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Unstable periodic orbits and discretization cycles

P.-M. Binder* and Nicholas H. Okamoto
Department of Physics and Astronomy, University of Hawaii, Hilo, Hawaii 96720-4091, USA

~Received 3 June 2003; published 22 October 2003!

Limit cycles that arise from discretizing the variable~s! of a nonlinear map are generally found to shadow
individual unstable periodic orbits~UPOs! of the corresponding continuous map. In a few cases the discreti-
zation cycles can only be explained with other mechanisms, such as the near-occurrence of an UPO, or
crossover between two or more UPOs.
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I. INTRODUCTION

Discretized maps—also known as granular, integer
finite-state maps, iterations or machines—have been wid
studied in the physics, mathematics, and biology literat
@1–18#. Here discretization refers to the state variabl
which are changed from real numbers to integers or bin
rationals; not to time discretization. The physicist’s inter
in this problem arises from the need to understand the eff
of iterating chaotic maps and random number genera
with digital computers which store variables in finite reg
ters, and which convert the usual continuous description
discrete mathematics.

In this paper we investigate the relation between discr
zation cycles~DCs!, which arise from discrete-variable dy
namics, and unstable periodic orbits~UPOs!, which are
found in continuous dynamics, and which help to determ
the global behavior of dynamical systems.

In our study of the logistic map for five nonlinear param
eter values and 9 degrees of discretization, most of the
DCs that we studied can be directly explained in terms
identified UPOs, or of several mechanisms that invo
them.

Section II of this paper reviews integer maps, and defi
several useful quantities. Section III describes the method
the present study. Section IV presents the results, sum
rized in two Tables, one for DCs and the other for UPO
along with a description of the correspondences found.
nally, Section V contains a discussion of the results.

II. INTEGER MAPS

We consider mapsxn115 f (xn), wherex is a vector of
continuous variables in one or several dimensions. The lo
time behavior of f (xn) can include, among others, lim
cycles, chaotic attractors, or quasiperiodic behavior. For
integer map the phase space of vectorx is broken intoN
segments, usually taken to be equally sized and spaced
refer toN as the map’s discretization number.

The continuous functionf (xn) then is transformed into a
map of an integer set, e.g.,@0,1,2, . . . ,N21# onto itself, in
which each integer~or vector! is used to label a segment o
area of the granular phase space. The new map is obtaine
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calculating the image of the central point of each segme
and assigning it the integer label of the segment whose c
tral point is either nearest, nearest from above, or nea
from below. These schemes are known as round-
roundup, and truncation, respectively. The result is a de
ministic integer map in which each discrete state ha
unique discrete image. In this paper we consider round
the most standard procedure.

The simultaneous presence of a finite number of sta
and of deterministic dynamics leads to the unavoidable e
tence of DCs, often with transient states leading to them.
ensuing phase space is a collection of directed graphs w
embody the dynamics, and which are known as de Bru
diagrams@2,4,5#.

In this paper we are concerned with DCs, but not w
transients. While most previous studies have concentrate
the approximate scaling laws for the irregular dependenc
number of cycle and transient lengths and basin sizes
function of N, in this paper we explore the connection b
tween discrete cycles and the unstable periodic orbits
occur in the corresponding continuous map.

For this study we have chosen the logistic equati
xn115axn(12xn), with parameter~a! values of 3.6, 3.7,
3.8, 3.9, and 3.99, all of them chaotic, and which inclu
band chaos (a53.6) as well as fully developed chaos (a
53.99). We used discretization numbers in powers of
from 32 to 8192, corresponding to 5–13 bits of machi
precision.

III. METHODS

Three methods were used to explore the corresponde
between UPOs and DCs.

First, exhaustive enumeration and listing of all DCs f
each pair of (a,N), obtained by iterating the discrete ma
from every possible initial condition and by systematica
labeling the cycles with the smallest value of any state in
cycle.

Second, exhaustive enumeration of UPOs of lengthm
<7 in the continuous map, obtained by systematically fin
ing the roots ofga,m(x)5 f (m)(a,x)2x, where f (m)(a,x) is
the mth iterate of the logistic map with parametera. This
required eliminating complex roots, as well as roots of it
ates that are divisors ofm which are automatically roots o
ga,m(x).

Finally, ad hocsearch for roots ofga,m(x) in the continu-
©2003 The American Physical Society06-1
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ous map for 8<m<20, with initial trial values ofx equal to
those of points on an identified DC, in order to attempt
find an UPO that is shadowed by the DC in question.

All these calculations were performed inMATHEMATICA

@19#. The cutoff valuesm57 andm520 in the second and
third procedures were dictated by CPU time and accur
constraints in our computer. They seem to be sufficient, h
ever, to allow a complete picture of the UPO-DC corresp
dence to emerge, as shown in the following section.

IV. RESULTS

Results are summarized in Table I for DCs and Table
for the continuous map’s UPOs, respectively. For all com
nations ofa,N, 130 DCs were identified. For the continuo
map, 106 UPOs were found, 67 of them as part of the
haustiveN<7 enumeration. The obvious fixed pointx50 is
not included in this count.

The convention in Table I is as follows. The approx
mately 100 DCs that are not followed by any symbol can
clearly associated with a continuous map UPO from Table
The almost 20 DCs followed by~x! are of a high enough
period (m>20) that it has been prohibitive to identify a ca
didate UPO. The six DCs followed by~d! can be identified
with UPOs of half the length~e.g., a period-2 DC and a
unstable fixed point!. In this case, an artifact of the discret
zation produces higher-order DCs than the continuous m
UPOs, exploiting derivatives near61 of iterate of
f (m)(a,x). We also note that some of the period-12 and
DCs and UPOs fora53.6 seem to interweave the period
UPO for the same parameter value. Therefore, period len
multiplication is not an effect uniquely associated with d
cretization.

