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We report analytical and numerical results for on-site and intersite collisions between solitons in the discrete
nonlinear Schrdinger model. A semianalytical variational approximation correctly predicts gross features of
the collision, viz., merger or bounce. We systematically examine the dependence of the collision outcome on
initial velocity and amplitude of the solitons, as well as on the phase shift between them, and location of the
collision point relative to the lattice; in some cases, the dependences are very intricate. In particular, merger of
the solitons into a single one, and bounce after multiple collisions are found. Situations with a complicated
system of alternating transmission and merger windows are identified too. The merger is often followed by
symmetry breakingSB), when the single soliton moves to the left or to the right, which implies momentum
nonconservation. Two different types of the SB are identified, deterministic and spontaneous. The former one
is accounted for by the location of the collision point relative to the lattice, and/or the phase shift between the
solitons; the momentum generated during the collision due to the phase shift is calculated in an analytical
approximation, its dependence on the solitons’ velocities comparing well with numerical results. The sponta-
neous SB is explained by the modulational instability of a quasiflat plateau temporarily formed in the course of

the collision.
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[. INTRODUCTION collisions were studied in th8alerno mod€|l8], i.e., a mixed

Ablowitz-Ladik (AL)-DNLS system, but this was done

The discrete nonlinear Schitimger (DNLS) equation is a close to the integrablEd] AL limit, while consequences of
ubiquitous dynamical-lattice model with many applicationsthe strong nonintegrability of the ordinary DNLS system
[1]. Its physical realizations include arrays of coupled opticalwere not investigated. Actually, R€f7] was dealing with a
waveguides[2,3] and Bose-Einstein condensatéBECS  collision of a soliton with a reflecting wall, which is tanta-
trapped in strong optical latticdgl]. It is also relevant to mount to a collision between strictly in-phase solitons of the
many other problems, such as denaturation of the DNAn-site (OS type, while intersite (IS; see exact definitions
double strand5] and the envelope-wave expansion for non-below) collisions were not considered, nor the case of the
linear Klein-Gordon models on lattic¢s]. phase differencd ¢ between the solitons other than zero. In

Optical waveguide arraysincluding virtual arrays in- this work, we systematically consider various types of colli-
duced by a system of laser beams in a photorefractive crysions in the DNLS model, as concerns the location of the
tal [6]) offer the most straightforward experimental imple- collision point relative to the underlying lattice, and the
mentation of the DNLS system, with the number of latticevalue of Ag.
sites(guiding coreg up to 40 and the propagation length up  Numerical results reported in Ref7] for the Salerno
to 15 mm. With the interchannel coupling consta@t model included quasielastic collisions in the case of a large
=0.5 mm ! [see Eq(1) below] and nonlinearity coefficient relative velocity, and merger, interspersed with intermediate
=5 (mW) ! in semiconductor waveguides, the beamintervals of escape, for smaller velocitigeeds of such find-
power ~500 W provides for formation of discrete solitons ings can be found in an earlier wofld0]). However, no
with the intrinsic dynamical lengttksl mm [3]. Therefore, windows of multibounce escagwith solitons separating af-
the available size of the samples is sufficient to test not onlyer several collisions of the type known for kinkgtopologi-
formation and stability of solitons, but also collisions be- cal solitong in nonintegrable continuum model&1], were
tween them. The study of collisions is a problem of funda-reported. Very recently, collisions of solitons in a weakly
mental significance by itself, and it may find applications indiscrete NLS model were addressed in Réf2], but the
photonics, such as all-optical switching, steering, etc. system was actually approximated by a perturbed continuum

An array of BEC droplets trapped in a strong optical lat-NLS equation, while we aim to consider an essentially dis-
tice, with ~10% atoms in each droplet, is another physical crete case. The analysis developed in REZ] was based on
system which is directly described by the DNLS equation inthe use of the exact two-soliton solution of the unperturbed
the tight-binding limit[4]. In this case, a discrete soliton can NLS equation; an effective small perturbation representing
be easily set in motion by means of a laser beam pushing thithe weak discreteness and acting on the exact solution was
condensate. shown to make the collision chaotic.

