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Wave function statistics in open chaotic billiards
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We study the statistical properties of wave functions in a chaotic billiard that is opened up to the outside
world. Upon increasing the openings, the billiard wave functions cross over from real to complex. Each wave
function is characterized by a phase rigidity, which is itself a fluctuating quantity. We calculate the probability
distribution of the phase rigidity and discuss how phase rigidity fluctuations cause long-range correlations of
intensity and current density. We also find that phase rigidities for wave functions with different incoming wave
boundary conditions are statistically correlated.
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. INTRODUCTION normalization[12]. The ratio ofy, and; is parametrized in
terms of the normalized scalar product ¢fand its time
Microwave cavities have been used as a quantitative exeversed,
perimental testing ground for theories of quantum cHdds
In quasi-two-dimensional cavities, the component of the

electric field perpendicular to the surface of the cavity satis- J 2 J 2002

fies a scalar Helmholtz equation that is formally equivalent - dry(r) Y dr g (n)|*=gi(r)]| ,
to the Schrdinger equation. Since the Helmholtz equation is p= 5 —€ 5 5 @
real, the microwave electric field in the cavity is real as well. f dr{y(r) J dr| ¢ (D] +]i(r)]

Areal field serves as a model for an electronic wave function
in the presence of time-reversal symmetry and spin-rotation
invariance. Complex field patterns, which model the waveThe square modulup|? is known as the “phase rigidity” of
function of an electron in a magnetic field, can be obtainedhe wave functiony [13]. Real wave functions have=1,
making judicious use of magneto-optical effel@s3]. Alter-  whereasp=0 if ¢ is fully complex, i.e.,it, and; have the
natively, complex “wave functions” can be observed as trav-same magnitude. If the average is taken over the coordinate
eling waves in open microwave caviti¢4—6]. Measured only, whereas the frequeney of the wave function is kept
distributions of real and complex wave functions in micro- fixed, the wave-function distribution follows by describing
wave cavities with chaotic ray dynamics, where, tradition-i, and ¢; as random superpositions of standing waves
ally, “complex” means that the time-reversal symmetry is[4,14,15. The resulting wave-function distribution depends
fully broken and the phase of the wave function has no longparametrically on the phase rigidity|?. Using a microwave
range correlations, agree with a theoretical description irbilliard with a movable antenna, Barth and &mann have
terms of a random superposition of plane wal&s as well measured such a “single-wave-function distribution” and
as with random matrix theor§8] and the supersymmetric found good agreement with the theory, obtainjmdrom an
field theorieq 9]. independent measureméB. It is the fact thap is different
Recently, it has become possible to study the full crossfor each wave function that leads to the different results for
over from real wave functions to complex wave functionsaverages over only and over botl andw, an average over
using microwave techniqud$,6,10. The crossover regime frequency involves an additional average opeiSuch a full
is qualitatively different from the “pure” cases of real or wave-function distribution, which needs theoretical input be-
fully complex wave functions. Unlike in the pure cases, theyond the ansatz that each wave functigris a random su-
statistical distribution of wave functions in the crossover re-perposition of plane waves, was first calculated by Sommers
gime depends on the way the statistical ensemble of waveand lida for the Pandey-Mehta Hamiltonian from random-
function elements is obtained: whether variations are takematrix theory[16] and by Fal’ko and Efetoy17,18 for a
with respect to the coordinate the frequencyw, or both.  disordered quantum dot in a uniform magnetic field.
Whereas the theoretical work has been roughly equally di- In addition to being responsible for the difference be-
vided between the two approach@xplicitly or implicitly),  tween probability distributions obtained from an average
experiments usually need the additional average over fresver position or from an average over position and fre-
quency to obtain sufficient statisti¢®,3,10,11 (see, how- quency, fluctuations of the phase rigidity|? have been
ever, Refs[5,6] for an exception identified as the root cause for several striking phenomena in
In general, a complex wave function may be written as the crossover regime, such as long-range intensity correla-
tions[18] and a non-Gaussian distribution of level velocities
i - [13]. Further, the existence of correlations between phase
() =Ty +ii(n], @ rigidities of different wave functions causes long-range cor-
relations between wave functions at different frequencies
where ¢, and ¢; are orthogonal but need not have the samg19].
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Here, we consider the real-to-complex crossover for wavehe scattering states. Note that the incoming modes are trans-
functions in a billiard that is opened up to the outside world,formed according to the unitary transformation while the
and calculate the probability distribution of phase rigiditiesoutgoing modes transform according Wd°, as required by
for this case. Although time-reversal symmetry is not brokertime-reversal symmetry.
on the level of the wave equation itself, it is broken by the In the transformed basis, the scattering matrix is diagonal
fact that one looks at a scattering state with incoming flux inand all scattering phase shifts are zero. Hence, in the trans-
one waveguide only4]. As we show here, random wave formed basis, the scattering states are standing waves, for
functions in open cavities also have a fluctuating phase rigidwhich p= 1. Transforming back to the original basis, we find
ity, and, hence, exhibit the same variety of phenomena as
those in cavities with broken time-reversal symmetry, while N
they are much easier to generate in microwave experiments E szﬂrl-
[5,6]. An additional advantage of the open-billiard geometry =1
is the absence of fit parameters: the only parameter entering N )
the wave-function distribution is the total numbét of 21 |Uj,u| 7j
propagating modes in the waveguides between the billiard =
and the outside world, which can be measured independently. . - o
Single-wave-function statistics in open chaotic billiards, IBet Ltl.s rl:])an cdonsld"er the stat|s_t|cal d'Stli'bu“thmjﬂ f%r. ;
but without phase rigidity fluctuations, was first considered® €Naotic billiard. ~ollowing previous Works on this subject,
theoretically by Pnini and Shapif@] and subsequently by we cons!der the parame’ger regime in which the frequency
Ishio and co-workerg20,21]. Experimentally, wave func- average is taken over a windaWww<c/L<w, wherec is the

