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Inertial particle segregation by turbulence
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We study collections of heavy and light small spherical particles initially well mixed with each other,
subjected to lineafStoke$ drag force and gravity, and falling through a fluid turbulence. We introduce the
segregation power spectrum, which we use to define the segregation length scale. Kinematic simulation pre-
dicts that the turbulence can segregate heavy and light falling particles and leads to a well-defined segregation
length scale. The properties of this length scale and of the segregation power spectrum used to define it are
discussed and, where possible, explained.
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[. INTRODUCTION cerning mixtures of heavy particles with different inertias in
a turbulent flow are presented in Sec. 1V, and we conclude in
Suspended particles such as soil dust from wind erosio®ec. V.
and man-made pollutants can be found in many turbulent
flows. Recent experimental and computational studies of thal. EQUATION OF MOTION FOR INERTIAL PARTICLES
motion of small particles in turbulent flows have shown how
the displacemenk, and velocityv(t) of a particle differ
from thosq x; andu(t)] of a fluid element, depending on the
size of the particle and on the drag and body forces acting o
it. Maxey [1], Squires and Eatof2], Wang and Maxey3],
and Fung[4] showed that the distribution of particles in a
turbulent flow is not uniform; instead, particles tend to clus-
ter preferentially in regions of low vorticity and high strain
rate (see also the comprehensive recent study by Ahmed and
Elghobash[5] and references therginThis means that mod-
els of particle dispersion in turbulent flows should incorpo- ] S )
rate some of the spatiotemporal structural features of turbulhe forceF on the particle, which is still the subject of much
lent flow field realizations. But this also means that turbulengurrent research, is made up of many different contributions,
flows may be able to segregate particles of different sizes dpcluding, for example, the acceleration forég, the lift
densities so that initially well-mixed collections of different force F, the body forceFg, the drag forceFp, and the
types of particle should become unmixed by the turbulencd&0ussinesg-Bassebften just called Basset—see Vojir and
and give rise to pockets with predominantly one type of parMichaelideq6]) history term(see Hunet al.[7] and Mei[8]
ticle. Is it possible to define a length scale characterizing thi€or reviews.
segregation? If a particle in a turbulent flow is heaw.e., p,>p¢) and
In this paper we investigate the ability of the turbulence tospherical, and if its radiua is small relative to the smallest
segregate particles of different inertiéie., sizes or densi- length scale of the turbulen¢éhe Kolmogorov length scale
ties) falling through turbulence and propose a definition for 7 Which is about 1 mm in the lower atmosphkerien only
the segregation length scale. We use kinematic simulatiofe drag and buoyancy forces are import@etms involving
(KS), which incorporates some degree of spatiotempora'!he pressure gradient force, the virtual mass force, and the
flow structure designed to mimic some of the salient feature8asset force can be neglectednd Eq.(1) becomes
of small-scale turbulence. For this paper’s purpose of quali-
tative demonstration, we concentrate attention on two- m av_ F4E %)
component homogeneous and isotropic turbulence, and the Pdt B
KS used is designed to have a Kolmogorew/3 energy
spectrum and corresponding frequencies in its temporavhereFg=myg. g is the acceleration due to gravity and it
structure. is oriented downward parallel to the axis, which points
The paper is organized as follows. In Sec. Il we introduceupward. In the limit where the particle Reynolds number
the equation of motion for heavy particles. To be solved, thisRe,=2alu(x,,t) —Vv(t)|/» is much smaller than 1, the drag
equation requires modeling of the turbulence, and in Sec. llforce can be approximated by the Stokes linear fdfm
we describe KS. The results of numerical simulations con=6mau[u(x,,t)—Vv(t)], and Eq.(2) becomes

