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Four-wave mixing instabilities in photonic-crystal and tapered fibers
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Four-wave mixing instabilities are theoretically studied for continuous wave propagation in ultrasmall core
photonic-crystal and tapered fibers. The waveguide, or geometrical, contribution to the overall dispersion of
these structures is much stronger than in conventional fibers. This leads to the appearance of unstable fre-
guency bands that are qualitatively and quantitatively different from those seen in conventional fibers. The
four-wave mixing theory developed here is based on the full wave equation, which allows rigorous study of the
unstable bands even when the detunings are of the order of the pump frequency itself. Solutions obtained using
the generalized nonlinear Schiinger equation, which is an approximate version of the full wave equation,
reveal that it suffers from several deficiencies when used to describe four-wave mixing processes.
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[. INTRODUCTION tional fiberg[1]. The results in these papers can essentially be
described within the framework of the idealized nonlinear

Four-wave mixingFWM) is a fundamental nonlinear op- Schralinger (NLS) equation, which means that they do not
tical process, in which a pair of Stokes and anti-Stokes phocontain any new features specific to the ultrasmall core fibers
tons is generated from two pump photons through the thirdstudied here. The main aim of this work is to reveal these
order nonlinear susceptibility. FWM can be observed in afeatures. In order to achieve this in a rigorous manner we
wide range of materials, including optical fibédg. The ex-  develop a theory of FWM which goes beyond the slowly
istence and efficiency of frequency conversion by FWM cru-varying envelope approximation of the NLS equation and
cially depend on the so-called phase-matching conditiongeals directly with the wave equation. Our analysis reveals
[1], which are in turn determined by the dispersive propertiedhe existence of different instability bands and shows the
of the system. Modulational instabilityMI) of continuous  Possibility of backward wave excitation. A detailed compari-
wave (CW) radiation is a kind of FWM instability and is son with the results obtained using a generalized version of
well known in conventional optical fibers, where the disper-the nonlinear Schiinger equation reveals several deficien-
sion profile is well approximated by a group velocity disper-cies of the latter.
sion (GVD) that is either independent of, or linearly depen-
dent on, frequencyl]. Il. FWM INSTABILITIES BEYOND SLOWLY VARYING

Recent advances in the fabrication of photonic-crystal fi- APPROXIMATION
bers(PCF3 [2-5] have made possible the production of fi- . ) i
bers with tiny core areas and dispersion characteristics thay e Start our analysis with the nonlinear wave equation
are strongly modified compared to conventional fibres. As &€rived directly from Maxwell's equations:
consequence, the FWM phase-matching conditions are com- 1
pletely different from those seen in conventional fibers. An S SIS B T2 5 B VLA
additional advantage of small-core PCFs is that strong non- VE-V(V-B) o2 Iy (E=PL—Pn1)=0, (1)
linear interactions occur at relatively low peak powers and
over short propagation distances. For these reasons, PCereV = [9,+]a,+Ka,. The linear polarization is defined
offer the opportunity to develop a new family of parametric 54
amplifiers and oscillators.

The dispersion characteristics of tapered fid@iss), see, . % .
e.g., Ref[6], which are made by heating and stretching con- PL= f X P (t=t" x,y)E(t")dt’, 2
ventional fibers, are very similar to those in small-core PCFs. o
A typical TF is a transversely homogeneous strand of silica - L ) , ,
glass with diameter around 1 or2m. The GVD profiles of whereE is the electric field, ang/'*’ is the linear suscepti-

PCFs and TFs are similar because, in a typical index-guidin§iity of the dielectric medium(in our case silica glass
PCF, most of the light is guided in a tiny silica core sur- hich depends on time and the transverse coordinates

>

rounded by a periodic structure of large air-filled holes sepaPn. includes both Kerr and Raman terms:

rated by thin silica membranes, a structure that has strong .

similarities to a TF. A disadvantage of TFs compared to PCFs _ =05 * T2 12400 |2

is that they are fragile and, therefore, are practical only in Pr=7xs (1= O)[E[*+ ej_m gt=t)[E()|*dt" |E,

short lengths €1 m). (3
Several recent papers on FWM in PQFs-10] have fo-

cused their theories on cases when FWM instabilities excitevhere #=0.18 measures the relative strength of the instan-

bands of gain analogous to the MI bands seen in convertaneous and noninstantaneous nonlinearfti¢sand
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t)= ——-e Y7sin(t/7,)O(1).
’Tsz

a( (4)

Here 7;=12.2 fs is the inverse of the phonon frequency
taken relative to the pump frequency amg=32 fs is the
phonon lifetime[1]. ®(t) is the Heaviside function angs
=101 m?/W is the nonlinear susceptibility.

