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Explicit symplectic integrator for s-dependent static magnetic field
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This paper reports our recent work on explicit symplectic integration techniques for the charged particle
motion in ans-dependent static magnetic field. Using the extended phase space, symplectic integrators can be
developed for Hamiltonians with or without the paraxial approximation using either the space or time as an
independent variable. This work extends the successful element-by-element tracking method for studying
single-particle nonlinear dynamics to a setsadlependent magnetic elements. Important applications of this
work include the studies of the charged particle dynamics in a storage ring with various insertion devices,
superconducting magnets, large aperture magnets with significant fringe fields, and solenoid magnets in the
interaction region. Consequently, this work is expected to make an impact on design and optimal operation of
existing and future light source rings and high energy physics accelerators.
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I. INTRODUCTION and zero outside. Such a field model allows one to use a
special vector potential with onlys component, A

Symplectic integrators are a set of special numerical inte—_ As(x,y)§ for the magnet. Consequently, the Hamiltonian

gration methods developed for Hamiltonian systems. Unlikq:an be reduced to a drift-kick combination of the Ruth type:
more widely used Runge-Kutta algorithms which are non-

symplectic in general, symplectic integration methods allow]? =T(p)+V(q), whereT(p) represents a drift and(q) a

numerical computations of the phase space vector at arﬁ}Ck' Explic?t symplectic in_tegrators for such Hamiltonians
. > N i ave been implemented since the late 1980s in a number of
time 7, {q(7),p(7)}, so that the transformation from the

% J I tracking codes. These tracking codes have been widely used
initial state {q(0),p(0)} to the final state{q(7),p(7)} iS  to compute charged particle trajectories for a large number of
canonical. The early application of higher-orderder=2)  turns without introducing artificial damping or antidamping.
explicit symplectic integrators in accelerator physics was ini-These tools have been successfully utilized in developing

tiated by Ruth’s work for the following Hamiltoniaft]: third generation light storage rings with a small emittance as
- R well as high energy physics collider rings with a high lumi-
H=T(p)+V(q). (D nosity.

However, these types of symplectic integrators fail to
model general nonmultipole elements withdependent mag-
Metic fields such as wiggler and undulator magnets with al-
aternating field polarity since their Hamiltonians can no

longer be split into drift and kick combinations. Instead, the

integrators frpm a lower-order one. This work reduced theHamiltonian fors-dependent static magnetic fields takes the
search for high-order symplectic integrators to that for afollowing form:

second-order integrator. The further development by Forest
and others extended Yoshida’s technique to the implicit inte- H=T(p—a(q,s))+V(q,s). )
gration and multimap explicit integratidb] as well as for
the time-dependent Hamiltonians in the extended phasgymplectic element-by-element tracking for this type of
space[6]. Hamiltonian is made possible using an integration method
In the storage ring, symplectic integration provides an espresented in this paper.
sential tool to study the long-term beam dynamics. Magnetic |t is worth mentioning the recent work to study magnetic
multipole elements, such as quadrupoles and sextupoles, afithge field effects in the large hadron collidérHC) and
modeled using a so-called impulse boundary approximatiorsmall rings with large apertures by Berz and co-workers
in which the magnetic field is assumed to be constant ([7,8]. They studied single-particle dynamics by iterating a
independent within the effective boundary of the magnet high-order one-turn Taylor map extracted using a differential
algebraic technique. In spite of its efficiency, semianalytic
techniques based on the map iteration may be limited in their
*Electronic address: wu@fel.duke.edu use without being benchmarked by element-by-element

