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Phase-field model of Hele-Shaw flows in the high-viscosity contrast regime
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A one-sided phase-field model is proposed to study the dynamics of unstable interfaces of Hele-Shaw flows
in the high viscosity contrast regime. The corresponding macroscopic equations are obtained by means of an
asymptotic expansion from the phase-field model. Numerical integrations of the phase-field model in a rect-
angular Hele-Shaw cell reproduce finger competition with the final evolution to a steady-state finger.
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INTRODUCTION in a Hele-Shaw cell and intracellular dynam|&s-14].
In general, the phase-field models have been considered

The characterization of the dynamics of morphologicallyfor symmetric situations where the characteristic parameters
unstable interfaces is one of major problems of nonequilib{such as the thermal diffusivityare identical in both phases.
rium phenomenologyl]. Some relevant examples of inter- This gives rise to the so-called two-sided symmetric models.
faces that grow out of equilibrium are dendritic growth, di- Very recently, Karma15] has proposed a phase-field model
rectional  solidification, flow in  porous media, of the one-sided typéwith zero diffusion in one phaseo
electrodeposition, bacterial colony growth, and two-fluidsimulate quantitatively microstructural pattern formation of
flow in a Hele-Shaw cell. The latter example is also calledalloy solidification. For the viscous fingering problem with
the Saffman-Taylor problem and has played a central role imrbitrary viscosity contrast, a phase-field model has been in-
this field, both because of its relative simplicity and becauseroduced in Ref[9]. Such a phase-field model, which is a
of its potential importance in oil recovery. It has been widelytwo-sided model, is useful to describe the problem of viscous
studied both experimentally and theoretically. fingering except in the high-viscosity contrast regime. This

Even if the Saffman-Taylor problem is mathematically regime is experimentally relevant since typically the pushing
simple in relation to other problems, it has a moving bound-luid is either air or other fluid of negligible viscosity. For
ary condition which makes it a free-boundary problem. Thesuch a regime, a proper model was lacking and this is what
corresponding equations have been solved analytically fowe are presenting in this paper; a one-sided phase-field
very short times by means of a linear stability analysis andnodel for the high-viscosity contrast regime of the viscous
for the steady-state finger shape by means of conformal magingering problem.
ping technique$2,3]. Some analytical results have also been  Our model contains an equation for an order parameter. It

obtained for the dynamics of intermediate tifdd. Numeri-  is model B of Ginzburg-Landau phenomenolodg6]. In-
cally there are several techniques, most of them involvingstead of the coupling of the order parameter to a physical
integral boundary method$—-7] field through a second equation, we include a boundary con-

The so-called phase-field models have been introducedition such that the interface becomes unstable. This is done
within the context of solidification to study the dynamics by means of a ramp that creates a flux from the boundary. To
from the linear regime to the long time behav|&). These consider a one-sided model, we only need to neglect changes
models are based on the introduction of a mesoscopic equax the order parameter in one of the two phases. The model
tion for an order parametéthe phase-field This equationis could also be relevant for dendritic growth at very small
coupled to other physical fieldsuch as a thermal fieldThe  undercooling by introducing anisotrop$7,18|.
advantage of this method is that one does not have to explic- Our phase-field model has the advantage of being very
itly trace the interface. It is a field model for all values of the simple to implement on a computer and contains a complete
order parameter that varies continuously from one phase tdescription of all the nonlinear and nonlocal properties of the
the other. One has to identify the locus of points with a givenmacroscopic model. We show how the macroscopic equa-
value of the order parameter, which is arbitrarily chosen taions of the problem are obtained from the phase-field model
be the interface. The use of a mesoscopic model, for whicln the sharp interface limit. This is done by means of the
the interface has a small wid#) is justified as long as in the matched asymptotic expansion method. We then present nu-
sharp interface limie— 0 the correct macroscopic equations merical solutions showing how our phase-field model repro-
are recovered. Recently, the concept of phase-field modetfuces the main features of the viscous fingering problem
has been used in a broader sense to include any model whislich as the dynamic competition of modes and the formation
contains continuous fields that are introduced to describef a steady-state finger. This makes the model an attractive
phases separated by diffuse interfaces. Phase-field modetsol to use to study problems that would not be easily fea-
have been used in a wide range of problems such as viscosgble with traditional methods such as the propagation of
fingering, roughening, vesicles, pinch-off and reconnectiorviscous fingering in the presence of quenched disorder.
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THE MODEL

