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Estimation of interaction strength and direction from short and noisy time series
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A technique for determination of character and intensity of interaction between the elements of complex
systems based on reconstruction of model equations for phase dynamics is extended to the case of short and
noisy time series. Corrections, which eliminate systematic errors of the estimates, and expressions for confi-
dence intervals are derived. Analytic results are presented for a particular case of linear uncoupled systems, and
their validity for a much wider range of situations is demonstrated with numerical examples. The technique
should be useful for the analysis of nonstationary processes in real time, including the situations of significant
noise and restrictions on the observation time.
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. INTRODUCTION calculates time realizations of phages, At;)}1%, and con-
structs a global model map, which characterizes the depen-

One of the very important problems, which arises whengence of phase incremeritsver a time intervarAt) on the
complex multielement system&in particular, biological phases of subsystems’ oscillations, in the form
oneg are investigated, is that of determining the presence
and direction of interactior{coupling between two sub- Ay )=y t+ TA) — by A1) =F1 A1 A1), 2 4(1),84 2),
systems from an experimental time series of their oscillations (1)
[1-14]. Such information allows better understanding of

mechanisms of a complex system behavior. Thus, a greafherer is a positive integer; , are trigonometric polyno-
deal of attention is paid nowadays to the investigation ofmials, anda, , are vectors of their coefficients. Using the
interaction between human cardiovascular and respiratory i ec of Ycoefﬁcienté“ obtained from the time series
3yst¢m§7,11,15—2§]1 The problem of coupling characterlz:_:l— ia the least-squares roufimbSR), one computes intensities
tion is also of applied importance for the purposes of medical f influence of the second subsystem on the first one (2

diagnostics, e.g., for localization of epileptic focus based on - A
the analysis of electroencephalogram and magnetoencepha:1) €1 and of the first subsystem on the second one (1

logram recordingg12,21-28. Nonstationarity of investi- —2) ¢, and directionality indexd=(C,—C;)/(Co+Cy).
gated processes, impossibility to collect sufficient amount oBince ¢, =0, d takes the values within the interval

data, and necessity of analysis in real time require estimatio Ca_ q_ PP
P . " —1,1] only: d=1 ord=—1 corresponds to unidirectional
of coupling characteristics under the condition of a short obfl 1 only P

servation interval. The task is complicated by the presence dtoUPling 1—2 or 2—1, respectively, andi=0 for ideally
noise, especially if coupling is weak. Here, we develop arsYmmetric coupling.
approach for estimation of weak coupling with a given de- Numerical experiment showefll0] that a very large
gree of belief from shottsegments of noisy time series. ~ amount of datdtypically about 16-10" data pointsis nec-

A very nice and delicate idea for the detection of weak€SSary for correct and 'rellable determlnatllon of coupling
coupling was proposed by Rosenblum and Pikovai;11]. character if noise is considerable. As shown in Secs.JI Aand
Their technique is based on empirical construction of modell B of the present paper, this is because the estimatpgs

maps, describinghase dynamicsf the two subsystems, and and d are biased(systematic errors take place generglly
|s.c_alled_an evol_utlon mapN;’:lpproacI(\EMA). Having an hije hoth bias and variance (&1,2 and d decrease with

original time S_e”es{xlz(ti)}i:l'_ where x; X2 are observ- increase in time series length. In Sec. 1l C, we modify the
ables,tj=iAt, i=1,... Ny, At is a sampling interval, one EMA for correct estimation of coupling from short time se-

ries; namely, we do not use characterisﬁ@§ andd directly,

Put proposeunbiasedestimates}lvz and 5 of different quan-

Yn practice one must often deal with time series segments o i hich itable in the situati idered
about 1000 data points that appear too short for many analysit:l, Ies, which aré more suitable Iin the situation considered.

techniques. E.g., electroencephalograms are recorded at a typiéfes_ides’ working equations for the confidpnce intervgls are
sampling rate of 250 Hz. The duration of quasistationary segmentd€rived(Secs. Il C and 11 . The suggestethterval statis-

is about 4 §29], which corresponds to 1000 data points of record-fical estimatesallow the inference about statistical signifi-
ing. Roughly speaking, in this paper we deal with time seriesc@nce of the obtained results. The shorter the accessible time

lengths of about 1000 data points. The notions of “short” and S€ries and the higher the noise level, the more necessary they

“long” time series in the context of coupling characterization are become. Results of Sec. Il are derivadhlytically for a par-

formulated more accurately in Sec. Il C. ticular case of linear uncoupled processes. In Sec. lll their
*Corresponding author. Email address: smirnovda@info.sgu.ru validity is demonstrateciumericallyfor more complex and
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realistic situations. Conclusions are presented in Sec. IV. Let functionsF? , be approximated accurately with low-

Analytic derivations are shown in the appendices. order trigonometric polynomials as in R¢LO]. That is?
L9
Il. DESCRIPTION OF THE APPROACH TO O = 0.4 @)
DETERMINATION OF COUPLING CHARACTER FROM (b1, 62) 21 1i9i(¢1,42)

SHORT TIME SERIES )
where g,=1, g;=cosm¢,+nd,) for even i>1, g;

