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Classical scattering for a driven inverted Gaussian potential in terms of the chaotic invariant set
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We study the classical electron scattering from a driven inverted Gaussian potential, an open system, in
terms of its chaotic invariant set. This chaotic invariant set is described by a ternary horseshoe construction on
an appropriate Poincare´ surface of section. We find the development parameters that describe the hyperbolic
component of the chaotic invariant set. In addition, we show that the hierarchical structure of the fractal set of
singularities of the scattering functions is the same as the structure of the chaotic invariant set. Finally, we
construct a symbolic encoding of the hierarchical structure of the set of singularities of the scattering functions
and use concepts from the thermodynamical formalism to obtain one of the measures of chaos of the fractal set
of singularities, the topological entropy.
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I. INTRODUCTION

Simple one-dimensional atomic potentials in exter
time-periodic electric fields have been used to predict sev
phenomena in the theory of laser-atom interactions at h
laser intensity such as stabilization with increasing laser
tensity. These models are of particular interest because
classical versions display chaotic motion@1#, thus providing
insight into quantum-classical correspondence.

The one-dimensional inverted Gaussian potential in
presence of a strong time-periodic electric field has alre
offered interesting insights into different aspects of the las
atom interactions@2–4#. This short-range driven atomic po
tential has also been used to study the phase-space pictu
resonance creation and to show that the resonance state
scarred on unstable periodic orbits of the classical mo
@5#. In addition, two of the authors have studied electr
scattering from the driven inverted Gaussian and, using F
quet theory, they constructed the Floquet scattering ma
They found that the eigenphases of the Floquet scatte
matrix undergo a number of avoiding crossings as a func
of the electron Floquet energy@6# which is a quantum mani
festation of the destruction of the constants of motion and
onset of chaos in classical phase space. These avoided c
ings were the motivating factor for a detailed study of t
classical chaotic electron scattering from the driven inver
Gaussian potential which is the focus of the current work

Of primary importance in chaotic scattering@7# is the
identification of universal features that distinguish it fro
regular scattering. For open systems, one such feature i
fractal set of singularities observed in scattering functio
such as the time-delay function@8#. This fractal set of singu-
larities is the result of the intersection of the incoming ele
tron asymptotes with the invariant manifolds of the chao
invariant set in the asymptotic region. The chaotic invari
set underlies the structure of the classical phase space i
sense that its properties determine the quantities that cha
terize the scattering process. One such property is the
archical structure of the chaotic invariant set which is
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same as the structure of the fractal set of singularities of
time-delay function.

In Sec. III A of this paper, we obtain the hierarchic
structure of the chaotic invariant set for the driven invert
Gaussian, which is an open system. The chaotic invarian
is represented as a horseshoe construction in an approp
Poincare´ surface of section. We also obtain the developm
parameter of the horseshoe construction which describes
hyperbolic component of the invariant set while it ignor
nonhyperbolic effects. In Sec. III B we compute the tim
delay function and show that it has a fractal set of singula
ties with the same structure as the hierarchical structure
the invariant set. In Sec. III C we obtain a symbolic dyna
ics @9,10#, that is, a symbolic encoding of the branching tre
that describes the hierarchical structure of the chaotic inv
ant set and thus the hierarchical structure of the fractal se
singularities of the time-delay function. Finally, using co
cepts from the thermodynamical formalism@11–13#, we ob-
tain one of the measures of chaos of the fractal set of sin
larities of the scattering functions, the topological entropy

II. MODEL

We study the classical scattering of an electron from
one-dimensional inverted Gaussian atomic potential in
presence of a strong time-periodic electric field. The elec
field E(t)5E0sin(vt) (T52p/v is the period of the field! is
treated within the dipole approximation as a monochroma
infinite plane wave linearly polarized along the direction
the incident electron. In what follows, we work in th
Kramers-Henneberger~KH! @14,15# frame of reference,
which oscillates with a free electron in the time-period
field. In the KH frame there are well defined asympto
regions where the electron is under free motion. The Ham
tonian in one space dimensionx that describes the dynamic
of the system in the KH frame is in atomic units~a.u.! @6#

H~x,t !5
p2

2
2V0e2$[x1a(t)]/d%2

, ~1!
©2003 The American Physical Society07-1
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wherea(t)5a0sin(vt) is the classical displacement of a fre
electron from its center of oscillation in the time-period
electric field E(t) with a052qE0 /v2 (q is the particle
charge which for the electron isq521 a.u.). Next, we
transform Eq.~1! to a two-dimensional time-independe
system, where the total energyE of the system is conserved
as follows:

H5
p2

2
2V0e2$[x1a0sin(f)]/d%2

1vI . ~2!