The objective of the present work is the analytical and Collisions between solitons in a discrete model with a
numerical study of collisions between DNLS solitons. Thusquadratic[ x(?)] nonlinearity were studied numerically in
far, few publications have addressed the issue. In Rdf. Ref.[13]. A strong distinction was found there between the
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above-mentioned OS and IS collisions. Generally, the O% tractable set of equations, and, eventually, leads to very
and IS cases are well known to be energetically different immpproximate but meaningful results.

static configurations, due to the effective Peierls-Nabarro To this end, the DNLS equation is replaced by its con-
(PN) potential induced by the latticgl]. It will be shown tinuum counterpart, with the commonly known Lagrangian,
below that OS collisions in the DNLS model give rise to [*>[j(y*u—uu*)—|u,|?+ |u|*]dx, while the Ansatz(trial
transmission or merger, while in the IS case alternation ofyave fornj is taken as a combination of twapikes which
different outcomes of the collision is more intricate, and angre mirror images to each other:

additional possibility is bounce after multiple collisions. In
both cases, symmetry breaki(®B) is possible, its strongest
manifestation being a merger of a symmetric soliton pair into
a single soliton, which then moves in a certain direction. In
fact, the latter outcome of the collision manifests not only the u=Aexd —W (&= |xD)+ic(é=[xD], [X|<¢é ()

SB propen(which is also possible in soliton-soliton collisions

in nonintegrable continuum mode]$4]), but also noncon-  (spikes in variational equations were considered in some
servation of momentum: the momentum of the eventuallyworks in different contextgl16]). It should be mentioned that
emerging moving soliton is created “from nothing,” as the the continuum limit of the DNLS equation is, by itself, an
initial momentum of the colliding soliton pair was zero. This integrable NLS equation, in which collisions between
effect is quite generic, as it was also observed in the case @moothsolitons are elastic. However, we employ the spikes
the dynamical-lattice model with tbéz) nonlinearity in Ref.  to emulatediscretesolitary waves with centers located at the

[13]. In this work, we give an explanation to this effect, points x= = &(t) in the version of the system which is far
which includes two different mechanisms: spontaneous anftom the continuum limit.

deterministic SBs. In the former case, the SB is initiated by |t should also be highlighted that, in a certain sense, the
small random perturbations, while in the latter case the SB isubstitution of a spike-shape@insatz(i.e., a discreteness-
hidden in the initial conditiong(initial positions and the motivated ongin the continuum Lagrangian of the model is
above-mentioned phase differente of the two solitons  the exact inverse of the time-honored approach of inserting a
The rest of the paper is organized as follows. In Sec. llcontinuum Ansatin the discrete Lagrangian of the model
we start the analysis of the soliton-soliton collision with an(see, e.g., Refl], and references thergirHence, just as the
analytical approach based on the variational approximationatter continuum-in-discreteapproach has proved very suc-
which makes it possible to predict most basic features of theessful in the study of discreteness effe@thiefly, static
collision. In Sec. lll, we summarize the collision phenom-oneg, we expect(and confirma posteriori by the results
enology found from systematic numerical simulations. Asobtained belowthat thediscrete-in-continuurapproach pro-
the above-mentioned symmetry breaking and momenturposed here can capture key aspects of the discrete-soliton
nonconservation are quite remarkable features of the collidynamics.
sions, in Sec. IV we specially focus on them, combining Besidesé, other variational parameters iAnsdze (2)
analytical and numerical considerations. Section V concludeand (3) are the complex amplituda(t), real width W(t),

u=Aexd —W (|[x|-&+ib(|x|-&)], [x[>¢ (2

the paper. and outer and inner wave numbda@) andc(t). Using the
Ansdze we derive a system of the Euler-Lagrange equations
Il. VARIATIONAL APPROXIMATION FOR THE for the variational parameters:
COLLISION PROBLEM
- 1 d w d
We take the DNLS model in its usual form, e P S N el

b=>|(2—e >dt(2_e”> tgWn | @

iL-Jn:_CAZUn_|un|2unv )

2—e 7 d 1-(1+n)e " 1d
whereu, is the complex amplitude of the electromagnetic c¢= — d_{\/\/[ ( _77) ! - Ed—(wn),
field in thenth channel, in the case of the waveguide array, 2(1-e"7)at 2—e 7 t
or the mean-field wave function at tmh site, in the BEC ®
system. The overdot stands for the time derivatitene” is
actually the propagation distance in the case of the waveyp dc d{b—c(l—e ")
guide arrayy A,U,=U,,;+U,_1—2U, is the discrete La- ——+[1-(1+npe "l +n2-e )| ————
placian, andC is a positive coupling constant.