A. Problem setting =sin(md;+ni¢,) for oddi>1, andL? is the number of

For convenience of explanation and notations, let us folterms of the polynomiaIF‘f. Fori=1, my;=m,; ., are non-
low the ideas of Rosenblum and Pikovgky0,11] to formu-  negative integersn,; =n,; ., are arbitrary integers, ana,
late the problem. In Ref$10,11] the authors consider model =1, n;=0 by definition.
(1) and determine coupling characteristics from its coeffi- The intensity of influence of the second subsystem on the
cients. It is implicitly assumed that if the time series is gen-first one,c?, is determined by the steepness of the depen-
erated by a mathematical equation, then the model approxgence oﬂ:g on the phase of the second subsystém, i.e.,
mates th_at equation very aCCU(ate!y. This is a plausibleF9¢,. Similarly, ¢S is determined bydFY/d¢,. More
hypothesis when a long time series is considered. Here, Weirictly,  (c9)2=(1/272) 27 [27(9F Y aby)2dpy Ay by

focus on short time serieawhere statistics may be quite yefinition? By inserting function(4) into this expression and
poor, hence, we must take model imperfection into aCCOU“Eaking the definite integral, one derives

and clearly distinguish between notations for the original

mathematical system generating a series and a model con- [0

structed from that time series. This is necessary to address 0= Z n2(a%,)2. (5)
the question, to what extent coupling characteristics com- ! SR

puted from the model coefficients are close to the corre-

sponding characteristics of the original system. As a rule, we Then, the directionality index ig®= (c9—c9)/(c3+c?).
supply quantities belonging to the original system with aThus, the expressions for coupling characterisﬂ:l%§d° in
superscript “0.” terms of the coefficient.sfl)’2 of the original equation$3) are

Following the logic of Ref.[10], let us consider suffi- derived.
ciently simple and, simultaneously, universal stochastic dif- Since in this context one deals with a short discrete
ferential equations, which reflect adequately the properties afample and the valueﬁyi are unknowra priori, it is impos-

a wide range of oscillatory processgsovided that each of sible to use directly expressidb) in practice for character-
the interacting subsystems exhibits pronounced main rhythrization of coupling. So, let us formulate the problem as fol-
of oscillations[6,9,10), as an original system: lows: it is necessary to get the estimates of coupling
characteristicge.qg., ofc(l’vz,do) from a single realizationof
brAD= 010t Tidbr ). bos )£ 4D, (2 e random procese)

B. Properties of Rosenblum’s and Pikovsky’s estimators
where ¢, (t) are unwrappedphases of subsystem oscilla-
tions, w, , are parameters controlling angular frequencies
f, o are 2 periodic in both argument functiong; , are ran-
dom processes normally distributed with zero mean and co
relation function E[&; o(t)é1(t")]=D16(t—t") (E[-]
stands for mathematical expectatipé, (t) and&,(t) do not
depend on each other and gr(t) and¢,(t). Since we aim

Construction of model mapgl) can be regarded as the
first step to obtaining the estimates needed. Let “model”
IQolynomialsFlvz be of sufficiently high order to involve all
the terms present in the original ponnomiEI%z. According
to Ref.[10], the estimates oa;{i are obtained via LSRLS
estimatey i.e., from the requirement

at dealing with discrete time series, it is more relevant to N
speak of difference equations instead of differential ones. > [Aq(t) = F1(d1(t), do(t),a)]2— min, (6)
System(2) can be transformed to such a form if one pro- i=1

ceeds from the derivativeiﬁlz to finite differenceA; , over

a time intervalrAt and derives whereN=N,— 7. Let us denote the solution to this problem

asa;. Then, the estimator of(l’ is given by

Ly
A At)=F1 b A1), (1) +e1A1), 3 =\ a2, @
=1 '

where . _Fg,z(d’l.:(f’z)EE[Al,z(tH¢1,2(t)a¢2,1(t.)] are
2mr-periodic functionsfE[ - |- ] stands for conditional expec-  2jere and throughout the paper, we present formulas only for the

tatio(l)’l, g are random processes with Zero mean. The formrst subsystem; all the expressions are “symmetric” for the second
of F1 ,and characteristics af; , are determined by the form one.

of f,,, the value ofrAt, and characteristics af; ,. 3We introduce the normalizing multiplier 142 for convenience.
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FIG. 1. Histograms for the estimates of coupling, constructed as a result of processing of 1000 time realization$8yfviiips At
=0.2m, =10, w1=w,=1 (p is the relative frequency of falling into a bin, bin width is equal to 0.02 for the top figures and to 0.025 for

the bottom figures For identical subsystems with,=D,=0.4, (a) ¢, (a biased estimatpr(b) d, (€) 1, and(f) & (unbiased estimators
For subsystems with different noise levBlg=0.4, D,=0.1, (c) ¢, andc, (exhibit different biases (d) d (exhibits negative bids(g) 7y, ,,
and(h) & (unbiased estimators

and the estimator of the directionality index &:(62 1(a)], i.e., it is a biased estimator fan2=0. dis unbiased,