I and f are, respectively, the action-angle variables of
driving field andf5vt. In the limit x→6` the Gaussian
atomic potential tends to zero faster than 1/x @6#. Thus, there
are well defined asymptotic regions where the electron
under free motion and its dynamics is described by
asymptotic Hamiltonian

Has5
p2

2
1vI . ~3!

In the asymptotic regime, Eq.~3!, the electron momentump
as well as the action of the fieldI are conserved quantities. I
the following sections, all our calculations are perform
with the valuesV050.270 35 a.u. andd52 a.u. assigned to
the parameters of the inverted Gaussian potential. These
ues of the parametersV0 andd were shown to describe we
the quantum behavior of a one-dimensional model nega
chlorine ion Cl2 in the presence of a laser field@3,4,6,16#.
The frequency of the time-periodic field,v, and the ampli-
tude of the field,a0, are taken constant and equal to 0.65 a
and 0.9 a.u., respectively. These values for the frequency
amplitude of the field were chosen so that the result
horseshoe construction is not prohibitively complicated
study.

III. CHAOTIC SCATTERING

We are interested in understanding the underlying str
ture of the classical chaotic scattering system under con
eration. That implies knowledge of the chaotic invariant s
In what follows, we first show how to construct the hiera
chical structure of the chaotic invariant set for the inver
Gaussian atomic potential driven by a laser field. The sche
we follow to construct the hierarchical structure of the ch
otic invariant set is valid only for systems with two degre
of freedom. Then, we show how the structure of the cha
invariant set allows us to understand the structure of the f
tal set of singularities of the scattering functions. We th
obtain a symbolic dynamics for the hierarchical structure
the chaotic invariant set. This symbolic dynamics descri
the hierarchical structure of the scattering functions as w
We express this symbolic dynamics in the form of a trans
matrix @13# and compute the topological entropy which
our case is a measure of the fractal structure of singular
of the scattering functions.
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A. Chaotic invariant set

The chaotic invariant set is usually represented by
horseshoe construction in an appropriate Poincare´ surface of
section. In the case of the well-known Smale horseshoe
construction is done by stretching a fundamental regionR
and folding it on to the original region@17,18#. The bound-
aries ofR are given by segments of the invariant manifol
of the outer fixed points of the system. Following the abo
general scheme we first define the fundamental regionR. The
system under consideration has three period-1 periodic o
~fixed points!. The inner fixed point is an elliptic one. Th
two outer fixed points are located atx→6`. As x→` the
invariant stable and unstable manifolds of the outer fix
point C, see Fig. 1, converge to the same manifold~eigen-
vector!, with p50. The same is true for the manifolds of th
fixed pointA at x→2`. So, globally, the outer fixed point
behave as unstable ones, that is, they produce invariant m
folds of the same topology as that produced by hyperb
fixed points. However, in a small neighborhood around th
they behave as parabolic ones. That is, the tangent ma
x→6` has a degenerate eigenvalue equal to 1~one eigen-
vector! @1#. The invariant manifolds of these outer fixe
points determine the boundaries of the fundamental areR,
see Fig. 1.

In Fig. 1 the horseshoe is constructed on the Poinc´
surface of sectionf5p/2. We use the Poincare´ surface of
sectionf5p/2 for all our calculations. This choice of th
Poincare´ surface of section simplifies the horseshoe co
struction because on this plane the time reversal transfor
tion t→2t is equivalent to thep→2p transformation.
Thus, from the stable manifolds of the outer fixed points o
obtains the unstable manifolds by lettingp→2p and vice
versa. The driven inverted Gaussian has no right/left sym
try. That is, the Hamiltonian is not invariant under the tran
formation x→2x. Thus, the invariant set of the system
described by a ternary~three fixed points! asymmetric horse-
shoe construction. That is, the underlying structure of
scattering functions for electrons incident from the right/l
is described by two different views right/left of the sam
horseshoe construction. The reason we consider the inva

FIG. 1. The fundamental regionR is formed by the unstable
manifold of the fixed pointA, segmentAE, by the stable manifold
of the fixed pointC, segmentCE, by the unstable manifold of the
fixed point C, segmentCD, and the stable manifold of the fixe
point A, segmentAD.
7-2
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CLASSICAL SCATTERING FOR A DRIVEN INVERTED . . . PHYSICAL REVIEW E68, 046207 ~2003!
manifolds of the outer fixed points is that these are the m
folds that are ‘‘seen’’ by the scattering trajectories and th
have an effect on the scattering functions.