We consider a particle of mass, and density,, located
at a pointx,(t) and moving with velocityv(t) in a fluid of
Hensitypf and kinematic viscosity. The fluid velocity field
IS given byu(x,t), and we denote the instantaneous fluid
velocity at the position of the particle hy(x,,t). Then the
equation of motion for the particle is

v
mpa=F(u,v,t). (1)
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dv 1 ible becausé\,- k,=B,-k,=0 for all n. The positive ampli-
at T_p[“(xp H-v(t]+e, (83 tudesA, andB, are chosen according to
2_p2_
where the relaxation time,, is given by An=Bn=E(ky) Ak, ®
m 2, a2 whereE(K) is a prescribed Eulerian energy spectrum of the
P _“%Pp

= — f

i 6mapsvy  9psv (3b) orm

. . . - E(k)=EoL (kL) 5® (6)
A Stokes drag is assumed here. Previous experience indicates

that the Syokes drag 'gives qualitatively similar results asn the range 2r/L =k,;<k= ka=27-r/77 (whereL is the larg-
some nonlinear empirical drag law&eeks[9] Wang and gt eddy length scale of the turbulenemd such thag(k)
Stock[10], Wang and Maxey3], and Fung[11]). Despite  _q gutside this range. Ak, = (K, 1—K,_1)/2 for 2<N,
the restrictions imposed, E(B) is applicable to many differ- <N,—1, Ak;=k,—ky, andAky =ky, —ky 1. The distri-
ent problems, such as aerosols in gases and small particlesi ' ’ K k K

n,. . -
water. Under most atmospheric conditions, E8). would bution of wave numberk, is geometric, i.e.,

apply, for instance, to aerosol particles or cloud drops with k,=ka" 1,
radii less than about 10@m. To be solved, Eq.3a must of
course be coupled to where « is a dimensionless number which is a function of
L/5 and N becauseky, =2m/7. [Hence a=(L/7)1/(Ny
o _ o). 39 —1).] From (1/2u'?=E(K)dk, it ensues that’2~3E,.
dt The frequencies,, in Eq. (1) determine the unsteadiness

associated with wave mode We chose a moddl15,16
where the unsteadiness frequensy is proportional to the
eddy turnover time of wave modg i.e.,

If we setu=0in Eq. (3a) and take the limit—~, we obtain
v(t)=Vr whereV= 7,9 is the Stokes settling velocitfer-
minal velocity in a still fluig. When the velocity field is
turbulent, howeverm needs to be modeled before E8) can wn=MKE(Ky), (7)

be solved. In KS, the turbulent velocity fieldx,t) is mod-

eled as a sum of random incompressible Fourier modes witivhere\ is a dimensionless constant.

a —5/3 energy spectrum. We assume that the particles do not The KS velocity fields simulated here are stationary in
significantly affect the fluid turbulend@n assumption thatis time, and the autocorrelation of Lagrangian velocities fol-
increasingly valid for increasingly smat),) and that they are lowing fluid elements isR"(7)=exp(—7T.) (see Fung and
dilute enough not to interact with each other. In the nextvassilicos[16] Flohr and Vassilico§17]). We find, in this
section we introduce the KS model that we use. For thishaper’s KS, that the integral length scale=L/3. From nu-
paper’s purposes of demonstration it is enough to considanerical simulations of statistical ensembles of fluid element
planar velocities and velocity fields, i.e., two components intrajectories, we also find in this paper’s KS that the Lagrang-

a vertical plane. This does not mean to say, of course, thaan integral time scald, ~0.20/E3”.

two- and three-dimensional turbulence are trivially inter- |t may be worth noting that in KS we prescribe a spa-
changeable, as they of course have different dynamics. Howiotemporal structure for the flow via incompressibility and

ever, these dynamics are not incorporated in KS, which holdggs. (4)—(7). This spatiotemporal structure incorporates ed-
information only about the energy spectrum, incompressibildying and straining flow regiong4—16.

ity, and the time persistence of streamlines.