Applying the Lie map techniques, Nef2] and Fores{3]
rederived Ruth’s integrator, and found that such integrator
were universally applicable to any Lie group. Later, Yoshid
developed a systematic methpd to construct higher-order
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tracking. In fact, Abellet al.[9] showed that there existed an form. Each quadratic term in the Hamiltonian has been found
optimal order of one-turn map which would most accuratelyto be exactly integrable. This leads to an explicit symplectic
reproduce the LHC dynamics as compared with direct trackintegration scheme fos-dependent magnetic fieldgee Sec.
ing. This finding clearly demonstrates the need for symplectV).
tic tracking models for three-dimension&D) magnetic
field elements. lIl. YOSHIDA'S PROCEDURE REVISITED
In this paper, the mathematical problem is first stated in .
Sec. Il, followed by a brief revisit of Yoshida’s procedure to  Let us consider a time-independent Hamiltonk(, p),
construct higher-order symplectic integraté&ec. Ill). Sec- its Lie map from a time 0 to a timécan be symbolically
tion 1V lays out our development of explicit integrators for written as
3D static magnetic fields with the paraxial approximation. In
Sec. V, the integration technique is extended to the exact M(t)=exp(t: —H:). ®)
Hamiltonian. This integration method has been used to de- . . .
velop a general symplectic tracking program for wigglers.SuPpose that this unsolvable Hamiltonian can be split \to
Using the wiggler integrator, the dynamics impact of OK4 solvable partsH=H;+H,+ -- - +Hy, then a second-order
(optical-Klystron free electron lase(FEL) wigglers has been integrator Fan be constructed using a symmetrized Lie map
studied for the Duke storage rir&ec. V). product[5]:
Ni(t)=expt:=H;:), i=1,... N
Il. THE PROBLEM

The goal of this paper is to find explicit symplectic inte- Ma=Ni(U2)N(1/2) - Nn(D)- - No(U2) N (112)
grators for the charged particle Hamiltonian with = M(t)+O(t3). (6)
s-dependent static magnetic field. Such a field depending on
all three coordinates can be described in the Cartesian coor- Yoshida’s method4] allows one to systematically con-
dinate system by a vector potential of the forA(r)  Struct a higher-order integrator from a lower-order one. Sup-

A (DD >~ e > that there exists arfth-order symplectic approxima-
=A(r)x+Ay(r)y+A,(r)z, and r=(x,y,z). The corre- pose . ) -
sponding Hamiltonian is tion M,, which has the property of time reversibility,

Mo H(t)= Myn(—t), then M,,(t) would only contain odd

XD Y. D 8.1:2) = — ST 8o e (o a2 power terms of time in its Lie exponen{6]. M,,(t) is then
PPy, 81:2)= = (14 8) "= (P2~ (py~ay) readily written as

8z 3 _ . 2n+1 2n+3y.
Mop(t)=exd:—tH+t Fons1tO(t ):].

wherep, ,= P, /Py is the scaled transverse momerig,is

’ . ~ > A (2n+2)th-order integrator can be constructed in the fol-
the nominal mechanical momentund=|P—(q/c)A|/P, ( ) nteg . !

—1 is the relative momentum deviationis the path length, lowing way:
an?a,;,_y,f(x,y,z)=qAX,y,Z(x,y,z)/(Poc) is the scaled vector Mo o(1) = Mop(X1t) Mon(Xot) Mon(Xqt)
potential.

As a special case, symplectic integrators for the magnetic =ex: —t(2x;+Xo)H+ 121 (2x5" 1
multipole Hamiltonian with the square root had been devel- ons1 o+ 3n.
oped by choosing,=a,=0 [6]. Tracking codes implement- X" )Fana+O(L )]
ing this type of integrators includeArPoT[10] andPTC[11]. —exg: —tH+O(t2"*3):].

However, in general, such a Hamiltonian contains terms
which mix the coordinate and momentum of the same caThe last step is realized if
nonical pairs, such as iﬁpx'y—ax'y(x,y,z)]z. Therefore,
symplectic integrators developed for Hamiltonians of the Xo+2x,=1, x3""142xi"t1=0.
Ruth type are no longer applicable. This problem is particu-
larly difficult for the above form of the exact Hamiltonian in One set of trivial real solution is
which the mixed terms are grouped together in the square
root. _ _ 7
In large rings, the paraxial approximation can be made for o= 2_ol(2n+1)’ X1= 9 _oli(2n+1)" @)
the charged particle motion, which reduces the Hamiltonian
to the following form: The above procedure of Yoshida provides a recipe for
constructing higher even order symplectic integrators from a
_ (Px—a0®  (py—ay)? lower-order one. The task of developing higher-order sym-
H(X,Px.Y,Py,8,1;2)~ =6+ 2(1+6) + 2(1+6) ~az plectic integrators fos-dependent magnetic elements is then
(4)  reduced to the development of the lowest even order, i.e.,
second-order, integrator.
While the mixing of the coordinate and momentum remains It is worth pointing out that Yoshida’s procedure does not
in this Hamiltonian, the mixed terms are now all quadratic inalways produce the most effective higher-order integrators.