Our next step is to reduce E(L) to an equation irz and
t only. In order to achieve this we first transform E#j). from
the time to the frequency domain, using Fourier transf@m

and then separate transverse and longitudinal degrees of free-

dom through the approximate factorizatioﬁl?(x,y,z,t)

= I%(x,y,z,w):ﬁ(x,y,w)ﬁ(z,w). F is an eigenmode of the
linear waveguide having propagation constiafiv) wherew
is the optical frequenck(w) incorporates both material and
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FIG. 1. GVD parameters as functions of frequency: for the
1.2-um-core PCHOptoelectronics group, Bathfor the 1um ta-
pered fiber(TF), and conventional fibefCorning SMF28.

waveguide contributions to the overall fiber dispersion, and it
is calculated by solving the eigenvalue problem for the timetive at the right hand, i.e., high-frequency, zero GVD point.

and zindependent casdsee, e.g., Ref.11)).
It can be shown that the dynamics of the inverse Fourie

transformF ~'E=E(zt) of the amplitudeE are governed
by the equation
+ o
J (1)

Xeff
o]

c292E— 9’E= 97 (t—t")E(t")dt’

+ (1= O)xPEPE+ oxVE(®W)

xfjg(t—t')lE(t')lzdt' .6

where x{}) is the effective linear susceptibility of the fibre,
with its Fourier transformFy (%= x{%(w), being given by

. k2 2

XSh(0)=—5~1 ()

and x3=3Smoaxs/(4Set). Here Spoq=JS|F|?dS is the
modal area an®,. = SZ,,4(/|F|*dS). In what follows we
make the approximation th&,,q= Ses=wd?/4, whered is

the core diameter. We also assume thgi(w) is real, i.e.,

An analog of this zero dispersion point, wheg=0 and
B3>0, is well known in conventional fibers, where it occurs
atw/(27)=229 THz(see Fig. 1 for an example of the GVD
profile of Corning SMF28 fiber In our fibers this point is
shifted far towards the blue side of the spectrum. A second
zero dispersion point occurs close &/ (27)=235 THz,
where in addition3;<0. Thus the entire range of anomalous
dispersion is shifted significantly towards the blue side of the
spectrum. Increasing the core diameter causes the zero GVD
points to shift towards smaller frequencies, when the disper-
sion profiles become similar to those seen in conventional
fibers. Note that the coexistence of two zero GVD points
within an experimentally relevant frequency range has a pro-
found effect on the FWM instabilities discussed below.

We now assume that the fiber is pumped by a CW signal

Eoe'? Vkg+Kg=oo) ¢ c.

)

Smod

whereE, is a constant amplitude/k02+ KO2 and g are, re-
spectively, the wave vector and the frequency of the pump
wave. kg=Kk(wq) characterizes the linear, i.e., power inde-
pendent, part of the wave vector, whitg, is intensity de-
pendent. ExpressiofY) is a solution to Eq(5) provided that

we disregard any linear loss. For the sake of brevity, from

now on we will write y() instead ofy{(w).

The calculated frequency dependence of the G\,
=3’k(w), for a TF withd=1 um is plotted in Fig. 1 to-

K§=2ko¥Eol®,  ¥=(w0§x)/(2koC?Smod), (8

where vy is the standard parameter used to characterize the

gether with the experimentally measured dispersion profilg,onjinear properties of fibefd].

of a PCF with a 1.2am core surrounded by air holes of
approximately the same siZbut separated by glass mem-
branes 0.13um thick). In conventional telecom fibers the
diameter of the guiding core is9 um. Thus the ratio of

core diameter to wavelength in the fibers considered here is
much less than in conventional ones. For this reason these

To explore the FWM gain, we perturb soluti¢p) with a
small complex signak:

1

\/Smod

E= [Eo+ e(z,t)]ei@VkorKo—wod 4 ¢ c.