—c,)/(Cp+¢4). As it is known from the theory of statistical but exhibits quite a large scattering; even the valued of

estimation[30], under some conditions LS estimates are ~ +0.4 are encountered quite oftffig. 1(b)]. Thus, it is very

consistent. It means that for a very large amount of dat@robable to get spurious indication of the presence of inter-

(N—) they are unbiased and have practically no scatteraction from a single realization. The situation becomes even

ing: in other wordsa, ; are almost precisely equal &, . As ~ More com_pllcgted when subsystems are nonidentical. It is
g A N P yed 83" 0 illustrated in Figs. {c,d) for the caséD>D,, w,=w,. The

a result,c, , andd are equal to the true valueﬁz, d” as . - . LA : .

well, which allows correct inference about coupling estimators, , are blased,Ab|as iy being greatefFig. 1(c)].

charactef. However, if the time series is shand whether ~ This leads to biasednessafvhose values arsystematically

it can be regarded as a long one is not knaavpriori), the less than zerdFig. 1(d)]. Hence, predominant influence

following important questions arise. 2—1 is diagnosed, even though coupling is absent in reality.
(1) What is the distribution of the estimaté_szz andd? Different biases irc; andc, and indication of coupling di-

Are they biased or not? rection 2—1 are observed also in the case of uncoupled
(2) How can statistical significance of the results be esti-subsystems with different angular frequencies=D;, w;

mated? Or, can one draw a reliable conclusion about cou® @2, and 7>1. Distributions, qualitatively the same as in

pling presence and direction having computed the numberkigs. Xc,d), are obtained, e.g., fdD;=D,=0.4, v;=1.5,

01 ,andd? w,=0.5, 7=10. Let us consider the cause of the systematic
To illustrate the importance of these questions, let us conerrors and other properties 0{2 andd in more detail.

sider a S|mplejemor_15trat|ve examplﬂhen tyvo subsystems Since c1’2 are functions Ofal,z (7), their probabilistic

are uncoupled and linear, that is, syst&tnhwith f, ,=0. By  prgperties can be deduced from the propertiesuof, the

ljnte.‘_graﬂ{lhg Eqs(Zt) ana_lyttlcally 0\]{ef_r _tthed|_nﬁtervab-At, ON€  Jatter being determined by the properties of the naige.

erives the equations in terms ot finite difterences Let the estimateélz be unbiasedAppendix A). Then, for

A ft)=wqTAt+ e A1), (8) each estimatéll, in accordance With the property of vari-

ce it hold€E[a E[a;;])2+0: =(a%)%+0% . That
where g, , are Gaussian random processes mdependent afn [ 1'] (Elay,]) U = 1') U

|
each other with variance®; ,7At. Obv|ously, one hag.;;1 is, al, is a biased estimator foa€ )2 and its bias equals its

=c9=d%=0 in this case. The estimates, andd computed vanancea . It follows from this and Eq(7) that
from a time series, consisting of alata points and being
simulated numericallysee Sec. Il A for details are mis- Ly Ly
. S — R R )
leading. Their distributions are shown in Figgad. Thlfs, E[c§]=i§1 nizE[aii]:(Cg)er;l niz%li , (9)

in the case of identical subsysteni3;=D, andw;= w,) Cq
is always positive and takes sufficiently large valliEg.
i.e.,C2 is a biased estimator foncf)2 despitea,; being un-

4 biased. Bias m:1 equaIsEL1 n 0” . The greater the vari-
One additional requirement for obtaining reliable results is that

the subsystems should not be in a synchronous regime in order th@fic€ Ofe; and the shorter the Ume series, the greater the
their phases might serve as independent varigdles varlancesr (Append|x A and, hence, the greater the bias
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in &f Thereforefﬁ systematically exceedsi)z. The same counters greater theoretical difficulties: one cannot derive es-
timates with known distribution law for a sufficiently general
case, therefore, derivation of unbiased estimators is possible
) 2 . ) 5 L~ only under additional strong assumptions. Due to similar rea-
Sinceoy = rises withD; and T, with Dy, bias incy i gons in order to characterize coupling direction, we propose
greater than bias i6, for D,>D, and other equal condi- just the use of a quantity®=(c3)?—(c)?, rather than a
tions. This explains the results of Figgcd). Similarly, agli normalized quantityd®. An unbiased estimator fo6° is &

holds for&l being considered as an estimator ﬁfr This
explains the results shown in Fig(al®

rises significantly withw, and 0'5 with @, for 7>1 (Ap- =727 7 _ o )
2l Now, let us estimate the significance of the numbgers

and & obtained from a single realization. The varianceygf
for the considered time series lengtRs- 10° is equaf ap-

proximately to the variance of2, which is expressed in

) ) ) _ terms of covariations O%-l,i :
To derive expressions for the estimators suitable for

pendix A), which accounts for different biases @ andc,
for uncoupled systems with different angular frequencies.