olU(2n+1) 1
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On the other hand, symplectic integration methods have bearspectively, remain unsolved. However, using the generat-
actively studied by mathematicians since 1990s as part dhg function technique, it can be shown th&f andK; are
geometric integration12]. Published references on a wide also exactly solvable.

range of research in this area are documented by the Let us consider the Lie map exp(AoKj:). Noticing that
SYNODE project[13]. For example, McLachlan's work on K contains onlyp, but notp,, a generating function is in
designing effective high-order integration methddd] can  order to transform gf,—a,)? to (p3=")? using a set of new
provide valuable insights on developing more efficient inte-canonical variables. The explicit Lie map for this generating
grators for our problem. In particular, we would like to function is

evaluate a class of more efficient higher-order integrators

\[/\ilt5f]1 positive step size proposed by Nadolski and Laskar szexd:_f ax(x,y,z)dx:),
IV. SYMPLECTIC INTEGRATORS WITH PARAXIAL Xp I — M' =Aexp :— Ao-p)z( At
' ' 2(1+68) ) MU 2(1+46)7) 7

APPROXIMATION

The development of approximate Lie maps for This generating function Lie map transforms the phase space
zdependent Hamiltonian of E¢4) can be facilitated by ex- Variables explicitly as follows:

tend_ing thg phase space to includep(,) as the fpurth ca- Adx,y, 2,81} ={x,y,2, 8,1},
nonical pair andr as an independent variable withr=dz
[6]. The equivalent paraxial Hamiltonian in the extended Api=Dpy—ay, A lpi=pytay,
phase space is given by
(B—80? _ (By—ay)° Apy=py~ | Trax, A tpy=pyt [ ax
N Px—ax py_ay xPy= By™ W d x Py~ By W !
K(X,px,Y;Py,0,1,2,p,;0)~— 6+ 2(1+0)  2(1%0)
day . day
—a,+p;. (8) Axpz: pz_j dea -Ax p,=p,+ J ﬁ_ZdX

Since this Hamiltonian igr independent, an exact Lie map | - jition. the Lie map exptAcpd2(1+ 8):) functions as
for an integration stefA o can be written symbolically as a drift: ’ x

M(Ao)=exp—Ao:K:). (9) Aop?
p(i- 217 4) | Y2 9PxPy P =1Y.2.0,Px.Py el

To simplify our derivation, a gauge transformation is made to
yield a simpler vector potential withA,=0: A p( Aop?
exp :

Px
- m X=X+ ——=Ao,

=Ax(x,y,z)§<+Ay(x,y,z)§/. Now by splitting the Hamil- 1+6

tonian to several parts,

2 2
K=Ky+Ky+Kq exp<;_ﬂ: P
2(1+9) 2(1+ 6)?
with
(py—ay)2 (Dy—a,)? L|ke|W|se(,j the .Lle map e>{p—(_Ao/2]2K2:]_ can pe exactly
Ki=p,— 8, K,= . Ka= _ evaluated using a generating function Lie magl,
2(1+9) 2(1+9) =exp(:—Jay(xy,)dy:).

o ) Finally, we have completed the development of an explicit
A second-order approximation fo¥1 is constructed as fol- second-order symplectic integrator fou:

lows:

— A ZA
Ao Ao M2=ex;{:—u:)Ayexp<:— PyRo : A;l
Ma(Ao)=exp = —Ky: Jexp 1= —Ky: 2 4(1+9)
A X A F{ Pdo Al
exp i — A
Xexq:—AaK3:)ex;{:—70K2:) X 2(1+59)
2
. pyAo 1} 4 ._(pz_é)A‘T.)
xexr{:—ATUKl: XAyex;{. 4(1+9)° Ay exp(. 2 )
(10
=M(Ao)+0O((Ao)3).