To gain analytical insight into the soliton-collision prob- E 2_e27
lem, we make use of the variational approximatidf,; a -=—(2-e N — ——— (6)
recent review of the technique can be found in Ré&B]). w3 2W?2 2—e 7
For immobile DNLS solitons, VA can be implemented ana-
lytically [17] and/or numericallyf18]. However, in the case 2 L2 9
of the collision between discrete solitons, direct VA generates d _ i_ b™+(1-e "c E 2-e "7 _
equations which are difficult even to write down in an ex-  dt| 2 2—e7 7 2W (2—e"7)2
plicit form. For this reason, we take a simpler path that yields 7
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Here »=2¢/W, and E=3"7|u,|?=|A]°W[2—exp(—2¢&  are “pushed” by lending them the intersite phase shift
W)] is the conserved power in the waveguide array, or num=1/N (note thata andC drop out from the estimate

ber of atoms in BEC. For systematic simulations, we used initial conditions
For two far separated solitons, which corresponej-tece, suggested by the AL model, where analytical expressions for

the Ansatzsplits into solitary spikes. In this case, E§d)—  moving discrete solitons are availabjéhe spike Ansatz

(7) show thatb,c, and W are constant, so thatw/=8/E based on Eqs2) and (3) was also used as the initial con-

(hence,|A|=E/4) and figuration, yielding similar resulis Thus, a superposition of

two far separated pulses was takent&at0, with common
b= —c=¢ ®) amplitudeB and widthW,
Uo=B sechiW 1(n—x;)]exdia(n—x,)+ (i/2)A ¢]
i.e., according to Eq92) and (3), each individual spike is 0 . ! _ ! _
symmetric,+ b= F ¢ being its velocity. +BsecliW™ (n—x;)Jexd —ia(n—xp) —(i/2)A¢],
Equations(4)—(7) were solved numerically for various (9)
initial values 2, of the separation between the solitons and