C. Unbiased estimators and confidence intervals

analysis of short time series, we u&iez as a basis, but re- Ly Ly
ir bi i onfi i 2 2 202,52 A2
move their biases and estimate confidence intervals for ‘7}1%‘78222 > n?n’cowal; a3)). (11)

(022)2. The latter task appears much more difficult here than toi=lj=1

the removal of biases. From E{9) one can see that an
unbiased estimator ofcf)? is Since true values of covariations are unknown, they should
be estimated from a time series as well. The difficulty of

Ly .. . ~2 2 . .
~ - obtaining a “good” estimater> for o> consists in the fol-
yi=c2—> nizcrfl ; (10) _ ga’g : o Ty

i=1 L lowing. In order to avoid false conclusions about the pres-
ence of coupling, it is not allowable to obtain understated

~2 . . . 2 . . 2
whereg’ are unbiased estimates of varianegs . Deri-  estimates ofa;/ . In order to detect the presence of weak
i 1 1

1

vation of 0> is not trivial. Since analytic expressions for interaction, it is not allowable to obtain overstat¢gessi-
1,

s . 2 . .
~2 . . . mistic”) estimates obr> . Having overcome some technical
o’ cannot be derived in general, we confine ourselvestoa — ° N i . .

L - - . difficulties, we derive the following semiempirical formula:
particular, but sufficiently realistic, case and derive the ex-

pressions using simplifying assumptions about the properties L

L1
of the random processes, ,(t). They are assumed to be 472 ~ 472
Gaussian and statistically independent of each other and of “y 2‘1 M Uai. ' 71=5 .21 M Uaii
#1At) [see conditiongC1)—(C4) and other details in Ap- o = L (12

pendix Al. The derived estimatef}f11i depend onr, a, 4, ni“(}gz . otherwise,
| 1

52,1 in quite a complicated manner.

Quantitiesﬁzlyz are the estimators forc@z)z. They allow
inference about the presence of influence of one system ofl ,
another. We do not deal with estimation o, since it en-  rived earlier(see Appendix B for details

The estimatory; has asymmetri¢right skewed distribu-
tion for low-order trigonometric polynomials typically used
®Note that in Fig. 1a), the probability density functiotpdf) of the ~ (Sec. Il A). Therefore, we take “asymmetric” expression
estimatorc, is equal to O near the true valw§=0 despite esti- [3/1—a&;l,§,1+ ,3(};1] as an estimate of the confidence in-

mates_élvi being often equal to their true value€'i=0. This is  terval for (C(l))z_ We choose the values of constantand 3
explained as follows. In the considered exam(dee the structure empirically to provide necessary significance level; e.g., a
of the model trigonometric polynomial in Sec. Il)Ahere are ten 95% confidence interval is achieveddf=1.6, 8= 1.8 (Ap-
estimatesa, ; that contribute to the value @f, i.e., withn;#0, see pendix B. The conclusion about the presence of influence

Eq. (72. These ten estimates are independent random quantities. .1 ~an be drawn with error probability of 2.5% provided
Then,c, is equal to zero only when all these ten estimates are equal

to zerosimultaneouslywhich is very unlikely. In fact, as one can “ -
suggest from expressiofY), the shape of the pdf of? is very y1— @05, >0. (13
similar to x? distribution with several degrees of freedom, in our

example with ten degrees of freedom. Thep,is distributed ap-
proximately according to distribution with ten degrees of free-  6ag numerical experiments show, the variance)afis greater

~2 . . ~ ~2
hereo’. are expressed via the estimatgg ando’, de-
1, ’ 1,

o . . 2042 ) - . o
dom, that is, its pdf is approximately(x)=x’e %", for x>0.  than the variance af? by approximately 4%. This difference can be
Hence, the probability that the value of would be close to the neglected within the limits of precision of our deduction that is
true valuecfzo is, indeed, negligibly small. determined by slight violation of the conditid@1) (Appendix A.
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0.8+ a) %% b) “small” more exact using the following rough arguments.
~ L, . s 2] Let, for simplicity, angular frequencies of subsysteins, be
d 15 e e 8 :{ﬂ} f fI Eﬂiﬁ e approximately equal to each other and equaltoHence,

081t : e .. 08 e w* 1T .par, WhereTey,, is a characteristic time scale. The

5 1 15 20 25 5 10 15 20 25 value of 7At optimal for coupling characterization is also
experiment number experiment number equal toT 4, [11]. “Contribution of nonlinearityf ; ;" to the

FIG. 2. Estimates of coupling for examp(8): the results ob- Egs.(3), f{HAtfl,Z(qsl,Z(t’)'¢211(t’))dt" is, then, of the or-
tained from the first 25 of 1000 time realizations for the subsystem§er of [f1/w (WhergH-H StanQS for an appropriately de-
with different noise level®,=0.4, D,=0.1. (a) d takes predomi- f'n?d norm of.a function, e.g., its 'root-mean-squared \galue
nantly negative values, often large in absolute valbe3 (circles Th|s _contnbutl_on sh?uld be significantly Ies_s than the “con-
takes negative as well as positive values. For each single time reaiioution of noise¢, ;" to Egs. (3). The latter is the standard
ization the estimated confidence intervésown as error baysas ~ deviations ofe; ,, which are abOUt\/Dl,ZTchar: \/Dl,z/w-

a rule, include zero; the experiment number 20 is the most close t¥hus, the smallness df, , means|f; J|< D1 w1 ».

