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Unstable periodic orbits and discretization cycles
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Limit cycles that arise from discretizing the variatgeof a nonlinear map are generally found to shadow
individual unstable periodic orbitdJPOS9 of the corresponding continuous map. In a few cases the discreti-
zation cycles can only be explained with other mechanisms, such as the near-occurrence of an UPO, or
crossover between two or more UPOs.
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[. INTRODUCTION calculating the image of the central point of each segment,
and assigning it the integer label of the segment whose cen-
Discretized maps—also known as granular, integer otral point is either nearest, nearest from above, or nearest
finite-state maps, iterations or machines—have been widelfrom below. These schemes are known as round-off,
studied in the physics, mathematics, and biology literaturgoundup, and truncation, respectively. The result is a deter-
[1-18. Here discretization refers to the state variablesministic integer map in which each discrete state has a
which are changed from real numbers to integers or binarynique discrete image. In this paper we consider roundoff,
rationals; not to time discretization. The physicist's interestthe most standard procedure.
in this problem arises from the need to understand the effects The simultaneous presence of a finite number of states
of iterating chaotic maps and random number generatorand of deterministic dynamics leads to the unavoidable exis-
with digital computers which store variables in finite regis- tence of DCs, often with transient states leading to them. The
ters, and which convert the usual continuous description int@nsuing phase space is a collection of directed graphs which
discrete mathematics. embody the dynamics, and which are known as de Bruijn
In this paper we investigate the relation between discretidiagramg2,4,5.
zation cycles(DCs), which arise from discrete-variable dy- In this paper we are concerned with DCs, but not with
namics, and unstable periodic orbitePO9, which are transients. While most previous studies have concentrated on
found in continuous dynamics, and which help to determinghe approximate scaling laws for the irregular dependence of
the global behavior of dynamical systems. number of cycle and transient lengths and basin sizes as a
In our study of the logistic map for five nonlinear param- function of N, in this paper we explore the connection be-
eter values and 9 degrees of discretization, most of the 130veen discrete cycles and the unstable periodic orbits that
DCs that we studied can be directly explained in terms ofoccur in the corresponding continuous map.
identified UPOs, or of several mechanisms that involve For this study we have chosen the logistic equation,
them. Xnt1=aXs(1—X,), with parameter(a) values of 3.6, 3.7,
Section Il of this paper reviews integer maps, and define8.8, 3.9, and 3.99, all of them chaotic, and which include
several useful quantities. Section Il describes the methods dfand chaos §=3.6) as well as fully developed chaoa (
the present study. Section IV presents the results, summa=3.99). We used discretization numbers in powers of 2,
rized in two Tables, one for DCs and the other for UPOsfrom 32 to 8192, corresponding to 5—-13 bits of machine
along with a description of the correspondences found. Fiprecision.
nally, Section V contains a discussion of the results.

lIl. METHODS

II. INTEGER MAPS
Three methods were used to explore the correspondence

We consider mapg,,1=f(x,), wherex is a vector of between UPOs and DCs.
continuous variables in one or several dimensions. The long- First, exhaustive enumeration and listing of all DCs for
time behavior off(x,) can include, among others, limit each pair of § N), obtained by iterating the discrete map
cycles, chaotic attractors, or quasiperiodic behavior. For afrom every possible initial condition and by systematically
integer map the phase space of vectois broken intoN labeling the cycles with the smallest value of any state in the
segments, usually taken to be equally sized and spaced. Vgcle.
refer toN as the map’s discretization number. Second, exhaustive enumeration of UPOs of length
The continuous functiori(x,,) then is transformed into a <7 in the continuous map, obtained by systematically find-
map of an integer set, e.d0,1,2 ... N—1] onto itself, in  ing the roots ofg, n(x) =™ (a,x)—x, wheref(™(a,x) is
which each integefor vecto) is used to label a segment or the mth iterate of the logistic map with parameter This
area of the granular phase space. The new map is obtained bgquired eliminating complex roots, as well as roots of iter-
ates that are divisors ah which are automatically roots of
Ja,m(X).
*Email address: pbinder@hawaii.edu Finally, ad hocsearch for roots o, m(x) in the continu-

1063-651X/2003/6@}/0462063)/$20.00 68 046206-1 ©2003 The American Physical Society



P.-M. BINDER AND N. H. OKAMOTO PHYSICAL REVIEW E68, 046206 (2003

ous map for &m=20, with initial trial values ofx equal to TABLE I. Discrete limit cycles(DC) for diverse combinations

those of points on an identified DC, in order to attempt to°f parameter valua and discretiza_tior] num_bem for the logistic
find an UPO that is shadowed by the DC in question. map. Symbols(x), no unstable periodic orbit/PO) match found

All these calculations were performed imTHEMATICA SO far; (+), near-roots;(d), doubling of period of corresponding
[19]. The cutoff valuesn=7 andm=20 in the second and UPQ; (*), shadowing of several UPOs; no symbol, corresponding
third procedures were dictated by CPU time and accurac;l/'PO found.
constraints in our computer. They seem to be sufficient, how-

ever, to allow a complete picture of the UPO-DC correspon- 2 N DC cycle lengths
dence to emerge, as shown in the following section. 36 32 1,2, 6+)
IV. RESULTS 64 4
128 Zd), 12

Results are summarized in Table | for DCs and Table I 256 1,16
for the continuous map’s UPOs, respectively. For all combi- 512 48
nations ofa,N, 130 DCs were identified. For the continuous '
map, 106 UPOs were found, 67 of them as part of the ex- 1024 2d), 4, 4d), 30x)
haustiveN<7 enumeration. The obvious fixed poi0 is 2048 1,2,4,12,14, 16
not included in this count. 4096 2, 4,12, 14, 38)