tions in open billiards were investigated by Barth andc&to veloc;lty Of. wave propagation ard the size of the b'”'?rd'
mann([5] and by Kimet al. [6]. and in which the openings occupy only a small fraction of

In Sec. Il we descrive the calculation of the phaseq it i tt 2 PR, © S B S e
rigidity distribution for a chaotic billiard. In Sec. Ill, we then :

use the phase-rigidity distribution to find wave-function dis-ZF;\éfr?c tf?é%uaz}r g%}glﬂ];ntiotﬂzl bti)llllilélé:adsialnne \illhilggn:i?iee q
tributions and correlations. In Sec. IV, we show that there are . Perpen ap .
with the wave functioryy and the Poynting vector with the

statistical correlations between wave functions that corre- o " . .
spond to different scattering states. Such correlations are th(‘(e'rjrrent densitye<m * V¢ [25]. With these conditions, the

open-cavity counterpart of correlations between differen oint distribution of the scattering matri® and the Wigner-

electronic wave functions in a weak magnetic figld]. We mith time-delay r_natnxQ of a chaotic .b'”.'am! is_known
conclude in Sec. V. from random-matrix theory26]. The distribution of the

proper time delays; is [24,27]

®)

Pup

Il. PHASE-RIGIDITY DISTRIBUTION N
. . L. _ —3N/2—1,—N7,/27;
The key to the calculation d®(p) in an open cavity isa  P(71, - - ’TN)_jHl 0(7j) 7, e N7/ T‘iﬂj |7i— 7l
relation between the scalar products of the in-cavity parts of (6)

scattering stateg, andy, and the Wigner-Smith time-delay

matrix Q [22], where 7., is the average delay time ar@{x)=1 for x>0

and O otherwise, whereas the unitary matdixs uniformly
f drig, (N (r)=Q,,, 3 distributed in the group of unitarijd X N matrices. Together
cavity with Eq. (5) this fixes the probability distributioR(p,,,). A
rglj_irect consequence of Eg&) and (6) and the uniform dis-
tribution of U in the group of unitaryNX N matrices is that,
for a chaotic cavityP(p,,) depends on the total number of
propagating modebl summed over all waveguides only; it
does not depend on how many waveguides are attached to
the cavity or on how the total number of modes are distrib-
uted over the different waveguides. For example, the prob-
ability distribution P(p,,) for a cavity with two double-
mode waveguides is the same as that for a cavity attached to
one single-mode waveguide and one triple-mode waveguide
or a cavity with four single-mode waveguides.