spurious conclusion about the presence of coupling that would cor- However, there is also another case where our estimators
respond to the expected 2.5 % of false conclusions. remain applicable. This is the case of very small noise, i.e.,
) _ ) an inverse situationff, J|> Dy .w; , (provided that cou-
The degree of belief can be adjusted by changin@nd,  pjing is not so strong as to cause synchronizatidie rea-

hence, con.fldence interval W'dth N . . son is that the variances of all the estimators are very small
Conclusion about predominant direction of interaction can

L . “ and, therefore, estimatoﬁqzand3 (as well as Rosenblum’s

be drawn after estimation of the variancedflts reasonable . ] . ’

) 2 _n2  n2 : distribution law for | and Pikovsky’s estimatorsare almost exactly equal to the
estimator iso’= 071+ a3, Since distribution law fors is, corresponding true values.
as a rule, more or less symmetric, confidence intervabfor A much more difficult situation is encountered if contri-
is reasonable to be searched for in a “symmetric” fofm butions of nonlinearity and noise to Eq&) are equally
+a07. Our experiments show that=1.6 again provides Strong. Another serious problem is the so-called “error-in-
~95% confidence interval. More accuratelypif= 1.6, then ~ Vvariables” problem, i.e., the presence of significant errors in

the obtained values the observed values of phasgg,. This is often the case in
practice due to approximate calculation of phases from ob-
3,2_0[(}; >0 and 6—ao;>0 (14)  served signals. In both cases mentioned, LS estimates of the
2

coefficients can be bias¢81], and even more so for all the
allow the statement about predominant influenee 2 with other considered estimators. To make sure of the applicabil-

the error probability of 2.5%. Vice versa, if ity of the suggested estimators under moderate violation of
the assumption€C1)—(C4) according to both the scenarios is
3’1—6“}; >0 and &+ ao3<0, (15)  possible in numerical experiment.
1
the conclusion that the influence-21 is stronger can be . NUMERICAL EXAMPLES

drawn with the same probability of error. If none of the re-

lations(14) and(15) holds, coupling directionality cannot be . R

determined with a given reliability. Properties of the suggested estimatggs and 6 and re-
Let us consider results of application of the proposed esliability of conclusions about coupling presence and direc-

timators y; , and & to example(8) (Sec. Il B. The absence tionality are investigated using Monte Carlo simulation of
of systematic errors fO?h,z and 3 is illustrated in Figs. te— time realizations of stochastic differential equations. To ob-

h). Figure 2 demonstrates usefulness of the interval estimaulé?lin thg time sgries, original equatio_ns are int.egrated_ numeri-
N cally with the aid of the Euler technique and integration step

9+ a; to ensure reliable conclusions about coupling direcy Z g 01 “nitial phases of subsystems for each realization
tion. In accordance with the expected 2.5% error probability, e random numbers,(0),4,(0) distributed uniformly on

_relative frequency of false conclusions about the Presence Qg interval[ 0,27r]. To simulate the influence of Gaussian
influence 21 based on Eq(13) was equal to 0.028.e., hite noiseé;,, we use the generator of pseudorandom

false conclusions were drawn for 23 simulated time series o umbers realized in the subroutine DRNNOR of the library
1000 ones Approximately the same was true for the fre- SL

qguency of false conclusions about coupling direction base For each of the considered examples we carry out 1000

on Egs.(14) and(15). experiments, i.e., simulate 1000 time realizati@t300 pairs
of scalar time serigswith the lengthN ,= 10°. The estima-

tors 1 5, d, ¥1,, and & are evaluated from each of them.

The expressions for the estimators derived above are validsing the obtained sets of values, we construct histograms,
under the conditionsC1)—(C4) (Appendix A), which corre-  compute mean and variance of each estimator, and count the
sponds tdf; ,=0. However, they are also applicable whign  number of correct and wrong conclusions about coupling
and f, are nonzero, but “small.” Let us make the notion presence and direction.

A. Procedure of numerical investigation

D. Conditions for applicability of suggested estimators
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130920, b) estimators diagnoses such a situation.
ol "o smenges 3 As the noise level decreases, the number of false conclu-
5 sions also decreases and the number of correct conclusions
0 ereatiiiiaaiiit } ; " % - : :
o oz,0s oo rises for bothd and 6. But for the intermediate noise levels

JD=0.1-0.3 the number of false conclusions tbis still
FIG. 3. Results of coupling estimation for syst€# with non- big—about 10—-30 %. 15 is used, the frequency of errone-
linear functionsf, ,, At=20h=0.2, and7=10 (Sec. llIB. (@  ous conclusions islwaysnot greater than 0.025.
Ensemble averages @f andc3 (open and filled circles, respec- At weak noise, e.g.,\/Bz 0.03, both approaches give a
tively), of y; andy, (X and+, respectively, and value<;” and  correct conclusion about coupling direction for every experi-
¢;? calculated from a long time series with=2 1° (thinner and  ment. At that,3 is provided with a very narrow confidence
thicker solid lines, respectivelyvs noise level.(b) Relative fre-  jntarval that diagnoses high reliability of the conclusion.
quencies of correct and false conclusions about coupling direction It follows that at a certain noise level the time series with
(for 1000 simulated time realizationbased ord (open and filled N,= 10® becomes sufficiently long for reliable estimation of

circles, respectivebyand3 (open and filled triangles, respectively coupling direction. Thus, the use Efgives the relative num-
s noise level. The level gi=0.025 is shown with a solid line. .’
Vs not v vel of ! wnw el ber of correct conclusions greater than 0.95,/&=<0.06.
The values of r are chosen so as to provideAt That is, the time series WItN¢=103 becomes sufficiently