Let us now obtain the right view of the hierarchical stru
ture of the horseshoe construction that underlies scatte
for electrons incident from the right. The fundamental a
R, see Fig. 1, is defined by the zero order tendrils as wel
an infinite number of preimages/images of the unsta
stable invariant manifolds. We now add one iteration step
the stable manifolds. That is, using Hamilton’s equations
motion for the Hamiltonian given in Eq.~2! we propagate the
points on the segments of the stable manifolds,AD andEC
in Fig. 1, backwards in time for one period of the drivin
field ~to obtain the tendrils of the unstable manifolds w
propagate forward in time!. The intersection of the first im
age, first order tendrils, of the stable manifolds with the u
stable manifold of the fixed pointC, segmentCD in Fig. 1,
reveals the first order gapG1

s , see Fig. 2. The intersectio
with the unstable manifold of one more iteration step of
stable manifolds reveals the second order gapsG2

s , see Fig.
2. Thus, the gapGn

s is the area enclosed by the nth-ord
tendril of the stable manifold and the boundary of the fun
mental areaR. A point that lies inGn

s is mapped out of the
fundamental region aftern applications of the map, it is thu
of hierarchy leveln. These gaps play an important role b
cause they are areas that are not needed to cover the inva
set. No higher level tendrils of the invariant manifolds w
ever enter such gaps. So, with each iteration step one fu
tendril of the stable manifolds is added and one further le
of hierarchy of these gaps is displayed@19#. We therefore see
the construction scheme of the horseshoe by going from
level of hierarchy to the next. We note that the term ga
corresponds to what is known as lobes in fluid transp
problems@20#. In particular, the gaps correspond to tho

FIG. 2. Horseshoe construction up to hierarchy level 2 on
Poincare´ surface of sectionf5p/2. The solid lines indicate ten
drils of order 0, the dashed lines indicate tendrils of order 1 and
dotted lines indicate tendrils of order 2. The gapsGn

s on the bottom
right/top left are formed by intersections of the stable manifolds
the fixed pointsA and C with the local segment of the unstab
manifold of the fixed pointC/A, that is,CD/AE. These intersec-
tions describe the right view/left view of the horseshoe constr
tion. t1

u,A indicates the first-order tendril of the unstable manifold
the fixed pointA. t1

u,C indicates the first-order tendril of the unstab
manifold of the fixed pointC.
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lobes that are inside the areaR. In a similar way, we con-
struct the left view of the hierarchical structure of the hors
shoe construction that underlies scattering for electrons i
dent from the left, see Fig. 2. The intersection points of
stable manifolds with the unstable manifolds of the ou
fixed points, seen in Fig. 2 are the so called homoclin
heteroclinic points for intersecting manifolds correspond
to the same~homoclinic! or different ~heteroclinic! fixed
points. These homoclinic/heteroclinic intersections unde
the classical chaotic scattering.

Next, we compute the so called development param
that approximately gives the development stage of the ho
shoe construction. The significance of this parameter is th
describes universal aspects of the horseshoe and ignore
details. That is, it determines the hyperbolic component
the invariant set which is the important part for the scatter
behavior and neglects nonhyperbolic effects that are du
the Kolmogorov-Arnold-Moser~KAM ! tori @19,21,22#. The
nonhyperbolic effects appear at high levels of the hierar
as tangencies, non transversal intersections, between s
and unstable manifolds and have a very small effect on
scattering functions~see Ref.@10# for more details on tan-
gencies between stable and unstable manifolds!. For the val-
ues of the frequency and the amplitude of the driving fie
we choose, there are tangencies when fourth-order,n54,
tendrils of the stable manifolds are intersecting fourth or
tendrils of the unstable manifolds in the interior of the fu
damental region. The effect of these tangencies in the inte
of the fundamental region becomes visible in the scatter
functions at a hierarchical level 2n, in our case 8. The reaso
is that if annth-order tendril of the stable manifold intersec
tangentially annth-order tendril of the unstable manifold i
the interior of the fundamental region, then the (n11)th
tendril of the stable manifold will intersect the (n21)th ten-
dril of the unstable manifold, and so on, until the (n1n)th
tendril of the stable manifold intersects the zero-order ten
of the unstable manifold, that is, when the 2nth tendril of the
stable manifold intersects the local segment~zero-order ten-
dril! of the unstable manifold. But, as we show in the fo
lowing section, it is exactly the structure of the intersectio
of the stable manifolds with the local segment of the unsta
manifold that is ‘‘picked’’ by the scattering functions.