The viscous fingering problem

In the Saffman-Taylor problem both fluids are governed
by Darcy’s law, which relates the fluid velocity to the pres-
sure gradienf2]. When the low-viscosity fluid displaces the viscous
high-viscosity fluid, the interface between both fluids is un- fluid
stable. When the pushing fluid is considered to have zerog
viscosity, Darcy’s law states that the pressure on the pushing®
fluid is constant and all that remains to be solved are the | :
equations for the viscous fluid subject to the proper boundary -
conditions at the fluid-fluid interface. This is called the high-
viscosity contrast regime and in this regime the equations for
the displaced viscous fluid are

air

VZp=0, D

ym

v,=—KVp-n, (2) y

Ap=yx 3) FIG. 1. Scheme of the initial profile prepared with a ramp that
' will be maintained during the temporal evolution.

Equation(1) is the Laplace equation in the bulk, wheyés

the pressure of the viscous fluid. At the interface, there ar&ig. 1. This situation can be created by initially preparing the

two boundary conditions: the continuity equation, E®) system with a profile of the form

and the Gibbs-Thomson condition, E8). v, is the velocity

normal to the interfaceK is the permeability of the viscous 1 it y>ym,

fluid, K=b?12u where b is the separation between the .

plates, ang is the viscosity of the fluid that is being pushed. p(xy)=) ~1-aly=ym) i yn=I<y<ym. (6)
Ap is the pressure of the viscous fluid minus the constant —1+al if ysy,—I,

pressure at the zero viscosity fluid, which without loss of

generality can be taken equal to zexads the local curvature  gn( fixing the valuep;= — 1+ al behind the interface up to
at the interface andy is the surface tension. These three g distancd throughout all the temporal evolution. This slope
equations also describe solidification in the quasistatic limitepresents the driving force of the system. The parameter
of small undercooling by introducing anisotropy. In what fol- ¢ontrols the slope and the finger’s growth velocity. For con-

lows, we present the equations for our phase-field model anglenience we will refer to the air as tipus phase and to the
show how it reproduces the above equations in the shargiscous fluid as theninusphase.

interface limit.

Phase-field model THE SHARP INTERFACE LIMIT

Our phase-field model contains a time-dependent In this section we obtain the macroscopic equations for
Ginzburg-Landau equation for a conserved order parametdfe viscous fingering problem in the high-viscosity contrast

and includes a boundary condition that makes the interfacEegime by means of an asymptotic expansion of the phase-
unstable. The equation reads field model in the sharp interface limét—0 [19,20.

Our starting point is Eq(4), used in the study of a con-
d served order parametér. The chemical potential is given b
—E=V MGV (= g+ ¢° - V29)). (@) paramete P given by

(¢p)=pp—€’V2hp=— o+ ¢p>— €?V2¢. 7
The local order parametep adopts the equilibrium values ()= pis ¢ o+ ¢

$eq=1 (air phasg and ¢oq=—1 (viscous fluid phase At

the interface,p varies continuously from one phase to the
other. The parametavl, has a constant value in each phase
and is zero in air,

We divide the space into an outer and an inner region. We
assume thaip=* ¢.q+O(e) far from the interfacee is
considered to be a small parameter and we expand all the
variablesa(r,t) around the value=0 in the outer region.