(©)

fibers can be termed as both strongly guiding and highly

nonlinear.

The GVD profiles for TF and PCF shown in Fig. 1 are
very similar. There are two zero GVD points with a region of
anomalous dispersion in between thg#g= >k(w) is posi-

After substituting Eq(9) into the governing equatiofb) we
disregard all the terms nonlinear & We then takee in the
general and convenient form of a superposition of Stokes and
anti-Stokes waves:
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function g(t):

FIG. 2. Imaginary(solid lines, see scale on the left vertical axes
and normalized realdashed lines, see scale on the right vertical
axes parts of the roots of Eq.13). k(w) is taken for the TF with
d=1 um, see Fig. (b) for the corresponding GVD profile. Pump

2 2
T+ 75

=" —i = :
9(9) wag(t)exq ondt T+ 75(1+i67,)?

(12) frequency iswo/(27) =250 THz and pump poweEz=200 W.
«; are the roots of the fourth-order algebraic equation: A
u:
_ T -
k= [A(KE+KY +A L +A_]K? Rj= s’ 1=1.234, (14

j
+2Vki+K5(A, —A_)k+(A,A_—a’KZK?)=0.
(13

which can be calculated from our linear theory. Coefficients
R, 4, corresponding to the pair of unstable eigenvalues from

Fig. 2, are shown in Fig. 3 as functions of the detundhgee
As far as we know, all previous results on FWM in fibers Sec. 111 for more details

with nontrivial dispersion characteristics have relied on the The left-most instability band shown in Fig(#} has a
slowly varying approximation iz and thereby resulted in a direct analog in the idealized NLS equation in the anomalous
quadratic equation fok, see, e.g., Ref41,12-14. As we  dispersion regimésee Sec. IY. The far-detuned instability
will discuss in more details in Sec. Ill, the two extra roots peak, however, does not exist in the idealized NLS—it ap-
can describe excitation of both forward and backward wavespears in our model due to modified fiber dispersion. This
Equation(13) also fully accounts for the dispersion profile of peak is always narrow compared to the primary one. Figure 4
the fiber and it is valid practically for arbitrary values &  shows dependence of the detuning and the maximal value of
Solution(7) becomes unstable if E¢13) has at least one |m , on the pump frequency.
root with Im(x) <0. Knowingk as a function of» and solv- Taking dispersion profiles for the TFs with progressively
ing Eqg.(13) numerically we can plot the dependencies of alljarger-core radii, i.e., approaching the limit of the conven-
four eigenvalues on any parameter. Since Ed.3) requires  tional fibers, we have demonstrated that the secondary FWM
a knowledge of the functiok(w), we start considering the peak moves towards the larger valuessoReferencé14] is
example of a TF, for which this dependence is easy to calthe only report known to us of the existence of similar sec-
culate [11]. First, we fix the pump frequencw, at 2w
X 250 THz, where the GVD is large and anomalous. Corre- 14

x10°

sponding values of GVD ang are 8,=—53 pg/km and 2 (a) 3': (b)
y=0.165 W ! m™ 1. Figure 2 shows theS dependence of 1
the imaginary and real parts of all four roots of E§3). Two o 08 o2
roots,«, andk,4, have negative imaginary parts and generate I P
instabilities. 04 18
Here and in what follows it is sufficient for us to plot only 02 !
values ofx for 6>0. From Eq.(10), it is clear that plots for %o w w L T —
6>0 give us full information about both the Stokes and the 8/2n (THz) 8/2n (THz)

