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Classical scattering for a driven inverted Gaussian potential in terms of the chaotic invariant set
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We study the classical electron scattering from a driven inverted Gaussian potential, an open system, in
terms of its chaotic invariant set. This chaotic invariant set is described by a ternary horseshoe construction on
an appropriate Poincaurface of section. We find the development parameters that describe the hyperbolic
component of the chaotic invariant set. In addition, we show that the hierarchical structure of the fractal set of
singularities of the scattering functions is the same as the structure of the chaotic invariant set. Finally, we
construct a symbolic encoding of the hierarchical structure of the set of singularities of the scattering functions
and use concepts from the thermodynamical formalism to obtain one of the measures of chaos of the fractal set
of singularities, the topological entropy.
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I. INTRODUCTION same as the structure of the fractal set of singularities of the
time-delay function.

Simple one-dimensional atomic potentials in external In Sec. lIA of this paper, we obtain the hierarchical
time-periodic electric fields have been used to predict severatructure of the chaotic invariant set for the driven inverted
phenomena in the theory of laser-atom interactions at higpaussian, which is an open system. The chaotic invariant set
laser intensity such as stabilization with increasing laser iniS represented as a horseshoe construction in an appropriate
tensity. These models are of particular interest because theifoincaresurface of section. We also obtain the development
classical versions display chaotic motif, thus providing —Parameter of the horseshoe construction which describes the
insight into quantum-classical correspondence. hyperbolic component of the invariant set while it ignores

The one-dimensional inverted Gaussian potential in th@olnhyferbtc_)llc eﬁgctﬁ. Intr??% rl]” B V‘;e cttjrlrlpu:efthg t'TeT
presence of a strong time-periodic electric field has alread yelay function and show that it has a fractal set of singuiari-

offered interesting insights into different aspects of the lasers, > with the same structure as the hierarchical structure of
atom interaction§2—4). This short-range driven atomic po- f[he invariant set. In Sec. Il C we o_btaln a symbollc_dynam—
' [9,10], that is, a symbolic encoding of the branching tree,

. . ic
tential has also been used to study the phase-space plcturetﬂzt describes the hierarchical structure of the chaotic invari-

resonance creation and to show that the resonance states (g <ot and thus the hierarchical structure of the fractal set of

scarred on unstable periodic orbits of the classical mOti‘)%inguIarities of the time-delay function. Finally, using con-
[5]. In addition, two of the authors have studied eIectronceptS from the thermodynamical formaligttl—13, we ob-
scattering from the driven inverted Gaussian and, using Flogin one of the measures of chaos of the fractal set of singu-

quet theory, they constructed the Floquet scattering matriXgrities of the scattering functions, the topological entropy.
They found that the eigenphases of the Floquet scattering

matrix undergo a number of avoiding crossings as a function
of the electron Floquet enerd@] which is a quantum mani- Il. MODEL
festation of the destruction of the constants of motion and the We study the classical scattering of an electron from a

onset of chaos in classical phase space. These avoided Croggi_dimensional inverted Gaussian atomic potential in the
ings were the motivating factor for a detailed study of thepresence of a strong time-periodic electric field. The electric

classical chaotic electron scattering from the driven invertedie|q E(t) = Eysin(wt) (T=27/o is the period of the fieldis

Gaussian potential which is the focus of the current work. treated within the dipole approximation as a monochromatic
Of primary importance in chaotic scatterii@] is the jnfinite plane wave linearly polarized along the direction of
identification of universal features that distinguish it from the incident electron. In what follows, we work in the
regular scattering. For open systems, one such feature is th@amers-HennebergefKH) [14,15 frame of reference,
fractal set of singularities observed in scattering functionsyhich oscillates with a free electron in the time-periodic
such as the time-delay functi¢8]. This fractal set of singu- field. In the KH frame there are well defined asymptotic
larities is the result of the intersection of the incoming elec-regions where the electron is under free motion. The Hamil-
tron asymptotes with the invariant manifolds of the chaotictonian in one space dimensiarthat describes the dynamics
invariant set in the asymptotic region. The chaotic invarianiof the system in the KH frame is in atomic uni@.u) [6]
set underlies the structure of the classical phase space in the
sense that its properties determine the quantities that charac-
terize the scattering process. One such property is the hier-
archical structure of the chaotic invariant set which is the

2
H(x,t)= % — Ve~ {Ixtal 9 (1)
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wherea(t) = agsin(wt) is the classical displacement of a free 1
electron from its center of oscillation in the time-periodic
electric field E(t) with ap=—qEy/w? (q is the particle

charge which for the electron ig=—1 a.u.). Next, we

transform Eqg.(1) to a two-dimensional time-independent A
system, where the total energyof the system is conserved, 0} = R =~
as follows:

p (a.u.)