IV. SIMULATIONS AND RESULTS
IIl. TURBULENT LANGRANGIAN VELOCITIES . . . .
Denoting byx andy the horizontal and vertical coordi-

We follow the approach of Turfus and Huft2], Sa- nates, respectivelly pointing upward, i.e.g=(0,—g)], the
belfeld [13], and Funget al. [14] and generate on the com- initial condition of our simulations consists of 4000 particles
puter an incompressible two-dimensional turbulentlike ve-of relaxation timer,; uniformly distributed along the hori-
locity field u(x,t) that is identical to that of Vassilicos and zontal liney=0 betweerx=—L/2 andL/2 (L is the largest
Fung[15], i.e., eddy length scale of the turbulencand 4000 particles of
Ny relaxation timerp,,= 7,; also rL;niformly Si-istributed along the

_ . same stretch of horizontal lineee Fig. 1 The two different
u(x,t)= ,Z:l [An COkn- X+ @nt) + By Sin(ky- X+ wit) ], types of particle are therefore perfectly well mixed with each
(4)  other at timet=0. We also set/(0)=u(x,(0),0) [and we
also tried starting particle velocitieg0)= £u(x,(0),0) with
whereNy is the number of modes in the simulations and the¢ randomly distributed betweenl and 1, without detecting
Cartesian coordinates &,,, B,, andk, are given byA, any appreciable difference in our specific reguii$e ques-
=A,(cos¢,,—sing,), B,=B,(—cos¢,,sing,), and k, tion is, do the different species of particles remain well
=Kk, (sin¢,,cos¢,). The anglesp,, are random and uncorre- mixed at later times?
lated with each other and the velocity figl) is incompress- In this paper we address this question by solving E3@.
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TABLE Il. Ratio of relaxation times.

VT
Tp2/ Tp,
I L I
Case 1l Case 2 Case 3 r

- 000 O0OOOS
0.12/0.1 0.144/0.12 0.168/0.14 1.2
0.14/0.1 0.168/0.12 0.196/0.14 14
Inertial particles with 0.16/0.1 0.192/0.12 0.224/0.14 1.6
Y inertial parameters 7,, or 7,, 0.18/0.1 0.216/0.12 0.252/0.14 1.8
D | 0.20/0.1 0.240/0.12 0.280/0.14 2.0
S 0.40/0.1 0.480/0.12 0.560/0.14 4.0
J 0.60/0.1 0.720/0.12 0.840/0.14 6.0
0.80/0.1 1.960/0.12 1.120/0.14 8.0
1.00/0.01 1.200/0.12 1.400/0.14 10.0

A |

* The first and second moments of the difference between

FIG. 1. lllustration of the numerical experiment and the motionthe two histograms are defined as follows:
of the particles under the influence of the flow field, the gravity, and
their inertia. . . 1
first moment: <Ef (nl—nz)dx> =0,
and(3¢) with the velocity field of the fluid turbulence speci-
fied by Eqs.(4)—(7). Values of the parametets 7, N,, and
\ used in this paper’s KS are given in Table I. Values of the
relaxation timesr; and 7, and of their ratia = 7.,/ 7,; are

1
second moment: <Ef (nl_nz)de>:M2,

given in Tables II-IIl. For comparison with the valuesmf where the angular brackets signify an average over 150 tur-
and 7, in these tables, note tha ~0.2 in all the simula- bulent flow realizations. Note that the first moment is always
tions here. equal to zero.

Inertial particle trajectories are integrated till they reach N all our runs, the smallest time scale of the turbulence is
the horizontal liney=—bL where theirx coordinates are Smaller thanr,, and 7, [which is consistent with our re-
recorded(in this paper we have experimented with1 and ~ quirements thatpp>p; and a<z, provided thatp,/p;