anti-Stokes waves. It is also obvious from E§0) that any
instability leads to the same growth rate for the Stokes and F|G. 3. § dependence of the ratios of the amplitudes of Stokes
anti-Stokes waves having the same inglewhat, however, and anti-Stokes waveR, 4, corresponding to the pair of unstable
makes the intensities of the two waves physically different iseigenvalues from Figs.(B) and 2d). Values of parameters are the
the ratio of thez-independent amplitudes: same as Fig. 2. Note the difference in the scale betwaesnd (b).
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FIG. 4. (a) Dependence of the position of the maximum of the 1 300 30 400 450 500
second FWM peak on the pump frequengdy. Dependence of the
gain at the maximum of the second FWM peak on the pump fre- 0)0/21'5 (THZ)

quency. Full lines are obtained using wave equation, sed 13y,

and dotted lines are obtained using generalized NLS equation, see FIG. 6. Ratio of the amplitudes of Stokes and anti-Stokes waves

Eq. (16). k(w) is taken for the TF witlkd=1 um, see Fig. () for corresponding to the second FWM peak as function of the pump

the corresponding GVD profile, and pump poweE% 200 W. frequency, for a pump powdE§=200 W. Full lines are obtained
using wave equation, see E(@.3), and dotted lines are obtained

ondary peaks in fibers with flattened GVD. However, small-using generalized NLSE, E@16).

core PCFs and TFs have GVD profiles which, in some im-

portant aspects, are different from the parabolic,:ig_ 2 that 0<Rex ,/ky<1, which means, see EgtlL0),
approximation forB,(w) used in Ref{14] (see Sec. IV for  that both Stokes and anti-Stokes waves excited by the un-
discussion of these differenges _ stable rootk, are forward waves, i.e., they copropagate with

If one neglects the Raman effect by puttieig O, thenthe  the pump wave. Contrary, looking at the Figéc, ), one can
imaginary parts of«z 4 are equal to zero and the instability gpserve that Stokes and anti-Stokes waves corresponding to
associated withey, disappears. An important feature of the tne root«, are, respectively, backward and forward waves,
instabilities induced by the Raman effect is t.hat-their eXiS'ReK4/ko<—2. The situation is opposite fot;, Rexs/ko
tence does not depend on the sigref Indeed in Fig. 5we <2 byt this root does not generate any unstable bands. Thus
show plots of imaginary parts of all four eigenvalues for agne can conclude that the Stokes wave excited by the un-
TF when the pump frequency is taken ai/(27)  stable rootx, propagates backwards and the corresponding
=600 THz, i.e., deep inside the normal GVD regime. Oneynpstaple anti-Stokes wave copropagates with the pump. Note
can see that the gain maxima of the existing instability dothat amplitude of the backward Stokes wave is predicted to
mains are ab=13 THz, which corresponds to the maximum pe 1§ times less than the amplitude of the forward anti-

of the Raman gain. Stokes wave, see Fig(I8. What is important, however, that
the strong forward anti-Stokes wave corresponding tas
Il. STOKES VS ANTI-STOKES AND FORWARD completely disregarded in the standard slowly varying ap-
VS BACKWARD WAVES proximation, see Sec. IV, though its contribution to FWM

) ~_process is of the same order of magnitude as the one associ-
Because the wave equation has a second-order derivativged with «..

in z it naturally includes backward waves. One can see from Analyzing dependence &, on & [Fig. 3@)], one can see

that the first FWM peak corresponds to a wave with a Stokes
component slightly stronger than the anti-Stokes one. In con-
trast, the second peak generates a stronger anti-Stokes wave.
We have found that this situation is typical for a wide range
of pump frequencies and pump powers. The dependence of
R, (corresponding to the maximum gain of the second FWM
peak on pump frequency is shown in Fig. 6.

Tm «; (1/m)

IV. COMPARISON BETWEEN THE WAVE
AND GENERALIZED NLS EQUATIONS

20 40 60 80 . . .
6/27[ (THZ) . A. Theory.of FWM in generallze.d NLS equation |
Different variants of the generalized NLS equation have

FIG. 5. § dependence of the imaginary parts of the four roots ofd€€en so far the most popular approach to the theoretical and
Eq.(13) in the deep normal dispersion regink€w) is taken for the ~numerical analyses of nonlinear effects in fibers with com-
TF with d=1 um, see Fig. (b) for the corresponding GVD pro- plex dispersion, including PCFs, see, e.g., RE#s10,14—
file. Pump frequencyw,/(27)=600 THz and pump poweE3  16]. The rigorous analysis developed above allows evalua-
=200 W. Numbers correspond to the root inder Eq. (13). tion of the validity of the generalized NLS equation and, as
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we will demonstrate below, uncovers some significant dis- 2 Im«,
crepancies between the two approaches.