2
H= 5 —Vge (0 e 2

-1

-3 x(au) 8

| and ¢ are, respectively, the action-angle variables of the o

driving field and¢= wt. In the limit x— + o the Gaussian FIG. 1. The fundamental regioR is formed by the unstable
atomic potential tends to zero faster thar [i8]. Thus, there ~Manifold of the fixed poinfA, segmenfAE, by the stable manifold
are well defined asymptotic regions where the electron &f the fixed pointC, segmenCE, by the unstable manifold of the
under free motion and its dynamics is described by th ixed pointC, segmentCD, and the stable manifold of the fixed
asymptotic Hamiltonian pointA, segmeniD.

A. Chaotic invariant set

2 . . .
Has_p—+w|- 3) The chaotic invariant set is usually represented by a

2 horseshoe construction in an appropriate Poinsaréace of
section. In the case of the well-known Smale horseshoe the
construction is done by stretching a fundamental redfon
and folding it on to the original regiofi7,1§. The bound-
aries ofR are given by segments of the invariant manifolds
of the outer fixed points of the system. Following the above

In the asymptotic regime, E@3), the electron momentum
as well as the action of the fieldare conserved quantities. In
the following sections, all our calculations are performed

V;']ith the values\/0f=r(]).2_70 35 ?:IUG and=2 a"j[" at_sslig_lrjﬁd 0 general scheme we first define the fundamental reBioFhe
the parameters of the inverted Gaussian potentia - INEse v ystem under consideration has three period-1 periodic orbits
ues of the parametekg, and 8 were shown to describe well gv

. i . . (fixed point3. The inner fixed point is an elliptic one. The
the quantum behavior of a one-dimensional model negativ 0 outer fixed points are located &ts + . As x—o the
chiorine ion CI' in the presence pf a laser f|eﬂ6,4,6,16.. invariant stable and unstable manifolds of the outer fixed
The frequency of the time-periodic field;, and the ampli- point C, see Fig. 1, converge to the same maniftijen-
tude of the field o, are taken constant and equal to 0.65 a.u,, ctop, with p=0. The same is true for the manifolds of the
and 0.9 a.u., respectively. These values for the frequency a ed p,ointA atx— —. So, globally, the outer fixed points
amplitude of the field were chosen so that the resultingO \ '

T o . ehave as unstable ones, that is, they produce invariant mani-
horseshoe construction is not prohibitively complicated tor) 1< of the same topology as that produced by hyperbolic
study.

fixed points. However, in a small neighborhood around them
they behave as parabolic ones. That is, the tangent map at
X— * o has a degenerate eigenvalue equal {orie eigen-
lll. CHAOTIC SCATTERING vecton [1]. The invariant manifolds of these outer fixed
We are interested in understanding the underlying strucpoints determine the boundaries of the fundamental Brea
ture of the classical chaotic scattering system under considsee Fig. 1.
eration. That implies knowledge of the chaotic invariant set. In Fig. 1 the horseshoe is constructed on the Poincare
In what follows, we first show how to construct the hierar- surface of sectionp= /2. We use the Poincamsurface of
chical structure of the chaotic invariant set for the invertedsection = 7/2 for all our calculations. This choice of the
Gaussian atomic potential driven by a laser field. The schemBoincaresurface of section simplifies the horseshoe con-
we follow to construct the hierarchical structure of the cha-struction because on this plane the time reversal transforma-
otic invariant set is valid only for systems with two degreestion t— —t is equivalent to thep— —p transformation.
of freedom. Then, we show how the structure of the chaoticThus, from the stable manifolds of the outer fixed points one
invariant set allows us to understand the structure of the fracmbtains the unstable manifolds by lettipg~ —p and vice
tal set of singularities of the scattering functions. We thenversa. The driven inverted Gaussian has no right/left symme-
obtain a symbolic dynamics for the hierarchical structure oftry. That is, the Hamiltonian is not invariant under the trans-
the chaotic invariant set. This symbolic dynamics describesormation x— —x. Thus, the invariant set of the system is
the hierarchical structure of the scattering functions as welldescribed by a ternarghree fixed pointsasymmetric horse-
We express this symbolic dynamics in the form of a transfeshoe construction. That is, the underlying structure of the
matrix [13] and compute the topological entropy which in scattering functions for electrons incident from the right/left
our case is a measure of the fractal structure of singularities described by two different views right/left of the same
of the scattering functions. horseshoe construction. The reason we consider the invariant
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lobes that are inside the ar&a In a similar way, we con-
struct the left view of the hierarchical structure of the horse-

g shoe construction that underlies scattering for electrons inci-
= dent from the left, see Fig. 2. The intersection points of the
stable manifolds with the unstable manifolds of the outer

