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Optical bistability involving photonic crystal microcavities and Fano line shapes

A. R. Cowan and Jeff F. Young
Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
(Received 21 May 2003; published 20 October 2003

The reflectivity of a single-channel waveguide mode upon resonantly coupling to a Kerr-active nonlinear
resonant cavity is calculated analytically, including the effects of two-photon absorption. The resonant reflec-
tivity takes the form of a Fano resonance because the solution includes linear reflections from perturbations
downstream of the localized cavity. Instead of using a Hamiltonian formulation of the scattering problem, an
intuitive set of basis states is used to expand the Green’s function of the electric field wave equation. All
resulting overlap functions describing the linear coupling between guided and localized states, and the nonlin-
ear renormalization of the material’s refractive index, are in terms of well-defined physical quantities. Although
derived in the context of photonic crystal-based waveguides and cavities, the treatment is valid for any low-loss
waveguide-resonator geometry that satisfies specific weak coupling criteria. For a cavity consisting of
Al 14Ga gAs, hosting a localized mode at 1.%6m with aQ of 4000 and a mode volume of 0.036m°, we
predict the onset of bistable reflection at incident powers-dD mW. The downstream reflections lead to
hysteresis loops in the reflectivity that are topologically distinct from conventional Lorentzian-derived loops
characteristic of isolated Fabry-Perot cavities. We provide a stability argument that reveals the unstable
branches of these unique hysteresis loops, and we illustrate some of the rich bistable behaviors that can be
engineered with such downstream sources.
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[. INTRODUCTION Several nonlinear studies of photonic crystals have been
reported 14]. Most of this work has been theoretical, largely
Ideal photonic crystals offer the intriguing possibility of because it is still difficult to fabricate good quality 3D pho-
artificially confining and routing photons in three dimensionstonic crystals. However, there have been several nonlinear
(3D) without radiation losseElL,2]. This is accomplished by experimental studies of high-index-contrast 1D and 2D crys-
introducing “defects” into an otherwise perfectly periodic tals that exhibit large pseudo-band-gaps5-19. One
photonic crystalPC), such that localized modes are createdscheme for engineering harmonic conversion or optical bi-
with energies that lie within the crystal's photonic band gap.stability exploits strong local field effects in microcavities.
These modes can be confined on length scales comparableRtanar cavities can be formed between high-index-contrast
the relevant photon wavelength, in 2D for line defects and inlD photonic crystal mirror§17] or they can be accessed via
3D for fully localized microcavities. Such tight confinement leaky mode excitations of 2D planar photonic crystals
offers the potential for fabricating ultrasmall, optical “inte- [20,21]. In essence, these are all nonlinear Fabry-Perot-like
grated circuits” in which light is piped through lossless cavities [22]. Taking the third-order Kerr effectintensity
waveguides and filtered through the engineered coupling aflependent refractive indexs an example, it is well known
these waveguides with fully localized microcavities. Yariv that nonlinear 1D Fabry-Perot cavities exhibit optical bista-
and co-workers have studied such waveguide-resonator cobility at incident power densities that scale as the inverse
pling in a variety of geometridg]. Add-drop filters based on square of the cavity’s quality factorQf. However, in many
coupled waveguides and cavities have been proppsed). instances it is the total optical power and not the power den-
Resonant tunneling of the guided mode through a localizegity that is of paramount importance. The extent to which
cavity mode has been both theoretically studidfdand ex- planar Fabry-Perot cavities can be used at low absolute pow-
perimentally observed in a slab waveguide based photoniers is limited fundamentally by the in-plane dispersion of
crystal[8]. The vertical emission of guided light via a cavity cavity modes. While this can be engineered to some extent in
in such planar photonic crystals has been demonstrated 8D planar photonic crystal1], the ultimate means of re-
Nodaet al.[9]. ducing the absolute power levels required to observe optical
The rich dispersion opropagatingmodes in bulk photo- bistability is to use a fully 3D localized photonic defect state
nic crystals also offers new opportunities for engineeringas the nonlinear cavity and to access it by means of a single-
light propagation. Strongly dispersive parts of the band strucmode 1D channel. One approach to achieve this goal in-
ture might be exploited for optical delay lin¢$0], disper-  volves coupling conventional 1D waveguidder or ridge
sion compensatiofill], or superprismg12]. Engineerable to the high-order, higl® whispering gallery modes of di-
dispersion is particularly interesting in the contextnoilin-  electric spheref23]. The unique advantages offered by pho-
ear optical processes. The periodic nature of these crystal®nic crystals in this context an@) that the localized mode
can be exploited to achieve quasi-phase-matching, and thelumes can be much small@ess than a cubic wavelength
low group velocity of strongly dispersive photonic bands hashan those of high-order whispering gallery modes &nd
been shown theoretically to increase nonlinear conversiothat, in principle, theQ of the localized mode can be due
efficiencies[13]. entirely to its coupling with the 1D channel used to probe it,
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rather than being limited by radiation losses. Of these twaesonator system that satisfies the weak coupling criterion

factors, the former is of much more practical relevance, sinceand whose resonator exhibits low radiation losgegh Q).

the Q values of high-order whispering gallery modes, thoughThe formalism is therefore valid for appropriately designed

not infinite, are known to be much larger than can beplanar photonic crystal circuits. In Sec. Il A we define the

achieved in any existing photonic crystal. A calculation in- equations to be solved. Section Il B gives a detailed discus-

volving photonic crystal-based cavities has predicted bistablgsion of the approximations made in defining a set of basis

switching at power levels as low as 2.6 mifér n,=1.5  states used to expand both the Green’s function and the elec-

X 10~ m?/W and a wavelength of 1.5am) [24]. tric field that solves the wave equation. In Sec. Il F we gen-
This paper reports an analytic solution for the reflectivity eralize the linear theory to include a downstream scattering

of 1D PC waveguide modes incident on a nonlinear localizegource in addition to the resonant cavity. Section Il E con-

defect structure, allowing for arbitrary, but linear down- tains a discussion of how this derivation differs from related

stream reflections. The 1D and 0D defect structures are eadimear reflectivity calculations in the literature.

assumed to support only single modes over the bandwidth of

interest, and both the re@err effec) and imaginary(two A. Waveguide-cavity system

photon absorptionparts of the third-order susceptibility are

included. Downstream, linear contributions to the back- T .

ground reflectivity are included because of the nontrivial ef-Straightforward to show that the electric fiefr,w) satis-

fects they have on the nonlinear reflectivity of 2D planarfies the following wave equation:

photonic crystals when excited in the vicinity of leaky modes

[21]. The formalism reported here treats both the linear and

nonlinear parts of the scattering problem rigorously, not phe- ' L

nomenologically: analytic results are obtained by assuming\]Nhere thetflel~ds are assumed to_ have a harmonic t.lme eren—

the 1D waveguide modes are only weakly coupled to th&lence,e'”’; w=w/c, where c is the speed of light in

single localized mode supported by the 0D defect structurgacuum, andk(r) is the dielectric constant distribution that

(the highQ limit). The Q value of the defect state and the includes the background photonic crystal, the 1D waveguide,

linear and nonlinear coupling terms are all expressed explicand the localized cavity.

ity in terms of matrix elements of the dielectric texture.  The transmission and reflection can be found by solving

Assuming realistic material parameters, it should be possibl&Qg. (1) for the electric field at the ends of the waveguige,

to observe bistable behavior in the waveguide reflectivity at—o for transmission and— —co for reflection, assuming

optical power levels of~40 mW, and the nature of the that a waveguide mode was launched from one exd (

bistable loops can be controlled over a broad range by tailor=).

ing the downstream reflectivity. A simple stability argument  To facilitate a Green's function solution we writg(r)

that clearly describes the nature of these topologically dis-_ GW(F)+47TXOD(F), WhereeW(F) is the dielectric constant

tinct hysteresis loops is also presented. of the photonic crystal including only the 1D line defect