Assuming that E=(Sy,0 ~ Y2A(z, 7)eko?"i@dt+cc., 7 = —ImV[D(8)+D(~8)I[D(8)+D(— ) +K/ko],
=t—2zB,, and using the procedure outlined in REf7] we (17)
derive an equation describing evolution of the envelope
function A: where the imaginary part of the square root is fixed to be

positive andk , are the two roots of Eq.16).

i(9,—iD)A=—1v| 1+ I—aT}A((l—G)|A|2
w B. Interpretation of the FWM instabilities
+oo , 2 Substituting any of the roots of E¢L6) into Eq.(10) and
+ QJ% g(r—7)|A(z,7")|*d7 ) calculating the overall wave vectors of the Stokks+k,
+K3/(2ko)—Rek, and anti-Stokes,kas= Ko+ K3/(2ko)
N +Rek, waves one can see that the phase-matching condi-
Blig)= &(ia u (15) tion for these waves is satisfied automatically under all con-
—onl 7 ditions: A ky+ K%/(Zko)]zks+ kas. The condition for the

onset of FWM instabilities is that Re,=Re«x,, which is

Here 8,= d"k are the dispersion coefficients calculated forsatisfied throughout the entire instability domain, but not out-
o=o Th(:summation i should be taken up to an order side it. Thus the emergence of FWM instabilities implies the
N hig?]. enough to ensure that the dispersion profile is adgxistelnce Qf phase synchronism between the wo eigenper-
equately approximated in the frequency domain under conturfbl_";‘]t('aonfe'noEgl(lq?{trod ced parametdes andk_ corre-
sideration. In our calculations we usBid=20. Ther deriva- spond t% t\ﬂeu é'e e(?tors gf WO 'nd$e ende_nt e not
tive in the right-hand side of Eq(15 describes self- d'pked by Eqs \(’\10\)/ ar:/d (11) wavevl ébvigusly th’erlé .r;lre
steepening effects, i.e., the intensity dependence of the gro Jsgod grounds to call them Stokes | and anti-Stokes £ )

velocity, see, e.g., Ref§l,12,17. . ; : .
FWI\y/I instabil?[ies forédiffere?lt variations of Eq15) have yvak\:)/es, but th's. shotild be don;a W'thr? degrgﬁ o;caunor_]. Thl's

. ecause it is easy to confuse them with the previously
been previously analyzed by many authors, see, e.g., Re introduced Stokes and anti-Stokes waves, which have com-

[12—-14. For this reason we focus only on details important ; ) . L .
to this work, i.e., those that are relevant either in the PCF analetely different dispersive characteristics determined by Eq.

TF context or in comparisons with the FWM analysis of the(13) or (16). One can note thab(6)+D(—d)=k, +k_
wave equation. We will also identify a condition for maxi- —2Ko=Ak;, whereAk is the linear mismatch between the
mizing the FWM gain, which is not related to the well- Wave vectors. Taking into account that the generation of
known wave-vector-matching condition, but rather to theStokes and anti-Stokes photons requires two pump photons,
matching of group velocities. one can easily show that the mismatch between the nonlinear

The CW solution of Eq.(15 has the form A parts of the wave vectors is given IA)km:K%/ko (note that
=E, exp{iK3z/(2k,)} [see Eq.(8) for link betweenK, and in ou.r_notationsAkn, is.alway.s_ _positivé One can see _that
|Eo|2]. To study the stability of this solution we perturb it condition for the FWM instabilities Re; = Rex is satisfied
with a small signal in form(10) and derive the following Providing

guadratic equation fok: Ak <Ak <0, (18)