2 and found no appreciable difference in our results, whict? (7/2)7],_and in KS this smallest time scale is,
have all been obtained fgrr; <L). Thesex coordinates are  ~1/y/ky, E(ky,). Hence, we may assume thilt, is inde-
used to derive two histogranms;(x) =n(7,1,X) and n,(x) pendent of this smallest time scale, and the parametric de-
=n(7p2,X), Which give the number of particles of relaxation pendence oM, for small enough bin size is given by

times 7,; and 7,,, respectively, that have crossed the hori-

zontal liney= —bL betweenx andx+ Ax whereAx is the M2=Ma(u", T, 7p1,7p2,9)

histogram’s bin sizésee Fig. 2 _ 2 /

It ?s interesting to note ?rom Figs.(® and 2b) that the = (Ax/L) my(r, 7y [Ty, QTLIUT), ®
histograms are irregular for both relaxation timgs and  \wherem, is a dimensionless function. In Fig. 3 we plot the
7p2- Hence the differenca(ry;,x) —n(7p1,X) can be very  dependence oM, on the two dimensionless parameters
significant[Fig. 2(c)]. We might therefore tentatively con- (r=7p2/7py is larger than 1 by definitiorand 7, /T, . Note
clude that according to KS the turbulence can segregate th@at the factor 16 multiplying M, in these figures is effec-
heavy and light particles. In what follows below, this tenta-tjyely the inverse of Ax/L)? asAx/L=0(10 2) sinceAx
tive conclusion is corroborated and, more importantly per-— ;i our runs. Two regimes should readily be distinguished
haps, quantified by averaging over a large number of turbugepending on whether,, is larger or smaller thafi, : when
!ent flow reallzat|on_s. These averages al.so enable us _t@L<Tp1 we should expecM,~0 because no segregation
introduce a segregation length scale and discuss segregatighn pe expected when the relaxation time of both types of
properties as functions of the parameters of the problem. o icles is much larger than the Lagrangian correlation time

TABLE |. Parameters used in kinematic simulation. TABLE lll. Values of relaxation times.

Case 7, 75, I N L/7n Ny Falling distance T, Tp, r
a 01 06 6 05 91 64 L 0.2 1.2 6
b 01 06 6 05 91 128 L 0.3 1.8 6
c 01 06 6 05 273 256 L 0.4 2.4 6
d 01 06 6 05 91 64 2 0.5 3.0 6
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FIG. 2. One typical case of the histogram$rpi,x) (i=1,2)
along the horizontal line/=—L in the KS case. Herd | =0.2,
u’~1, andg=10. Also, 27/L=1.1, 27/ p=100,N,= 64, and the
unsteadiness parameter=0.5. (a) 7,,=0.1, (b) 7p,,=0.4, and(c)
the differencen(7y,,%) —Nn(7p1,X).
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FIG. 3. M, as a function ofr for different values ofr,, /T,
obtained with KS. These different values are listed in Table Il. The
parameters determining the KS are the same as in Fi@, 2ase 1
with 7,,=0.1, l, case 2 withr,;=0.12, andV, case 3 withr,,
=0.14.

of the turbulence; and whery; <T we should expedt, to

be an increasing function af in the range &r<T /7,
because of the increasing difference in particle relaxation
times, but asymptotically constant in the limi&>T, /7,
because in that limit the relaxation time of one of the two
particles is larger thai, . These qualitative expectations are
confirmed in Fig. 3, even though the cdge~0 is not ab-
solutely evident from the data; note, however, that for
>T, /751, M, decreases with increasing,, /T, , presum-
ably reaching zero whem,, /T >1. We also found these
results not to depend significantly @p at least for the few
values ofg that we tried T, /u’=2,3,4). Note also that,
for r>T /7y, M, decreases with increasing, /T, , pre-
sumably reaching zero whery, /T >1.

In order to define a characteristic length scale of segrega-
tion, I, we Fourier transfornm(rp1,X) —n(7,,,X) and cal-
culate the power spectrurd® (k) of n(7y;,X)—n(7p2,X)
[with an average over 150 turbulent flow realizations so that
J®(k)dk=M,]. If a well-defined length scale characteriz-
ing segregation does exist, this power spectrum should be
clearly peaked at a wave numbetr2., which should be
significantly larger than 2/Ly, wherelLp is the length of
the total extent of the horizontal ling=—bL that the par-
ticles have crossedLg is significantly larger tharl). In
Figs. 4 and 5 we plot®d(k) in the range Z/Lp<k
<27/Ax for a number of different parametefsee Tables I
and Ill). The first and broad conclusion that can be drawn
from these figures is that a well-defined characteristic length
scale of segregatiohn exists that is clearly smaller thary, .