The paper is organized as follows. In Sec. Il we mtmducewaveguide, andXOD(F)z[et(F)—eW(F)]/47r describes the

the formalism by deriving expressions for the linear reflec- X : . .
tivity and transmission of 1D waveguide modes interactin f:hange in the dlelgctrlc constant that is needeq to further
introduce a OD cavity. Equatiofl) can then be written as

with a fully localized OD defect cavity. Section Il F general-
izes this derivation to include a nonresonant, downstream - - = ~, o -_- -~ o ~, oo . o o
scattering source. The nonlinear solution, including both real  [¥ X VX~ @ €(N]E(r,0) =47 (NE(r, ). )
and imaginary components of the system’s third-order sus- @)

ceptibility, is presented in Sec. lll. Section IV contrasts theNote, in the above equation, and therefore for the rest of the

nature of bistable reflectivity for the cases of Lorentzian andyarivation. we assume that the cavity is side coupled to the
Fano linear line shapes, and shows that bistable behavior . . . - >
aveguide. However, with a minor redefinition gf(r), the

should be achievable at power levels of the order of}Nrm lation can iV be modified to treat th f
40 mW. We conclude in Sec. V. ormulation can easily be modified to treat the case of a

cavity embedded within the waveguide. Figure 1 is a sche-
matic illustration of the waveguide-resonator geometry we
Il. COUPLED WAVEGUIDE AND CAVITY consider.

IN LINEAR REGIME In order to simplify the notation we revert to an operator

. . ! ) , _ formulation of Eq.(2)
In this section we find the linear reflection and transmis-

sion_of_ a 1D line defect Wa_veguide mode in_close spatial (L—Z)ZEW)|\I7>=47TZ)23(°D|\I7), &)
proximity to a OD defect cavity. Our approach is based on a

Green’s function .solut|0n of Maxv_vellls equations eXpressethere£=ﬁxﬁx and the operator%w and5(°D are defined
as a wave equation for the electric field vector. The Green’s S T = e () SO d -~ 0D 2,
function is calculated by assuming it is given by a sum ove® o0 <f|6(glr»>_fw(r) (r. r') an(g) R <[|,X . T

a set of known basis states. While the derivation assumes thiex~ (F)8>(r—r’), respectively, wheré~’(r—r’) is the
Waveguide and Cavity are designed in a photonic Crysta| i{hree-dlmenSIOHal Dirac delta funC“on. The vector e|ectI’IC
should be noted that the solution is valid for any waveguidefield is given by(r|¥)=E(r,w).

Starting from the macroscopic Maxwell’s equations it is

VXVXE(r,w)=w?D(r,w)=wle(NE(r, o), (1)
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Cavit Background PC - NF

avity ac gI‘OllI/l G:E bn,m|¢n><¢m|v (8)
\ S n,m

®

where both sums extend over all states in the basis. We as-

A
— X sume that the cavity introduced MD would, in the absence
£ of the 1D waveguide, support only one 0D localized mode.
Waveguide Source of R, This Enode |s_a.t a freqyenayu and is derloted by the eigen-
ket |¢,). Defining eq(r)=€(r)—4mxP(r) as a dielectric
FIG. 1. Schematic diagram of the scattering geometry. A singlefunction that describes the background PC and just the OD
mode highQ cavity is side coupled to a single-mode 1D waveguide cavity, the homogeneous equation that the localized state sat-
that contains a downstream scattering center, which is the source @fies is
R, in Sec. Il F.

L] d)=wled d). 9

Since L is a linear self-adjoint operator over real space,
the homogeneous part of E@) defines the orthonormal set ) ) )
of eigenstates of a PC containing a 1D waveguide: It fE)Ionvs that the localized state is normalized as

R, (1] €dl 1) =1.
L] i) =l ey bi), (4) We also assume that in the absence of the 0D defégt,

R supports only one band of 1D waveguide modes, labkled
where w; are eigenvalues of the eigenstaies). These in the frequency range of interest. The subscriptns from
eigenstates can be calculated with a variety of technique® to «, representing the infinite number of distinct wave
one common approach is numerical finite difference timeyectors of the 1D guided modes, denoted By ). These are
domain(FDTD) simulations. The completeness and orthogo- '

. . i solutions of Eq.(4).
nality relations for these eigenstates are ) ) 5 s, )
The localized mode eigenstadg(r) is normalized as fol-

o 1 lows:
Ei | i){bil= =,
GW o 1 o
L di(r)= vi(r), (10
<¢i|5w| ¢j>: 5i,j ) (5) VVmode

where 1is the unit tensor and, ; is the Kronecker delta whereu(r) is a unitless function that describes the shape of
function. The sum ovei in Eq. (5 is over all possible the localized eigenstate. It might be obtained from a FDTD
(physical and unphysicakolutions of Eq(4). calculation, for example. The effective mode voluWigge

We formulate a Green’s function solution to E8) based is given by the normalization condition following E():

on the full Green’s functiorG, characteristic of a PC con-

taining both the 1D and 0D defects: NN
Vmode:JAII drfd(r)lvl(r)| - (11
W) ="M + 472G P Fhem), (6) aepaee
Where|q’}hom> the homogeneous solution, is an eigenstate Oi]'o be consistent with earlier definitions of the mode volume
! ! o . T N2
the system defined by Ed4). Green’s functionG(r,r') we assume that the maximum of the prodeg(r)|v(r)|* is

S A ) ) scaled to unity.
=(r|GJr") is defined by the equation For the guided mode it is natural to express the orthonor-

~ o ~ o~ - ——— o mal states as
(L—w?e,— 4mw’XP)G=(L— w?e)G=1. (7)

The solution for the electric field of the coupled waveguide- 975 (F): a (I?)eikix (12)
cavity PC is then reduced to finding Green’s function that i VAL ’
satisfies Eq(7) and using it to solve E(6).

whereuy (r)=uy (r+AX) is a unitless Bloch function peri-
) ) . ] o odic along the direction of the waveguidejs the length of

A simple analytic solution of this problem, valid in the the guide, and\.; is an effective area of the mode. Substi-
limit of weak coupling, can be obtained by expand@gn  tyting this form for g, (r) into the orthogonality relation for
terms of a restricted set of intuitively chosen basis statesy,q guided modes, and converting the integral over all space

Quite generallyG can be uniquely expanded in terms of any g the one over a unit cell by multiplying byi=L/A, the
orthonormal basi$| ¢,,)} as number of unit cells, one finds

B. Green’s function
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1 I, The derivation to this point has only been restricted by the
Aeff=Xf _drey(Nu (NI, (13 assumption that the guide and cavity support a single mode
unit cel each, and that these modes are deep within a band gap so that
oo coupling to bulk and radiation modes can be neglected. We
where the maximum o#,(r)|u, (r)|* is scaled to unity. now make some approximations characteristic of a weak
If these 1D and OD defect modes all exist well within the coupling regime.
photonic band gap of the host PC, then it is a good approxi- In the weak coupling regime the localized and guided
mation to neglect all propagating, bulk PC modes in the exeigenstates are only weakly perturbed by each other and
pansion ofG. Becauséqzki> and|,) are solutions ofiiffer- therefore are themselves very close to being eigenstates of

ent wave equations, they are not strictly orthogonal.the full photonic crystal described by . Within this ap-
Neglecting this for the moment, we proceed by expandind’rox'mat'on it follows that our intuitive basis approximately

&, using Eq.(8), in terms 0f|<75|> and{|¢;ki>}- Substituting satisfies the following orthogonality relation:
this expansion into the defining equatiéf), and projecting

onto the statéd;| from the left ande,| #;) from the right, we
find

<‘Z’n|;t|§zm>:5n,m- (20

In the Appendix we present a further justification of this
approximation.