It is worth pointing out that this type of second-order
Apparently,K; is exactly solvable due to the separation of approximations fotM is not unique. By choosing different
the coordinate and momentum belonging to the same canoninagnetic field gauges for the vector potential, one can con-
cal pairs whileK, and K3 containing &,p,) and {,py), struct an infinite set of second-order Lie map approximations
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for the same Hamiltonian. It is expected that a particular dx 9K dP, K
choice of the vector potential can result in a more efficient d- 9P dr - ax (i=1),
symplectic integrator. X

d(ct) IK d(—Py) IK

V. EXTENSION TO EXACT HAMILTONIAN dr  a(—Py)’ dr  a(ch (1=0).

The development of sym.ple'ctlc lntegrator.s for the eXaCTConsequently, the equivalent Hamiltonian can be expressed
Hamiltonian of a 3D magnetic field becomes important when, 1a:ms of conventional time and space quantities

the paraxial approximation is no longer valid. One such ex-

ample is a dipole magnet with a small bending radius in a K(X,Pyx,y,Py,z,Pz,ct,—Pg;7)

compact storage ring. The integrators based upon an exact 2 2

Hamiltonian can also be used to benchmark those based (ﬁ_g,&) _<p0_9¢ +m2c2

upon approximate Hamiltonians. _ C C (13)
The development of explicit integrators in Sec. IV de- 2m '

pends on the quadratic nature of the Hamiltonian. Conse-
quently, this technique cannot be directly applied to theNote that by including the additional terfmc” in the above
square-root form of the exact HamiltonigRq. (3)]. How-  expression, the resultant Hamiltonian has a zero value. This
ever, we recognize that an equivalent exact Hamiltonian irparticular feature of the Hamiltonian is critical for deriving a
the quadratic form can be constructed using several method®rm of Hamiltonian using the real timeas an independent
One of them starts from a quadratic Lagrangian. variable.

The following invariant quadratic Lagrangian in the four-  In the case of a static magnetic field, the scalar potential is
spacd 16] describes the charged particle motion in the eleczero and the vector potential is time independent. The total

tromagnetic field: energy and momentum of the charged particle are constant,
i.e., the relativistic parametey=const. As a result, the in-
L(xi,Uls7)=— TUiUi _ EUiAi’ (11) dependent variablg can be ;witched from the proper titioe
2 c some scaled real time=ct in the following manner:
where x'=(ct,x,y,z) is the four position vector,U' dr—do=cydr,K—K/(cy).

_ i _ e . . _ .
=dx/dr=(yc,yv) is the four-velocity, dr=dt/y is the  rpjq yjelgs an equivalent Hamiltonian with as an indepen-
proper time,A'=(¢,A) is the electromagnetic field four- Jent variable:

potential. The Einstein summation rule is used for repeating

2
indices. The conjugate four-momentum is given by (5— E*) P24 m2c2
— C T
. aL : . ‘o) =
PIZ_O—,U =mUI+gAI, K(X,Px,y.Py,Z.PZ,T,FFT,O') ZmCy [
i

where r=ct and P,=—Po=—&/c=—+ymc. The next step

is to replacemcy in the denominator by— Pr, which is
permissible due to the zero value of the Hamiltonian,

and the corresponding Hamiltonian is also quadratic:

Pi—gAi)(Pi—gAi

H(r)=P'U;+L= S (12) K(x,Py,y,Py,2,P,,7,P7;0)
2
Note that the value of the HamiltoniaH,= m¢?, is invari- ( P—ZA| +m2c?
ant under Lorentz transformation. The covariant equations of __ ¢ + E p—
motion are readily derived from this Hamiltonian: 2P7 27
. pi_ ﬂAi The canonical momenta can be further scaled to yield the
ax' _oH _ c following equivalent Hamiltonian:
dr oP; m ' —
' K(X,Px,Y: Py Z,Pz, 7,75 0)
q - -
, k_ 1Ak _Z\2 292
dr B X B m C X ' zp? 2

It is worth pointing out that the space components of a cowherea and p have been defined in EG3), p,=P,/P,
variant four-vector are equal to the negative 3D vector, e.g.8p=vo/Cc, and yo=1/\/1— Boz are relativistic parameters at

P,=(Py,— P), therefore, we can write the equations of mo- the nominal energy.