0l fixed points, seen in Fig. 2 are the so called homoclinic/

heteroclinic points for intersecting manifolds corresponding
to the same(homoclinig or different (heteroclini¢ fixed
points. These homoclinic/heteroclinic intersections underlie
the classical chaotic scattering.

Next, we compute the so called development parameter
that approximately gives the development stage of the horse-

x (a.u.) shoe construction. The significance of this parameter is that it

FIG. 2. Horseshoe construction up to hierarchy level 2 on thedescribes universal aspects of the horseshoe and ignores the

Poincafesurface of sectionp= /2. The solid lines indicate ten- d€tails. That is, it determines the hyperbolic component of
drils of order 0, the dashed lines indicate tendrils of order 1 and thdh® invariant set which is the important part for the scattering
dotted lines indicate tendrils of order 2. The g&fson the bottom ~ Pehavior and neglects nonhyperbolic effects that are due to
right/top left are formed by intersections of the stable manifolds ofth€ Kolmogorov-Arnold-Mose(KAM) tori [19,21,23. The
the fixed pointsA and C with the local segment of the unstable Nonhyperbolic effects appear at high levels of the hierarchy
manifold of the fixed pointC/A, that is, CD/AE. These intersec- as tangencies, non transversal intersections, between stable
tions describe the right view/left view of the horseshoe construcand unstable manifolds and have a very small effect on the
tion. t3* indicates the first-order tendril of the unstable manifold of scattering functiongsee Ref[10] for more details on tan-
the fixed pointA. t4"C indicates the first-order tendril of the unstable gencies between stable and unstable manifofsr the val-
manifold of the fixed poinC. ues of the frequency and the amplitude of the driving field
we choose, there are tangencies when fourth-onder4,
manifolds of the outer fixed points is that these are the manitendrils of the stable manifolds are intersecting fourth order
folds that are “seen” by the scattering trajectories and thusendrils of the unstable manifolds in the interior of the fun-
have an effect on the scattering functions. damental region. The effect of these tangencies in the interior
Let us now obtain the right view of the hierarchical struc- of the fundamental region becomes visible in the scattering
ture of the horseshoe construction that underlies SCatterinmnctionS at a hierarchical leveh2 in our case 8. The reason
for electrons incident from the right. The fundamental aregs that if annth-order tendril of the stable manifold intersects
R, see Fig. 1, is defined by the zero order tendrils as well agangentially amth-order tendril of the unstable manifold in
an infinite number _Of preimages/images of the unstablefhe interior of the fundamental region, then the-+(1)th
stable invariant manifolds. We now add one iteration step ofendril of the stable manifold will intersect the £ 1)th ten-
the stable manifolds. That is, using Hamilton’s equations ofyyj| of the unstable manifold, and so on, until the+(n)th
motion for the Hamiltonian given in E¢2) we propagate the  tendril of the stable manifold intersects the zero-order tendril
points on the segments of the stable manifoAiB, andEC  of the unstable manifold, that is, when thet@ tendril of the
in Fig. 1, backwards in time for one period of the driving staple manifold intersects the local segm@tro-order ten-
field (to obtain the tendrils of the unstable manifolds Wedril) of the unstable manifold. But, as we show in the fol-
propagate forward in time The intersection of the first im- |owing section, it is exactly the structure of the intersections
age, first order tendrils, of the stable manifolds with the un-of the stable manifolds with the local segment of the unstable
stable manifold of the fixed poir, segmenCD in Fig. 1,  manifold that is “picked” by the scattering functions.
reveals the first order ga@i, see Flg 2. The intersection The deve|opment parameter has the value 1 for a com-
with the unstable manifold of one more iteration step of theplete horseshoe. A horseshoe is complete when the tendril of
stable manifolds reveals the second order gaps see Fig. level 1 of the unstable manifold reaches the other side of the
2. Thus, the gaG; is the area enclosed by the nth-order fundamental are®. For an incomplete horseshoe the devel-
tendril of the stable manifold and the boundary of the funda-opment parameter is determined by the relative length of the
mental areaR. A point that lies inG; is mapped out of the tendril of level 1 of the unstable manifold as compared to the
fundamental region after applications of the map, it is thus complete case. It is given by,N™" [19], wheren is the
of hierarchy leveln. These gaps play an important role be- highest level of hierarchy consideredgl,is the number of the
cause they are areas that are not needed to cover the invarig@p that the tendril of order 1 of the unstable manifold
set. No higher level tendrils of the invariant manifolds will reaches up to, counting the gaps starting from the fixed point
ever enter such gaps. So, with each iteration step one furthandN is the number of the fixed points. For the system under
tendril of the stable manifolds is added and one further levetonsideratiorN= 3. It is important to realize that the num-
of hierarchy of these gaps is displayld®]. We therefore see bers are assigned to the gaps of the incomplete horseshoe
the construction scheme of the horseshoe by going from oneonstruction after comparing with the gaps of the complete
level of hierarchy to the next. We note that the term gapshorseshoe constructidi9]. Note, that the value of the for-
corresponds to what is known as lobes in fluid transpormal parameter, given by,N~", remains the same when dif-
problems[20]. In particular, the gaps correspond to thoseferent hierarchy levels are considered. The reason is that as