their widthsW, and velocitiest &, the latter being defined wherex; , are the positions of their centers¢ is the initial
by the initial valuedy= — ¢, as per Eq(8). Typical findings  phase shift between them, and the wave numdbeleter-
are shown in Fig. 1. A drastic difference between the cases ahines the initial speed, cf. Eg8). We fix W=1 (other val-
large and small initial velocities is seen in the evolution ofues of the width produce very similar resiilgsd usea as a
the inner wave number(t), and in the difference between main control parameter, as changiags tantamount to vary-
temporal scales: in the former caseh@unceof the spikes is  ing the initial velocity.
predicted, which is seen in the explosionagt) (the explo- Analysis of numerical results demonstrates that three dif-
sion does not make it possible to explicitly continue the in-ferent values of the amplitude, viZ&B=sinh(1W)~1.175,
tegration for larger values df); divergence ofc implies a  which corresponds to the AL solitoB,=1, corresponding to
very large velocity of the solitons, according to Ef), i.e., the continuum NLS limit, and a smaller valueB
a bounce indeed. On the contrary, for small initial velocities= 1/sinh(1W)~0.851, provide for adequate description of
the solution gets stuck with,c,é—0, andW=const. In this  the relevant phenomenology. Although these values are not
limit, Egs. (4)—(7) describe asingle immobile symmetric  very different, the results obtained for them may differ con-
spike with the poweE. Thus, VA predicts that the collision siderably. We also varied the initial coordinatigsandx,, so
of two solitons with large velocities leads to bounce, whileas to place the collision center at different positions relative
the collision with small velocities gives rise toergerof the  to the lattice. We will thus consider OS and IS collisions,
solitons. Despite the simplistic nature of the approximationwith the central point located, respectively, on site or at a
it correctly predicts basic features of the collision; see belowmidpoint between sites, as well as a “quarter-site” collision.
Finally, the comparison of results obtained for different val-
ues of the phase shift¢ also reveals important peculiarities,
which will be considered in detail below; in this section, we
Proceeding to numerical analysis of the collisions, it ispresent basic results for the collisions between in-phase soli-
necessary to mention a long-standing debate on the existent@s, with A¢=0. Outcomes of the collisions are readily
of exact traveling-soliton solutions in the DNLS mod&9]. identified, plotting trajectories of the center of mass of each
Due to the presence of the PN potential, one may expeaoliton in the &,t) plane, see Figs. 2 and 3 below.
resonances produced by motion of the soliton, similar to We start with OS collisions between in-phase solitons
ones that are well known for kinks in discrete modg6],  (x;,=*30A¢=0) in the cas®=1. The first result is that,
where they give rise to permanent leakage of the kinetigf the velocity parameter takes values from<@<0.7755,
energy from the moving soliton. However, this issue is athe colliding solitons merge into a single pulseibsequently
rather formal one: even if traveling solitons do not exist inremaining at the collision pointFurther, two distinct inter-
the rigorous sense, numerical works clearly show that theals are identified inside this region<ta<0.711, where the
distance at which such structures cease propagating is longyyo solitons fuse into one after a single collision, and
hence they may be readily observed in the experiment, whicB.711<a<0.7755, where the fusion takes place after mul-
makes it relevant to consider collisions between them. tiple collisions(the latter case may be employed for control
The motion of a soliton at a velocity is supported by a purposes in optical applications: a solitary pulse which tem-
phase gradienk across itfsee Eq.8)]. In Eq. (1), a rough porarily reappears between two collisions can be affected by
relation between them is~CA ¢/a, whereAy is the phase an external signal For a>0.7756, the collisions is quasi-
shift between the fields at adjacent lattice sites anslthe  elastic, i.e., the solitons separate. Note that basic features of
lattice spacing. In the case of discrete solitons, the most inthis phenomenologgbarring sophisticated peculiarities, such
teresting situation for collisions is expected when the charas the fusion after multiple collisiopare correctly predicted
acteristic soliton’s diffraction time/distanceys~a’N2/C by VA.
(N is the number of sites in the solithris comparable to the In the same OS configuration, but with a larger amplitude,
collision time/distance,.,;~aN/v. It follows from these es- B=1.175, the solitons cannot collide at allafbelongs to a
timates that nontrivial collisions are expected if the solitons*stop band,” a<0.550, as in this case free solitons are

Ill. NUMERICAL SIMULATIONS
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quickly trapped by the lattice. This is explained by the fact For the OS configuration, but with a smaller initial ampli-
that taller pulses encounter a higher PN barrier, hence thepide, B=0.851, a different feature is found in intervas
need larger kinetic energy to overcome it. Above the stop<0.203 and 0.28&¢a<0.3. There, the solitons merge after
band, viz., in the interval 0.550a<2.175, the solitons multiple collisions, which is accompanied by notablenme-
move freely and collide, which results in merdefter mul-  try breaking(SB): the resultant pulse moves to the left or to
tiple collisions, ifa is close to the upper border of this inter- the right, at a well-defined value of the velocity, as is seen in
val). Quasielastic collisions take placeaf>2.175. Fig. 2. This feature resembles strong SB observed in Ref.
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[13] in simulations of solitons collisions in lattices with the it was at a local minimum, hence trapping of the resulting
quadratic nonlinearity. We have checked that SB in thepulse was more energetically favorable, while the outcome
present modelas well as the other above-mentioned out-of IS collisions may be more sensitive to the initial kinetic
comes is not a numerical artifact: rerunning the simulations energy (differences between OS and IS collisions jf?)
with higher accuracy produces no change in the results. Bedynamical lattices were reported in RefL3]). In fact,
tween these intervals, i.e., at 0.208<0.281 and ata changes in the initial velocity, which give rise to different
>0.3, only quasielastic collisions occur. outcomes of thg IS collision, decrease by an order of magni-
Symmetry breaking was also observed in collisions oftude in comparison to the OS caie below. _

solitons in nonintegrable continuum models of the NLS type_ |S collisions at the intermediate value of the amplitude,
[14]. However, in continuum systems SB is constrained by, =1, lead to straightforward merger far<0.061. In the
the momentum conservation. The lack of the momentu nterval 0.062<a<0.075, spontaneous SB occurs, with mu-

