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Exact soliton solutions for the core of dispersion-managed solitons
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We consider the averaged dispersion-mang@d) fiber system equation, which governs the dynamics of
the core of the DM solitons. For a special case of such a system equation, we derive the exact soliton solutions
using the Darboux transformation. Further, we discuss the interaction scenario between two neighboring
solitons. Finally, we derive a dark soliton solution for such a system by assuming an ansatz, and the interaction
between neighboring dark solitons is discussed.
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The dispersion-managg®M) fiber system has paved a As examples, one- and two-soliton solutions in explicit
new way to increase the transmitting capacity of optical fibeforms are generated and their properties are also analyzed. It
links [1—4]. Basically, the dispersion-management techniquas shown that there is an exact balance between the fiber loss
utilizes a fiber transmission line with a periodic dispersion(gain and pulse chirping to achieve the compression of the
map, such that each period is built up by two types of fibersoliton pulse. In addition, we discuss the interaction scenario
generally with different lengths and opposite group-velocitybetween two neighboring solitons in detail. Finally, we de-
dispersion (GVD). Because of the periodic splicing of five a dark soliton solution for such a system by assuming an
anomalous and normal dispersion fibers, there is an abrug@nsatz, and the interaction between neighboring dark solitons
discontinuity in the GVD of the DM fiber system. This has is discussed. )
left almost no way to analytically handle the DM fiber sys- ~ The nonlinear Schutinger equation(NLSE) which gov-
tem governing equation. Hence, only numerical DM solitonerns the dynamics of DM fiber system is given by
solutions are being derived using the averaging me{bad

To analytically describe the evolution of the parameters of ou  id(z) #%u
the DM solitons, the variational principle is widely used with = —+i|ul2u-Tu, 1)
the help of a Gaussian ansfi3. Based on the exact solution JaT?
of the variational equations, very recently analytical methods
have been reported for designing the dispersion map of thghereu is the envelope of the axial electric field(z) is the
DM fiber systemg6,7]. All these techniques are fundamen- periodically varying GVD parameter representing anomalous
tally based on the feature that most of the time during thexnd normal dispersions, addis the loss(gain coefficient.
periodic evolution of the DM soliton, the core is very close |n the following we follow the same steps as Hasegatal.
to a Gaussian shap8,9]. [10] for deriving the averaged DM soliton system equation.

Hasegawat al.[10] tried a different kind of approach to Here the only difference is that we explicitly retain the loss
studying is the properties of the core of the DM solitons. In(gain) term also in the NLSE.
that approach they considered the lossless DM fiber system Because of the large variation in the GVD parameter in
and after removing the fast varying chirp part of the DM going from the normal dispersion fiber to the anomalous dis-
soliton they derived the averaged DM fiber system equatiofpersion fiber and vice versa, there is a large variation in the
which governs the dynamics of the core of the DM solitons.quadratic phase chirp of the DM soliton within each disper-

In this work, we also follow a similar procedure to derive sion map. Hence the DM soliton field can be considered in
the averaged DM soliton equation for DM fiber system withthe form
loss or gain. The same system equation also governs the
nonlinear pulse propagation in a uniform fiber system with

9z 2

loss(gain) and frequency chirp. We show that for a specific u(z,T)=w(z,T)ex;{l—C(z)T2 ] )

choice of the DM fiber system parameters the averaged DM 2

soliton system equation has exact soliton solutions. Lax pair

for such a soliton system is reported. Based on the Lax paiinserting Eq.(2) into Eq. (1), we have

a methodology to derivél-soliton solutions is presented by

employing simple, straightforward Darboux transformation. 2
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where C represents the derivative & with respect toz. Now, we consider the special parametric choice vidh
Now introduce a new coordinatand the amplitude function =2a1, ¥o=2u’ay, ko= — %, andl'y= B so that Eq(10)
a(z) such as becomes
z 99 g .
t=puﬁéTw%—J;MDC@m4, @ 5z T Y2ktaldPar A +iga=0. (1Y
w(T,2)=a(2)v(t,2). (5) In Eq. (11), one can see that the coefficients of the quadratic
phase chirp term and the loggain) term are related to the
Then we have parameterB. This relationship is a must for the complete
integrability of Eq. (10) as shown through the Painleve
v dp? é% o K2, analysis[17]. This is why we need a residual gain or loss
IE =N ? lv]*v= Tt v—il'v (6)  factor in the averaged DM soliton system, in contrast to the

usual DM fiber system where the periodic amplification ex-
actly compensates for the fiber loss in the respective span.
Note that with respect to the sign of the paramegerthe
averaged DM fiber system will have either a lossy or ampli-