1
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FIG. 3. The initial conditions used to generate this strobe plot lie  FIG. 4. For scattering from the right, we indicate as O the line of
on the linep=0. This strobe plot is generated by evolving the initial conditions in the asymptotic region used to compute the time-
trajectories forward in time and it thus “picks” the unstable mani- delay function. This set of initial conditions intersects the stable
folds of the fixed pointsA andC. The location of the middle fixed manifold of the fixed poinA. The numbers 1-4 indicate successive
point B (period-1 orbij is located at=0.29 and is indicated by a iterations in time of the set of initial conditions.
filled rectangle. Comparing with Fig. 1, we see that the first order
tendril of the unstable manifold of the fixed poift t{*, pen-  approximately in the intervald.7,1.15 a.u. of the amplitude
etrates the fundamental arBaompletely. In the case though of the of the field, «.
first-order tendril of the unstable manifold of the fixed pot
t5°©, the KAM tori around the fixed poirB prevents it from reach- B. Scattering functions

ing the boundary of the fundamental afRa . . . . .
The scattering functions give properties of the final elec-

we go from a hierarchy levai to the next hierarchy level tron asymptotes as a function of the incoming electron as-

n+1, N—1 gaps are added between successive gaps at tyoptotes. In the case of classical chaotic scattering the scat-
hiera’rchy leveln in the complete horseshoe construction.termg functions have a fractal set of singularities. This fractal

Thus, one can show that if the number is assigned to a set of singularities is the result of the intersection of the

certain gap at hierarchy leve] the number assigned to Incoming electron asymptotes with th_e underlying C.haOt'C

the same gap at hierarchy levek1 is r“*l_ Nr.. So invariant set. That is, when the scattering electron trajectory
n+1— n- [}

r.N-(D=r N~ and the value of the formal parameter starts exactly on the stable manifold of the chaotic invariant

: set it stays on the chaotic set forever, resulting in a singular-

remains the same. ity of the scattering function. Furthermore, the structure of
As already mentioned, fop=0.65 a.u. andyy=0.9 a.u. y 9 ) ’

the driven inverted Gaussian is described by a ternary asyn%t;;ost?é i?]t,;::ir;gnlilzg[t[fgs] Is the same as the structure of the
metric horseshoe construction and it is thus described by twb )

H el
development parameters. The development parameter th{;ﬁt In wha'_[ follows, we compute the_ time delé’;_?‘ one Of.
. ) . e most important scattering functions. The time delay is a
corresponds to the manifolds of the fixed pointxat — o,

A, has the value 1 since the first-order tendril of the unstable';neasure of how much the incoming electron delays due to its

manifold of the fixed point reaches the other side of the m_teraction with the potential in the scattering region and is
fundamental are®&, see Fig. 2. The development parameterglven by
that corresponds to the manifolds of the fixed poinkat X; X
+, C, has the value 1/3 as can be seen in Fig. 2. The value Tdel— |20 | 2ot
1/3 is obtained as follows: if we consider tendrils up to hi- Pinl [Pout
erarchy leveh=1 then the first-order tendril of the unstable T is the time it takes for the electron to travel from the