where the scattering states have been normalized to unit i
coming flux. Here the indexx=1, ... N labels the wave-
guide and the transverse mode from which the field is in
jected into the cavityy The time-delay matrixQ
=—iS'6S 6w is the derivative of the scattering matri
[23]. In order to calculate the scalar product, of the scat-
tering stateyy,, and its time-reverseg, , we perform a uni-
tary transformationU that diagonalizes the Wigner-Smith
time-delay matrixQ and rotates the scattering mat8xo the
unit matrix [24],

s=uUTu, Q=U'diagry, ... ,m)U. (4) We were able to obtain simple expressionsigp,,,) in
’ B the limiting caseN=2 andN>1. (The caseN=1 is not
The positive numbers;, i=1, ... N, are the “proper delay relevant since there are no traveling waves for a billiard with

times,” the eigenvalues of the Wigner-Smith time-delay ma-one single-mode waveguideThe distribution forN=2 is
trix. If seen as a basis change, the transformation correspon@btained parametrizing

ing to the unitary matriXxJ both diagonalizes the scattering _ _

matrix and absorbs the scattering phases into the definition of Up,=(1-T)"%%1,  U,,=TY%?,
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N

persist in order to ensure the correct value of the scalar prod-
N=20
A / / 2 uct of ¢, and ¢y, , cf. Eq.(2) [21],
<3 p— ; a,(k)a,(—k)
a 2k p,u,,u: . (10)
a,(k)|?
I DIREN]
e (In the absence of correlations betwesy(k) anda,,(—k)

TR one would have,,,=0.) Taking the amplitudes correspond-

e L ing to wavevectors pointing in different directions from iden-
FIG. 1. Probability distribution of the phase rigiditp|* for a tical and independent distributions, we see that &@) im-

wave function in an open chaotic billiard, for different numbers of i lati betw th d t f th
propagating modes connecting the billiard to the outside worlgP''€S @ reiation between € second moments o e

From bottom to top at the left end of the figure, curves correspond'ﬁmp"t'“Ide distribution,

to N=2, 3, 4, 6, 8, 10, 15, and 20. Inset: schematic drawing of _ _ 2
billiard and waveguides. <a#(k)aM( k)) p””<|a“(k)| )- (1)

) o This, together with the normalization conditidh(|a(k)|?)
where 0<T=<1 and 0s ¢; ,<27. A uniform distribution of  —1/o \hereA is the area of the billiard, the central limit

the 2x2 unitary matrixU corresponds to a uniform distri- thegrem, and the probability distributid(p,,,,) we calcu-
bution of T'in the interval 6= T<1 and uniform distributions  |ateq in the preceding section provides sufficient information
of the phasesp; and ¢, [26]. Integrating overT, ¢1, ¢2, (o determine the full distribution of the wave functign

71, andrz, we then find As an example, we consider the joint distribution of the
6+ 2(1—|p[2) 12 normalized intensityl (r)=|#(r)|?A and the magnitude of
+2(1- - _ d the mag _
P(p)= p 0=|p|<1. ) the  normalized current  density J=|j(r')|, ]

=(A/K)Im * V ¢ at the positiong andr’, wherek= w/c.

If the statistical ensemble is generated by variation of the
Note that, althoughP(p) is defined as a function of the com- positionr only, the single-wave-function distribution factor-
plex variablep, P(p) depends on the modulug| only, as izes into separate probability distributions forand J that
required by time translation invariance. Rt>2 no such each depends parametrically on the phase rigidp}?
simple result could be obtained. A numerical evaluation off14,21],

the probability distribution of the phase rigidityp|? is

3m(1+(1=|p)*H*

shown in Fig. 1 for several values df In the limit N>1, B IR ()] = 8J 2342 Ipl
P(p) approaches a Gaussian, pL1 (1), J(r )]_(1_|p|2)3/2 0 1—p]? 0 1—|p|2
N 2
P(p)= Ee Nlpl 4 (8) XeX;{ _ | ) , (12)
1-1pl?