S : . ual bounce of the solitons after multiple collisions, see Fig.
E:J(:lrsee:jvrztrﬁ Qti (I:nmt hti(gogmlt_esgr;kglﬁ ella t:f?‘agaliﬁgreth:resi?/vo& To the best of our knowledge, this is the first example of a

diff t hani that lain this eff ¢ multiple-bouncevindow in a dynamical-lattice model, which
ffferent mechanisms that explain this efiespontaneous may be compared to what was found for kinks in continua
SB in the case of in-phase collisions, witfyy)=0, and an

" s - [11]; however, in kink-bearing continuum models, spontane-
additionaldeterministicSB in the cas@\¢+0. Both mecha- 4,5 SB(in kink-antikink collisions is impossible due to the
nisms will be considered in detail in the following section. momentum conservation. The IS collision leads to ordinary

For IS collisions we anticipate a significant change in themerger for 0.075a<0.089, and quasielastic collisions oc-
phenomenology, as in this case the collision point is at g, ata>0.089.

local maximum of the PN potential, whereas in the OS case Ag in the OS case, IS collisions of pulses with the lar-
ger amplitude B=1.175) are simpler: the pulses may propa-

25 . =470 gate and collide only ia>0.53; they merge in the interval
201 - 0.53<a<0.795, and quasielastic collisions take place if
151 /\ a>0.795. On the contrary, in the case of the smaller ampli-
|u |21.o - ¢ tude, B=0.851, an intricate system of intervals of multi-
" oos| / \ bounce merger with spontaneous SB was found
00 Lk I\ (0<a<0.04; 0.042<a<0.044; 0.046:a<0.049; 0.053a
<0.055), interspersed with windows of quasielastic colli-
400 | sions; only quasielastic collisions occur af>0.056. It is
300 | noteworthy that, for quasielastic collisions, the time elapsed
¢t 200} between the initial collision and eventual separation is al-
ool most independent &i.
Last, in quarter-site collisiongot shown here in detajl

%% o 20 20 s  atall the values o examined(with B=0.851), separation
X of the solitons upon a single bounce was observed,abut
ways with SB, resulting in asymmetric soliton pairs with
FIG. 3. The intersite collision witlB=1. Trajectories of the amplitudes and speeds different from original ones. In this
solitons and their eventual profiléis terms of|u,|?) are displayed. case, however, the SB is not necessarily spontaneous, as it
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may be induced in a straightforward way by asymmetry ofEq. (11), and then perform the time integration. In fact, the
the initial configuration relative to the lattice. In fact, a mix- only possibility of obtaining an analytical result is to employ
ture of spontaneous and deterministic SB takes place in suanquasicontinuum approximation, setting

a situation; see below.

Uns1— Pn_1~20%lon+ (213) 73yl on3, (12)
IV. DETERMINISTIC AND SPONTANEOUS SYMMETRY _ , _
BREAKING. AND MOMENTUM NONCONSERVATION wheren is treated as a continuous variable. Then, the lowest-
IN SOLITON-SOLITON COLLISIONS order continuum limit of Eq(1) is
A. Deterministic symmetry breaking i Y+ Cihont || ?=0. (13