manifold of the fixed poinC, t{", reaches up to the=1  incoming to the outgoing asymptotic region. There is an ar-
gap. If we consider tendrils up to hierarchy levet2 then  pijtrariness in the timeT due to the specific choice of the
t"® reaches up to the=3 gap and for hierarchy level initial distancex;, that the timing is initiated in the incoming
=3 t}'° reaches up to the=9 gap. That is, the value of the asymptotic region and the final distancg, that the timing
development parameter remains the same when different his stopped in the outgoing asymptotic region. To remove this
erarchy levels are considered. In Fig. 3, we see how therbitrariness we substract the time that the electron spends
KAM tori around the middle fixed point cause an incompleterunning along the initial and final asymptotés;, /p;,| and
horseshoe construction. So fow=0.65a.u. and oy  [Xqu/Poui, respectively.

=0.9 a.u. the chaotic invariant set is described by a ternary We consider scattering from the right and compute the
asymmetric horseshoe construction with development paime delay function for a line of initial conditions in the
rameters 1 and 1/3. For reasons explained at the end of Seasymptotic regime that completely intersects one tendril of
Il, the frequency is taken equal to 0.65 a(high frequency the stable manifold of the outer fixed poifst see Fig. 4. We
regime compared t¥,=0.270 35 a.u.). For this frequency a compute the time-delay function, for the choice of initial
horseshoe with development parameters 1 and 1/3 is realizednditions denoted as 0 in Fig. 4, as a function of the initial

: 4
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FIG. 5. Time-delay function as a function of the initial momen- Pp(a-u,)

twm for the set of initial conditions shown in Fig. 4. FIG. 6. In(a) we show the hierarchy level of the intervals of

. — . . continuity for a part of the time-delay function, see Fig. 5. For a
mom‘?”t“mpin’ a"?”,g. the Imej ,Of initial conditions, see Fig. given pair of initial valuesxy,py, We propagate the trajectories
5. This choice of !n't'al qqndltlons a”PWS us to unde_rStanduntil they reach one of the asymptotic regions and count the number
the structure of singularities of the time delay function asg times the trajectory steps in the fundamental aRedn (b) we
follows. From Fig. 4 we see that the iterates in time of thepjot the time-delay function for the same range of initial conditions
line of initial conditions converge toward the boundary of the as for the hierarchy level of the intervals of continuity showitan
fundamental region that is defined by the local segment ofye can immediately see that both functions have the same pattern
the unstable manifold of the fixed poi@t The intersections of singularities.
of the line of initial conditions with the stable manifold of
the fixed pointA are mapped on intersections of the iteratestimes before it is mapped outside At the same time, if the
with the same stable manifold. ThUS, the Singularity Structur%cattering trajectory Steps inside the arRra— 1 times that
of the scattering function is the same as the pattern resultingyeans that it is mapped outside Rfafter n applications of
from the intersection Of the Stable manif0|ds W|th the Iocalthe map and thus the trajectory was |n|t|ated at an interval Of
segment of the unstable manifold of the fixed pdntThat  continuity of hierarchy leveh. Thus, a gap of hierarchy level
implies that the intervals of continuity of the scattering func-p, of the horseshoe construction corresponds to an interval of
tion correspond to the gaps that the tendrils of the stabl@ontinuity of hierarchy leveh of the time delay function.
manifolds cut into the fundamental area of the horseshoghat implies that the hierarchical structure of the chaotic
construction. In other words, the pattern of the fractal set ofnyariant set and of the scattering functions is the same. In-
Singularities of the time delay function is the same as thqjeed, a Comparison of F|gdeﬁ and 9[F|g 9is exp|ained in
hierarchical structure of the horseshoe construction. We futhe following sectioireveals that the pattern of singularities
ther illustrate this point as follows. In Fig(#, we compute  of the time delay function in Fig.(6) is the same as that part
the hierarchy level of the intervals of continuity for a part of of the hierarchical structure of the chaotic invariant set that is
the time-delay function, see Fig(t§ [Fig. 6(b) is a magni-  encircled by a square in Fig. 9.
fication of a part of Fig. b To do so, we initiate trajectories  For the system under consideration the potential in the
at the intervals of continuity of the delay function and countinteraction region is known and so we can directly obtain the
the number of times the scattering trajectories “step” into thenjerarchical structure of the chaotic invariant set and thus the
fundamental region, see Fig(&h. If a scattering trajectory strycture of the scattering functions. However, when the po-
steps inside the areR n—1 times that means that it takes  tentjal in the interaction region is not known, then one has to
applications of the map before it is mapped outsid®dfVe  find from asymptotic observations the hierarchical structure
thus say that the trajectory was initiated at an interval ofpf the scattering functions in order to obtain the structure of
continuity of hierarchy leveh. For example, we see from the chaotic invariant set.
Fig. 6(@ that the scattering trajectory with;,=—0.1973
steps two times insid®. Thus, the interval of continuity it
was initiated at is of hierarchy level 3. The resulting pattern
of singularities shown in Fig.(@) is the same as the pattern It is possible to construct a topological measure of the
of singularities of the time-delay function as a comparison ofdegree of chaos contained in this scattering system if we can
Figs. Ga) and Gb) reveals. construct a symbolic dynamics that reproduces the hierarchy
Let us now explain how the hierarchy level of the inter- of intersections of the stable and unstable manifolds. The
vals of continuity is related to the gaps of the horseshodirst step is to obtain the branching trees that describe the
construction. As we illustrate in Fig. 7, if a scattering trajec-right/left view of the horseshoe constructions for scattering
tory approaches the local segment of the unstable manifoletom right/left. The second step involves the development of
along a gap of orden, then it steps inside the aréan—1  a symbolic dynamics that reproduces the structure of the