~2, 3 ~2 17 T %3 Using Eq. (20), the matrix elements oM can be ex-
;ﬂ [wn<¢i|En|d’n)_w2<¢i|6t|¢n>]bn,m<¢m| Et|¢’j> pressec? asq

=(diled 4, (14) M 0= @i bl €ul i) — ©% S (21)

where here the subscriptsandj refer to any stat@ in our o a1l put then=m=1 term. which is instead
basis. In the first terme,= €,, if n={k;} corresponding to a

waveguide mode, and,=eq4 if n=1, corresponding to the M, 1= 0X | eq dy) — w2 (22)
0D localized mode.
Equation(14) can be written in matrix form as follows: Making use of the rigorous orthogonality condition for the
O guided modes, as well as the normalization condition for the
MbT=T. (15  localized state, we arrive at
For the physical scattering problem of interest héreyill M= (05— ©2) S n (23
have an inverse, so the expansion coefficients afre given
by for n,m#1,
A My, = of - 0, (24)
= -1 :—m,n '
bn,m [M ]n,m de(M) (16)
and

where det\1) is the determinant of matrik andA, , is the . ~5 = ~obl 3
cofactor of elemenM,, ,. Directly from Eq.(14), the ele- My, 1=M{\ = —4mwi (x| 1), (25
ments of matrixM are

where we have used the definition af, and the approxi-

M 0= 05( Pl €l b} — 0% bl €] D), (177 mate orthogonality between the localized and guided mode
in deriving Eq.(25) from Eq.(21). The overlap functiorxgi?|
for n#I and is defined as

T2 g NN AN 2/ F |2 . . N I,
Mm,l w|<¢m|6d|¢l> [} <¢m|6t|¢l>v (18 X(IziD,I=<d’ki|X0D|¢|>=f erOD(r)d)’l:i(r)'le(r)- (26)

for n=1. However, unitarity ¥, ;=M ) requires that
' o If we adopt an indexing convention for the basis states
~o, 3 2 ~o s s s ~2,% - where the localized mode is labeled 1, then the matrikas
o (x| edl d1) = wic (Dl €l Pi)* = wic (Dic| €wl i), a dense first row and column followed by an infinite diagonal
(19 block.

This concludes the derivation of the Green'’s function. It is
which means that there is in fact no distinction to be madevalid within the weak coupling approximation, and only ap-
for n=1, except for the diagonal=m=1 term, which does plies when the guide and cavity each support a single mode
require the distinct expression, Ed.9). deep within a band gap defined by the surrounding PC.
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C. Guided mode expansion coefficients term in the sum ovem in Eq. (28) is for m=1. The coeffi-
. _1 .
The solution to the wave equation can now be expresseB€M[M "1y 1 is
as
) (— 1) idet(M )
(0) =[N+ > 47wl M ol $a)(Sal X1, M= ey
27
. - . (=M=t RM de(My k)

which suggests thdW)=3;a;(w)|¢;), where the subscript _n#k ' e
i can be any one dii}={l,k;,k,, ...}. If the homogeneous dei(M) '
field is expressed agP"*™=a,|¢, ), then the expansion 29

coefficient of an arbitrary waveguide mode is given by

5 _ o where the factors of{1) in the second equality are fég
ay () =255 ‘kh+2 470’ M~ m{ Bl Xl b, )an- >| andn<k;. As above, only thex=| term contributes to
m 28) this sum. The delyl K, ,'/',ki) term represents the determinant

of a diagonal matrix and is therefore given by the product of
Due to the block diagonal form dfl the only nonzero the diagonal elements. Thus E@8) becomes

(477)22’22’ﬁi<<zki|5(0D| (il X (Zkh>ath¢I,ki(Z)ﬁ_Z)2)

ay, (@) =and, i, detM) (30)
The determinant oM can be written as
de(M)=M|,|de(M|v|)—;| (1)iMI,ide(Ml,i):MI,Ide(MI,I)_iJ_ | (=DM M det(M; ). (31

The subdeterminant de{; ; ;) is nonzero only whefj=i due to the diagonal form of the waveguide eigenstate blod¥.in
The subdeterminants in E(B1) are just the product of the remaining diagonals and therefore we have

oy BRI )

detM) =11, G2 52| of — 0>~ ( =~ =3 : (32

[ i#l Wi~ w

The expansion coefficient we seek is then
(477)2:02:0§i<¢7>ki|;(0D|<Z|><<Z||)A(OD|<Zkh>ah
- (i —?)
ay (@) =apsy, i, + — (33
", ~, o~ L DI XP1 Bi)( Bil X°P| 1)
of—w°— 2, (47) v =5 =5
Ed Wi~

Since the sum overin Eq. (33) does not include the localized stdtewe can specif;Ei—Eki. This sum, evaluated by
converting the sum to an integral, yields

272~2 0D 0D
(47) @ Wi X 1X1 k,@n

- (0f,— ©?)
ay (w)=apdy; k,* VRCAET (34
~3 = ™ oo 0D oo 0D
wf— 0’ = —— Xk, aXi vk, T Xk, IXT K,

Ug
as the final expression for the expansion coefficient.

046606-5



A. R. COWAN AND J. F. YOUNG PHYSICAL REVIEW E68, 046606 (2003

D. Localized mode amplitude from the localized defect, hence we need only sum over the

Although not needed to calculate the reflection and transki States in our basis:
mission of the guided mode in the linear response regime,
the amplitude of the localized mode is important when de-
riving the nonlinear response in the cavity. The amplitude (x—|T)y= >, a (@)(X—0|dy). (38)
coefficient of the localized mode is, from E@7), ki :

~_ ~2rng—1 2 |20D| 7
() ; Amo M= D m( Xl b )an - (39 The sum overk; is similar to the one that appeared in the

denominator above; however, now there is an exponential
factor e’ coming from the eigenstaté| J)ki). Assuming
that both the Bloch function of the eigenstate and the overlap
detM, ) Hi;ﬂ(Z’iz—Z)Z) @ntegrals vary slowly with the in-plane momentukp, the
de(My) = de) (36) integral reduces to

The only nonzero term in the sum is agam=I|. The re-
quired element oM ~1

M7=

where detM) is given in Eq.(32).
After evaluating the sums in the denominator as in the

. . . |kx eikix
preceding section, we find J dk; -
27 2wv —k,—ie k+k,tie
_ 47Tw2)(REhah

alw)= 1477w ' (200 R (K,)

wf—wz—v—[xgl?( D R G 4mwvg ’

g :
(37) +27i 0(—x)e KX R(—k,)], (39

E. Reflected and transmitted fields

The transmitted field is found by evaluating the fields atwheree is the step function an&(k,,) is the residue of the
integral evaluated &t, . Carrying out the integrals, we find

x=+o. Only the waveguide modes carry energy far away

i8m2w3L
0D 0D
Xk, 1 Xl k,
vg
- ~, 147?05
2_~2 oD 0D
W 0" [X+k AX1 Kk, +x % SIXL K,
v
9

<X—>00|‘I_}>= 1+

an(x—|d ), (40)

where we have taken the in-plane momentum of the homogeneous field+td pea forward propagating guided mode.
The field atx— —o is

