complex increment half plane
Re(6)=0 and analyzed the eigenvalues, looking forareas
of existence of “allowed” perturbationginside these areas
one hag\,|=1) for fixed values of the propagation constant
b; and phase-mismatch paramefrThen we searched for
the maximal growth rates inside these areas and finally cal-
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Therefore, on physical grounds the important implication

.55,0_(_6‘,),/ is that near phase matching, which is the most interesting
g . case experimentally, such a small growth rate of the expo-
g nential instabilities can manifest itself only after a long
g 20/ propagation distance, typically far larger than any fea_S|bIe
05 : quadratic crystal length. Actually, the exact numerical simu-
-1 1 3 5 i 1.5 3.0 4.5 6.0 . . .
; lations, discussed below, of the evolution of the perturbed
mismatch parameter b;

stationary solutions for large propagation distances, beyond
020 0= the regime where the predictions of linear stability hold, re-

—0 i

015 b (c) £ 010 9 veal that the growth of the perturbations does not even al-
= 8 3 ways lead to the eventual decay of the sn waves.
5 010 3 _ < o . o e .
et [l =1 3 o B=10 Oscillatory” instabilities were found to exist for all en-

0511 10 (d) ergy levels and material parameters. At negative phase mis-

000 0 matches the oscillatory instability is strong and the real parts

parameter b energy flow U of the complex growth rates reach almost the same magni-

tude as those associated with exponential instabilities. How-
ever, at positive and zero phase mismatches the maximum
positive value of the complex growth rates, Rgfy, asso-
ciated with oscillatory instabilities was found to be quite
small and to grow monotonically with the energy fldw
Notice that the band of energy flows where Bgf,~0.05
AR RaE R e rapidly increases from€@U=<62.2 at3=3 to 0<sU=<314 at
n/(2T) B=10. Since the decay length of waves with such low in-
crements is huge and exceeds feasible crystal lengths by sev-
FIG. 2. (a) Area of existence of exponential instabilities for dark eral orders of magnitude, the important conclusion is that it
snoidal wavegshadedl Areas of existence of finite perturbations should be possible to observe snoidal-type waves experimen-
with real growth rates 8= —3 (b) and 0, 3, 10c). (d) Maximum  ta]ly. Notice also that inside these intervals of “metastabil-
real part .of complex growth rates versus energy flow for diﬁerentityv- the contrast, energy sharing, integral width, and other
phase mismatchese) One of the components of the perturbation characteristics of dark snoidal-type waves change consider-
corresponding to growth raté=0.0979+293.3921 and snoidal  gp)y | the limit 3— = the “metastability” region broadens
wave withb, =7 at5=3. (f) Propagation of the snoidal wave inthe 4 o oscillatory and exponential instabilities are sup-
presence of the perturbation depicted(@ Only the FF wave is pressed. The last result is consistent with the stability of dark
shown. - . . .
snoidal waves in the corresponding Kerr medium. The
culated the corresponding perturbation modes. We emphasiz@aginary part of the complex growth rates rapidly increases
that this requires an intense numerical effort. asU—x. We have found that dominant frequencies in the
There are two different types of instability of the dark spectrum of perturbation with highest R€an be estimated
periodic waves: “exponential” instabilities associated with asQ~*[2 Im(5)]*? and at moderate and high energy flows
purely real growth rates and “oscillatory” instabilities asso- are much higher than the frequencies of their own harmonics
ciated with complex growth rates. A8<—1 snoidal-type ©f snoidal waves. This means that in the case of well-
waves were found to be exponentially unstable in the wholdocalized high-energy waves the most “harmful” high-
domain of their existence, whereas f6& —1 exponential ~frequency perturbations lie far from the frequency band of
instabilities were found inside a certain relatively narrowshoidal waves and could potentially be removed by spectral
band of propagation constarftsee Fig. 2a)]. The areas of filtering. For example, for a wave with;=7 at =3 the
existence of finite perturbations at negative and positivesnoidal wave's own frequency band is given by8=<()
phase mismatches are shown in Figd)2nd 2c), respec- =8, while the dominant frequencies in the perturbation spec-
tively. Notice that at3=<—1 the instability growth rates are trum areQ)~*24[see Fig. 2e) which shows the profile of
quite high and thus will lead to a fast decay of the corre-the perturbation for this wayeA typical scenario of the
sponding wave in the whole range of its existence. The iminstability development for the snoidal-type waves is shown
portant result revealed in this paper is thatge —1 the in Fig. 2f). One can clearly see the appearance of high-
situation drastically changes: While exponential instabilitiesfrequency modulations of the otherwise smooth profile; how-
are still possible in a narrow band of propagation constant§ver, the depth of this modulation is small and does not lead
[Fig. 2(c)], the maximal value of the corresponding growth to complete decay of the wave.
rate inside these bands is very small compared with typical To confirm the results of the linear stability analysis and
growth rates encountered wh@ms — 1. Moreover, when the to elucidate the influence of an envelope on the snoidal wave
mismatchg increases, the maximum value of the growth ratepropagation, we performed a set of simulations of Hgs.
inside the instability band quickly decreases. This is consiswith the input conditions q; x(7,0)=w; A 7)G(7)[1
tent with the suppression of exponential instabilities of snoi-+ p1,A7)], Wherep, i 7) is a multiplicative Gaussian noise
dal waves in the largéand positivé phase-mismatch limit, with varianceo? ,, andG( ) is a wide envelope modulating
i.e., an effective Kerr medium. the infinite periodic snoidal-type pattern. Notice that one of
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the obvious consequences of the superimposed wide enve- 24
lope is slow broadening of the discrete spectral litasde$
forming a periodic wave pattern. We have found that in some
cases(when the growth rates predicted by linear stability
analysis are small enougperturbed snoidal waves with low
and moderate energy flows can survive up to 1000 propaga- 2 g ——
tion units, exceeding any feasible crystal length by several n/(2r) n/(2r)
orders of magnitudé¢Fig. 3). The band of energy flows cor-
responding to such “metastable” propagation quickly in-
creases with increase of the phase mismatch, as predicted by 28 Wy