Th|§ Is the same functlonql form as the. phase—rlgldlty d'.sm'wherelo and K, are Bessel functions. When both position
bution for a quantum dot in a large uniform magnetic field

13171 and frequency are varied to obtain the ensemble average, a
[13,17,18. further average ovep is required,

IIl. LONG-RANGE WAVE-FUNCTION CORRELATIONS

PU(.I)= [ doP(p)P, 0.7, (13
Following Refs.[4,14,21, the joint distributions of inten-
sitie_s and current densiti.es away from the boundary of thetier such averageP(l,J) no longer factorizes in general.
cavity for one wave functiog,, can be calculated from Ber- [the probability distributiorP(1,J) factorizes only ifP(p)
ry's ansatz thay,, can be written as a random superposition;s 5 s function, which is the case for a closed billiard or a
of plane wave$7], fully open billiard (N— ) only.] The degree of correlations
arising from the fluctuations gf is measured through the

lﬂﬂ(r):; a, (ke (9)  correlator

1
In Eq. (9), all wave vectork have the same modulus, while (1()2A(r")?)e=— §Var|P|2' (14)
the amplitudesa, (k) are random complex numbers. For a
closed cavity, amplitudes of time-reversed plane waves arehere (AB).=(AB)—(A)(B) denotes the connected aver-
related,aﬂ(k)=e2'4’aﬂ(—k)*, where¢ does not depend on age. (Since normalization implies thati (r))=1 for each
k. For an open cavity, no such strict relation exists. Howeverwave function, correlators involving the first powerldfac-
some degree of correlation betwesg(k) anda,(—k) must  torize) For a billiard with two single-mode waveguides,
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8 Equations(16) and(17) then impose the following relations
varip|2=§[148ln 2-128In2)*~41]~0.078, for second moments of the amplitude distributions:
— 2
cf. Eq. (7). Similarly, we find for the correlator of intensities (au(k)a,(k)*)=n,la,K)]%), (18)
(N2 (r")2).=vaip|?, (15) (a,(k)a,(—k)=p,(lauk)[?). (19

plus additional terms that describe short-range correlations. Repeating the same arguments as those leading tGEq.
we find thatn ,,, andp,, can be expressed in terms of eigen-

IV. DIFFERENT SCATTERING STATES vectors and eigenvalues of the time-delay matrix,
Thus far we have studied the distribution of a single scat-
tering state in an open billiard. However, for a billiard that is 2 Ui
coupled to the outside world via, in totaN propagating N,,= ' 5
modes, there arBl orthogonal scattering states at each fre- D U, |27__2 U,,|27,
quency. In this section we address the joint probability dis- R R

tribution of wave functions corresponding to differdiaind
orthogonal scattering states.
This question can be studied using the framework of Ref. 2 UjuUju

[19], which generalizes the above considerations to the prob- Puv= 175 (20)
lem of correlations between wave functions. As before, the (2 U, |27"E U |27--)

starting point is Berry’s ansat), with a different set of A e R

amplitudes a,(k) for each scattering statey,, u o

=1,... N. We continue to take amplitudes,(k) from  The full distribution of the complex numbers,, andp,,,
identical and independent distributions for different direc-then follows from the known distributions of tHéX N uni-
tions of k, whereas we allow for correlations between am-tary matrixU and the proper time delays, j=1,... N,

plitudes of time-reversed waves and between amplitudes ¢fee Sec. Il. A simple expression is obtained in the linit
different scattering states. Such correlations are necessafy,l, whenn,, andp,,, acquire a Gaussian distribution, with
because the in-cavity parts of different scattering states anéero mean and with variance given by

their time-reversed states are not orthogonal, see, e.g., Eq.
(3). (Uncorrelated amplitudes for different scattering states
and v would imply that wave functions in the cavity and
their time reversed are orthogonal if they correspond to dif-