As mentioned above, a salient feature of the observed _ L . .
phenomenology is SB. In fact, SB in collisions between soli- Substituting apprpxmatlomZ) in Eq. (11) apd assuming
tons was observed in various nonintegrable models, botH1e boundary conditiong(n=+2)=0, we arrive at a result
continuum[14] and discret¢12,13 ones. As was mentioned dp i
above, in the case where the collision center does not coin- _ZZJ dn
cide with an OS or IS point, the symmetry breaking has a dt —o
straightforward(deterministi¢ explanation. In view of the
lack of momentum conservation in nonintegrable dynamicalNote that the first ternithe first derivativg on the right-hand
lattice models, SB also explains the generation of momenturfide of Eq.(12) gives no contribution to expressidi4),
from nothing (before the collision, the net momentum was Which precisely corresponds to the momentum conservation
equal to zero due to the symmetry of the two-soliton con-in the continuum approximation. As it follows from E@Q.4),
figuration. the net momentum change generated by the collision, which

A more subtle but similar situation takes place in the casds @ measure of the momentum nonconservation, is
where the solitons collide with a nonzero phase difference,

apl?

J 2
() (14

i.e., Ap#0 in Eq.(9). Indeed, Eq(9) implies that, while the APEJMdtd—P:ZJWdtJMdn Iy zi(wz)
collision center is located at the point= (x4 +X,)/2=X,, » dt o e an| an '
the phase-center point isTat xg— A ¢/(2a). The difference (15)
between the two pointgin the caseA¢+0) is a natural

source of the deterministic SB. One can try to use an exact solution of E§3) for the

It should be noted that a similar deterministic mechanismsoliton-soliton collision, which is provided by the inverse
based on the phase difference, i.e., mismatch between tlseattering transforrfi21], to calculate the integral expression
collision center and phase-center point, can also explain SB Eq. (15). This solution describes the collision between two
in soliton-soliton collisions in nonintegrable continuum mod- symmetric moving solitons; when they are far separated, it
els. However, SB-induced effects in continuum models ar@educes to the linear superposition,
strongly restricted by thdtotal)l momentum conservation,
while the momentum is no longer a conserved quantity in the
nonintegrable dynamical-lattice setting. Indeed, a natural lﬂ(n,t)zBseCV(
definition of the lattice momentum is

B
——[(n—Xg) +2Cat]

J2C

+oo ) i i
_ ><exr<|a(n—n0)+—(BZ—ZCaZ)t+—A¢)
P=i 3 (Yne1¥i ~¥neathn) (10 E :
. . ) B
(this expression goes over into the correct conserved mo- +Bsecr(—[(n+x0)—20at]
mentum in the continuum limit, and coincides with the con- v2C

served momentum in the integrable AL model). As fol- i i
lows directly from the underlying equatiofl), an exact xexp{—ia(m— n0)+—(Bz—2Ca2)t——A¢>),
evolution equation foP is 2 2

(16)

+
*
H:n;m |l (Yn 1= Pn-2) FCC (D) whereB is the common amplitude of the solitons2Ca are
their velocities, = x, are their initial positions, and ¢ is the
where c.c. stands for the complex-conjugate expression. Thghase shift between them. Note tl&ta, andA ¢ have the
fact that the linear part of Eq1) yields no contribution to same meaning as in expressi@.
the evolution of the momentum is natural, as the momentum Substituting the exact two-soliton solution in E@5),
is conserved in the linear dynamical lattice. The derivation ofone can first of all see thatP, calculated this way, exactly
Eq. (11) assumes, as usual, the boundary conditigfis= vanishes ifA¢ is 0, w/2, o, or any multiple ofw/2. Actu-
+0)=0. ally, the quasicontinuum approximation assumes that the
To proceed with the analysis of the momentum nonconsolitons are broad, i.eB/\2C<1. This condition facilitates
servation, it is necessary to calculate the right-hand side ahe calculation of integra{15) with the exact two-soliton
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FIG. 5. The generated momentum vs the phase shift between the
colliding solitons for different fixed values of the velocity parameter

a. In all the casesC=0.5 and the on-site collisions were simulated.

solution. Nevertheless, the accurate result is very cumber-
some. What can be obtained in a simple form is the depen-

dence of the generated momentum on the velocity paramet&f@tuo(—n)=up(n). As the underlying equatiofi) is com-

a at fixed values ofA¢ andB: k
possible

J2Ca

B 7

AP=constxa’expg — 2=

which assumes thd&/\2C<a.
Equation(17) is more convenient for the comparison with
results of direct simulations in a logarithmic form,

and 5.
ool 2P| g 1od 2 2m\2C 18
og ;N og a,) Blog lo(a—ao). (18)

in this case.