profile

1.0

5.0

the stability analysis. As in the case of regular perturbations %: 00

in linear stability analysis, in the case of random perturba- ‘:1_2.5

tions instability of high-energy waves manifests itself in the W (b)

appearance of high-frequency oscillations and leads to be- A T0E 04 0% 08 10 %0 05 00 05 10
havior analogous to that depicted in Figf)2 n/(2m) n/(2m)

In conclusion, we have numerically found periodic
snoidal-type solutions describing phase-locked wave patterns_FIG. 3. (@ shows the profile of the stationary dark snoidal wave
in quadratic nonlinear media and presented their basic prod‘-""h b;=1 at=3 and its long-term propagation in the presence
erties. The rigorous linear stability analysis of the solutions®f White input noise superimposed on the stationary solufibn.

has shown the existence of parameter areas where the3BS samezas;iéa())lbutofolr The V\Ié?:ve Witrb.lzﬁ'e’ andg=10. Noise
waves exhibit very weak instabilities; thus we termed them'2M'anceoaz=5.0L. Dnly the F=wave 1S shown.

metastable. In such areas the growth rate of perturbations js , , .
small enough to allow structural stability of the perturbed{ICOIOr photonic latticegsee[18] for a photorefractive coun

waves during hundreds of propagation units. Such patterns (‘5?rpar).

periodic pixel-like structures can find applications, e.g., in  Financial support from CONACyYT under Grant No.
the study of complex light patterns generated by modulal39681-F is gratefully acknowledged by V.A.V. Y.V.K. and
tional instabilities, or in the implementation of digital image L.T. acknowledge support by the Generalitat de Catalunya
processing schemes based on solitonlike arfagsl7], and and by the Spanish Government under Contract No.
in the formation of two-dimensional discrete solitons in mul- BFM2002-2861.
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