tion for the space components, such asxtwmponent and  Finally, to express the Hamiltonian in terms of momen-
the time component, using an equivalent Hamiltonkas ~ tum deviation and path length, the fourth canonical pair
—H, (7,p;) can be replaced by&l). Using the relationship be-
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o Y . .
tweena_and Py, p=—(1+ ) 2_+ _1/(y0/30), a Hamiltonian Field—Free .' ' Field_Free
depending on momentum deviation and path length can b¢ | Region 3D Magnetic Field Region Region
derived: -

0 Z Tin et ] , f
- >\ 2 2 lme—]ntegmn(m
(p—a)*=(1+9)

K(Xapx 1y1py 1zap2151| ;U):
FIG. 1. Two steps are involved in symplectic integration frgym
5 to z;. Using the time integration for the exact Hamiltonian, the first
YoBo step takes the particle from to azlocation slightly passing,. In
(15 the field-free region, the second step takes the particle to the final

) . . . . position ofz; using a canonical transformation.
With this quadratic form of the exact Hamiltonian, the tech-

nique outlined in Sec. IV can be readily applied to construciya|ly while providing a phase space conversion at the bound-
explicit symplectic integrators. It is important to note that 5ries of those elements which need to be modeled by
this type of integrator uses the time integration in eight-symplectic time integration. Such a conversion is topologi-
dimensional8D) phase space. . _ cally permissible if it occurs in the field-free region.

Finally, we would like to address the relationship between  Thjs jdea is illustrated in Fig. 1. Suppose that the 3D
magnetic devices and beam diagnostics are located along thg integrate froniz, to z,, the time integration can be first
beam direction. Likewise, many beam parameters are Obgerformed fromz, to az location slightly beyond,. In the

served and measured along the beam line at a certain azjg|y_free region betweem, and z;, the particle drifts for-
muthal positions. Therefore, it is convenient and logical to |\4,q toz; using the following Hamiltonian:

use s as the independent variable in the Hamilton[&y.

(3)]. Consequently, symplectic maps can be computed andKq(X,py.,Y,Py,Z,p;,0,l;0)=—(1+ 5)2—p§—p§+ p;-
symplectic tracking can be performed from one azimuthal

location to another. However, to our knowledge no explicit Mathematically, the following canonical transformation is
integration method has been developed for the exact HamiPerformed:

2\/ (1+68)%+

toniar_1 with the square root using the space integration. _ Ap=Ap,=Ap,=A5=0, Ac=Az
Using an alternative exact Hamiltonian for 3D magnetic

fields, we have developed explicit integrators in 8D by re- Px Py S

sorting to the time integration. Direct time integration may Ax="Ao, Ay=-"Ag, Al=——Ag,

be useful for a small circular accelerator in which the mag-
netic field is known globally. As an example, we have develyhereu=\/(1+ 8§)2— p2— pyZ, andAz is the drift length. As
oped a FODO lattice consisting of a focusing quadrupole, & result of this practice, the local time integration is used to

drift, a defocusing quadrupole, and another drift. Both quatyeate a symplectic map between two locations in spage,
drupoles in this FODO lattice possess extended fringe fields, g Zs.

The global magnetic field in the FODO lattice is the super-  This |ocalized time integration is tested with the same
position of two quadrupole fields. Each of the quadrupoleropQ lattice described above. The results are shown in Fig.

fields is represented by the following vector potential: 2. The symplectic condition of the tracking code is deter-
b 2 mined by the numerical behavior of the total momentum

a=(0,0-ib(2)(x2—y?)), b(z)= ! exp( - _2) change in the drift spaceip=(1+ ) — \/pxz—pyz—pzz. The
V2w 215 calculation shown in Fig. 2 is performed in the 8D phase