<X_)_oclq_}>:<'?|q7inc>+<'?|q7ref>

:; ay, (@) (x——=|dy)

i8m2w3L
oD
;—X K, IXIk
- g 7
=ap(x— —®[¢y )+ =3 an(X——=[d_y ). (41
T~ ~, i4m’w’L oD oD 0D N
W~ w —U—[X BRP (RSP GNP (D
g
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Invoking a mirror symmetry of the OD defect structure Note that theQ of the resonance is given 9= o, /T.
along the waveguide axis, we can set the overlap integrals oyr result is a direct solution of the wave equation and
inyolvirlg tk‘” equal to thgse involving—k,,. That is,  has involved approximations that are physically justified if
(¢4, |X°Pl ) =(d 1 [x*°|¢1). The transmission and re- the guide and cavity are weakly coupled. If the denominator

flection coefficients are then is appropriately factorized, Eq44) has exactly the same
. form as in Ref[3], with the exception that our overlap func-
T(w)= (x—| W) tion XP,I\?V is well defined in terms of overlap integrals involv-
ah<X—>°°|<Z+k ) ing eigenmodes and the dielectric perturbation that defines
¢ the OD cavity. In the Hamiltonian formulation of this scatter-
i872w3L o ob ing problem, the corresponding coupling term is given in
;—XW,IXI,W terms of the difference between a dielectric functigyr)
=1+ 9 =3 (42)  “associated with the unperturbed Hamiltonian,” and the total
pr . |871—wLX3VD|X|O?V dielectric functione,(r). However, the “unperturbed” di-
Vg s electric functione,(r) is ill defined, since there is no unique
and dielectric function that at once has the waveguide and local-
ized modes as exact solutions.
(x— —°°|‘f’ref> Ol_Jr deriv_atipn actually sheds some light on the resolution
R(w)= - of this ambiguity. If Egs.(17) and (18), as well as the or-
ah<XH—°°|¢—km> thogonality condition of Eq(20), are used in the remainder
o3 of the development, without invoking the unitarity condition,
187 w’L h o Eq. (19), then the final solution does not conserve flux.
T)g Xw 1 X1w Within the weak coupling approximation then, it is necessary
= 823 : (43 to adopt Eq.(19) to conserve flux. When comparing our
P T—wx\?ﬂ)(?a unitary result with that derived in Reff3], it becomes clear
Vg o that e,(r) can be taken asither our ,(r) or our e4(r) in

order to obtain a physically well-defined coupling matrix el-

where the subscript simply denotes the waveguide mode atement

frequencyw.

Before generalizing this solution to include downstream
reflections and a third-order nonlinear response, we compare
our derivation in the linear response regime with those pre- ] )
viously published by others. We now m(_)dlfy the geometry in order to treat the more

Equations(43) and (42) are, respectively, the reflection 9general situation when there is some downstream perturba-
and transmission of a guided mode that is weakly coupled t§on of the 1D waveguide that introduces a frequency-

an otherwise lossless resonant cavity. The line shape @dependentlineay background reflectivityR,, which we
Lorentzian, assume is known. This background reflectivity is incorpo-

rated in a manner consistent with our Green’s function for-

iol mulation of the scattering problem: F825] has previously
(44 used a transfer matrix approach to include the effects of
downstream reflection on linear resonator-waveguide cou-

F. Nonresonant background

R(® ===,
(@) w|2—w2—iwl—‘

- - ; pling.
with & linewidth of The full expression for the field in the waveguide plus
87202L |02 cavity system, before taking the asymptotic limit xc=
= - wil (45) —o, which yields the reflectivity, and before any of the
Vg sums ovelk; are carried out, is given by

|‘f’>:; aki|<?5ki>+a|l$|>

|<Z>ki><<;ki|3(0D| b1){ b1l x°°| (Zkh>ah

(4m)2w?> ol =5 =~ +4m0?| 1) il x| b, )an
- ki Wi~
=an| i)+ o0 T 3 ~o503 : (46)
P o~ 2~4<¢I|X0D|¢ki><¢ki|X0D|¢l>
0 —w —E (4r) Wy =
ki Wi~ @
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which can be written in operator notation as source does not alter the operafd®. Therefore, the non-
PR, e e A resonant source must be external to the cavity.
. B, GoV|¢|><¢||V|¢kh>ah+|¢|><¢||V|¢kh>ah The new Green’s function and homogeneous field are
|‘I’>:ah|¢kh>+ : found as follows. Assume the source of the nonresonant
F—w?—(|VG,V| )

(47) background is described by some susceptibifity . The
wave equation is

The ~c;peirafor \i with ~matrt< ?Ieme.nt (V] (L= 0%€y)| Vo) =470 Xn | P ). (48)
=4mwg (| x°P| ) (note w, =w), is defined to conve- _ _ - .

. ' ' n . - . _The subscripinr serves to make it explicit that this is the
niently group factors associated with the driving term in agjecric field of a waveguide PC with a nonresonant source,
Green's function solution. The operat@, is defined as not the full electric field as in Eq47). The Green’s function
GO=2ki|¢ki)(¢ki|/(wﬁi—w2). In the regime where contri- solution is
butions from nonguided modes of the 1D waveguide PC can TR ~ona A >
be neglected, the sum oviercan be taken to be the sum over [Whe) = (14470 GreXne) | V). (49)
all eigenmodes of the waveguide PC. Therefore the operatq_f)efmmg N=47®2G, xn, EqQ.(49) becomes
G, is just the bare Green’s function of the 1D waveguide PC. . .

From Eq.(47) it is evident that the full electric field de- |Vh)=(1+N)|Wp). (50)

pends on a bare Green's functi@, and a corresponding Furthermore, the Green’s function for the full waveguide

homogeneous fieldd ), both characteristic of the exact plus nonresonant perturbation is related to the Green’s func-
structure of interest, minus the local mode whose resonariton of the 1D waveguide by Dyson’s equation,

coupling is being sought. To generalize our previous result, A . A

we therefore seek the homogeneous solutions and corre- Gnr=(1+N)G,. (51)

sponding bare (_Breen’s function characteristip of the 1D The nonresonant background can then be included in our
waveguideincluding the downstream perturbation, bek-

cluding the perturbation responsible for the local mode ofSAOIUtlon b}’ AS|mpIy substituting ¢, ) — (1+N)|¢y,) and
interest to us. These will be substituted in place of theG,—(1+N)G, in Eq. (47). The field in the coupled
Green'’s function and the homogeneous field presently usedaveguide-cavity system, with some nonresonant back-
in Eq. (47). This approach is valid as long as the nonresonanground present, is then

By=(1+ Ry d +(1+N)GOV|<Z|><¢3|IV(1+N)I&kh)ah+|$|)($||f/(1+N)|J>kh)ah o
A R SEAERE TS -

At a spatial locationr, upstream from the nonresonant mode coupled vig°P to a resonant cavity and scattered by a

scattering source—that ix,<xn, wherex,, is the spatial downstream perturbation with reflectivig, (), is
coordinate at which the nonresonant scattering source

begins—the operatoN acts on an eigenstate of the wave- R(w)=R, (@)
guide in the following way:

i8m2w3L
- . ~ O — [1+R 20D 0D
(F X Xan) [N ) =R )b i (P, (59 L (L Ro() Pxwiaii
~ ~2_ ~3 i87’w’L oD OD’
where R, (w,X) is a complex scalar function df; and Qe T [1+ Rue(@) XaiXiw
positionx. This is nothing more than the definition of a re- ’
flection coefficient for the guided mode reflecting from the (54)

nonresonant source. In the present context we are only con-

cerned with the value of the reflection coefficientxatx, , which has the simple form of a renormalized Lorentzian line

the location of the resonant cavity; thus we defineshape coherently added to a nonresonant background. Owing
~ ~ to the interference of the downstream and resonant contribu-

Rir( @k X0) = Rar( @) A tions, the line shape of the resonance in the reflection spectra

With this definition of the operatoN, the evaluation of is generally Fano-like.
the sums, and of the fields at — oo, follows the approach Finally, from Eq. (52), the amplitude of the localized
already presented. The result, for the reflectivity of a guidednode is found to be
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N 47TZJZX|O,Ehah[1+ Ror(@)] T_reati.ng|a|('[u).|2 as a parameter gL, as one might in
a(w)= 3 an iterative solution to the nonlinear equati@®), one can
~y ~, 187 w’L ~ "0D \yit S0D 4 ONL ; ;
W= 2= ———— [ LR (@)] formally replacex™" with x°~+ x" - in all of the linear de- _
vg o velopment presented above. Because the new expression

(55 largely preserves the local nature p1° | the discussion of
) ) ) ) ) . ~which matrix elements can be neglected due to the weak
This amplitude will be important for the nonlinear discussioncoypling approximation carries over, and further approxima-

in the following section. tions can be made due to the relative sizg 9t andy\. In
particular, when considering different matrix elements