with the equations foa(z), p(z), andC(z) as

. 1 .
a=-—sCad, (7)  fying effect.
2 Considering the following spectral problem:
p=-Cpd, ®) h=Uy, (12
C+C3d =V, 9
k(z)= > 9
p where
Now averaging Eq(6) for one dispersion map, we get U=AJ+P,
99 Do d%q o , ; 0 V=2ia;\2) = 2BtNI+2i ) AP+ W,
i—+—=—+ — Kkot“q=—i , 10
0z 2 g2 Yol4I"q— kol™q o9 with
where Do=(dp?), yo=a(p), ko=(k)/2, and T is the 1 0 0 uQ
small residual loss or gain in one dispersion map. In regular J= o -1/’ = 5 0
DM systems an amplifier at the end of each dispersion map —rQ
will compensate for the total power loss in the respective - 2 _
dispersion map. Here we consider that the periodic amplifi- _['® ay|Q| —2pPtQF e Q
cation is not exactly compensating for the loss. One can con- 2,u,3t6+i,ua16t —iplay|Ql?

sider that either there is a small residual loss or gain in each

dispersion map, which is a must for our study, which will be Here 6 represents the complex conjugate @f From the
shown in the following. The study on ELO) is restricted compatibility conditionU,—V,+[U,V]=0 one can derive
not only for the core of a DM soliton but also for the optical £q (11). Where Q=gexp(igt22) and \ is the variable
pulse propagating in a uniform fiber system with Iégain) spectral parameter given by

effect with quadratic phase chirp represented byttherm.

This finds application in pulse compression. It should be A=n(2)+il(z), N\;=—2B\,\=0,
pointed out that without the residual loggain term, Eg.

(10) has been studied in different contexts in Reéfsl, 12, N=vexp—2B2), n(z)=Rdv)exp—2Bz),
concretely speaking, where nonlinear compression of chirped

solitary waveq11] and quasisoliton propagation in DM op- L(2)=Im(v)exp(—22).

tical fiber [12] have been discussed. With the logmin)

term, the special case of E(L0) has been reported in Refs. Here Reg¢) and Im(v) are the real and imaginary parts, re-
[13-15 from the integrability point of view, where by spectively, of the hidden isospectral parameterThe Lax
choosing a special parameter, one soliton solution has begyair assures the complete integrability of a nonlinear system
obtained by Baklund transformation. Equatioil0) also de- and is specially used to obtain integrability condition and
scribes the propagation of envelope solitons in inhomogeN-soliton solutions by means of the inverse scattering trans-
neous media—an example being that of electromagnetiform method. In this paper, we investigate Efjl) by em-
waves in an inhomogeneous plasi®]. In this paper, we ploying a simple, straightforward Darboux transformation
present the general procedure to constructNksoliton so- [18-20. In the following, we give the Darboux transforma-
lutions, and the explicit one- and two- soliton solutions aretion of Eq. (11).

presented. Introducing transformation
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' =(N—9S)p, S=HAH !, A=diag\{,\,), (14
whereH is a nonsingular matrix, requiring

'=U’¢', U'=\J+P', P’ °w
p(=U'¢’, U'= . Pl o
t -uQ" 0

(19

and combining Eqs(12), (13), (14), and(15), we obtain the
Darboux transformation for Eq11) in the form

P'=P+JS-SJ (16)

It is easy to verify that, if ¢,,¢,)" is a solution of Eq(12)

corresponding to eigenvalue=\q, (—@.,¢;)" is also a
solution of Eq.(12) and the eigenvalua is replaced by

—\4, that is, if we consider

A O ®1 —;
A:( _), H:( @ 2 '
0 =N\ P2 @1

then
— (MHNDeie;
s”:—xlaij+T", ij=12, (17
where
A=detH|=]¢y|*+]¢,|*.
From Eq.(16) we obtain other solutions as
Q'=Q+ S, Q'-Q+-s, (18)
P 12 P 1-

Thus we obtain the fundamental expression of the Darboux

transformation.
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By settingn=1 in Eq.(19), the one-soliton solution can
be derived as

H 2
_ 2’7(Z)secrﬁ2§(z,t)]exp[i2¢sv(z,t)+ %} (20)
where
§(z,t)=n(2)t—4a1f 7(2){(z)dz+ Ty, (21
0(Z,t)=§(2)t+2a1f [7%(2)— *(2)]d; (22

T, is an integration constant. The explicit form &(fz,t) and
0(z,t) can be derived from Eq$21) and(22), respectively,
using the expression for the spectral paramater). Thus
we have derived the exact soliton solution for the core of the
DM solitons propagating in a DM fiber system with residual
loss (gain), using the Darboux transformation. In R¢14],
such a simple soliton solution with=1 has been derived.
Similarly, settingn=2, the two-soliton solution can be
written in an explicit form as follows:

G
q[2]= Zexi Bt212), (23

where
G=[ai(2z) +az(z)]coshi2£,(z,t) Jexdi2641(z,t) ] +[ax(2)
+ay(z)]cosh2é,(z,t)]exdi265(z,t)]+as(2)
X{sinH 2¢,(z,t)]exd 2i 0,(z,1) ]
—sinH 2&,(z,t) Jexd 2i 64(z,t) 1},
F=Dby(z)cosH2£") +by(z)cosi2E7) +bs(z)cog267),

with

Analogous to this procedure and taking the Darboux

transformatiom times, we find the following formula:

(N Nm) @al M ] ol Mo ]
LMl "L MA ]

2
QInj=Q+ - >
(19)

wherem=1, ... n and
HmAN]=N—=m—=1])-- - (A= 1] ¢[1A],

s L L AT L
SIL= =M O T ok

ih,j=12,k=1,2,...m—1,m=2.3,...n, wherey[1A]is
the eigenfunction corresponding Xofor ¢, and ¢,. Substi-
tuting the zero solution of Eq11) asq=0 into Eq.(19), one
can derive the one-soliton solution for Ed.1). Using that
one soliton solution as the seed solution in E), we can

derive the two-soliton solution. Thus in recursion, one can

generate up tdN-soliton solution.

§+ = gl(zit) + §Z(Z7t)l

0+ = 02(Z,t) + 01(Z,t),

& =86(z,1) - &i(zt);
0 = 02(Z,t) - 01(2,'[).

The explicit form of¢,(z,t) and 6,(z,t) can be, respectively,
derived from the following equations using the expression
for the spectral parametanz):

M(2) = (2) +i{(2),

ék(z,t)=nk(2)t—4a1f 7(2) {(2)dz+ Ty,

Bk(Z,t)ZZk(Z)t+2a1f[ﬂﬁ(z)—iﬁ(z)]dly k=12,

where theT,’s are integration constants, and introducing no-
tations with the spectral parametefz) as follows:

ay(2)=— m(2n 7 ’
)72
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a(2)= n2:(2)n" 7" |
az(z)= M
n
. nz(Z)M(Z)Z,

_2im(2)m(2)

as(z) P ;
(77)2+(L)?
bl(z):%y
(7")?+(L)?
bz(Z):%,
b3(z) = — 11(2) 72(2);

" =n2(2)+ n1(2),

7" =10(2)— 11(2),

(T =02(2)—{1(2).

Thus we have derived the exact two-soliton solution for the
wave propagation in the uniform optical fiber system equa-
tion with the fiber losggain and pulse chirping or the core
of the DM solitons propagating in a DM fiber system with
residual losggain) using the Darboux transformation. These
solutions will also be useful for the study of soliton interac-
tions under the influence of perturbations. FIG. 1. Interaction of two equal amplitude pulses with initial
In order to understand the influence of frequency chirp°“|se separation equal to 15. The parameters are as follows:
parameteg on the interaction between neighboring solitons, Re(¥1) = —0.50056, Ret;)=0.4994515, Imgy)=Im(r,)=0,
here we investigate their transmission properties. Figure 1=05, u=1, T;=T,=0. Frequency chirp parametefa) g

shows the interaction scenario between neighboring solitons %-°%° 01,(b) £=0.001,(c) 5=0.005.