(16)  space, always carrying the value pf during the tracking.
We have found thadp would show no particular long-term
where b, and I, are the focusing strength and effective trend of increasing or decreasing, therefore symplectic, if the
length of the quadrupole, respectively. The fact thatfollowing two conditions are metl) if the time integration
ﬁx(ﬁxé)io does not change the nature of the problemjs extended far enough from the quadrupole cefinger
for it is equivalent to having an artificially introduced current than =8l ); (2) if the number of integration steps is large
source in the lattice. This additional term which allows theenough &50 steps In this casegp is small, of the order of
soft-edge modeling of the magnet is in fact physically and10 3 and the change qd, is also small in the last steps of
mathematically more correct than the hard-edge modehtegration. By meeting these conditions, the drift-forward
which precludes going back to the original Hamiltonian. Nu-operation is carried out in the field-free region in the numeri-
merically, we have confirmed that the second-order integraeal sense. Becaugg is frozen in the field-free region, the
tor for such a vector potential field is symplectic. 8D symplectic dynamics is then reduced back to the 6D sym-
Knowing the exact global field for a storage ring with a plectic dynamics.

large number of elements is practically impossible. In addi- It is important to point out that when both horizontal and
tion, the time-dependent tracking data are difficult to alignvertical motions are excited, particle’s motion is coupled
for a particulars location for further analyses. These difficul- nonlinearly. Such nonlinear coupling is not present in the
ties can be resolved by sticking to the space integration gloparaxial Hamiltonian. The nonlinear coupling in this FODO
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10 ; wiggler harmonic expansion of the magnetic field allows the
modeling of realistic wiggler fields. For example, a next lin-
ear collider(NLC) damping ring wiggler with saturated pole
N " Px tips can be modeled with a few tens of wiggler harmonics to
achieve 10° or better relative field accurady7].
Before this work, explicit symplectic integrators based on

5 (i D . /
U P
-g \/ a simple average Hamiltonian method of Snjit8] or simi-
=0 lar techniques had been used for wiggler trackiihig,19—
":>< /\ 21]. By retaining the most important nonlinear term in the
e \ system, this method is rather efficient. However, the accu-
5 sy P \ racy of the tracking results needs to be verified with a direct
G > T~ ¥, wiggler integrator described in the following.
.18_6%“);@@64 By choosingA,=0, a more efficient integrator is obtained
with the vector potentialz&: (Ax,Ay,0). Thescaled vector
'1.020 15 .1|o 5 0 5 10 15 20 potential5= qA/Poc is given by
X,y [mm]

FIG. 2. A particle’s phase space trajectories plotted at the end of ax= % D mnCog Ky X) CostKymy) sin(kznz+ 6y),

a FODO lattice(QF for the focusing quadrupole and QD for the

defocusing quadrupoleQF-DRIFT1-QD-DRIFT2(100 000 turng _ ﬁ . . .

Quadrupole parameters are;Jor=6 m 2, (by)gp=—5 m?, I, ay_mE’n Dm”kymsm(kX'X)SInHkymy)s'me”Z+ On),
=0.1 m, and the fringe field extends t01.0 m. The length of both

drifts is14=0.5 m. Initially, the particle starts withx(p,,y,py ,6) a,=0, (17

=(0.01,0,0.01,0,0).
( ) where q=-—|e| for electrons, D,=Cmnn(K/v080)

lattice is shown as finite thickness of the phase space eIIipse>§(kW/k2n) ' K=eBo./r.n C_ZkW is the wiggler param_eter, and

and fast motion around the turning point in Fig. 2. Yo, Bo are the relativistic parameters at the nominal energy.
Clearly, the time integration for the exact Hamiltonian FOr Vertical planar wigglers, similar harmonic expressions

requires the development of proper 3D field models boundeffr fields can be obtained by changirgo y andy to —x in

by field-free regions. This remains a challenge for severai'® @b0ve expressiong2]. o _ ,

reasons. First, the 3D field model should be analytic in the 1N€ magnetic field for an arbitrarily polarized wiggler can

entire integration region. Second, to facilitate the conversior?® €xpressed as a superposition of a horizontal wiggler and

between the time and space integrations, the model shoulfrtical wiggler field. This allows us to develop a general

provide rapid tapering at the ends of the magnet. Third, iﬂnggIer tracking codg using W|ggle_r harmonics. Th_|s track-

there is significant fringe field overlap from two adjacentiNd code has been implemented in several tracking codes

magnets, they have to be treated as one magnetic device. INClUding TRACY [23] and AT [24].
Symplectic wiggler tracking has been used to study Duke