K2+ (@11+ Bzp) K+ 81182 812821 =0, (16)  j.e., Ak is always negative within the instability domain. It
is clear now that FWM instability starts either when the
where matching for the full(linear+ nonlineaj wave vectors is sat-
isfied, i.e., whenAk,+ Ak, =0, or when only the linear
ap=—D(— &) +KY1—(1+a)(1—8lwy)/(2Ke), parts of the wave vectors are matched, i.e., whép=0.
Figure 7 shows regions of FWM instability in the
(8,|Eo|?) plane calculated using E@13). Use of Eq.(16)

_ 2 ;
ayo= — aK(1— 6l wo)/(2ko), leads to almost the same results. In Figa) Dne can see that
as pump power is increasing, both FWM bands become
ay= aKS(1+ 8l wo)l(2Ko), broader until, at some critical power, they merge into a single

band. The critical power for this merging is probably too
- ) high to have practical relevance in the cw regime. For pow-
82p=D(0) —Kg[ 1= (1+a)(1+ dlwo) 1/ (2Ko). ers even higher, there exists a second threshold when all
instabilities disappedrsee Fig. Tb)]. This effect exists also
For clarity of interpretation of the instability peaks shown in the absence of the second FWM peak and becomes pos-
in Fig. 2(b), let us assume tha?=0 and neglect self- sible due to self-steepening. It is therefore not described by
steepening effects. After some algebra, the instability growttihe simplified Eq.(17); however, it can be predicted by Eq.
rate can be presented in the form (16). Suppression of the instability due to self-steepening
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FIG. 7. Level plots of Inx, showing regions of FWM instabili- FIG. 8. (a) Full lines correspond tim «,| calculated for the TF

ties in the @,E3) plane calculated using E¢L3), for two different ~ example using Eq17). Pump power is indicated explicitly and the
ranges of power, using a pump frequencyu@f27=250 THz.(a) ~ Other parameters are the same as for Filg). k() is plotted by
clearly shows the independence of the secondary FWM peak frorthe doted line. Dashed horizontal lines indicaté k,, /2 for differ-
power and the existence of a critical power at which the two peak€nt powers. Intersections of the dashed and dotted lines correspond
merge, while(b) shows the existence of a second critical powerto the positions of the maxima of the FWM gain before merging.
where all the instabilities disappear. After the merging, maximum of the gain corresponds to the mini-
mum of Ak, . (b) Same aga), but for the conventionalSMF28

was previously described by PotagéR] for another variant ~fiber, see Fig. 1, pumped af/(27) =250 THz. Note that to make
of the generalized NLS equation. (a) and (b) readable we had to scale the plotted valueskjneor-

The gain maxima in the first and second instability bandgesponding to 3 kw and 7.5 kW were divided, respectively, by 10
[see Figs. &) and 7a) for E3<2500 W] correspond to ze- and 20.Akin were divided by the factor 200.

ros of the derivative of Eq(17) with respect tas, and can be _ _
found from the condition Thus the maximum of the gain now happens for value8 of

. where theStokes and anti-Stokes waves have the same group
Akj+ 34Ky =0. (19 velocities

This condition shows that, for maximum gain, the linear C. Discrepancies between the wave
wave-vector mismatch k, must be compensated by half the and generalized NLS equations

nonlinear mismatch. It is important to note, thatAk, is Any discrepancies between the predictions of H4S)
negative for allé and d;Ak, is also always negative, then, and(16) for Im «, andR,, at values of detuning correspond-
for a given power, conditionf19) can be satisfied for one ing to the first FWM peak, are negligible for all relevant
particular value of 8| only. If, however,d;Ak) changes its parameters. We therefore concentrate our attention on the
sign several times fo6>0, then there is always a range of second FWM peak. Let us first point out that the large values
pump powers where Condltldﬂ.g) is satisfied at least twice. of detuning for the second FWM peak can either violate or
For the PCF and TF, one can show tidaf\k; changes its endanger one of the main assumptions used to derive the
sign once, which ensures the existence of a secondary FWMeneralized NLS equation, namelyj|/w<1. Plotting the
peak[see Fig. 8)]. The dispersion of a conventional fiber, position of the second, i.e., far-detuned, FWM peak as a
see Fig. 1, however, gives a monotonic decajAif with 5 function of the pump frequendysee Fig. 4a)], we find that
[Fig. 8b)] and therefore only a single FWM peak exists in the results obtained from Eq&L3) and (16) are very close.