The two remaining cases are the most intriguing. The fi
followed by ~1! are fairly small DCs, with periods 5<m
<8, which ought to have corresponding UPOs. Howev
they do not. In all cases, we found thatga,m(x) nearly
touches thex axis at the points that form the unexplaine
DC. For example,g3.9,8(x) shows a minimum of 0.095 atx
50.0852, consistent with the smallest state of the perio
DC found for the same value ofa and discretization numbe
N5128. Similarly,g3.99,5(x) shows a minimum of 0.01 a
x50.0097, consistent with the smallest state of the perio
DC found for a53.99 and discretization number ofN
52048. It appears that the roundoff process itself play
role in turning these minima into roots in all five instance

Second, the six cases followed by~* ! are small enough
(12<m<18) that a corresponding UPO should have be
found by the third method of the preceding section. Ho
ever, it was not. These occur for values ofa ~3.9, 3.99! with
a high density of points on identified UPOs. The DCs c
satisfactorily be explained by crossovers between small
tions of shorter UPOs. For example,m515, a53.99, N
5256 DC successively shadows pieces of period 7, 7,
and 7 UPOs. Similarly, them518, a53.9, N5512 DC
shadows four distinct UPOs of period 6, 7, 6, and 7, resp
tively.

We expect that most, if not all of the longer unaccounte
for cycles followed by~x!, can be eventually explained b
one of the mechanisms described above. A singleN521
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TABLE I. Discrete limit cycles~DC! for diverse combinations
of parameter valuea and discretization numberN for the logistic
map. Symbols:~x!, no unstable periodic orbit~UPO! match found
so far; ~1!, near-roots;~d!, doubling of period of corresponding
UPO; ~* !, shadowing of several UPOs; no symbol, correspond
UPO found.

a N DC cycle lengths

3.6 32 1, 2, 6~1!

64 4

128 2~d!, 12

256 1, 16

512 4, 8

1024 2~d!, 4, 4~d!, 30~x!

2048 1, 2, 4, 12, 14, 16

4096 2, 4, 12, 14, 32~x!

8192 2, 2~d!, 124~x!

3.7 32 6

64 11

128 23~x!

256 6, 9

512 9, 10

1024 36~x!

2048 2~d!, 6, 14, 16, 31~x!

4096 1, 19

8192 1, 2, 6, 8, 9, 21

3.8 32 4, 5

64 1, 2, 5, 6

128 5, 11

256 24~x!

512 5, 6, 7

1024 2~d!, 14

2048 1, 38~x!

4096 1, 2, 39~x!

8192 2, 4, 21~x!, 32~x!, 63~x!

3.9 32 3

64 3, 5

128 2, 6, 8~1!

256 3, 5~1!, 15

512 3, 8, 18~* !

1024 2, 21~x!

2048 1, 2, 5, 18

4096 2, 8, 10, 23~x!

8192 2~d!, 142~x!

3.99 32 1, 2, 3

64 1, 2, 9

128 1, 3, 5

256 1, 5, 15~* !

512 12~* !, 18~* !

1024 7, 13~* !, 20~x!

2048 2, 4, 5~1!, 6, 9, 12, 15~* !, 36~x!

4096 5~1!, 7, 24~x!

8192 1, 4, 6, 7, 114~x!
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cycle with a53.7 andN54192 was positively tested with
procedure 2 from the preceding section.

V. DISCUSSION

In this paper we have begun to address the origin of li
cycles in discrete dynamical systems. We find that, for cy
lengths within our computational power, the shadowing
individual unstable periodic orbits in the corresponding co

TABLE II. Identified unstable periodic orbits~UPOs!. For each
parameter valuea, the top line shows the UPOs found in the sy
tematic enumeration of periods of lengthN<7. The second line
shows higher-order UPOs found in the specific search for matc
to observed DCs. Parentheses indicate more than one UPO
given length.

a UPO lengths

3.6 1, 2, 4
3.6 8, 12~2!, 14~2!, 16~2!

3.7 1, 2, 4, 6~2!

3.7 8, 9~2!, 10, 11, 14, 16, 19, 21
3.8 1, 2, 4, 5~2!, 6~2!, 7~4!

3.8 11, 14
3.9 1, 2, 3~2!, 4, 5~2!, 6~3!, 7~6!

3.9 8~3!, 10, 15, 18
3.99 1, 2, 3~2!, 4~3!, 5~4!, 6~7!, 7~14!

3.99 9~2!, 12~3!, 13~2!, 15~4!, 18~3!, 20
pl.
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tinuous map explains most of the observed limit cycles.
have discovered several additional mechanisms for the g
esis of discrete cycles: period multiplication, the stabilizati
of near-roots of the functionga,m(x) defined in Sec. III, and
the piecewise shadowing of several UPOs of differe
lengths.

The extension of this work to continuous-time dynamic
systems is far from a straightforward matter, as the iden
cation of UPOs in that case is very laborious@20#. It may be
worthwhile to attempt this extension in order to confirm e
perimental findings@21# of limit cycles in inherently discrete
insect populations, in cases where such cycles have b
reported not to follow unstable periodic orbits, but where t
near-root mechanism may apply.

The greatest mystery in this topic still remains open: w
are some UPOs shadowed rather than others? The sele
mechanism probably involves the complex interplay betwe
the dynamics and the discretization scheme. For exam
the errors introduced after theN time steps in the cycle mus
bring the system close enough to the original value of
continuous value for the DC to be generated.

Finally, we offer the conjecture that an analysis of t
difference series between the continuous and discrete
tems, equivalent to the measurement noise series introd
in Ref. @22#, may provide a way to address this selecti
issue.
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