FEL storage ring beam dynamics. The Duke FEL storage
ring is a dedicated FEL light source with a small emittance
(e,<=18 nmrad at 1 Ge) Like third-generation light

To illustrate the usage of explicit symplectic integratorssources with a small emittance, the ring performance is criti-
for 3D magnetic fields, we have developed a general symeally dependent on the dynamic aperty9,21]. Unlike
plectic tracking code for wigglers using the paraxial Hamil-many conventional light source rings, the Duke ring is de-
tonian of Eq.(4). The three-dimensional magnetic field for a signed with long straight sections to maximize space for FEL
horizontal planar wiggler can be described in the followingwigglers. Accurate dynamics studies with long FEL wigglers

VI. A GENERAL WIGGLER INTEGRATOR
FOR BEAM DYNAMICS STUDIES

form: become possible with the above generic wiggler tracking
B code. Our studies also use the frequency map analysis tech-
== Crrcog kyx)coshik,my)cosk,z+ 6,), nique of Laskar[25-27 to gain in-depth understanding
Bo mn about the particle’s loss mechanism.
5 C K In the Duke ring, the present FEL consists of two electro-
_XZE mn X'sin(kx,x)sinf‘(kymy)cof(kzn2+ 6,), magnetic OK4 wigglers, each 3.4 m long separated by a
Bo mn kym three-pole buncher magné&tee Table )l The main field of

the OK4 wigglers can be described by the fundamental har-

BZ Cmnkzn

i ; monic  with its B component as B,=
costhx)sinhtkymy) sin(kz 2+ fr), — Bgcoshk,y)cosk,2). They wiggler tracking is someywhat
optimized for efficiency by using a second-order integrator
whereB, is the amplitude of the peak magnetic fiedy,  and five integration steps per wiggler period.
are the relative amplitudes of wiggler harmonik$,,=k?, The significance of dynamics impact of the OK4 wigglers
+k§n, kzn=nky, ky=2m/\,, \, is the wiggler period, and is illustrated by the change in dynamic aperture after the

0, is the relative phase of theth wiggler harmonic. The wigglers are turned on. Figure 3 shows the on-momentum

B0 m,n I(ym
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-3

TABLE |. The OK-4 wiggler parameters.
250
OK-4 FEL -4
Total wiggler length(m) 6.7 20t
Number of wigglers 2 |-~
Number of periods per wiggler 335
Wiggler periods(cm) 10 =19 1
Wiggler gap(mm) 22 £
Peak magnetic fieltkG) 5.5 il -
Max. wigglerK= > 5.1
kywmeC

5.

dynamic aperture of the Duke ring with OK4 wigglers turned

off. A number of excited resonances are identified and la- %30 20 10 0 10 20 30
beled in both the configuration plot and tune plot. In the
direction, the dynamic aperture is limited by the sixth-order 4

resonancei) with 6v,=55. The horizontal loss region is ™
connected to the high diffusion region at some vertical am- 418f Iy
plitudes as a result of two-resonance overlap: with 2v, a1l
+4v,=35 and(e) with 7v,=64. In they direction, the loss {6y = e
region around the resonan@ with 3v,+4v, =44 provides (a):vj?
a practical limitation for the vertical aperture. Beyond it, the s g
typical third-order sextupole resonan¢k) with v,—2v, o>
=1 is excited, forming a triangular island. It is interesting to 414} 2v v |- 3§ 7
observe that at even higher vertical amplitude there exists ¢ | i
stable region which corresponds to a cross point in the tune i N = . .
space at ¢, ,v,)=(9.25,4.125). However, the stable region  4.12} AN
beyond the resonandg) is washed out when various lattice (b)8v, =73 3y, + v, =44 g
errors are taken into account. a1 O L V- 2v =1

Figure 4 shows the dynamic aperture with OK4 wigglers 44 %

91 912 914 9.16 9\.,18 92 922 924 926

X

turned on. Compared with the wiggler-off case, the most
apparent difference is the tune space footprint. The horizon-
tal tune spread is roughly the sanfieom 9.11 to 9.20). FIG. 3. (Color onling On-momentum dynamic aperture of Duke
However, while decreasing from 4.186 to 4.12 with wigglersStorage ring at the center of the arc wilh,=2.48 m, B,

off, the vertical tune spread with amplitude increases from1= (135\7/ m. dTPhe OK4 t‘)"’igglfe{s a&? t”{ned gﬁ,lgwoeonc%r:inarl] ege(;gy Is
4.186 to 4.22 with wigglers on. This is the result of the: €V, and the number o7 fracking turms 1s - 'he shaded areas