The development parameter has the value 1 for a c
plete horseshoe. A horseshoe is complete when the tend
level 1 of the unstable manifold reaches the other side of
fundamental areaR. For an incomplete horseshoe the dev
opment parameter is determined by the relative length of
tendril of level 1 of the unstable manifold as compared to
complete case. It is given byr nN2n @19#, where n is the
highest level of hierarchy considered,r n is the number of the
gap that the tendril of order 1 of the unstable manifo
reaches up to, counting the gaps starting from the fixed p
andN is the number of the fixed points. For the system un
considerationN53. It is important to realize that the num
bers are assigned to the gaps of the incomplete horse
construction after comparing with the gaps of the compl
horseshoe construction@19#. Note, that the value of the for
mal parameter, given byr nN2n, remains the same when dif
ferent hierarchy levels are considered. The reason is tha
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-
f

7-3



l
t
n

er

ym
tw
t

b
e
te

lu
hi-
le

e
t
th
te

a
p
S

a
liz

c-
as-
cat-
tal
he
tic
ory
ant
lar-
of
the

s a
its
is

e
ar-
e

his
nds

the
e

of

al
tial

li
e
i-

de

e

of
e-

ble
ve

EMMANOUILIDOU, JUNG, AND REICHL PHYSICAL REVIEW E68, 046207 ~2003!
we go from a hierarchy leveln to the next hierarchy leve
n11, N21 gaps are added between successive gaps a
hierarchy leveln in the complete horseshoe constructio
Thus, one can show that if the numberr n is assigned to a
certain gap at hierarchy leveln, the numberr n11 assigned to
the same gap at hierarchy leveln11 is r n115Nrn . So,
r n11N2(n11)5r nN2n and the value of the formal paramet
remains the same.

As already mentioned, forv50.65 a.u. anda050.9 a.u.
the driven inverted Gaussian is described by a ternary as
metric horseshoe construction and it is thus described by
development parameters. The development parameter
corresponds to the manifolds of the fixed point atx→2`,
A, has the value 1 since the first-order tendril of the unsta
manifold of the fixed pointA reaches the other side of th
fundamental areaR, see Fig. 2. The development parame
that corresponds to the manifolds of the fixed point atx→
1`, C, has the value 1/3 as can be seen in Fig. 2. The va
1/3 is obtained as follows: if we consider tendrils up to
erarchy leveln51 then the first-order tendril of the unstab
manifold of the fixed pointC, t1

u,C , reaches up to ther 51
gap. If we consider tendrils up to hierarchy leveln52 then
t1
u,C reaches up to ther 53 gap and for hierarchy leveln

53 t1
u,C reaches up to ther 59 gap. That is, the value of th

development parameter remains the same when differen
erarchy levels are considered. In Fig. 3, we see how
KAM tori around the middle fixed point cause an incomple
horseshoe construction. So forv50.65 a.u. and a0
50.9 a.u. the chaotic invariant set is described by a tern
asymmetric horseshoe construction with development
rameters 1 and 1/3. For reasons explained at the end of
II, the frequency is taken equal to 0.65 a.u.~high frequency
regime compared toV050.270 35 a.u.). For this frequency
horseshoe with development parameters 1 and 1/3 is rea

FIG. 3. The initial conditions used to generate this strobe plot
on the line p50. This strobe plot is generated by evolving th
trajectories forward in time and it thus ‘‘picks’’ the unstable man
folds of the fixed pointsA andC. The location of the middle fixed
point B ~period-1 orbit! is located atx50.29 and is indicated by a
filled rectangle. Comparing with Fig. 1, we see that the first or
tendril of the unstable manifold of the fixed pointA, t1

u,A , pen-
etrates the fundamental areaR completely. In the case though of th
first-order tendril of the unstable manifold of the fixed pointC,
t1
u,C , the KAM tori around the fixed pointB prevents it from reach-

ing the boundary of the fundamental areaR.
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approximately in the interval~0.7,1.15! a.u. of the amplitude
of the field,a0.

B. Scattering functions

The scattering functions give properties of the final ele
tron asymptotes as a function of the incoming electron
ymptotes. In the case of classical chaotic scattering the s
tering functions have a fractal set of singularities. This frac
set of singularities is the result of the intersection of t
incoming electron asymptotes with the underlying chao
invariant set. That is, when the scattering electron traject
starts exactly on the stable manifold of the chaotic invari
set it stays on the chaotic set forever, resulting in a singu
ity of the scattering function. Furthermore, the structure
the set of singularities is the same as the structure of
chaotic invariant set@19#.