1
<nMVnO'T>:N5M’T5VO' If Mivi

ferent scattering statgs-Hence, the second moments of the ey 2
amplitudesa,, (k) should be chosen such that <pwpm>_ﬁ(5wéw+ SucOve),
; a,(k)a,(k)* (Nupor) ={P P re) =0. (21)
Nu= 172 2 Short-range correlations between different scattering
> la,(k)[? [E |a,,(k)|2} modes arise from the fact that,, andn,,, are nonzero for
K K u# v. These correlations exist if statistics is taken as a func-
tion of position only and if the ensemble also involves a
f drag,(r)* g, (r) frequency average. For example, for the second moment of
= ., (16) the intensity and current density distributions, we find from
Udrle(r)Ffdr’lwy(r’)lz} £a- ()

(O e= (N, 2+ 1P, D Io(KIr=1"])2,
; a,(k)a,(—k)

H ; ' 1 2 2 11\2
17 <J,u,a(r)JV,,B(r )>:Zga,8(|np,vl +|p,uv| )‘]O(k|r_r |) ’

1/ 1
Z[ 2 lay<k>|ﬂ (22

where a, B=X,y. For the caséN=2 of a billiard with two
Jdr%(r)%(r) single-mode waveguides, the relevant expectation values
-, 17) {lp1d?) and{|n;5?) can be obtained from Eq20). Here,
one parametrizes the unitary mattikas

p,u,VE

; EXGIE

[fdr|lﬂ#(r)|2fdr'|%(r’)|2

where, as before, the integrals are taken over the billiard only _
and we have chosen the normalization such thgf=1. Uq,=TY% %3,

Upy=(1-T)Y%! %,
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where 0<T=1 and 0< ¢, , ;<2 are uniformly distributed
[26]. Upon integration ovel, ¢,, ¢, ¢3, 71, andr, one
finds

Uy=TY% %2, distribution contains the wave function’s phase rigidity as a
Voridotidais fit parameter. For the full ensemble average considered here
Ugp=— (1-T) %l b2t 197191, (both position and frequency are varigdo fit parameters

are needed; the phase rigidity is a random quantity with a
known probability distribution.
The fluctuations of the phase rigidities are responsible for
long-range correlations between intensities and current den-
1 sities in case of the full ensemble average. Long-range wave-
(|p1d?) = 15(64In2-37)~0.49, function correlations were predicted previously for the real-
to-complex crossover for electronic wave functions in a
o 1 weak magnetic field18]. Experimental verification of these
(In1d%) = 75(26-32In2)~0.25. effects would address aspects of random wave functions that
go beyond a description in terms of a random superposition
Long-range correlations between wave functions of differ-of plane waves. However, for the magnetic field-driven

ent scattering states arise from the fluctuations of the “scalagrossover in the electronic context as well as for the open

products” n

uv andp,,. They exist only if the ensemble billiards considered here, the relative magnitude of the long-

involves a frequency average. The lowest moment with longfange wave-function correlations is small, of the order of 10
range correlations is percent or les§18,19. Presently, the accuracy of solid-state

2 2y 21 v 2 2 experiments of wave functions in semiconductor quantum

(F(r)%e==2(1(N23r)%)e= (Il "l o] >(°23) dots is insufficient to resolve such an eff¢28]. The nu-
merical smallness of the effect of phase rigidity fluctuations

where(|p,.l%p,.1% == 1pLul*){|p..|%). With a calcula- could also explain why intensity distributions in closed cavi-

tion similar to that of the short-range correlations one findglies with broken time-reversal symmetry measured by Chung
for N=2 et al. could not distinguish between theories with and with-

out phase-rigidity fluctuation$10]. Our finding that the
long-range correlations also exist in open microwave bil-
liards, together with the availability of very precise measure-
ments of wave-function distributions for this syst¢fe6],
opens a new avenue for experimental observation of long-
range wave-function correlations in the crossover ensemble
V. CONCLUSION and makes possible a fit-parameter-free comparison of ex-

8
(Ip1l?p2d?) =572 5792 In 2- 44801 2)?~ 1861

~0.032.

. L L eriment and theory.
In conclusion, we have calculated the statistical dlstrlbu-p y

tion of wave functions in an open chaotic billiard. For an

open hilliard, the wave-function distribution that is obtained ACKNOWLEDGMENTS
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