M if $<0 We obtain

©)

“lm=0 if ¢=

m=0 if ¢=0. a(r,t)y=ag+ea;+ e%a,+- - - . (8)
The air phase can be pulled toward the viscous fluid. An

unstable interface is developed by maintaining a slope in the For the interfacial region or inner region, we adapt our

order parameter close to the interface, as the case shown @oordinate system using time-dependent curvilinear coordi-
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nates. The interfacial points are given by the curvilinear co- For the region far from the interfad@uter region, the
ordinatesu, which is the normal distance to the interface, andlength scale involved is much greater thgnso we can use

s, which is the arclength. Because the natural dimension im common time-independent coordinate system. In the vis-
the inner region must be small, we introduce the variable cous fluid region the dynamical equation for the order pa-
defined asv=u/e. Thus, in the sharp interface limit, when rameter is simply

e—0, the inner region goes fromv— —o to w— +o. We
use the corresponding inner fieldgw,s,t) in the inner re-
gion and the corresponding expansion is

A(W,S,t):Ao+ EA1+ 62A2+ e (9)

When we take the limit of the sharp interface;»0, the
conditions for the fielda andA , from the expansions tidh
order ine are

lim Aj= lim (10

u——0

a;,

W— —
lim 0,A 1= lim d,a;. (11
u—-—0

W— — 0

Due to the fact tham=0 in air, the matching condition is

only imposed in the viscous phase.
In the inner region, we introduce the order paramefer
such thatg(u(t),s,t)= ¢(r,t), therefore

dip= b+ dud, . (12

€d,.p=MV?u(p), (16)

where () is given by Eq.(7).

Inner region

We now proceed to solve the equations for the inner re-
gion, Egs.(13)-(15). We also use the matching conditions,
Egs. (100 and (11). Solutions that obey¢(0)=0 and
dwdo(—0)=0 are required.

Order 2. For the inner region, the dynamical equation
to lowest order ine, (e 2) is taken from Eq(13),

17

Here we have taken into account the expansionuforThe
previous expression has a solutipg=my+ngw. The re-
quirement thatwy must be finite forw— —o implies that
no=0. Finally, we considermy=0 and thenge,==*1.
Therefore,uq=0 in the inner region.

Order e L. Taking the first-order terme™ from the dy-
namical equation in the inner region, E43), we have

‘93\/#0:0-

We rescale time as= et since we work in the quasistatic

approximation, where the characteristic times for interface —Vodwdo=MdZmy, (18
motion are much larger than the characteristic times for the

diffusion to take place. The local curvature=—V2u is  sinceuo=0. Integrating Eq(18) in w we find

positive when a bump of theé>0 phase protrudes into the

¢$<0 phase. Starting from E¢12), using the Laplacian op- —voPo=Mdypit+n;. (19

erator in curvilinear coordinate§?= 92— kd,+d2, and
making the corresponding variable changes, we have

v 1 5 K 5
€0,.¢p— ;3W¢ZM Z%M(d’)— ;f?wM(d’Hf?sM(d’) ,
(13

where we have dropped the tildes. The normal velogity

By evaluating between the limiig= —~ andw=o, Eq.
(19), we obtain
_2¢eqvonaw/le(_°°)v (20)
where 2 is the order parameter change between the two

phases and we have only the contribution of the viscous fluid
phase on the right-hand side. Using Ed1) we have

—dwu is positive if the phase with a negative order parametep ,; (—w)=g,uy(—0)=0. From Eq.(20), v, also van-

goes into the phase with a positive order parameter. Thifshes and Eq(19) givesn,;=0

variable is also expanded in powers ef

By integrating Eq(19) in w, we find thatu;= u,(— ) is

For the chemical pO'[entia.l, the inner expansion in terms a constant. In order to Obta"ml(_w), we use its expression

of ¢ (to ordere?) is given by

p(P)= o+ €+ €y, (14)
with
_ 2
Mo= tp,~ OyPo,
M1:M|'30¢1_f93v¢1+ Kdwdo, (15

2 2
Moo= %Mg0(¢1)2+ Méo¢2_ Oy2t+ kdyhp1— 5o,

from Eq. (15 and we multiply both sides of this expression
by d,,¢ and integrate irw

pa(— ) f dWaybo= f dWabol pep,— 33) b

+Kf dW(dy, o). (21)