this case. _ o N This is because the position of the secondary FWM is pri-
From Fig. 8a) it is clear that condition19) cannot be  marily determined by the GVD profile of the system, which
satisfied if the pump power is high enough to makk, s taken into account by Eq15) almost exactly. However,

>2|minsAkj. Itis also clear that on approaching this thresh-the gain and relative strength of the Stokes and anti-Stokes

old, the two FWM bands merge into opeee Figs. @) and  components for this peak strongly depend on the dispersion

8(@)]. However, the instability still exists whem\k,  of the nonlinearity. Because the dependence of the nonlinear-

>2|minsAk|. Now, the position of the maximum of the ity on & is taken into account by Eq15) only approxi-

FWM gain is given by a second condition ensuring that themately, substantial discrepancies occur between the predic-

derivative of Eq(17) with respect tas is zero, which, as can tjons of Egs.(5) and (15) for values of Imk, andR,, see

be easily shown, is Figs. 4b) and 6. Thus Eq(15) is often insufficient for quan-
IAK titative comparisons between experimental and theoretical
it B (20) results. Let us mention again that E45) also completely

96 fails to take into account excitation of the strong forward

Figure &a) illustrates that the minimum of the curk, a?ttr';f;zkﬁﬁsgg?e vrv(;a:kk bsaeceklezliegdms)tokes waves associated
4y . .

exactly corresponds to the maximum of the gain after the
merging of two FWM bandsk, is obviously does not de- _ . .
pend ond and therefore conditiof20) transforms into D. Role of higher-order dispersion

Figure 9 shows regions of FWM instability in thé,wg)

'81|w=wo+ 5 '81|w=wo*5:0' (22) plane, calculated using E¢L3). Use of Eq.(16) again leads
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region of frequencies in which the far-detuned FWM peaks, not
related to the Raman effect, exist even when the fiber is pumped in
the normal GVD region.

d ' ' : ' : H 1.5 y
350 /:\ ' (a)
P P R
300 S | | Ll
s ! i 0.5
T 250 :
E yd ! 0
& 200 P |
b / i
150} / - 05 'm/
1 { 2
1001 -1 . . .
0 20 40 60 80 100
50 _ o/2n (THz)
Y . 2 1500 ' ' '
250 300 350 400 450 500 550 5
o2 (THz) (b)
g
FIG. 9. Level plots of Imx, showing regions of FWM instabili- ~ 100
ties in the @,wg) plane, calculated using E@l3), for a pump 3
power of P=200 W. The two dashed vertical lines mark the zero §
GVD points. The unstable regions existing for normal GVD and 2
centered approximately at 13 THz correspond to the Raman gain. In 5
the proximity of the high-frequency zero GVD point there is a '§
B
[
2
wn

to very similar results. It is clear that the position of the
second FWM peak is very sensitive to changes in the pump
frequency. For example, this peak is located much closer to
the pump frequency near to the left-most, i.e., low-frequency,
zero GVD point. Looking at Figs. 1 and 10 one can see that
the curvature of theB,(w) plot, i.e., B4, is positive on the
right from the low-frequency zero GVD point, and negative
on the left from the high-frequency zero GVD point, with the
sign change happening around(27)=370 THz. Neglect-

ing powers ofd higher than four in the expressions fbr
(% 6), one can see that, if bo{B, and 8, are negative, then
Ak = B,8%+ % B,6* and 9 sAk, are always negative. There-
fore, condition(19) can be satisfied only once, which gives
the first FWM peak. A change in the sign @fAk; and the

spectral amplitude (arb. units)
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existence of the second FWM peak are ensured only by posi- FIG. 11. (@) Im «,, characterizing FWM gain, anRy, charac-
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257

20 40 50
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FIG. 10. Plots ofB; 46 Vs w for 1-um tapered fiberg, , s are
measured, respectively, inPkm, pg/km, p$/km.