with larger initial pulse separation 15 ps. As shown in Fig. decrease in an exponential way. Consequently, there is a
1(a), since B is smaller (here we take=0.00001), the pulse broadening during the propagation. However, by
transmission property of the two-soliton solution, E28), is  changing the sign of parametgr one can achieve the com-
similar to the one without frequency chirp effect as shown inpression of soliton pulses. Figure(® shows the contour of
Fig. 2@ of Ref.[18]. However, with increasing, it can be  the interaction between neighboring solitons. In another case,
seen in Figs. ) and Xc) that the effect of frequency chirp when the amplitudes of two-soliton become unequal as
leads to the splitting of the two-soliton solution. This prop-shown in Fig. 8a), the interaction between neighboring soli-
erty has been confirmed by direct numerical simulation fortons is suppressed as a result of the unequal amplitudes. In
Eq.(11). In fact, from the exact two-soliton solutid@3) itis  addition, we clearly note that the two solitons experience a
shown that the group velocity varies by the exponential lanperiodic evolution due to the effect of frequency chirp. Fig-
exp(—4pB2). In addition, we also note that the pulses undergoure 3b) represents the contour of the interaction between
broadening or compression depending on the sign of the fraaeighboring solitons in this unequal amplitude case. Here, it
quency chirp parametes as they propagate along the fiber. should be pointed that there is a special relafiotegrable
However, as the initial separation of two solitons de-condition between the frequency chirp and fiber Iggain
creases further, the interaction between neighboring soliton& the model we considered. However, by direct numerical
becomes much stronger. In the following, two different casesimulation, we found that when this constraint condition is
are discussed. Figure@ depicts the in-phase injection of not valid, the soliton solution still exists in the model, as
the two solitons with equal amplitudes. From Figa2 we  shown in Fig. 4. Hence, a more detailed study on this issue is
can note that the transmission properties of the two-solitominder way and will be published elsewhere.
solution are the same as the ones without the frequency chirp In the following, we construct a dark solitary wave solu-
as shown in Fig. 3 of Ref.18] except that their amplitudes tions for Eq.(11). For that we rewrite Eq(11) as follows:
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FIG. 3. Interaction of two unequal amplitude pulses, the param-
eters are as follows: Re()=-1.07311, Ref,)=0.952427,
Sm(v)=Im(v) =0, a;=05, u=1, T,=3.5, T,=—3.5. Fre-
quency chirp parametefg=0.0005.

FIG. 2. Interaction of two equal amplitude pulses with initial
pulse separation equal to 7. The parameters are as follow:
Re(v;)=—0.536 555, Ref,)=0.476214, Img¢,)=Im(v,)=0,
a1=0.5, u=1, T,=T,=0. Frequency chirp parameters

=0.0017.
where

0q % . 0=n(2)[t—x(2)],
'5+alﬁ“‘a2|Q|2q:,31(Z)t2q_'Bz(Z)CI- (24 7 X

and 7(z) and x(z) are the pulse width and shift of inverse
group velocity, respectively. The solitary wave amplitude is
given by|A|%2=(B2+\?)+28p(sechd) + (p?>—\?)seché.

Substituting ansatz27) into Eq. (26) and equating the
coefficients of independent terms, one obtains

q(zvt):A(z7t)qui¢(th)]l (25) Bl:_4a1521 B2:2a151 (28)

In order to proceed, we first analyze HG4) by separating
g(z,t) into the complex amplitude functioA(z,t) and the
phase functionp(z,t) as

and we consider that the phase is given by 5= Cexpl — 4a,57)
— v - 1 ’

— st2
#(z2,1) = 6t°+ Kk (2)t+ Q(2). A= Cexp(—4a,67),

Thus we have the following equation:

p:C3qu—4a15Z), (29)
'ﬁA+ &2A+2 5A+ Al’A C9¢+ 66 3¢ =C 4a, 8
27 T 2 e o as| Al oz T ot n=C,exp(—4a,62),
P2 k=Cgsexp—4a,62),
+ 2\IA+i|lag— + =0. ; :
AT A+T g ot2 B2(2)|A=0 @8 here theC,’s (k=1, ... ,5) arearbitrary constants, and in-
dependent equations as follows:
In the following, we look for the solitary wave solutions for 5 s
Eq. (26) by introducing an ansatz similar to Ref&1,22: pl—2ayn "+ az(p—\9)]=0,

A(z,t)=iB(2)+ \(z)tanh¥+ip(z)sechs, (27 N —2a, 7%+ ay(p?—N?)]=0, (30)
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FIG. 4. Pulse shape of a bright soliton for E§0) by direct 2000 e
nemerical simulation. The parameters are as follows=0.5, D,
=2a,, yo=2p2a;, I';=0.001, and(a) for integrable condition
ko=—T7 and (b) for nonintegrable conditionco=—0.0%. The
solid line corresponds to the input pulse shape, the dotted curves:
red and green, correspond to cag@sand (b), respectively.
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b

[QZJ'_ alKZ_QZ(B2+)\2)]B:01 15 80

[Q,+ ayk? = ay(B2+N2) ] p—p(ayn?+2B%ay) =0, T ©
(31) k T 20

200

_ 2 2_y2
Anxztdardhnxt 2a i\ gk +2a8p"+ ap(p”—\7) FIG. 5. Pulse evolution of a black dip with chirping frequency
=0, and gain(loss. The parameters are as follows;=—0.5, C;=0,
C2:1, C4:1, C5:0003, C]_O:O, and(a) C11:0.5, 5:00015
p(— pxz+ a1 dnx+2naik+ 2\ Bay)=0. (32) and(b) C;;=-0.5, §=—0.0015.