The functiondy, ¢ is known as the Goldstone mode and is
related to the translational invariance of the interface. The
equation forgg, written as a function of the rescaled variable

WhereMBOZMB(¢0). The prime represents the derivative of w, is MBO—aﬁ,qSo:O. Differentiating with respect tov we

¢ evaluated atp,.

obtain an equation foé,,¢,, which is (,uéo—aﬁv)aquo:o.
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So the Goldstone mode is a zero eigenvector of the linear
operator,u,’go—aﬁ,. By doing integration by parts, the first
term on the right-hand side of E@21) vanishes and we
obtain

@) (©
Y

—-0)=—=x«, 22
wherey= % [dw(d,,¢)? is the surface tension and we have

used the matching condition far; (—0) from Eq.(10). Tak-
ing into account the fact that at the interfagg—0) (b) (d)
= ¢equ1(—0) we obtain Eq(3).

Order €°. In order to obtain the continuity equation, we

need to go to the next order. The dynamical equation to order FIG- 2. Finger development and competition ter0.04 corre-
&0 in the inner region is sponding to early timeg:=100(a), 500(b), 1000(c), and 200Qd).

— 010w ho=M (95 pr— Kiy1+ Fopo). (23 Finger competition

Integrating Eq.(23) in the direction normal tav we find First, we are interested in the generation and subsequent
competition of fingers during the early stages of the evolu-

—2¢eq1=Mdypua(—°)=Mdyui(—0), (24)  tion. A wide system of sizé,= 128 has been considered and
we have prepared an initial corrugated interface formed by
the superposition of several modes of random amplitude. In

Fig. 2 we show a typical evolution. It is seen that fingers
develop from the random initial configuration. Some modes
grow, some modes decay, and finger competition begins.
Both features have been observed in theoretical and experi-
mental studies of the viscous fingering problem. The compe-

Order e 2. The dynamical equation in the outer region to tition process continues until only one of the fingers sur-

the lowest ordee ™2 is vives.

_— In order to better visualize the competition process we

Vipo=0. 29 have prepared a second initial condition consisting of two

well-formed fingers, in which one of them is a bit larger than
the other. In Fig. 3 we observe how the largest finger grows
at the expense of the other, which moves backwards, becom-

ing smaller, and eventually disappearing.

where we have used the matching condition, Bd), and
the fact thaty,,u1(—)=0 anduy=0. Equation(24) could

be written as Eq(2) in terms of the pressure at the interface
of the viscous fluid, wher&=M/(2¢2,).

Outer region

The boundary condition far from the interface is thgg
=0. We previously found thagto=0 for the inner solution
at the interface. The only solution satisfying both condition
is uo=0. It follows that o= ¢4 in the plus phase ang,
= — ¢h¢q IN the minus phase. This was to be expected since
the lowest order in the expansion corresponds to the solution
of the flat interface.

Order e 1. The dynamical equation for the order? is

V2u,=0. (26)

At order e the order parameter and the chemical potential are
proportional and from Eq26) we obtain Eq.(1).

NUMERICAL RESULTS

We have numerically integrated Eqgl) and (5) with €
=1 andM =1 on a rectangular lattice of vertical sitg
=200 and mesh sizAx=1, with periodic boundary condi-
tions in thex direction and reflecting boundary conditions in
the y direction. The system has been prepared with a hori-
zontal interface containing some perturbations in order to be
destabilized. The profile in the vertical direction is formed by (@) (b) (©) (d)
Eq. (6) with |=10. As was mentioned before, during the
evolution we maintain a slope by fixing the valgg=—1 FIG. 3. Finger competition process for two initially well-formed
+ al behind the interface up to a distankceneasured from fingers with «=0.04 and system width ,=64. The patterns are
the tip of the most advanced finger. separated by time intervals of 1000.