~min(2m/w, 27l wy) [11]. Third-order model polynomia, long when the value dd decreases-100 times as compared
has the same form for all the examplés:=17, m,=1n, © JVD=0.6. Hence, one can also conclude roughly that for
=0, m;=2n,=0, mMg=3ng=0, mMg=0ng=1, my the fixed noise level/D = 0.6 the time series becomes suffi-
=00n10=2, Mp=0n;,=3, myu;=1n;,=—1, me=1n,s ciently long if N, is increased by two orders of magnitude
=1. The same is true foF,. Such a form is sufficiently ~also and becomel,=10°. This reasoning makes more pre-
parsimonious and flexible to describe some nontrivial noncise the terms “long” and “short” time series in the context

linearities[10]. of our consideration. A concrete value bf,, separating
long and short series, depends on the noise llaral on the
; 0 0
B. Nonlinearity of original system difference €3)%—(c3)? to be resolveli

An object of investigation is system2) with f;
:0.03Sin¢2_¢1), f2:005 Sin¢1_¢2), w1=l.1, (1)220.9,
andD;=D,=D. Equationg3) cannot be derived explicitly Finally, let us consider a more complicated and close to
for this system. The assumptiof81)—(C4) are not fulfiled  reality situation when one observes some signalsrather
due to the presence of nonlinear functidns. than observing the phases directthe latter was implicitly

In Fig. 3@ the mean valuegc;, and (y;,) (angle assumed in all the above consideratjoriset us take two

brackets denote averaging over the ensemble of 1000 corfoupled Van der Pol generators as an object:
puted valuesversus the noise levelD are shown. The val- .. 5 5

~ X1 0= (1 —X7 ) X1 o— +bqo(Xo1— X9+ t),
ues of €2)? are unknown here, but “almost true” values Sl 12X @12zt b+ ad 216)
(computed from a very long time series wilh,=2X 10°

and, therefore, almost equal t}ajyz) are shown instead of
them. The results of the calculations show thag exhibit ~ where 4=0.2, ,=1.02, ,=0.98, b,=0.03, b,=0.05,
greater bias for stronger noisef(, are 20 times greater than andD,=D,=D. For this system even Eq&) with Gauss-

~,0 _ LA . . ian white noise on the right-hand side can be derived only as
ﬁgizszt I\e{?eT 0.6) while v, are practically unbiased for any asymptotic approximation. But the main difficulty is that the

Relative numbers of corredt.e., 1—2) and false(i.e., phases should be calculated from the lime series,of

. ; N ._hence, they are obtained with certain errohs.such a case,
2—1) conclusions about coupling direction are shown in

. b | iseyD = q fal : LSR may give essentially biased estimates for the coeffi-
Fig. 3( ). At large noiseyD =0.6, one draws 1aisé Conclu- - gjantg a? [31]. Therefore, this example represents a more
sions in more than half of all fexperiments with the aid of

] Y . . severe test for the suggested approach.
the estimatod. For the same noise level, the relative number  The results of the estimation are shown in Fig. 4. Similar

of false conclusions drawn with the aid 6f i.e., by check-  to the previous example of Sec. Ill B, large biasef;li@ are
ing whether condition(14) or (15) is fulfilled, is equal to

0.02; the relative number of correct conclusions equals———

0.024; the former number corresponds well to the expected7rhe length of the analyzed time seriesNg=1200. Phases are
2.5% probability of errors. For the rest of the realizations,ca|culated using Hilbert transform. A hundred computed values of
“cautious” conclusions that it is impossible to state some-phases at both edges of the time series are excluded as erroneous.
thing definite about coupling direction are drawn. In otherThus, we obtain the time series of phases With=10°. There are
words, the time series witN ,=10° is too short for reliable  ~20 data points per a characteristic period of oscillations in accor-
determination of coupling direction at this noise level and thedance with the recommendations of Réf].

C. Errors in phases
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008 g) N 1000, b) However, our opinion that for a wide range of real-world
| A2 2a %Coge . . . . .
<91,z>_ ‘%9 s }3 processes estimators suggested in this work are applicable is
<Y1,2>,W4.:_:§uﬁ‘;_‘;72 P fagggeceettee quite justified. The reported results should be especially rel-
0 '*W*W@q 0 Frewatiiiapiiitssees}§ evant for the analysis of signals of biological origilectro-
0 02 504 08 0 02,504 08 encephalograms, ejowhere due to nonstationarity it is im-

portant to analyze short time series segments and variation of
FIG. 4. Results of coupling estimation for systéh®) with At coupling character in real time.
=10h=0.17 and 7=20 (Sec. 1l Q. Notations and comments are
the same as in Fig. 3.
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results concerning numbers of correct and false conclusions

about coupling directiofiFig. 4(b)] are the same as in the

previous example. APPENDIX A: VARIANCES OF COEFFICIENT

Thus, the estimateg, , and & turn out to be applicable in ESTIMATES
both caseqSecs. IlI B and Ill G where the assumptions . d vari 22 o0 vari fh d
(C1)—(C4) are violated sufficiently strongly due to different ~ Bias in, and variance ot} and variance of the suggeste
reasons. The main advantages)af, and 3 are as follows. estimatory, are related to variances and covariances of the