. . . . in plots indicate different diffusion rates. Unplotted white spaces are
strong nonlinear wiggler focusing. Because of a different

. . regions where particles are lost during trackiffepr colored online
tune spread footprint, different parts of the tune space arﬁgures, the diffusion rate per turn is computed in a logarithmic

bEI.ng 'sampled by pa,mdes when wigglers are turned ONscale and then mapped to a color map: blue areas indicate low
which in turn excites different resonances. For example, b':’“aiffusion regions, red areas indicated high diffusion regidarious

figures show a four-resonance crossing at about the samggited resonance lingsom (a) to (h)] are identified and labeled in
horizontal amplitude of 10 mm, but with different vertical e frequency map plotthe lower ploj and in the configuration

amplitudes. Like the case with the wiggler off, the horizontalgpace plotthe upper plot
aperture is limited by the same sixth-order resonance. In the

vertical direction, the situation is rather different. With the determine the available dynamic momentum aperture for

wiggler on, the vertical aperture is not limited by any reso-_ _ . . . . -
nances. Instead, it shows an almost sudden transition from a/nanous wiggler and storage ring operation conditips}.

intermediate level of diffusion to a complete particle loss.

This effect can be attributed to the exponential increase of VIl. CONCLUDING REMARKS

the wiggler field near the vertical pole tips as expressed in

the hyperbolic functions. In such a case, the wiggler field Although Ruth first speculated in 19803] that an ex-

acts like a kind of hard limit for the vertical aperture. As a Plicit high-order map might be possible for a Hamiltonian of

result, the vertical aperture is somewhat reduced to 13.6 mnthe form H=[p—a(q,t)]%/2, the exact procedure to con-
We have also studied the dynamics impact of circularlystruct such a high-order symplectic integrator was not devel-

polarized FEL wigglers in the Duke ring. In particular, the oped until this work. Furthermore, we have successfully de-

off-momentum dynamic aperture has been computed teeloped a quadratic Hamiltonian for the exact particle
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16— E dynamics in the next generation storage rings, from light
source rings to linear collider damping rings to the Neutrino
14y 4 Factory and Muon Collider. Two types of applications are
particularly important. The first type is the modeling of the
12y 1 magnet fringe field. For example, superconducting dipoles

and wavelength shifters are increasingly becoming a pre-
ferred radiation source for hard x rays in some third-

generation light source rings. Tkadependent magnetic field

in such devices can be properly modeled using an explicit
symplectic integrator described in this paper.

The second type of application is the modeling of mag-
netic undulators and wigglers with linear, circular, or arbi-
trary polarizations. Before this work, explicit symplectic in-
tegrators had resorted to the average Hamiltog&et. V).

In addition, implicit methods based upon generation func-
tions, both analytical and numerical, had been developed
ximm] [29-31]. While very useful, these methods have various
limitations and their accuracy needs to be benchmarked with
the direct symplectic wiggler integration method presented in
this paper. This method allows direct trajectory tracking in
” wigglers in the same way as for magnetic multipoles. The
usefulness of this technique has been demonstrated by our
5 study of the Duke storage ring dynamics with the OK4 FEL
wigglers(Sec. V).
s Finally, we would like to comment on the time integration
for exact Hamiltonian and its use in existing 6D tracking
codes. First, it remains a challenge to model the 3D magnetic
field using an analytic representation with a rapid tapering.
Second, as demonstrated in the FODO lattice exarf§de.
V), reducing 8D symplectic dynamics to the 6D symplectic
dynamics can be done in the field-free region. However, a
careful study has yet to be performed to determine if the
variable p, need be carried around for the part of tracking
187 912 914 90'15 918 92 9@ performed in 6D tracking codes.

X

10f
4-6

y[mm]

4-7

4.22r

4.2

¢)3v. -2v\=19
x % -7

4.161

-8

4.141 (9)6v, =55

-9
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