patible with the symmetryn— —n, no deterministic SB is

An explanation for the SB and momentum generation in
the cas\ =0 is possible in terms afpontaneou$B under
the action of small random perturbatiofrsumerical noise,
which emulates noise in the real physical systefio dem-
onstrate this possibility, we take a typical case, wiéh
=0.29, when conspicuous momentum generatathough
smaller than at finite\¢) is observed af\¢=0, see Figs. 2

In Fig. 6 a set of snapshots of the lattice field is displayed,
around the moment df=390, at which the SB takes place,

and the momentum generation commences, see the panel

wherea, is an arbitrarily fixed valueAP, being the corre-
sponding value oA P. A typical result of the comparison of
the analytical predictioril8) with numerical findings is dis-

pertaining toa=0.29 in Fig. 2. As is seefand it is a typical

0.4 0.4
played in Fig. 4. As is seen, the agreement is reasonable, an ; Ty e=3%6 ¢=388
(as it often happens with results obtained by means of %% / \ 03 S
asymptotic methodst actually extends to a region where the |, |2 .2} / \ 02 / %
assumed conditioB<2Ca does not hold. " o / \ N / |
’ .,J'/ \\.‘ . J / \\'\Q
B. Spontaneous symmetry breaking 0.0 ey taaaas (et —esnttes
The dependence of the generated momentunmi gnis 04 =20l ™ - Y
quite complicated, as is seen in Fig. 5. Nevertheless, for no 0.3l oo 03 /-" \.\
too small values of the velocity parametgrthe generated |’ J \ / \
momentum indeed shows the trend to vanism\&=0, as a 021 / \-\ 02 / 1
is predicted by Eq(15). For very smalla, the situation is o1f 4 A | S .
different (see the panel of Fig. 5 pertaining to=0.03): vl .
- . 0,0 bams 0.0lusas s Tt
conspicuous momentum generation is observed whga 0 0050 51010 S50 510

(which is also implied in Fig. 2 Even in the case of
a=0.29, the value ofAP corresponding taA¢=0 is not

FIG. 6. A set of instantaneous profiles of the lattice fie|dg|?,

very small, see Fig. 5. On the other hand, the initial configuin the case of the on-site collision between solitons waith0.29,

ration (9) with A¢$=0 is completely symmetri¢ever), so B=0.851

046604-7
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0.8 where the size of the background i&N2 1 (in the above-

0.7 mentioned example, one may addpt5, assuming, in the

06! crudest approximation, that only nine inner sites carry non-
- zero field. The BCs(22) imply, in the case of thedd eigen-

03 I mode(20), sinkN)=0, or

P oa

0.3 mm
L kodd:—,m:1,2,3 e (23)

0.2 N

0.1y Now, one can substitute the perturbed wave fi&®) into

0.0 : | . the right-hand side of Eq11), in order to find a contribution
0 200 400 600 800 of the perturbation to the momentum nonconservation. After

t simple manipulations, we obtain
FIG. 7. The total momentum of the lattice field vs time, in the dpP e
case of the soliton-soliton collision, details of which are displayed rrin 2A3n2w (bpy1—bn_1). (29

in Fig. 6. pert

Adopting the above-mentioned approximation, according to

feature observed in many other caséise colision gives rise which the field, including the perturbation, is limited to the

to temporary formation of a broad quasiflat configuration, . . .

which may be subject to the modulational instabili&l ). In ?;Ealn|n|sN—1, we obtain the following resuit from Eq.

fact, the panels of Fig. 6 which pertaintte 390 and 392 do :

show the beginning of spontaneous SB that may be attributed p

to MI. Direct numerical computation of lattice momentum (—) =2A%by_1—b_(n-1)]. (25)