terizing ratio of the intensities of the Stokes and anti-Stokes com-
ponents. Dispersion profile was taken as for PCF shown in Fig.
1(b), with wq/(27) =250 THz and Eq|?=43 W. (b) Results of the
numerical modeling of Eq(15). Parameters are the same as(&@r
and propagation distance is 0.5 fa) Same agb), but with |E,|?
=200 W.

tive (n=6) higher-order dispersion terms. This, however,
requires sufficiently large values & because higher-order
dispersions are very small. See Fig. 10 for comparison of
:82! 34! andBG'

For these reasons, use of the parabolic approximation for
the GVD profile[i.e., fixing wy at theB, minimum and using

only 8, and 3, in the expansion fob ()] will fail to pre-

dict correctly the position of the second FWM peak in our
fibers. The theory developed in R¢L4], in a different con-
text but also predicting a second FWM peak, uses the para-
bolic approximation for the GVD and therefore cannot be
directly applied to PCFs and TFs. Let us point out that the
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importance of higher-order dispersion also manifests itself itence of a secondary FWM peak that does not exist in con-
the fact that FWM gain exists in the finite region of normal ventional fibers and large-core PCFs, and studied its
GVD adjacent to the high-frequency zero GVD point—seeproperties in detail. Existence of this peak and strong depen-
Fig. 9. It is important to note that this gain region is insen-dence of its detuning on the pump frequency, together with
sitive to the presence or absence of the Raman gain, whide reduced power requirements for the small-core fibers, can

generates an instability peaking &= 13 THz for anyw,. potentially lead to the design of new kinds of parametric
amplifiers and oscillators. Let us stress that detuning of the
E. Numerical modeling of the generalized NLS equation secondary FWM peaks from the pump wave tends to infinity

All the ab its. for the di . file of ain together with the low-frequency zero GVD point shifting to
€ above resufts, for the diSpersion profie of qu . the far “red” part of the spectrum, when the core diameter of
tapered fiber, can be used to characterize the FWM mstablllthe TF or equivalent PCF is increased. This is the primary

ties for a PCF with dispersion profile shown in Fig. 1. Figure .o why the secondary FWM peak has not been reported
11(a) shows Imkc, ".’dez calculated using Eq¢15) and(16) in the previously published literature on PCFs, where the
and correspondmg_ to a PCF. pu_mped al/(2m) low-frequency zero GVD point and the entire part of the
=250 THz. Comparing this plot with Figs(1® and 3a) for ﬁ(ﬂispersion characteristic with negative slopea{w) were

a Tk, t_he main ldlfference IS thgt the detuning of the secon ot present in the practically relevant part of the spectrum,
FWM is larger in the PCF, which is due merely to the faCtsee, e.g., Ref§7-10.

that the ratio of the correspondingy| and|;| is smaller at Comparison of the results obtained from the wave equa-
this pump frequency. Results of numerical modeling of Ed+jq yith the corresponding results derived from the gener-
(15), showing the spectrum of the radiation after 0.5 m 0f 5704 NLS equation reveals a humber of deficiencies in the

propagation at pump pOWﬁ%:“?’ W, can be seen in Fig. |atter. In particular, the NLS fails to predict correctly the gain
11(b). This is in full agreement with analytical predictions of 59 relative strength of the Stokes and anti-Stokes compo-
the positions of the FWM peaks and the relative strengths ofients associated with the secondary FWM peak. It also com-
the Stokes and anti-Stokes compongotimpare Figs. 18)  pletely disregards the existence of a pair of additional for-

and (b)]. For higher powers the spectrum of the primaryyard anti-Stokes and backward Stokes waves excited by the
FWM bands broadens and is Raman shifted towards lowegaman effect.

frequencies. Secondary FWM peaks can still be clearly ob- \ye have also shown that under certain conditions position
served, together with second-order side bafisise Fig.  of the maximum of FWM gain can be determined not simply
11(c)]. by the wave-vector matching, but by the equality of the

group velocities of the Stokes and anti-Stokes waves.
V. SUMMARY
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