IIl. COUPLED WAVEGUIDE AND CAVITY (ol XN b, if nandmare both 1D guided modes, then the
IN NONLINEAR REGIME resulting overlap function describes a third order polarization

In this section we show how the above solution may bedenerated from the evanescent tail of the guided mode. This

extended to include a third-order nonlinear response of thés certainly negligible, given our approximation that only the
host material. field in the cavity is strong enough to generate a significant

nonlinear polarization. If one afi or mis a localized mode
and the other a guided mode, then the overlap function rep-
resents a nonlinear modification of the coupling to the local-
ized mode and an associated modification of the resonant
(E_Z)ZQW)W):A,W;Z;(OD@)+47TZ,2||3NL>_ (56) linewidth. While this is relevant, in the present analysis we
only retain the largest effect of the nonlinearity, the direct
The third-order degenerate nonlinear polarization is given ifenormalization of the resonant frequency of the bound mode
real space by through matrix elements O}NL that involve the localized
state twice.
With this assumption, the only element bf that is al-

tered from those of the purely linear derivation is tie

X E(F,0)E* (7. 0)E(F.0), (577  element, which becomed = w{—w’~4mw’x\|, and

this modification ofM is the only change that is encountered
and by grouping terms it can be seen that the net physicél[! the linear analysis. Hence, the nonlinear reflectivity is
effect of this nonlinearity is to introduce an intensity depen-given by
dent susceptibility

A general nonlinear polarizatiofPN') is included by
modifying Eq.(3) as

ISNL(F,w)=ge’(s)(F,—w;w,—w,w)

R(w)= Rnr(Z))

VD=3 ¥OUN)ENE* (). (58) - -
ol (1+ Ry (w))?
Note that)*(“) is in general co_mplfax. The regl part Igads toan + 83—62—477702a| QP2 —ial 1+R,, (@) '
intensity dependent refractive index, while the imaginary
part quantifies the amount of two-photon absorption. (61)

In the weak coupling limit it is quite reasonable to assume
that the only mode that will have enough intensity to induceyhere we have Writteo({\‘|L as a|Q|?. The coefficienta is
a substantial nonlinear susceptibility will be the localizeddefined as '
mode, when excited near resonance. Thus to a good approxi-
mation we can take

13 Tk 0 3) PN (PN * (e N

= | drof(r)- ¥X®)v (vl (v (r), (62

Vmode2

o
PN =270 (1) i (D] ay()]?

3 e a(@)]? which serves to separate the renormalized material response
= 3X) 0 (Nof (N~ ——. (59 i : —a(T -
Vmode from the dynamical variabl@=a,(w)/\Vmode associated
with the localized mode amplitude.
From Eq.(59), ¥NY(r) will, like ¥°°(r), be localized in the Thus the modifiedM; | element results in an extra factor
vicinity of the defect mode, but it will not have exactly the in the denominator of the reflectivity that renormalizes the
same shape. In this formulation, it's dynamic behavior islocalized mode resonant frequency by an amount propor-

determined completely by the localized mode amplitudetioned to the intensity of the electric field in the cavity. Recall
~ . . that formally we had to assume that the local mode ampli-
a,(w). Equation(56) can thus be written as

tude was a parameter in our original equations of motion in

order to obtain Eq(61). To find the self-consistent val(®

(L—0%e,)|¥) =470 X P+ x"|a/(@)|?]}| ). of a;(w) that satisfy the full set of equations at a given
60 frequency and incident field strength, we need to solve
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Amo’ xPuanl 1+ Ror(@)]
— o~ ~. la(®)]? i87%wL ~
w|2—w2—477w2a v - = Xa,aXRI\:,)V[]-*'Rnr(w)]
mode Ug

a(w)= : (63

which is obtained by incorporating the modifiéti | matrix by assuming a complex linear susceptibility. In any realistic
element in the derivation in Sec. Il F. structure there would be some radiation losses that would
Taking the amplitude squared of E@3) results in a cu- cause a finite resonant linewidth even in the limit of vanish-

bic equation whose roots are the valuesagfw) that self-  ingly small coupling between the waveguide and the cavity.

consistently solve our third-order nonlinear equati6d). This could be included in the formalism by including in our

These solutions are used in E@1) to find the reflection basis another set of modes with a continuous disper@ion

spectra in the presence of the nonlinearity. addition to the 1D waveguide modes treated abare al-
Finally, it is useful to express the amplitude of the homo-lowing them to couple to the localized mode. The net result

geneous driving fielday,, in terms of the average power of Would be an additional contribution to the linewidth—T

the incident waveguide mode. The total electromagnetic en® I'o in the denominator of E¢{61), with no corresponding

ergy of the incident waveguide mode within one unit cell ischange to the couplingl" in the numerator of Eq(61)
would remain unchangédThis too is consistent with the

1 - N linear result obtained using the Hamiltonian approg&h
W=3 it Ce”dr[fw(r)|Eh(r)| +[Bn(n)[“] Finally, the general formalism presented above can be
used to treat any order of nonlinear polarization. In practice,
ST N, the approximations needed to render a simple analytical re-
= unitce”drfw(r”Eh(r” , (64 sult, when possible, will depend on the nonlinearity consid-
ered.
where En(r)=an gy (r). The time for the energy to move
from one unit cell to the next iﬁ/(ch), and therefore the IV. DISCUSSION
power carried by the incident waveguide mode Fs A. Nonlinear response

=0 CW/A or For the purpose of illustrating the nonlinear reflectivity

~ properties of realistic PC waveguide structures, we adopt the
pP= U—|ah 2f 1 € (F)|Gk |2dF set of material parameters summarized in Table I. The third-
unit celAeril h order susceptibility corresponds to ayAlGa, g,As host at a
- wavelength of 1.55:m. We have neglected the order-unity

_ E|a 2 (65 renormalization to the bulk value ¢f®) due to the nonuni-
L '“h form localized state. That is, over the extent of the localized
_ mode we approximate a~32y® (1N oqd fdr|v,(r)]*
Thus, ay=VLP/vgc. Furthermore, from Eq.(45), x/y ~3x® €5, wheree,,q is the average dielectric constant
= \/Ugr/LgT,ZZ,Z' so Eq.(63) for a;(w) can be reexpressed of the cavity region. A typical photonic crystal-based cavity
in terms of simple physical parameters as could have an air to material filling fraction of roughly 30%.
5 5 This leads toe,,o=8.11 for an A 14Ga gASs index of 3.34.
~ w\2I'P/c[1+ R, (w)] We focus on 18% AlGa _,As since it has been shown that
ay(w)= la(@)|2 ' it should have the greatest ratio of nonlinear refractigrio
55—52—477};,% ne —iwl(1+Ry () two-photon absorptiong at 1.55um and is therefore of

Vimode particular interest for optical switching applicatiof6,27).
Our value for the real part of(® (5.1x10 ! esu) can be
Equations(61) and (66) represent the final result of our found from the calculations and data presented in ).
derivation. For a given incident power, the local mode am-

plitude in the cavity is obtained by solving E@6) and the

corresponding local field strength i©=a,(®)/\VVmode

(66)

TABLE |. Material parameters used in simulations.

4 . X . Parameter Value Units
Equation (61) then yields the reflectivity of a waveguide
mode, in a 1D waveguide PC, that interacts with a nonreso- e 1.46x10° esu
nant scattereanda localized nonlinear cavity that supports a Vimode 0.055 umd
single bound mode in the frequency range of interest. - o i
Losses due to the nonlinear process of two-photon absorp- o 155 pm
tion are included in our formalism through a complex Q 4000 None

Z®)(r). If required, linear material losses could be included
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FIG. 2. Reflection spectra for an incident mode power of 0.0021 FIG. 3. Reflection spectra for incident mode powers of 2.2 mW
mW (dashegland 15.4 mWsolid). The plot at 0.0021 mW exactly (dotted, 44.0 mW(dashegl 87.6 mW(solid), and 131.6 mWdash-
coincides with the purely linear calculation, the plot of E4y). dotted.