(We find no significant variability in these spectra for
gT, /u’=2,3,4 except a slight one in the valuelgf) Also,
the power spectrun® (k) appears power-law shaped in some
cases.

A finer analysis of these results reveals the parametric
variability of | .. Because we consider values®f and 7,
larger thanr,, I, may be expected to be a function of,

T., @ 7p1, and 7y, only, so that by dimensional analysis

l/L=F(r, 750 /T, T /U"), 9
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FIG. 4. KS power spectré (k) vs k for different inertial ratios
I'=7pp/ 7oy With fixed 75, =0.1.(a8) 7, <T < 7p,. T =0.2 andrp,
varies from 0.2 to 1.0 so that varies from 2 to 10. This figure

corresponds to case 1 in Table Il. The parameters determining the

KS are the same as in Fig. 2= 2 (dot-dot-dashed 4 (dot-dashej)
6 (dashed 8 (dotted, and 10(solid). (b) 7,;<7p,<T_. T =0.2
and 7y, varies from 0.12 to 0.18 so thatvaries from 1.2 to 1.8.
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FIG. 5. KS power spectréd (k) vs k for fixed inertial ratior
=6 and varyingr, such thafl| <7, <,,. T, =0.2 andr,; with
fixed inertial ratior and 7,, varies from 0.2 to 0.5. This figure
corresponds to Table Ill. The parameters determining the KS are the
same as in Fig. 2r,,=0.2 (dot-dashey 0.3 (dasheg, 0.4 (dotted,
and 0.5(solid).

wheref is a dimensionless function. Again we distinguish
between the following two regimes; <7,;, in which case
we expectl~0; and 7,,<T_, in which case we should
expectl. to be an increasing function of in the range 1
<r<T_ /7, but asymptotically constant in the limit
>T_ /71p,. This is indeed what is observésee Fig. 6.

Power spectrab(k) for cases wherer,;<T <7,, are
given in Fig. 4a), where it may be observed thdt(k)
~k ™1 for k>2/l. andr>1. Power spectré (k) for cases
where 7, <7, <T_ are presented in Fig.(8), and, finally,
power spectrab (k) for cases wher@ <7, <7y, are given
in Fig. 5, whered (k) may be observed to decay faster than
k™1 for k>27/l, and in fact faster for larger values of1
and 7p,.

A simple dimensional argument leadingddqk) ~k ! for

k>2m7/l; in the caser,<T <7, and griLY¥u’%?
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This figure corresponds to case 1 in Table II. The parameters deter- FIG. 6. Characteristic length scale of segregatign,as a func-

mining the KS are the same as in Fig.r2 1.2 (dot-dot-dashex
1.4 (dot-dashel 1.6 (dashed, and 1.8(solid). (c) The same aa)
but with g=1.0.r =2 (dot-dot-dashexl 4 (dot-dashey 6 (dashedq,
8 (dotted, and 10(solid).

tion of r for different values ofr,, /T, obtained with KS. These
different values are listed in Table Il. The parameters determining
the KS are the same as in Fig. @, case 1 withry;=0.1, W, case

2 with 7,,=0.12, andV¥, case 3 withr,;=0.14.
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FIG. 8. KS power spectrab(k) vs k with 27/L=1.1, T
=0.2,g=10, u'~1, A=0.5,r=6, and 7,;,=0.1. Ny=64, L/ 7
=091, falling distanceD =—L (solid); N,=128, L/ =91, falling
distanceD = —L (dotted; N,=256, L/ =273, falling distanceD
=—L (dashedt and N,=64, L/ =91, falling distanceD = —2L
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FIG. 7. KS power spectré (k) vs k with 2#/L=1.1, 2x/n
=100,N,=64,T =0.2,g=10,u’~1, fixed inertial ratic =6, and
fixed 7p,=0.1, but with different unsteadiness parameter 0.3
(dashedg, 0.5 (solid), and 0.7(dotted.