(1) In the case of very long time serider very weak estimates of coefficienta,;. Let us formulate simplifying
noise they give the same results as Rosenblum’s and Pikassumptions and derive analytic expressions for variances
ovsky’s estimators and are provided with narrow confidenceand covariances Cﬁl,i .

intervals, which indicates high significance of the results. Let system(2) be the object of investigation. Estimaig

(2) In the case of short time series very wide confidencgg gptained via the LSR. Let us rewrite statem@@tin ma-
intervals are obtained, which almost excludes false conclugiy form

sions about coupling presence and directionality.

IV. CONCLUSIONS [|A-a;—b|?>—min, (A1)

In this paper we develop an approach for estimation of
intensity and directionality of coupling between two sub-where A is a matrix of dimensionalityNxL; whose ele-
systems from short and noisy time series. A crucial requirements areA;; =g;(¢4(t;), (1)), b is an N-dimensional
ment is that each of the interacting subsystems should exhibitector withb;=A(t;), || - || stands for the Euclidean norm.
pronounced main rhythm of oscillations that guarantees th&olution to problem(Al) reduces to the solution to the so-
possibility of correct definition of phases and description ofcajied normal equations[30] and is given by &
their dynamics by an equation of ty). Besides, the sub- _(ATA)~1ATh. Let us assume the following.
systems should not be in a synchronous regime. Under cer- (c1) Random matrixATA of dimensionalityL; X L, can
tain additional assumption@onlinearity of subsystems and g regarded as constant, that is, independent of random fac-
coupling between them are smalunbiasedestimators for tors: ATA=E[ATA]=const.
intensity and directionality of interactiosupplied with con- (C2) Random quantities(t;) do not depend on phases
fidence intervalsre derived. Their applicability in situations &, t;) for any time instant; .
when the assumptions are moderately violated is shown in '(C|3) Random processl(tli), i=1,2,..., is asequence

numerical experiments. . of zero mean random quantities distributed identically and
Obstacles which limit the applicability of the suggested

o X . normally.
approachstrong violation of the mentioned assumptipage (C4) Random quantities(t,),z,(t;) are independent of
the following: (1) contributions of nonlinearity and noise to each other.

Egs.(3) are approximately equa(lz_) there are large errors in Validity of (C1) is determined by the number of data
th? valu?shof_ obr?ervables_’z leading to large errors in the qinisN. For the time series length &f~10° considered in
values of their phases. this work, assumptiofC1) is fulfilled within 4% error limit.

These situatiqns requjre, strictly s'peaking, differe'nt aP1t can be easily shown th&€2)—(C4) are fulfilled precisely
proaches, in particular, different techniques of estimating €O and only if f,=f,=0 in Eq.(2). In such a case, one can

efficients o_f model equatior[_§1] and differ_er_lt expressions _derive analytically that in Eq(3) F2=w17-At and &4(t))
for the estimators for coupling characteristics. However, it~ , . . 2
would be difficult to obtain such a universal recipe as that_fti §(Ddt is a random process with variance,
suggested in this paper, since one would need very speciai D, 7At [see exampl€8) in Sec. Il B]. An expression for
assumptions about the properties of noise and form of northe correlation function of, is derived by the analytic inte-
linearity. gration:
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Gy Gt r
f fl(t)dtJJ &(t’)dt'}
t t

titr tj+1'
=f f D,S(t—t')dt dt

op (1=[i=jlIm),
-1

Elea(t)ea(tj))]=E

li=il<r
li—jl=r.

(A2)

As is known from the theory of statistical estimati80],
it follows from the conditiongC1)—(C3) that (1) estimates
of coefficients are unbiased, i.€[a,]=a; (2) vectora, is
distributed according td_;-dimensional Gaussian law3)
covariation matrix of the components af is given by

E[a-a']=(ATA) L.E[ATeelA]- (ATA) "L, (A3)
where e, is an N-dimensional vector with components
e1(ty),e1(ty), ... ,&4(ty). Diagonal elements of the matrix
E[a-a'] are variances ofy;, other elements are covari-
ances ofa,; anday; for i#j. Let us derive expressions for
them.