The convention in Table | is as follows. The approxi- 8192 2, 2d), 124(x)
mately 100 DCs that are not followed by any symbol can be 37 32 6
clearly associated with a continuous map UPO from Table I1. 64 11
The almost 20 DCs followed byx) are of a high enough 128 23%)
period (m=20) that it has been prohibitive to identify a can- 256 6.9
didate UPO. The six DCs followed byl) can be identified '
with UPOs of half the length(e.g., a period-2 DC and an 512 9,10
unstable fixed point In this case, an artifact of the discreti- 1024 36x)
zation produces higher-order DCs than the continuous map’s 2048 2d), 6, 14, 16, 31x)
UPOs, exploiting derivatives near-1 of iterate of 4096 1,19
f(M(a,x). We also note that some of the period-12 and 16 8192 1,2,6,8,9, 21
DCs and UPOs foa=3.6 seem to interweave the period 4 3.8 32 4,5
UPO for the same parameter value. Therefore, period length 64 1,2,5,6
mu![t'iplit.cation is not an effect uniquely associated with dis- 128 5 11
cretization.

The two remaining cases are the most intriguing. The five éig 524(;()7
followed by (+) are fairly small DCs, with periods $m '
=<8, which ought to have corresponding UPOs. However, 1024 2d), 14
they do not. In all cases, we found thgf (x) nearly 2048 1, 3%)
touches thex axis at the points that form the unexplained 4096 1,2, 3%)
DC. For examplegs g g(X) shows a minimum of 0.095 at 8192 2, 4, 21x), 32(x), 63x)
=0.0852, consistent with the smallest state of the period-8 3.9 32 3
DC found for the same value afand discretization number 64 3,5
N=128. Similarly,g3 99 X) shows a minimum of 0.01 at 128 2,6, 8+)
x=0.0097, consistent with the smallest state of the period-5 256 3, §+4), 15
DC found for a=3.99 and discretization number df 512 3,8, 18")
=2048. It appears that the roundoff process itself plays a 1024 2 ’21)()
role in turning these minima into roots in all five instances. ’

Second, the six cases followed %) are small enough 2048 12,518
(12<m=18) that a corresponding UPO should have been 4096 2,8, 10, 2&)
found by the third method of the preceding section. How- 8192 2d), 142x)
ever, it was not. These occur for valuesaof3.9, 3.99 with 3.99 32 1,2,3
a high density of points on identified UPOs. The DCs can 64 1,2,9
satisfactorily be explained by crossovers between small sec- 128 1,3,5
tions of shorter UPOs. For examplm=15, a=3.99, N 256 1, 5, 15)
=256 DC successively shadows pieces of period 7, 7, 15, 512 12%), 18()
and 7 UPOs. Similarly, then=18, a=3.9, N=512 DC 1024 - 13*’) 200%)
shadows four distinct UPOs of period 6, 7, 6, and 7, respec- 2048 2 4 1) ,6 9 '12 16, 3600
tively. P R Dy T, 2 :

We expect that most, if not all of the longer unaccounted- 4096 §+), 7, 24x)
for cycles followed by(x), can be eventually explained by 8192 1,4,6,7, 11&)

one of the mechanisms described above. A singte21
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TABLE II. Identified unstable periodic orbitdJPOS. For each  tinuous map explains most of the observed limit cycles. We
parameter valu@, the top line shows the UPOs found in the sys- have discovered several additional mechanisms for the gen-
tematic enumeration of periods of length<7. The second line esis of discrete cycles: period multiplication, the stabilization
shows higher-order UPOs found in the specific search for matchesf near-roots of the functiog, (x) defined in Sec. Ill, and
to observed DCs. Parentheses indicate more than one UPO ofthe piecewise shadowing of several UPOs of different

given length. lengths.
The extension of this work to continuous-time dynamical

a UPO lengths systems is far from a straightforward matter, as the identifi-
36 1224 cation of' UPOs in that case is very Ia_boric[@@]. It may be

: re worthwhile to attempt this extension in order to confirm ex-
3.6 8,122), 142), 16(2) perimental finding$21] of limit cycles in inherently discrete
3.7 1,246 insect populations, in cases where such cycles have been
3.7 8, 92), 10, 11, 14, 16, 19, 21 reported not to follow unstable periodic orbits, but where the
3.8 1,2, 4, %), 602), 7(4) near-root mechanism may apply.
3.8 11, 14 The greatest mystery in this topic still remains open: why
3.9 1,2, 32), 4, 52), 6(3), 7(6) are some UPOs shadowed rather than others? The selection
3.9 83), 10, 15, 18 mechanism probably involves the complex interplay between
3.99 1, 2, 82), 4(3), 5(4), 6(7), 7(14) the dynamics and the discretization scheme. For example,
3.99 q2), 12(3), 13(2), 154), 183), 20 the errors introduced after ti¢time steps in the cycle must

bring the system close enough to the original value of the
continuous value for the DC to be generated.

cycle with a=3.7 andN=4192 was positively tested with ~ Finally, we offer the conjecture that an analysis of the
procedure 2 from the preceding section. difference series between the continuous and discrete sys-
tems, equivalent to the measurement noise series introduced

in Ref. [22], may provide a way to address this selection
V. DISCUSSION issue.

In th'is paper we have _begun to address .the origin of limit ACKNOWLEDGMENT
cycles in discrete dynamical systems. We find that, for cycle
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