C. Measures of chaos
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FIG. 9. Branching tree and symbolic dynamics for scattering
from the right shown up to hierarchy level 4. Each interval corre-
sponds to one branch of the tree. A branch at hierarchy level

FIG. 7. The solid lines indicate tendrils of order O, the dasheddescribed by a string of length
lines indicate tendrils of order 1, the dotted lines indicate tendrils of
order 2 and the dashed-dot line indicates tendrils of order 3. w&ranching trees. It is important to note that for the values of
initiate a trajectory in the r|ght asymptotic region W"fb\n: the amplitude and the fl’equency Of the driVing f|e|d ConSid-
—0.1973 which is inside an interval of continuity, see FigpsWe  €red there are tangencies between the stable and unstable
then successively iterate the trajectory in tifsears. The succes- Mmanifolds on the fourth order tendrils. These tangencies in-
sive iterations are indicated by numbers 1—8, respectively. The trdroduce nonhyperbolic effects that will cause a breakdown of
jectory approaches the local segmé of the unstable manifold ~ the symbolic dynamics starting from hierarchy level 8 and
of the fixed pointC inside the third-order tendril of the stable mani- higher. However, knowledge of the symbolic dynamics up to
fold of the fixed pointA along a third-order gap. One more iteration hierarchy level 8 gives a significant measure of the degree of
in time maps area (shaded by dols which is enclosed by the Observable chaos in this scattering system.
third-order tendril of the stable manifold of the fixed pafand its ]
unstable manifold, into arda (shaded by lines which is enclosed 1. Branching trees

by the second order tendril of the stable manifold of p@lmnd its Let us flrst Obtaln a branchlng tréeg] that descnbes the
unstable manifold. A further iteration in time maps alemto area right view of the horseshoe construction for scattering from
¢ (shaded by lings which is enclosed by the first order tendril of i right. We will use information developed in Sec. Il A.
the stable manifold of poinf and its unstable manifold. Finally, First. let us consider the intervbg which corresponds to the
areac is mapped to ared (shaded by linésand enclosed by the Iocal7segment of the unstable manif@d of the fixed point

zero order tendril of the stable manifold of poitand its unstable . L . . .
manifold. But areal is outside the fundamental region and thus theC (see Fig. 8 This is the first step in the construction of the

trajectory steps inside the fundamental region two times. Generall)pr"’mCh'ng tree and_ corresponds to hlera_rchy leveD. In_
if the scattering trajectory approaches the local segment of the urfhe second step, hierarchy lever 1, the first-order tendril
stable manifold along a gap of hierarchical order n it will step inside®f the stable manifold of the fixed poidt cuts the interval
the fundamental are®, n—1 times before it is mapped outsige  (So,S1) out of 19 and leaves two intervalg (the segment of
CD from D to sp) andl% (the segment o€ D from s; to C).

In the third step, hierarchy level=2, the second order ten-
dril of the stable manifold of the fixed poirt cuts the inter-
val (s4,S5) out of I3 and leaves two intervalg, (the seg-
ment ofCD from s; to s,) andl 32 (the segment o€D from
s; to C). In the same stefthe same iterationthe second
order tendril of the stable manifold of the fixed potcuts
the interval 6,,53) out of I and leaves two intervalg, (the
segment ofCD from D to s,) andli2 (the segment o€D
from s3 to Sp). Continuing this process we obtain the branch-
ing tree shown in Fig. 9.