(10) as a function of timgsee Fig. 7 demonstrates a clear dt pert

correlation between the beginning of the spontaneous SB and ) ) )

the commencement of the momentum generation. From expreSS|or(2.5) it follows that only odd perturbauon_
MI in the DNLS equation can be analyzed following Ref. modes may contribute to the momentum nonconservation,

[22]. To this end, a quasifiat field configuration is taken in theS€€ EQ.(20). Indeed, the presence of a small symmetry-
form breaking perturbation on top of the quasiflat background,
which may be accounted for by an odd mode, is evident in
Yn(H)=[A+bp(t)+ic,(t)]exp(iA?t), (19 Fig. 6. If it is taken in the form(20), and expressio(23) for
k is taken into regard, the eventual result is
whereA is a constant, an8, andc, are small real pertur-
bations. Spatially even and odd eigenmodes of the perturba- =2(—1)m‘1b(°)A3sin( %m) ex;{ U(Tr_mH

tion are pert N
(26)
(by,Co) = ( 1,&) b@exy o k)t]X‘ c'os(kn) [recall thato(k) is defined in Eq(21)]. An important feature
ACsir?(k/2) sin(kn), of this result is its essentially discrete character: the con-
(200 tinuum limit implies fixing m and lettingN—oo, then the
expression(26) vanishes.

with an arbitrary infinitesimal perturbation amplitug@&®, To the best of our knowledge, the analyses presented
real wave numbek, and the corresponding instability growth above for the cases of the deterministic and spontaneous SBs
rate constitute the first explicit consideration of the collision-

induced momentum generation in nonintegrable dynamical-

_ : 7_ : lattice models. In the general casA¢+0), the SB and
o(K)=BCsirr(k/2)[A*~ 2C sin(k/2)]. @D momentum generation are contributed to by both the deter-

- . . ministic and spontaneous mechanisms.
Note that characteristic values of the instability growth rate

(21) which correspond to the quasiflat configuration ob-
served in Fig. 6 are-1 [recall that Eq.(1) was simulated

with C=0.5], hence the time interval within which the | this work, we have studied in an analytical approxima-

quasiflat configuration exists, which ist=5, is sufficient  tjon and, in detail, numerically collisions between solitons in
for the development of the instability. the discrete NLS equation. We have observed and classified
The quasiflat background field configuration shown indifferent outcomes, whose most notable features are various
Fig. 6 may be roughly approximated by boundary conditionsnanifestations of the SB, leading to the appearance of either

(BCy a single moving pulse, or a pair of pulses with different
amplitudes and speeds, after single or multiple bounces. The

a,(n==N)=0, (22 dependence of the outcome on the type of the collisomn

V. CONCLUSION

046604-8
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site or intersitg initial velocity, and amplitude of the pulses, The pulses vanish at some critical value of the nonlinearity
as well as the phase shift between them, was quantified. Thepefficient. It is plausible that, in the limit of the infinitely
analysis of the SB and collision-induced momentum generalong system, this result implies the existence of genuine
tion from nothing were developed for two qualitatively dif- moving solitons in the DNLS equation. Additionally, we
ferent cases, when they are accounted for by the phase shifave been informed that experiments are currently in
between the solitons, or modulational instability of the broadprogress regarding the interaction of two solitary waves in
plateau which is temporarily formed in the course of thearrays of coupled optical waveguid¢24], for which the
collision. If the collision is asymmetric relative to the lattice, relevant mathematical model is the one discussed herein. The
the SB is explained in a simpler way by the presence of théocus in these experiments is on the case of the interaction of
effective Peierls-Nabarro potential. The results suggessolitons with zero initial velocitiegin terms of the present
straightforward experimental realizations in optical wave-papej, and a result coinciding with our findings is that, in
guide arrays, and in Bose-Einstein condensates trapped intle limit of the zero collision velocity, two solitons with the
strong optical lattice. The variety of different outcomes ofzero phase difference always merge into one.

the collision, and the possibilities to control them suggest

potential applications to the design of multifunctional photo- ACKNOWLEDGMENTS

nic devices based on waveguide arrays.
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constant-amplitude traveling-continuous-wave solufi28.  tion (P.G.K).
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