In what follows, we compute the time delayTdel one of
the most important scattering functions. The time delay i
measure of how much the incoming electron delays due to
interaction with the potential in the scattering region and
given by

Tdel5T2Uxin

pin
U2Uxout

pout
U. ~4!

T is the time it takes for the electron to travel from th
incoming to the outgoing asymptotic region. There is an
bitrariness in the timeT due to the specific choice of th
initial distancexin that the timing is initiated in the incoming
asymptotic region and the final distancexout that the timing
is stopped in the outgoing asymptotic region. To remove t
arbitrariness we substract the time that the electron spe
running along the initial and final asymptotes,uxin /pinu and
uxout /poutu, respectively.

We consider scattering from the right and compute
time delay function for a line of initial conditions in th
asymptotic regime that completely intersects one tendril
the stable manifold of the outer fixed pointA, see Fig. 4. We
compute the time-delay function, for the choice of initi
conditions denoted as 0 in Fig. 4, as a function of the ini

e

r

FIG. 4. For scattering from the right, we indicate as 0 the line
initial conditions in the asymptotic region used to compute the tim
delay function. This set of initial conditions intersects the sta
manifold of the fixed pointA. The numbers 1–4 indicate successi
iterations in time of the set of initial conditions.
7-4
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CLASSICAL SCATTERING FOR A DRIVEN INVERTED . . . PHYSICAL REVIEW E68, 046207 ~2003!
momentumpin , along the line of initial conditions, see Fig
5. This choice of initial conditions allows us to understa
the structure of singularities of the time delay function
follows. From Fig. 4 we see that the iterates in time of t
line of initial conditions converge toward the boundary of t
fundamental region that is defined by the local segmen
the unstable manifold of the fixed pointC. The intersections
of the line of initial conditions with the stable manifold o
the fixed pointA are mapped on intersections of the itera
with the same stable manifold. Thus, the singularity struct
of the scattering function is the same as the pattern resu
from the intersection of the stable manifolds with the loc
segment of the unstable manifold of the fixed pointC. That
implies that the intervals of continuity of the scattering fun
tion correspond to the gaps that the tendrils of the sta
manifolds cut into the fundamental area of the horses
construction. In other words, the pattern of the fractal se
singularities of the time delay function is the same as
hierarchical structure of the horseshoe construction. We
ther illustrate this point as follows. In Fig. 6~a!, we compute
the hierarchy level of the intervals of continuity for a part
the time-delay function, see Fig. 6~b! @Fig. 6~b! is a magni-
fication of a part of Fig. 5#. To do so, we initiate trajectorie
at the intervals of continuity of the delay function and cou
the number of times the scattering trajectories ‘‘step’’ into t
fundamental region, see Fig. 6~a!. If a scattering trajectory
steps inside the areaR n21 times that means that it takesn
applications of the map before it is mapped outside ofR. We
thus say that the trajectory was initiated at an interval
continuity of hierarchy leveln. For example, we see from
Fig. 6~a! that the scattering trajectory withpin520.1973
steps two times insideR. Thus, the interval of continuity it
was initiated at is of hierarchy level 3. The resulting patte
of singularities shown in Fig. 6~a! is the same as the patter
of singularities of the time-delay function as a comparison
Figs. 6~a! and 6~b! reveals.

Let us now explain how the hierarchy level of the inte
vals of continuity is related to the gaps of the horsesh
construction. As we illustrate in Fig. 7, if a scattering traje
tory approaches the local segment of the unstable man
along a gap of ordern, then it steps inside the areaR n21

FIG. 5. Time-delay function as a function of the initial mome
tum for the set of initial conditions shown in Fig. 4.
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times before it is mapped outsideR. At the same time, if the
scattering trajectory steps inside the areaR n21 times that
means that it is mapped outside ofR after n applications of
the map and thus the trajectory was initiated at an interva
continuity of hierarchy leveln. Thus, a gap of hierarchy leve
n of the horseshoe construction corresponds to an interva
continuity of hierarchy leveln of the time delay function.
That implies that the hierarchical structure of the chao
invariant set and of the scattering functions is the same.
deed, a comparison of Figs. 6~a! and 9@Fig. 9 is explained in
the following section# reveals that the pattern of singularitie
of the time delay function in Fig. 6~b! is the same as that pa
of the hierarchical structure of the chaotic invariant set tha
encircled by a square in Fig. 9.