In a similar way, we construct the branching tree that
describes the left view of the horseshoe construction for scat-
. . tering from the left, see Fig. 10. The hierarchical structure of
0 10 these branching trees is the same as the hierarchical structure

x (au.) of the chaotic invariant set.

FIG. 8. Construction of the branching tree for scattering from
the right. The first-order gaf; reduces the initial interval‘f, at
hierarchy leveh=0, down to the two intervals} andl3. Note that Having determined the geometry of the branching trees,
for the scattering functions, we obtain exactly the same branchingve can now construct a symbolic dynamics that encodes the
tree as for the chaotic invariant set. For the scattering functionspranching trees. In principle, since we have a nonhyperbolic
instead of the gaps it is the intervals of continuity that are cut outhorseshoe construction one needs an infinite number of
from the original interval in a Cantor set structure. grammatical rules to construct a symbolic dynamics. How-

x {(a.u.)

p (a.u.)

2. Symbolic dynamics
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ABCC++CC++C C ++C  C 4+ CABCCBA  ABCCBAC + +C (4) C always inverts the previous orientation if it comes

H after S+, whereSis not +.
(5) + always inverts the previous orientation if it comes
AL B QY +_+ ¢ ¢ c d ¢ after SwhereSis not +.
n=3
C C
n=2

By previous orientatiorwe mean the following: if at a
hierarchy leveln there are three branches ending, for ex-
ample, in the symbol#, B, andC, going from left to right
(see Fig. 1D then at hierarchy leveh+1, from the string
ending inB two strings stem out with symbol endingsand
C, according to the second grammatical rule. According to

FIG. 10. Branching tree and symbolic dynamics for scatteringtn€ third grammatical rule, the symbol endings and C,
from the left shown up to hierarchy level 4. Let us now explain 90ing from left to right, at leveh+ 1, must have the inverse
what we mean by previous orientation in terms, for example of thedrientation to that of the symbol endings at levelin this
third grammatical rule. For example, at the hierarchical lavel €xample, at leveh, the symbol ending#, B, andC, going
=2, indicated by the arrow, the symbol endings of the threefrom left to right, have the standard orientation. Thus, after
branches going from left to right as B, andC which is what we  the string ending inB, two branches stem out, at level
define as standard orientation. After the symBale can attach the +1, with symbol ending€ and +, going from left to right,
symbols+ andC at the hierarchical levei=3, indicated again by see Fig. 10.
an arrow. According to the third grammatical rule the symbels To symbolically encode the right/left branching trees in
andC, at leveln=3, will be attached, afteB, so that they have the F|gs 9 and 10 we have started at lexet 1 by attaching the
inverse orientation of the symbol at leve=2. So, since at level symbols+ andC for the right andA, B, andC for the left
n=2 the symbolsA, B, andC are attached in standard_orientation view of the branching trees, respectively, and then use the
then at leven=3 we attach afteB symbolsC and+ going form  3p59ve grammatical rules to continue the encoding. Using
left to right, resulting in an inverse orientation compared to that aly,ege ryles we can encode and thus obtain the structure of the
leveln=2. Thus, we say tha always inverts the previous orien- 1, onching trees safely up to hierarchy level 7. For the values
tation. of the frequency and amplitude of the driving field we con-
sider here, there are tangencies between the invariant mani-
ever, we can construct an approximate symbolic dynamicfolds at level 4 in the interior of the fundamental region.
that describes well the outermost hyperbolic component ofhese tangencies can cause our symbolic encoding to break
the horseshoe construction. The symbolic encoding of théown at hierarchy level 8 and higher of the branching tree.
branching tree is not unique, but the measures of chaos orhat is, these tangencies can introduce additional branches in
obtains for different encodings are the same. the branching tree, starting at level 8, which are not ac-
Our symbolic dynamics consists of four symbglsB, C, countgd for by our grammatical rules. Note, that Fhe above
and+ and a set of grammatical rules that allow us to encodélescribed symbolic dynamics encodes the branching trees of
each branch of the branching tree. That is, each branch of tH8€ Scattering functions as well.

tree of hierarchy leveh is labeled by a vertical sequence . !f We now use concepts from a thermodynamical formal-
(string) of n symbols made out of the four symbos B, C, ST [11,12, we can express the above described grammatical

and +. Each symbol sequence is read vertically up therules in the form of a transfer matr{4.3]. To construct the

branch of the treésee Figs. 9 and 20The order in which transfer r_natrlx we use as er?tr_le_s the l_l words listed earlier.
the four symbols appear in each branch of the tree is deteIhe matrix elementlim) is 1 ifitis po_ssmle to attac_h to.the