For the sake of simplicity, here we consider only the follow- Ci
ing two cases. ay=—2a1, (35
(1) Taking B=A=0, namely,C,;=C,=0, we obtain the C2

bright soliton solution for Eq(26) as follows:
0=C exp(—4a,62)[t—x(2)],

A(z,t)=ip(z)sechs, (33

1
where X=Crexp4a,6z)— @(C4C1+ CsCr)exp —4a;62),

p=Caexp(~4a,02), $(2,1)= O+ k(D)1 +Q(2),

1
= _ - _ _ 1
1

This solution is the same as the one, E20), obtained by
Darboux transformation.

(2) Taking p=0, namely, C;=0, we obtain the dark
(black) or gray soliton solution for Eq26) as follows:

To the best of our knowledge, this kind of solution has not
been reported earlier. Figurdap depicts the surface of the
amplitude of the dark soliton solution for the different signs
of parameters. As shown in Fig. £a), the depth of the dark
A(z,t)=iB(2)+ \(2)tanh, (34) soliton increases exponentially due to the exponentially in-
creasing nature of (z)=C,exp(—4a,62) for §<0, while
where for >0 as shown in Fig. ®), the depth of the dark soliton
decreases exponentially and also the width of the dark soli-
B=Ciexp(—4a,6z), AN=Cexp—4a,62), ton gets compressed during its propagation. Furthermore, we
investigate the interaction between neighboring dark solitons
n=C,exp —4a,6z), by direct numerical simulation for Eq.24). Figure Ga)
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12 - add the losggain in the model, as shown in Fig. 6, the
intensity of the pulses will decreas@creasg depending on
1.0 freemmmmrenoreanees 53 200 AR the sign of§ after a distance. In addition, we also find that

r : ) distance z=0 unlike the case of bright solitons, the frequency chirp effect
does not completely influence the dark soliton, which shows
that dark pulses in optical fibers are more stable than bright
pulses with respect to frequency chirp effect.

In conclusion, we have considered a special case of an
averaged DM soliton system equation with residual loss
(gain). The same system equation also governs the nonlinear
pulse propagation in a uniform fiber system with fiber loss
(gain where the effects due to fiber lo&gain) and chirping
, , ‘ , , . , of the pulse exactly balance each other. We have presented
-20 -10 0 10 20 the explicit Lax pair for such a system equation using a vari-

1 able spectral parameter. We have constructed the Darboux
transformation on the basis of this Lax pair, and a simple
distance z=50 procedure to derive th&-soliton solutions has been pre-
Moo sented. For instance, the explicit one-soliton and two-soliton
’ \distance 2=0 solutions have been generated. The interaction scenario be-
tween neighboring solitons has been discussed in detail and
the influence of the frequency chirp on the soliton interaction
has also been presented. We also showed that the amplitude
of the pulse tends to decrease or increase in an exponential
way with the same amount of broadening in the pulse width
during its propagation such that the area of the pulse enve-
lope remains constant. Furthermore, we have derived the
dark soliton solution for such a system with the help of an
ansatz. Finally, we have discussed the compression or broad-

20 10 0 ' 10 ' 20  ening of the dark solitons. On the other hand, we have dis-

t cussed the interaction between neighboring dark solitons.
Hence, we believe that the bright soliton solutions reported
FIG. 6. Pulse shapes of a pair of dark solitons. The parametergere can be used for propagating the “sech” form of pulses

are as followsia;=—0.5, a,=1, §=0.0005. (&) with the initial i the special DM fiber system having residual I¢gain).
separation equal to 4 arid) with the initial separation equal to 6.

The dotted curves correspond to the input pulse shapes. One of the author$Z.Y.X.) is grateful to Professor Yuri

Kivshar for suggestions in simulation of dark solitons. This
shows the pulse shape of the output pulse when the initialesearch was supported by the National Natural Science
soliton separation is equal to 4 after it propagates a distandeoundation of China through Grant No. 10074041 and the
of z=50 in a fiber. As shown in Fig.(8), as the pulse travels Provincial Natural Science Foundation of Shanxi through
further down the fiber, the separation between two soliton&rant No. 20001003 as well as the Provincial Youth Science
keeps increasing. However, when we increase the separatiéioundation of Shanxi through Grant No. 20011015. K.N.
of dark solitons further up to 6, the repulsive force betweeracknowledges support from the Research Grants Council
two soltions is decreased, which is shown in Fip)6This (RGO of the Hong Kong Special Administrative Region,
property for dark solitons is similar to that in Rg23], China(Project No. PolyU5132/99EK.N. is also grateful to
where the NLS equation has been considered. Here as weK.A. Wai and S. Wabnitz for fruitful discussions.
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