Note, first, that under the assumption€1)—(C4)
the observed values of wrapped
(¢1(t;)ymod2r, p»(t;)mod2w), i=1,... N, are distributed
approximately uniformly in the squarg0,27]X[0,27].
Trigonometric monomialg);( ¢4, ¢,) are orthogonal on this
set. Hence, the matri&k"A is diagona[within a certain error
limit determined by the violation ofC1)]:

(Ad)

ATA=Ediag{21l 1

The first case 7=1. Equation (A2) implies
E[sl(ti)sl(tj)]=o§léij, i.e., subsequent values ef are

uncorrelated. EquationgA3) and (A4) imply E[a-a']
=(20§1/N)diag(%,1,l ...,1),i.e., estimates of coefficients
are uncorrelated. Their variances aogi =¢2 /N, and
) 1,1 1
i =207 IN fori>1.
The second case™ 1. Subsequent values ef are cor-

related. By performing transformations similar to those pre-

sented in Eq(A2), remembering about Gaussianity §f,

and taking some definite integrals, one derives that coeffi-
cient estimates are again uncorrelated and their variances are

given by

X cod (Myw1+ Niwy)j At]e (M oz, #nfa? VZT}

(A5)

phases

PHYSICAL REVIEW E68, 046209 (2003

for i>1. Note that Eq(A5) is valid for 7=1 as well. To
derive expressions for estimates , one may replaca

1i
priori unknown quantmesr and w1 ,in Eq. (A5) by their

estimates. Let us insert mto EGAS5) instead ofa the|r
est|mates:rg12 given by
o’ =g2 =L§ A 2(t-)—£§ AqAt) 2
€19 A1,2 N—1 “ 1, i N “ 1, i
(A6)

The quantitiesa; ,/(7At) and a,,/(7At) can be inserted
instead ofw; and w,. One derives finally(for i>1)

"2

o)

Xcoi(mall+n azl)J/T]e J(mo +na |

(A7)

Further, we express all other estimates in terms of the de-
rived unbiased estimateesfi

1i

APPENDIX B: VARIANCE OF y; AND CONFIDENCE
INTERVAL ESTIMATION

In Sec. 1l C an expressiofl0) for ¥, [an unbiased esti-
mator for (0(1’)2] is presented. From the theoretical point of

. . . 2 . . .
view, its vanancar is expressed in terms of variances and

covariances of the estlmatea;lI accordlng to expression
(12). Let us derive an estimator f@r
First, noncorrelatedness of Gaussuan distributed estimates
él,i and alyj (i#]j) implies their statistical independence.
Hence, their square@xii and éij are also independent of
each other. Then, taking in E¢L1) cov(a}; ,a%;)=0 for i
#j, one derives
Ly
=> nfo?, . (B1)
=1 1
Second, by using the definition of variance, Gaussianity
of éll, and taking corresponding definite integral, one de-
rives an expression for the varlanceaffl

aéii = 20{;11’i + 4(a1’i)20'él’i : (B2)

Unbiased estimator f0r0'§2

1i

But the use of this expression would often yield

would be 2}21- +4(a2,
| !

— 5t ) o2
api’ agy”

8&; in Eq. (A6) is a somewhat understated estimate of the vari-
ance. However, under the usual conditiogN, bias is very small

and can be neglected. Therefore, we do not present a more accurate
and much more cumbersome expression for a strictly unbiased es-

timate here.
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. 2 . . . 0
estimates ofr}, close to, and even less than, zero. It would ~An expression for the confidence interval far)}? de-
1,

lead often to spurious inference of high significance of obP€nds on the form of the distribution law ¢4. If 7y, were
distributed normallythis is the case only for very large num-

“ber of coefficientsa, ; with n;#0), then&li 1.9605, would
be a 95% confidence interval and it could be readily esti-

tained values@@i . Therefore, we propose to use a bit over
stated estimate

Z&gl_ +4(al;— % _)o'gl_, aZ,— (}gl_zo, mated asy; + 27, . However, the distribution of; is asym-
&§2_= ~4 ' ' ! ' metric for a typical number of coefficients ; with n;#0 (it
Li Zgén otherwise. is about ten, see Sec. Ill and REIQ]). To derive a generally

(B3) applicable expression for confidence interval analytically is

) . ] impossible since distributions gf; are different for different
This estimate corresponds to a cautious strategy and e¥ymbers of coefficients. But one can expect that in any case

cludes frequent spurious conclusions about the presence gfis not essentially different from the expression for Gauss-

coupllng. Finally, we prqpose to uzse the quantity given byian distribution since the distribution 6#1 is unimodal, even
expression(12) as an estimator fw;13

though a bit skewed. We searched for an estimate of 95%
confidence interval in the foriy, — ac, , v + 8o, ]. Con-

Ly Ly

> nf‘c}?z , 3,125< > ni“&?z ) stantsa and 8 were chosen empirically. As a result of nu-
a2 i= a; i= aj merical simulations, we obtained the values=1.6, B
g = —

Y1 1 Ly =1.8.
;\2 . . ~ . ~ ~
7 & ni‘lO'Ai otherwise. As for the quantitys, if y; and vy, are uncorrelated,
1= A

which is guaranteed by the conditiof81) and (C4), then

Such a choice is determined by the following circum- quite a good estimator for its variance&sgz &% +&gy . As
stances. For Iarge‘f, the top line is a “good” estimate. For ' 2

0 _ . . S . a rule, the distribution of is more symmetric than the dis-
c;~0, the top line gives an estimate, which is twice as large .

as the true value on averagiis statement is based on our tributions of y; ,. Therefore, we searched for an estimqte of
experience with numerical exampleSherefore, it is reason- 95% confidence interval fo® in a symmetric forms
able to divide the top line by a factor of 2. So, the proposedt ao ;. Again, our numerical experiments resulted in the
combination gives a widely acceptable trade-off. value ofa=1.6.
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