When the background, nonresonant reflectivity is ignoredcomes multivalued when the power is increased above
the linear and the nonlinear reflectivity in this scattering ge-_ 40 o mw. This low threshold for bistability is a result of a
ometry are essentially identical to the nonlinear transmissiofyge |ocal field confined to a volume that is less than a cubic
that has been studied extensively by others in the context Q/f/avelength.
nonlinear 1D Fabry-Perot cavitig22,28. Of significance The curve of circles in Fig. 4 is a plot of the reflected
here are 'the .absolute powers required to qbserve b'StabE‘ower as a function of incident power at a fixed energy on
behavior in this PC geometry where the localized mode volyhe |ow energy side of the resonance. As the incident power
ume can be less than a cubic wavelength. We start by illusg jncreased, the reflected power gradually increases along
trating that Fabry-Perot-like bistable behavior can be 0byye phottom branch of the curve until it reaches about 155
served at power levels as low as 40.0 mW in the structurgqyy. At this point, the reflected power jumps to around 70
described in Table I. The nontrivial influence of including my due to the instability of the interior branch of the curve.
downstream reflections will be considered next. Decreasing the incident power from above 155 mW, the re-

Figure 2 shows reflectivity spectra in the absence of anyjected power follows the upper branch of the curve, drop-
nonresonant background reflection for incident wavegwd%ing to minimal reflected power at about 55 mW. The dra-
mode powers of 0.0021 mWdashed curveand 15.4 MW aiic variation from low to high reflected power, which
(solid curve. The dashed curve is the linear result that oc-corresponds to a switching from near zero to unity reflectiv-
curs when the peak field excited within the localized defecgty, would be ideal for nonlinear switching applications.
causes a negligible shift of the bound mode’s resonant fregg\ever, this simulation does not include the imaginary part

quency. As the incident power is increased, the nonlineag¢ ¥, which accounts for two-photon absorption. When
term renormalizes the cavity mode resonance by an amount

proportional to the renormalized susceptibility in the cavity 80r
region. As the energy approaches the resonance from below, Energy = 6447.8cm™" 0992098989%¢
the field strength in the cavity increases, which causes a non- 70¢ oomgggggi £6000009%°
linear increase in the effective refractive index in the cavity —eol 000223*** 4009°°° 0
region because the third-order susceptibility of@& _,As % ° . 0°°
is positive at 1.55.m. The increase in the refractive index =50 oz** .
decreases the resonant mode frequency, pulling it towards 2 °°353 o,
. SR T 40 sy, ©
the incident frequency which in turn further enhances the 5 885,70
coupling to the cavity. This positive feedback increases the g4, 6%2%
slope of the rising edge of the reflectivity spectrum as com- % 36*0
pared to the linear result. As the frequency extends beyond 20} 83;°
the renormalized resonant mode frequency the field ampli- 10 ..,.w’
tude in the cavity decreases and the mode shifts back towards _,,,...oy”v
its linear frequency. This negative feedback keeps the reso- 0 "“";-(') 50 5 00

nant frequency close to the incident guided mode frequency,
resulting in a(relatively) shallow slope on the falling edge of
the resonance. FIG. 4. Hysteresis loop for Lorentzian resonance at an energy of

The most interesting consequence of the Kerr-induce®447.8 cm? (circles. The stars and diamonds show the effect of
resonant frequency shift is the onset of bistability at highetwo-photon absorptiofiTPA) when the TPA coefficient is assumed
powers. Figure 3 plots reflection spectra for incident powerso be 0.34 cm/GW and 1.46 cm/GW, respectively. The arrows in-
up to 132.0 mW. In the current example the reflectivity be-dicate the bistable loop.

Incident Power [mW]
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FIG. 5. Reflection spectra, in the presence of a downstream
nonresonant scattering sourBg,, for an incident mode power of
2.2 mW (dotted, 44.0 mW (dashegl 87.6 mW((solid), and 131.6
mW (dash-dottefd

FIG. 6. Bistabilty of Fano reflectivity line shape at
6447.8 cm®. Arrows indicate the bistable loop that the system
follows as the incident power is increased from zero and then de-
creased again. Circld®), crossegx), and asterisk$a) depict the
three distinct solutions to the cubic equation found from &).

this is included, the corresponding hysteresis loops becomehe “o,” “x,” and “a” labels introduced in this caption are for
smaller since the absorption reduces the peak reflectivityelating each solution to Fig. 10.

Using a bulk two-photon absorptiofTPA) coefficient for

Alo1dGaygAs of 0.34 cm/GW [27), the hysteresis loop portion of the reflection spectra. The entire upper branch of
width is reduced by=14 mW (the curve of stars in Fig.)4 0 1y steresis loop is therefore significantly reduced in maxi-

A theoretical prediction suggests that the TPA coefficient for, ., power due to the absorption process.

Alo16G8 gAS should be 1.46 cm/GW26]. When this is It is therefore evident that it is important to include such
used the resulting hysteresis loop is given by the diamond,n esonant sources in any model of the nonlinear perfor-
curve in Fig. 4. We can conclude that as long as the TPAn,nce of coupled waveguides and cavities. On the other
coefficient is not much larger than the latter value, TPA doeg,5nq - nonresonant sources could be designed into the struc-
not quench bistability in Al,6Ga sAs at this wavelength. e in order to engineer desired reflection spectra and hys-
However, TPA can significantly alter the hysteresis loop if itieregis |oops. The reflected field producing the Fano line
is greater than the former, experimentally observed value. gnane is a result of interference between the sharp resonant
Now consider the impact of including a nonresonantfig|q and the nonresonant background field that is slowly
downs}riigm scattering  source, with a reflectiviy  yarying in both amplitude and phase. The nature of the Fano-
=0.6e"'™. Figure 5 shows the reflectivity spectra in this jixe hysteresis curves depends strongly on the amplitude and

case for the same set of incident powers as in Fig. 3. AS ifhhase of the downstream reflectivity, hence there is a rich
the Lorentzian case, as the power is increased the change in

the refractive index of the material shifts the resonant fre-

quency to lower energy. However, the way in which the 8o 0°°
shifted resonance coherently adds to the stable nonresonant 7|  Energy = 6447.8cm™ RS
background results in drastically different line shapes than in Oo°° e
the Lorentzian case. When bistability occurs it is possible for 260 RN

loops to appear in the spectra, and these loops result in dras- %50 Oo°° ****

tically different hysteresis loops. The reflectivity, at 2 o’ -

6447.8 cm?!, as a function of incident power is shown in @ 40 00t 40°°
Fig. 6. This bistable loop is very different from that of the 2 I o *** K32
Lorentzian line shape. In this example the threshold power 8 o * o

for the bistable loop has decreased significantly. The “on” (20} o 00°

switching occurs at 75 mW while the “off” switching occurs %008, o°

at only 32 mW. As is evident in Fig. 5, for high incident 1o e I L
power the nonlinear reflectivity can be close to unity over a sapeee® .

% 20 30 40 5 60 70 80 90

broad range of frequencies. This translates into distinct out- Incident Power [mW]

put power characteristics in the hysteresis loops. In this ex-
ample, at high incident power, the reflected power becomes F|G. 7. Hysteresis loops showing effect of two-photon absorp-
almost linear with the incident powgFig. 6). Figure 7 illus-  tion for Fano resonances. The curve of circles is the result in the
trates the effect of TPA in this particular example of a non-absence of TPA while the diamonds and asterisks are with a TPA
resonant reflecting source. In this example the nonlinear alzoefficient of 1.46 cm/GW and 0.34 cm/GW, respectively. Energy is
sorption process significantly quenches the unity reflectivitys447.8 cm*.

046606-12



OPTICAL BISTABILITY INVOLVING PHOTONIC. . ..