046310-4



PHASE-FIELD MODEL OF HELE-SHAW FLOWS IN TH . . . PHYSICAL REVIEW E 68, 046310 (2003

(@) 32 0.8
x 16 - i 0.04
o ©O
0 0.03 - o g
200 0 °©
> 002 | © f
07 |- o -
(b) 0.01 - o -
< 0.00 L L L L
0.01 0.02 0.03 0.04 0.05 0.06
o
< 0.6
y y 0.5 L L L L
0.00 0.01 0.02 0.03 0.04 0.05

FIG. 4. (a) Evolution of a single finger in a channel, plotted at Y

time intervals of 750, forr=0.035. (b) and (c) Numerical results FIG. 5. Finger-width\ vs velocityv. Solid line is a guide to the
(lineg) and Saffman-Taylor solutiosymbolg are presented for two eye. Inset shows the dependences ain the parametet.
values ofa that lead to two different finger width®) A =0.61 and

(c) A=0.53. .
serve that\ tends to one-half of the channel width as the
) velocity increase$22)].
Steady-state finger
The width of the steady-state finger is expected to go to CONCLUSIONS

one-half of the channel width as the velocity of the finger tip

increaseg3,21]. To better explore this situation, we have A one-sided phase-field model to describe the dynamic
considered a narrow channel of width= 32, prepared with evolution of unstable interfaces for Hele-Shaw flows in the

an initial condition that gives a single finger. We have analigh-viscosity contrast regime has been proposed. The me-

lyzed the temporal evolution of the finger for different tip soscopic model contains a fi_eld equation for a conserved or-
velocities corresponding to different values of the parameteﬁ;jer parametetmodel B of_szburg-I__andau phenomenol-

In agreement with known results. hiaher velocities led toogy) and a boundary condition that drives the interface out of
@ gree » N1g .~ . equilibrium. An asymptotic expansion to derive the macro-
narrower fingers. An example of the interface evolution is

I ; X scopic equations has been performed. The phase-field model
shown in Fig. 4a). In Figs. 4b),(c) we compare the finger ¢ heen numerically integrated and we have analyzed dif-
shapes obtained numerically for two different valuesaof  tgrent stages of the dynamics. We observe how from a ran-
with the theoretical shape for the Saffman-Taylor finB&r  gom perturbation to the interface, fingers develop. Modes

grow and compete dynamically and the competition ends in a
1 m(2x—Ly) single steady-state finger. The width of this finger goes to
5( 0 AL, ” (27) one-half of the channel width as the velocity increases. This
is in agreement with experiments and the existent theory. We
have verified that the shape of the finger tip is in good agree-
\ being the ratio of the width of the finger to the width of the ment with Fhe pargmet_rlc solution of Saffman and Taylor
when the finger width is close to one-half of the channel

channel. To determink from our numerical results, we have . . g o
evaluated the average width of the finger throughout the evow'dth' A.ISO for Igrger width the shape is in qualitative agree-
lution, in a strip of thicknese=4 placed at a distance 40 ment with the fingers found by Mc Lean and Saffman. We

. . . - . believe that our model could be a useful tool to study situa-
from the tip. For high enough tip velocities, our numerical . ) . .
: ! .~ tions that cannot be easily tackled with traditional methods,
results are in agreement with the Saffman-Taylor solutio

since they correspond to valuesiotlose to 1/ZFig. 40)], r](;ke integro-differentia! equations, such as the effect intro-
. o uced by quenched disorder.

where surface tension effects are negligible. Also, the ex-

pected deviation from the Saffman-Taylor solution is ob-

served for wider fingers in qualitative agreement with Ref.

[3].
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mental results of Pittf21] and Saffman-Taylof2] and with ~ C03-02, respectively. E.C.P. acknowledges financial support
the numerical results of McLean and Saffm@]. We ob-  from PAPIIT through Grant No. IN117802-02.
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