<O0O(1) can be developed as follows. The power spectru
®(k) cannot depend om, for reasons already mentioned,
and cannot depend om,, either in the limit whereT_

<T7,,. Furthermore, in the range>2x/l ., small-scale seg-
regation and® (k) cannot be expected to depend on the

large-scale quantitiels andu’. Hence, by dimensional con-
straints, V. CONCLUSION

ness parametex in the range between 0.3 and 0.8 and also
independent ofy (and thereforer, as assumed in our argu-
ments above

We have introduced a segregation power spectidfk)
and a segregation length scéleand demonstrated thht is
, , ) i well defined in a kinematic simulation of particle dispersion.
where ¢ is a dimensionless function. _ For particles of very different relaxation times, and for wave
T_he grawta_ltlonal accelerz_itl@_cannot by itself segregate . bers larger thah;ly it is found thatd (k)~k~1 pro-
particles of different relaxation times. Howevercan indi- vided that <7, <T, <7, and gré’le’Z/u’msO(l).

rectly influence this segregation by influencing the time : :
taken for particles to fall through the eddies. NeverthelessThe present study also supports the view that spatiotemporal

when the characteristic vertical dista ef) that a particle flow structure can cause particles of different inertias to seg-
o Slange,, P regate in a turbulent flow. This conclusion is consistent with
would travel by gravitation alone in the course of a relax-

ation time,, is much smaller than the size of the eddy, thent|\/|hgxreeyS L[Jg]s z;gﬂ?:fje}gl[ﬁ]sevlﬁ;ei 2\?3 SEhit\?VEf]{h\;vta?ﬁeangw
we might expectg not to influence the time taken by the ! !

. ) structure of the small-scale turbulence influences the concen-
gartlclzto faIITthoughltlhlsi[ec(ij%y ar_1d tf;ﬁﬂtafore ﬂﬁ) NOtto  tration fields of dense particles. The effect of intense and
epend org. 1he smallest eddy siz€ that can Influence Seg'persistent local vortical structure can quickly modify the par-
regation is noty but instead the size of the eddy with char-

eristic i 't The ch teristic time f ticle concentration field near these local regions. Particles
acteristic |m?lgqua Op1. M€ charactenstic tme for an yqnq 19 accumulate in regions of high flow strain rate or low
eddy of sizek ! is 1/\/k3E(K)

/ , (see the KS description in the g4,y yorticity because of an inertial bias. This preferential
previous section Hence? the sgr/r;allest eddy size that cangccymuylation has been confirmed by the results from full
cause segregation is(u’ 7y, /L)% Thg condition for EQ.  gjirect numerical simulations in homogeneous turbulence by
(10) not to depend oy is thereforegry; <L (u’ 7,1 /L)% Squires and Eatofi2] and Wang and Maxey3], and by
i.e., approximatelygrl “Ju'¥><0(1). Dimensional re- kinematics simulations in homogeneous turbulence by
quirements imply that in this regime the spectrum scales likeviaxey[1] and Fund4]. We hope the present study indicates
that the structural view of turbulent flows can contribute to
D(k)~k™t, (11)  the development of multiphase flow modeling, in addition to
the more commonly used statistical view.
in agreement with the power-law spectra reported in Fig\. 4
and also in Fig. &), where the tendency for a collapseras
increases is perhaps clearer becaysgL%/u’¥2is smaller
than in Fig. 4a). Support from the Hong Kong Research Grant Council,
Finally, we also report Figs. 7 and 8 where evidence isChina (Project Nos. HKUST6121/00P and HKUST6012/
presented showing thak (k) is insensitive to the unsteadi- 03P and from the Royal Society is gratefully acknowledged.

D (k) =D (K,g,7p1) =k Lp(kgrsy), (10)
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