1r

0.8r

o
o
T

Reflectivity

o
'S
T

o
o

10

: 6
AB—BO [arb. Units] < 10°

FIG. 8. Graphical solution for the Lorentzian line shape. Solid

c;,B is proportional to the difference between its driving func-

curve is independent of power and at a constant energy

6447.8 cm? [Eq. (67)] and the dashed curves are independent o

frequency and at a constant incident poyEg. (68) of 55 mwW
(curveA), 87.6 mW(curveB), and 153.6 mWcurveC).

diversity of behaviors that can be generated. We intend to

address this point in subsequent publications.

We now turn to a stability analysis of the solutions involv-
ing nonzero downstream reflections in order to verify the

hysteresis loop that the system will follow.

B. Stability analysis

The bistable response of 1D Fabry-Perot cavities is often

PHYSICAL REVIEW E 68, 046606 (2003

In the Lorentzian limitR,,,=0, this can be used to obtain the
following power-dependent relationship betwe@randR:

|R|2_ ﬁ_BO

Bslan|?’

where Bo=(— ATl alV nogd|dmw x0T |2
=Bhlamwx'o/T|?. For each value ofay|?, Eq. (69 de-
fines a linear relationship betweé¢R|?> and 8— 3,, where

the slope depends on the incident power. The linegdgl?
corresponding to 55, 87.6, and 153.6 mW are plotted as
dashed lines in Fig. 8. The intersection of these lines with the
curve are the allowed solutions to the problem.

The stability of the solution can be found from the fol-

lowing consideration$22]. For the passive optical system
onsidered here, the rate of change of the control parameter

(69)

tion and its steady state value. TherefgBesatisfies the fol-
lowing dynamical equation:

ag |
T4t = Pelal’ =B+ Bo. (70
where 7 is the cavity response time. Perturbiggfrom its

steady state value by=E+ 6B(t), one arrives at the fol-
lowing equation fors3(t):

dop(t)
dt

d|R|?
+(1—ﬂ2|ah|2(|j—ﬁ|)5ﬁ<t>=o, (72)

T

discussed in terms of a graphical solution that clearly reveals

the three allowed solutions in the multivalued reflectivity which has solutions53(t) =exd —(y/7)t], where y is the
regime, as well as the stability of these solutions. Below weexpression in the parentheses of Egl). For |R|?/8— 8,

generalize to the Fano-line-shape case, the graphical ap<d|R|?/d(8—8,) it is easy to see thay is less than O.

proach used in Ref§22,28 to analyze the stability of the
solutions in the Lorentzian limit.

Defining a control parameteg@= B,+ B85|a|?, the expres-
sion for the reflectivity in the Lorentzian case becomes

il

B—iwl’

(67)

and thereforg8,= w?— ? is the detuning from resonance in
the linear limit, andB; is a factor representing the Kerr
effect. Plotting|R|? as a function of3— 3,, one obtains the
solid curve in Fig. 8. Sincg— 3, is proportional to|a|?,
the x axis can be taken to bjg,|? in arbitrary units. This

Therefore the solutions té#B(t) grow exponentially and
thus these solutions are unstable. FOR|%/B8— 2,
>d|R|?/d(B8— B,) the solutions are stable. This analysis in-
dicates that the negative slope branch in the hysteresis loop
of Fig. 4 is unstable. Let us now turn to the analysis of the
Fano line shape.

When there is a nonzero downstream reflection, (B@d)
easily generalizes to

iol(1+R,,)?

R=R, + ——
B—iwl(1+R,,)

(72)

but Eq.(69) does not generalize. This is because the nonreso-
nant contribution introduces a phase shift between the re-

curve fllustrates that, for some initial detuning from reso-flected field and the field in the cavity. This can be seen from
nance, aga,|® is increased the system is pulled into reso-gq. (68), from which it is clear thatR|? is not directly pro-

nance, as described above.

portional to|a,|? in the Fano case. Therefore, the graphical

Using expressior(63) for a, to eliminate the resonant sojution cannot be expressed in a two-dimensional plot of
frequency dependence from the reerCtIVIty, we arrive at tth|2 Versus| al|2, because such a p|ot lacks any information

following independent relationship betwe&and the inci-
dent power:

~ IT(1+Ry) a -

nr ~ .
477w|X|03, ap

about the phase of the two field components.

The graphical solution in this more general situation re-
quires a four-dimensional plot of the real and imaginary parts
of Ras a function of real and imaginaay. We have verified
that the three mutual intersections of the four surfaceal
and imaginaryR at constant frequencyindependent of
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FIG. 9. Graphical solution for the Fano line shape. Solid curve F'G: 10 Plot of R—R,|* as a function of energy for an inci-
is independent of power and at a constant energy of 6447.8 cm dent power of 66.3 mW. The arrows point to the three distinct

and the dashed curves are independent of frequency and at a coigctions of the curve that originate from the three distinct solutions
stant incident powefEq. (73] of 35 mW (curve A), 66.3 mW to the cubic equation derived from E@6). The dashed is labeled
(curveB), and 74.7 mWcurveC). ' “0” corresponding to the solutions depicted by circles in Fig. 6. The

solid and dash-dot are, respectively, labeled x and a, and correspond
to the crosses and asterisks in Fig. 6. The solid vertical line is a slice
at 6447.8 cr! and illustrates that these numerical solutions are the
game as the graphical ones found from cuBvia Fig. 9.

powel, and constant poweiindependent of frequengyn-
deed yield a graphical solution of the nonlinear reflectivity
problem. However, the stability arguments for the Fano cas
would have to be generalized from a comparison of slopes i . . - : .
the graphical solution to the comparison of two-dimensiona@je gra?:hlcaé s_(l)_I#thns n F.'gl' 9 "fmd th_e nqmelrlcallhyztegess
gradients. Instead of proceeding in this fashion we introduc oop in Fig. 6. This is possible sindg,, is single valued.

a simpler stability argument that is essentially the same as iﬁtab'“ty argument of th.e threg graphical SO'|L.JtI0nS in Fig. 9
the Lorentzian limit can then be used to investigate the stability of the three

It one uses|R—R,|” instead of|R|* in Eq. (68), then bra,br\]gshlfriiw t?ﬁehsfr;eéizsdlgggl.( relaxation equation given in
there is a power-dependent proportionality ®—j3,, 9 d Y

namely, Eq. (70), the equation foB(t) in the Fano case becomes

_ dop(t)
—lﬁ"lsz’ (73) Tt T
2 h

C”R_Rnr|2
dg

_ which again has the solution$g(t) = exd —(y"/7)t]. It fol-
where B3 =pBjldmox /T (1+Ry)|%. A power- lows that solutions in the region for whiclR—R,,|%/S3
independent relationship for the functioR—R,,|? is ob-  —pB,<d|R-R,|%d(8—8,) are unstable while solutions
tained directly from Eq.(72). Plotting the latter curve at when the opposite is true are stable. Since these unstable
6447.8 cm* and the former at incident powers of 35, 66.3, solutions correspond to the internal branch of the Fano-
and 74.7 mW, we arrive at the graph shown in Fig. 9. Inderived hysteresis loop in Fig. 6 we conclude that this inter-
contrast to the Lorentzian case, this diagram dugigepre- nal branch is unstable and thus the loop follows the path
sent a full graphical solution for the reflectivity since one depicted by the arrows in Fig. 6. We feel that our approach
cannot extract the reflectivity from a knowledge R  greatly simplifies earlier stability arguments for hysteresis
—R,|2. However, this is a graphical solution }B—R,|?. loops associated with Fano resonances, approaches that re-
Upon solving the full cubic equation for an incident power of lied on absorption within the nonlinear mateffiab], or phe-

66.3 mW and plottingR—R,,|? rather than/R|?, we pro- nomenological parametef80].