) . . word | a symbol such that the resulting string ending is the
mined by the grammatical rules. That is, the rules tell u

. SWord m, otherwise the matrix element is 0. In other words, if
which of the four symbols are allowed to be appended to Fhe transfer matrix element,) is 1 it means that if at a

given branch of the tree as we go from a certain hierarCh)éertain hierarchy level we have a string ending in the word
level to the next. when we go to the next hierarchy level it is allowed to en-

~Our rules depend on the last “word” that appears on acounter a string ending in the word. To clarify this point,

three symbols and can be either of the eleven wokdst = 4 4 (see Fig. 11 According to the first grammatical rule,
+, B+C, C+C, ++C, CC, BC, AC, B,B+, andC+  after the word+ + we can attach three symbols labekedB,
(see Figs. 9 and 10The rules are the following: and C and so obtain the strings +A, ++B and ++C.
(1) After a string(branch ending inA, B+C, C+C, or  These strings have the string endingss A, m=B andm
++ it is allowed to attach the symbols, B, andC, going =+ +C, respectively, which can be identified with three of
from left to right (standard orientation Thus, three strings the 11 words. Thus, the matrix elementst £,A),
(brancheg stem out ending A\, B, andC. (++,B), and (++,++C) are 1, while all other matrix
(2) After a string (branch ending inAC, B, BC, B+, elements with =+ + are 0.
C+, CCor + +Citis allowed to attach the symbots and Having constructed the transfer matrix, we can now com-
C, going from left to right(standard orientationThus, two  pute the topological entropy of the branching tree. The topo-
strings(branches stem out ending int+, C. logical entropy is a measure of the degree of chaos in the
(3) B always inverts the previous orientation. scattering system. Let us first describe the relation between
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largest eigenvalue is2.31. Thus, the topological entropy of
the branching tree iKy~0.84. This topological entropy de-
scribes the rate of growth of the branches in the hierarchical
structure of the scattering functions and is thus a measure of
chaos of the fractal set of singularities.

It is useful to mention that for a horseshoe withfixed
points the value of the topological entropg,, can vary
between 0 and IN). This is easily understood, since for a
horseshoe withN fixed points the maximum value of the
average branching ratio N andKj is the logarithm of the
average branching ratio. Thus, for a ternary horseshoe con-
struction, the case currently under considerationean vary
between 0 and In(3)1.1. For the values of the frequency
and amplitude of the driving field considered in this paper,
we find thatKy~0.84, close to the maximum value of 1.1,
which suggests that our system is in the regime of strong
chaos.

B+C|{C+C|++C | CC | BC| AC| B | B+ | C+

=+ 1 0 0 0 1 0 0 0 1 0 0

B+C| 1 0 0 0 0 1 0 0 1 0 0

C+C| 1 0 0 0 0 1 0 0 1 0 0

+~H+C| 0| 0 0 0 0 1 0 0] o0

cC 0|0 0 0 0 1 0 0 0 0 1

BC 010 0 0 0 1 0 01]0 0 1

ACl o|lo|o|oOo]|oOo|1]|]oO0o|oOo]oOo | |o0]1

B+ 0|1 1 0 0 0 0 01]0 0 0

calol1|ol1]olo]loloflololo IV. CONCLUSIONS

In this paper, we have studied the classical electron scat-
tering from a driven inverted Gaussian potential which is an
open system. We have shown that the fractal pattern of sin-
the topological entropy and the transfer matrix. The topologi-gularities of the scattering functions can be understood in
cal entropyKy, is the rate of exponential growth of the num- terms of the hierarchical structure of the chaotic invariant set
ber of intervals Z(n), or equivalently the number of which underlies the chaotic dynamics. We have constructed a
branche<(n), at a hierarchical leval whenn is large with  symbolic encoding of the hierarchical structure of the chaotic
Z(n)=e"ko [11]. It directly follows that Ky=In[Z(n invariant set. Using concepts from the thermodynamical for-
+1)/Z(n)]. But, for largen, Z(n+1)/Z(n) is the average malism, we have used this encoding to obtain the topological
branching ratio of the trees. This ratio is given by the largesentropy of the fractal set of singularities of the scattering

FIG. 11. Transfer matrix.

eigenvalue of the transfer matr[43]. For our system, the functions.
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