For the system under consideration the potential in
interaction region is known and so we can directly obtain
hierarchical structure of the chaotic invariant set and thus
structure of the scattering functions. However, when the
tential in the interaction region is not known, then one has
find from asymptotic observations the hierarchical struct
of the scattering functions in order to obtain the structure
the chaotic invariant set.

C. Measures of chaos

It is possible to construct a topological measure of
degree of chaos contained in this scattering system if we
construct a symbolic dynamics that reproduces the hierar
of intersections of the stable and unstable manifolds. T
first step is to obtain the branching trees that describe
right/left view of the horseshoe constructions for scatter
from right/left. The second step involves the developmen
a symbolic dynamics that reproduces the structure of

FIG. 6. In ~a! we show the hierarchy level of the intervals o
continuity for a part of the time-delay function, see Fig. 5. For
given pair of initial values,x0 ,p0, we propagate the trajectorie
until they reach one of the asymptotic regions and count the num
of times the trajectory steps in the fundamental areaR. In ~b! we
plot the time-delay function for the same range of initial conditio
as for the hierarchy level of the intervals of continuity shown in~a!.
We can immediately see that both functions have the same pa
of singularities.
7-5
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EMMANOUILIDOU, JUNG, AND REICHL PHYSICAL REVIEW E68, 046207 ~2003!
FIG. 7. The solid lines indicate tendrils of order 0, the dash
lines indicate tendrils of order 1, the dotted lines indicate tendrils
order 2 and the dashed-dot line indicates tendrils of order 3.
initiate a trajectory in the right asymptotic region withpin5
20.1973 which is inside an interval of continuity, see Fig. 6~a!. We
then successively iterate the trajectory in time~stars!. The succes-
sive iterations are indicated by numbers 1–8, respectively. The
jectory approaches the local segmentCD of the unstable manifold
of the fixed pointC inside the third-order tendril of the stable man
fold of the fixed pointA along a third-order gap. One more iteratio
in time maps areaa ~shaded by dots!, which is enclosed by the
third-order tendril of the stable manifold of the fixed pointA and its
unstable manifold, into areab ~shaded by lines!, which is enclosed
by the second order tendril of the stable manifold of pointA and its
unstable manifold. A further iteration in time maps areab into area
c ~shaded by lines!, which is enclosed by the first order tendril o
the stable manifold of pointA and its unstable manifold. Finally
areac is mapped to aread ~shaded by lines! and enclosed by the
zero order tendril of the stable manifold of pointA and its unstable
manifold. But aread is outside the fundamental region and thus t
trajectory steps inside the fundamental region two times. Gener
if the scattering trajectory approaches the local segment of the
stable manifold along a gap of hierarchical order n it will step ins
the fundamental area,R, n21 times before it is mapped outsideR.

FIG. 8. Construction of the branching tree for scattering fro
the right. The first-order gapG1

s reduces the initial intervalI 1
0, at

hierarchy leveln50, down to the two intervalsI 1
1 andI 2

1. Note that
for the scattering functions, we obtain exactly the same branch
tree as for the chaotic invariant set. For the scattering functio
instead of the gaps it is the intervals of continuity that are cut
from the original interval in a Cantor set structure.
04620
branching trees. It is important to note that for the values
the amplitude and the frequency of the driving field cons
ered there are tangencies between the stable and uns
manifolds on the fourth order tendrils. These tangencies
troduce nonhyperbolic effects that will cause a breakdown
the symbolic dynamics starting from hierarchy level 8 a
higher. However, knowledge of the symbolic dynamics up
hierarchy level 8 gives a significant measure of the degre
observable chaos in this scattering system.

1. Branching trees

Let us first obtain a branching tree@19# that describes the
right view of the horseshoe construction for scattering fro
the right. We will use information developed in Sec. III A
First, let us consider the intervalI 1

0 which corresponds to the
local segment of the unstable manifoldCD of the fixed point
C ~see Fig. 8!. This is the first step in the construction of th
branching tree and corresponds to hierarchy leveln50. In
the second step, hierarchy leveln51, the first-order tendril
of the stable manifold of the fixed pointA cuts the interval
(s0 ,s1) out of I 1

0 and leaves two intervalsI 1
1 ~the segment of

CD from D to s0) andI 2
1 ~the segment ofCD from s1 to C).