duce Fig. 10. The solutions shown in this figure correspond Finally, one of the most striking features of these Fano-
exactly to the crossing points of Fig. 9. The solid vertical linederived hysteresis loops is the fact that different branches of
at an energy of 6447.8 cm illustrates this equivalence. the curve can cross each other. These crossing points in plots
Therefore each of the three solutions found graphically inof output power versus input power do not correspond to
Fig. 9 can be directly associated with one of the three distinctlegenerate solutions. This is because each solution still has a
solutions to the cubic equation derived from E§6). The  unique phase with respect to the incident field. It is not
three distinct values dR—R,,|? arising from the three dis- enough that the amplitude of the electric figtoportional

tinct analytic solutions to the cubic equation are labeled aso powe) for each solution is the same, but their phases must
“0,” “x,” and “a” in Fig. 10. The o, X, and a solutions also be equal to render the solutions degenerate. These cross-
correspond to the circle, cross, and asterisk solutions for thimg points therefore represent no critical switching point for
reflected power that results from the same three solutions tthe system. In fact, the stability analysis above indicates that
the cubic equation. There is therefore a clear link betweemwne of the two solutions is unstable and therefore there is

1-B5|ap|? SB(1)=0, (74)

|R_ Rnr|2:
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only one allowed solution at these crossing points. Neverthe- APPENDIX: ORTHOGONALITY OF BASIS
less, as is evident from the example presented here, bistable
loops resulting from Fano resonances can have significantle
different properties than the usual Lorentzian-derived Ioopsr

In this appendix we discuss how the orthogonality relation
Eq. (20) is intuitively justified within the weak coupling

imit.
First, if n and m correspond to guided mode eigenstates,
V. CONCLUSIONS then Eq. (200 can be written as (e ¢kj>

- "OD - _ . . _
In this paper we derived a simple analytic solution for the+4w<¢_’ki|x |¢_k1>_ %iq K Smpe the.flrst term on the Ie_ft
reflection of a guided mode that interacts with a Kerr-activehand side of this expression is the rigorous orthogonality of
nonlinear resonant cavity and a downstream nonresonatite guided mode eigenstates, it follows tlﬁd;tki|X°D|¢kj>
scattering source. As_econd-_ord_e_r wave equation forthe elec-g e overlap integra(lg?sk_|3(°D|<Z>k_> describes the direct
tric field is solved using an intuitive expansion of the asso- i i

ciated Green's function and the field, rather than solving thé_eﬂormaliﬁatlgln cz{f a sl[ngli tgwdedtv\t/mgen'zta(cijé 'n=mt ¢

equivalent first-order equations for both the electric and__]c i)'_ir ed 'rfi’( COEp ";]g etween ?cgrl]“ c glgenSﬁeS

magnetic fields, as has been reported by otf@65]. All of (if n=k; andm= i.)’ y the presence of the cavity. In the

the relevant linear and nonlinear coupling mechanisms ar eak C?“p"”g regime this will be negligible anq itis .there—

clearly and explicitly associated with well-defined overlap'©"® \_’al'd to neglect it. AT einlfélogous argurner?t '”VO'V'”Q the

integrals involving electric field Bloch states and dielectriclocalized state results ify| x*°| ¢;)=0, which is also valid

perturbations. The approximations required to obtain thigvithin our weak coupling limit. _ _

simple analytic solution are made clear. The simple form of If either n.or m corresponds to a guided mode eigenstate

the solution avoids the need for iterative solutions. Insteadnd the other to the localized mode, then there are two

andinerelndzr? cubicgq#ation flor_ the I%calizid r_nockzl]e arrf'llpliequally acceptable ways to expand Eg0): <¢ki|6W|¢|>

tude is solved first, and the result is used to obtain the reflec; S 120D 7\ — PP 2 121D 7

o : L + = +

tivity for a given incident power. 47T<¢ki|_x _|¢'> 0 and <¢ki|6d|¢'>_ 47<¢ki|){. |41)
For moderately higl (Q~4000) resonant cavities with =0. Multiplying each by the appropriate factor af and

mode volumes of the order of 0.Q5m°, which should be subtracting, one obtaina»ﬁi(¢ki|x°D|¢,)—w| <¢ki|XlD|¢l>

attainable using various PC fabrication technologies, the_ \yhere the unitarity condition has been used to eliminate
model predicts Kerr-related bistable behavior at incidentne factors containinge. Therefore, the assumption of

power levels of~40 mW in Aly 1§Ga g AS. Although two- AN . . .
photon absorption reduces the maximum range of the hysteﬁ-‘ﬁkiledd"> O in a physical system requires that

esis loops, the reduction is estimated to be only a few perw§i<<5ki|5(oo|<Z|>—:u|2<<73ki|5(w|<5|>:0- While this constraint
cent. _is not quite as simple as the ones above, it is still very useful.
The presence of nonresonant downstream scattering Consider the unitarity condition of Eq19). Using the

sources in the wa\{eguide results in Fano—l.ike resonant fedyefinition of bothEW and %d and some simple algebra it is
tures in the reflection spectra. In the nonlinear regime the  <ihie to derive the following expression:

coherent superposition of the stable background and power-
dependent resonant contribution result in topologically dis- o~
tinct hysteresis loopgin contrast to the more common (wki_wl) 4 m N ~2,% (0Dl TN ~2,1 1~1D| 3
Lorentzian situation We generalized conventional stability T<¢ki|6t|¢l>:wki<¢ki|){ | 1) — i (i x| 1)
arguments in order to determine which branches of these (A1)
hysteresis loops are stable.

From this work we conclude that photonic crystals made ) e e e
from Alo 14Gay 5,AS offer the potential for realizing bistable DPU€ to the regularity of the functiofgy | ), it follows
optical functionality at power levels of the order of 40 mW, from the above that on resonanceg (. |x°°|d)
without significant impairment due to two-photon absorp- ~,, - ~ip > . Lo
tion. Itis agllso clear tha?t nonresonant, downsE[)ream reﬂectigng wi{i,| X" 1) =0. This on—resona?t rFSLth, which is in-
can significantly modify the nature of the bistable reflectiv-dependent of the value of the functi()tz&ki|et|¢|>, is simply

ity. This fact may be used to obtain more flexibility in de- 5 consequence of unitarity. In the weak coupling regime we
signing nonlinear devices, but regardless, it shows that thesge only concerned with the response of the system near

reflections should not be overlooked in analyzing the nonlinresonance, since the resonance is relatively narrow in fre-
ear behavior of waveguides that interact with resonant localquency. The smooth continuous nature of the function

ized cavities. R s ~2/7 |20D|F\_T2/7 101D| 7
(¢l el d) verifies thatwy (i x*°lén) — wf(bi| X0l )
is sufficiently small near resonance. This simply expresses
ACKNOWLEDGMENTS that near resonance _the response of'the structure is domi-
nated by guided-localized mode coupling, while away from
The authors would like to thank Dr. Javed Igbal for manyresonance this coupling mechanism becomes of the order of
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We can therefore conclude that our orthogonality condi-zero represents a measure of the validity of our solution for
tion given in EQ.(20) is a valid approximation within the that structure. If the deviation from zero of these functions is
Weak. coupling Iimit_. Int'uitively, it coryesponds to n_eglecting much smaller than the value of the dominant coupling
the direct renormalization of the guided and localized modg,qchanism quantified b§/<z>||)A(OD|J>ki>, then one can con-

with respect to the dominate localized-guided mode COUp"n%Iude that the system lies within our weak coupling limit

process. i . . .

Furthermore, for a particular waveguide-resonator strucNOte_’ the first two functlons,_ being d|rec_tly dependent on th_e
t the d ' i f the func = ~0D| 3 spatial separation of the guide and cavity, represent a spatial
ure the deviaion ot the iunc 'OPS<A¢'<1|{ [#k): constraint, while the final expression corresponds to a con-
(A1x™° ), and i (¢ |x°P| ) — o (bi|x*P| b)) from  straint in frequency detuning.
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