In the third step, hierarchy leveln52, the second order ten
dril of the stable manifold of the fixed pointA cuts the inter-
val (s4 ,s5) out of I 2

1 and leaves two intervalsI 21
2 ~the seg-

ment ofCD from s1 to s4) andI 22
2 ~the segment ofCD from

s5 to C). In the same step~the same iteration! the second
order tendril of the stable manifold of the fixed pointC cuts
the interval (s2 ,s3) out of I 1

1 and leaves two intervalsI 11
2 ~the

segment ofCD from D to s2) and I 12
2 ~the segment ofCD

from s3 to s0). Continuing this process we obtain the branc
ing tree shown in Fig. 9.

In a similar way, we construct the branching tree th
describes the left view of the horseshoe construction for s
tering from the left, see Fig. 10. The hierarchical structure
these branching trees is the same as the hierarchical stru
of the chaotic invariant set.

2. Symbolic dynamics

Having determined the geometry of the branching tre
we can now construct a symbolic dynamics that encodes
branching trees. In principle, since we have a nonhyperb
horseshoe construction one needs an infinite numbe
grammatical rules to construct a symbolic dynamics. Ho
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FIG. 9. Branching tree and symbolic dynamics for scatter
from the right shown up to hierarchy level 4. Each interval cor
sponds to one branch of the tree. A branch at hierarchy leveln is
described by a string of lengthn.
7-6



ic
t o
th
o

d
f t
e

th

te
u
o
ch

a
o

s

s

x-

to

ter

in

the
ing
f the
ues
n-
ani-
n.
reak
ee.
es in
ac-
ve
s of

al-
ical

lier.

he
if

d
n-

,

of

m-
po-
the
een

in
in
th
l
re

l
n

t a
-

CLASSICAL SCATTERING FOR A DRIVEN INVERTED . . . PHYSICAL REVIEW E68, 046207 ~2003!
ever, we can construct an approximate symbolic dynam
that describes well the outermost hyperbolic componen
the horseshoe construction. The symbolic encoding of
branching tree is not unique, but the measures of chaos
obtains for different encodings are the same.

Our symbolic dynamics consists of four symbolsA, B, C,
and1 and a set of grammatical rules that allow us to enco
each branch of the branching tree. That is, each branch o
tree of hierarchy leveln is labeled by a vertical sequenc
~string! of n symbols made out of the four symbolsA, B, C,
and 1. Each symbol sequence is read vertically up
branch of the tree~see Figs. 9 and 10!. The order in which
the four symbols appear in each branch of the tree is de
mined by the grammatical rules. That is, the rules tell
which of the four symbols are allowed to be appended t
given branch of the tree as we go from a certain hierar
level to the next.

Our rules depend on the last ‘‘word’’ that appears on
given branch. This word is a vertical sequence of one two
three symbols and can be either of the eleven words:A, 1
1, B1C, C1C, 11C, CC, BC, AC, B, B1, andC1
~see Figs. 9 and 10!. The rules are the following:

~1! After a string~branch! ending inA, B1C, C1C, or
11 it is allowed to attach the symbolsA, B, andC, going
from left to right ~standard orientation!. Thus, three strings
~branches! stem out ending inA, B, andC.

~2! After a string ~branch! ending in AC, B, BC, B1,
C1, CC or 11C it is allowed to attach the symbols1 and
C, going from left to right~standard orientation!. Thus, two
strings~branches! stem out ending in1, C.

~3! B always inverts the previous orientation.

FIG. 10. Branching tree and symbolic dynamics for scatter
from the left shown up to hierarchy level 4. Let us now expla
what we mean by previous orientation in terms, for example of
third grammatical rule. For example, at the hierarchical leven
52, indicated by the arrow, the symbol endings of the th
branches going from left to right areA, B, andC which is what we
define as standard orientation. After the symbolB we can attach the
symbols1 andC at the hierarchical leveln53, indicated again by
an arrow. According to the third grammatical rule the symbols1
andC, at leveln53, will be attached, afterB, so that they have the
inverse orientation of the symbol at leveln52. So, since at leve
n52 the symbolsA, B, andC are attached in standard orientatio
then at leveln53 we attach afterB symbolsC and1 going form
left to right, resulting in an inverse orientation compared to tha
level n52. Thus, we say thatB always inverts the previous orien
tation.
04620
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~4! C always inverts the previous orientation if it come
after S1, whereS is not 1.

~5! 1 always inverts the previous orientation if it come
after S whereS is not 1.

By previous orientationwe mean the following: if at a
hierarchy leveln there are three branches ending, for e
ample, in the symbolsA, B, andC, going from left to right
~see Fig. 10!, then at hierarchy leveln11, from the string
ending inB two strings stem out with symbol endings1 and
C, according to the second grammatical rule. According
the third grammatical rule, the symbol endings1 and C,
going from left to right, at leveln11, must have the inverse
orientation to that of the symbol endings at leveln. In this
example, at leveln, the symbol endingsA, B, andC, going
from left to right, have the standard orientation. Thus, af
the string ending inB, two branches stem out, at leveln
11, with symbol endingsC and1, going from left to right,
see Fig. 10.

To symbolically encode the right/left branching trees
Figs. 9 and 10 we have started at leveln51 by attaching the
symbols1 andC for the right andA, B, andC for the left
view of the branching trees, respectively, and then use
above grammatical rules to continue the encoding. Us
these rules we can encode and thus obtain the structure o
branching trees safely up to hierarchy level 7. For the val
of the frequency and amplitude of the driving field we co
sider here, there are tangencies between the invariant m
folds at level 4 in the interior of the fundamental regio
These tangencies can cause our symbolic encoding to b
down at hierarchy level 8 and higher of the branching tr
That is, these tangencies can introduce additional branch
the branching tree, starting at level 8, which are not
counted for by our grammatical rules. Note, that the abo
described symbolic dynamics encodes the branching tree
the scattering functions as well.

If we now use concepts from a thermodynamical form
ism @11,12#, we can express the above described grammat
rules in the form of a transfer matrix@13#. To construct the
transfer matrix we use as entries the 11 words listed ear
The matrix element (l ,m) is 1 if it is possible to attach to the
word l a symbol such that the resulting string ending is t
word m, otherwise the matrix element is 0. In other words,
the transfer matrix element (l ,m) is 1 it means that if at a
certain hierarchy level we have a string ending in the worl
when we go to the next hierarchy level it is allowed to e
counter a string ending in the wordm. To clarify this point,
consider for, example, the string ending with the wordl
511 ~see Fig. 11!. According to the first grammatical rule
after the word11 we can attach three symbols labeledA, B,
and C and so obtain the strings11A, 11B and 11C.
These strings have the string endings,m5A, m5B and m
511C, respectively, which can be identified with three
the 11 words. Thus, the matrix elements (11,A),
(11,B), and (11,11C) are 1, while all other matrix
elements withl 511 are 0.

Having constructed the transfer matrix, we can now co
pute the topological entropy of the branching tree. The to
logical entropy is a measure of the degree of chaos in
scattering system. Let us first describe the relation betw
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the topological entropy and the transfer matrix. The topolo
cal entropyK0 is the rate of exponential growth of the num
ber of intervals Z(n), or equivalently the number o
branchesZ(n), at a hierarchical leveln whenn is large with
Z(n)5enK0 @11#. It directly follows that K05 ln@Z(n
11)/Z(n)#. But, for large n, Z(n11)/Z(n) is the average
branching ratio of the trees. This ratio is given by the larg
eigenvalue of the transfer matrix@13#. For our system, the

FIG. 11. Transfer matrix.
si-

,
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largest eigenvalue is'2.31. Thus, the topological entropy o
the branching tree isK0'0.84. This topological entropy de
scribes the rate of growth of the branches in the hierarch
structure of the scattering functions and is thus a measur
chaos of the fractal set of singularities.

It is useful to mention that for a horseshoe withN fixed
points the value of the topological entropy,K0, can vary
between 0 and ln(N). This is easily understood, since for
horseshoe withN fixed points the maximum value of th
average branching ratio isN andK0 is the logarithm of the
average branching ratio. Thus, for a ternary horseshoe
struction, the case currently under consideration,K0 can vary
between 0 and ln(3)'1.1. For the values of the frequenc
and amplitude of the driving field considered in this pap
we find thatK0'0.84, close to the maximum value of 1.1
which suggests that our system is in the regime of stro
chaos.

IV. CONCLUSIONS

In this paper, we have studied the classical electron s
tering from a driven inverted Gaussian potential which is
open system. We have shown that the fractal pattern of
gularities of the scattering functions can be understood
terms of the hierarchical structure of the chaotic invariant
which underlies the chaotic dynamics. We have constructe
symbolic encoding of the hierarchical structure of the chao
invariant set. Using concepts from the thermodynamical f
malism, we have used this encoding to obtain the topolog
entropy of the fractal set of singularities of the scatteri
functions.
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