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Chaos and its quantization in dynamical Jahn-Teller systems
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We investigate theEg^ eg Jahn-Teller system for the purpose of revealing the nature of quantum chaos in
crystals. This system simulates the interaction between the nuclear vibrational modes and the electronic motion
in non-Kramers doublets for multiplets of transition-metal ions. Inclusion of the anharmonic potential due to
the trigonal symmetry in crystals makes the system nonintegrable and chaotic. Besides the quantal analysis of
the transition from Poisson to Wigner level statistics with increasing the strength of anharmonicity, we study
the effect of chaos on the electronic orbital angular momentum and explore the magneticg-factor as a function
of the system’s energy. The regular oscillation of this factor changes to a rapidly decaying irregular oscillation
by increasing the anharmonicity~chaoticity!.
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I. INTRODUCTION

Recently the study on quantization of classically chao
Hamiltonian systems has received wide attention. An ac
mulation of numerical and experimental data indica
Wigner-type level statistics, wave function scars, and ot
characteristic features@1,2#.

In addition to toy models such as a kicked rotator, He´non-
Heiles system, some realistic systems such as a hydro
atom in a magnetic field and microwave cavities are a
being investigated@1–3#. Quantum mechanics of chaot
systems also suggests insight beyond a simple quantal m
festation of chaos@4,5#. Therefore, it is crucial to have mor
and more experimentally accessible quantum systems w
exhibit chaos in its classical treatment.

In this paper we choose the Jahn-Teller system simula
transition-metal ions embedded in the host crystals suc
III-V semiconductors and halides crystals. Among them
consider theEg^ eg model associated with the irreducib
representation for the cubic symmetry group, namely,
two-dimensional~2D! lattice-vibration modeseg linearly
coupled to doubly degenerate electronic statesEg @6#. This
system has an adiabatic doubly folded lattice potential w
the conical intersection of the potential surfaces, whose g
metric phase was one of the topics some time ago@7,8#. The
lattice potential here can be harmonic or anharmonic. Fr
the classical dynamical viewpoint in the adiabatic limit,
shown below, the system with the 2D harmonic potentia
integrable, leading to regular motions, and on adding
anharmonic term, it becomes nonintegrable and chaotic@9#.
A systematic investigation of the quantal counterpart of cl
sical chaos in these systems is desirable. Furthermore, s
the model is a representative for paramagnetic ions, i
experimentally important to see the effect of chaos on
magneticg factor. This factor is an expectation value f
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electronic orbital angular momentum and measures a de
of level splitting of highly excited states induced by th
lattice-electron interaction. The oscillating structure in t
energy dependence of theg factor is expected to reflect th
feature of the underlying classical dynamics.

The organization of the paper is as follows. In Sec. I
model for Jahn-TellerEg^ eg system is proposed. Section I
deals with the classical analyses of the model. Both the s
tems, with and without anharmonic terms, are examin
Section IV presents a quantization of the system toge
with the level statistics. Section V is concerned with a p
posal of the experiment to verify the quantum signature
chaos in the dynamical Jahn-Teller system. A novel effect
the g factor is explored there. Final section is devoted
summary and discussions.

II. DYNAMICAL JAHN-TELLER SYSTEM

We investigate the electronic states of degenerateEg or-
bitals of d levels in transition-metal ions coupled with 2
vibrational modeseg expressed by coordinatesQ1 and Q2.
The Eg^ eg model is the typical system showing dynam
Jahn-Teller effects, which has been discussed in the fiel
magnetism for transition-metal ions@6,10#. The Hamiltonian
matrix H for this system is expressed as

H52
\2

2 S ]2

]Q1
2

1
]2

]Q2
2D I1kFQ1 Q2

Q2 2Q1
G1V~Q!I , ~1!

where I is the 232 unit matrix andV(Q) is a potential
energy. The nuclear mass is set to unity. The second term
Eq. ~1! is the so-called Jahn-Teller interactionHJ2T with k
being the coupling parameter between electronic states
vibrational modes. Bases for electronic orbitalsEg lying be-
hind Eq. ~1! are ^r uu&5u(r )53z22r 2 and ^r uv&5v(r )
5x22y2. WhenV(Q) is a harmonic potential given by

V0~Q!5
1

2
v2~Q1

21Q2
2!, ~2!
©2003 The American Physical Society01-1
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the corresponding adiabatic potential for Eq.~1! has the
Mexican-hat or sombrero shape in Fig. 1, whereQ1
5r cosu and Q25r sinu. The potential minima lie atr
5r05k/v2 with an arbitrary value ofu. Namely, the
minima are infinitely degenerate. The energy for the mini
is k2/2v2. Vibronic levels for the quantum Hamiltonian~1!
were discussed in numerical calculations using small dim
sional Hamiltonian matrices@11#. Recently this model has
been investigated from a viewpoint of the geometric ph
@10,12#. On the other hand, the effect of the trigonal fiel
expressed as the anharmonic term,

VA~Q!52~b/3!~Q1
323Q1Q2

2!, ~3!

was also analyzed as to some low-lying levels@11,13#. In
short, O’Brien investigated system~1! with potentialV(Q)
5V0(Q)1VA(Q) in the low-energy approximation thatr is
fixed to r0. However, we numerically calculate eigenvalu
and eigenvectors without having recourse to such an
proximation. We derive level-spacing distributions to see
effect of chaos on quantum systems@1–3,14–16#. Further-
more we investigate the quantalg factor, whose oscillating
structure was shown three decades ago by Washimiya in
system without anharmonicity. We explore the effect
chaos on theg factor in the system with the anharmonicit
The dynamical Jahn-Teller~JT! system was also studied b
Bulgac and Kusnezov@17–20# in a system with the three
dimensional harmonic potential. However, we should n
that the dimensionality of lattice-vibration modes charact
ized by the irreducible representation is two and not th
according to the theory of a point-symmetry group applied
real crystals and that our model is a better reflection of
real crystal@6#.

III. QUASICLASSICAL DYNAMICS AND CHAOS

In the first place, we shall analyze the quasiclassical co
terpart of Hamiltonian~1!, which is given by

H5
1

2
~P1

21P2
2!1V~Q!1k~Q•s!, ~4!

where the first term is a kinetic energy for classical vib
tional modes with coordinatesQ5(Q1 ,Q2), the second one

FIG. 1. Adiabatic potential of Mexican-hat or sombrero sha
r5AQ1

21Q2
2. The potential has the degenerate minimum.
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is the harmonic and/or anharmonic potential, and the th
one is the quasiclassical form for the Jahn-Teller interact
where s is Pauli matricess5(sx ,sy ,sz). Noting thats
space is independent of the real space, we choosesx , sy ,
andsz corresponding tos2 , s3, ands1, respectively. It is
convenient to represent the quantum state by using the
sity matrix r:

r5
1

2 S 11z x2 iy

x1 iy 12z D , ~5!

where r5Tr(rs)5(x,y,z)[(r' ,z) is a real vector. Using
the potential

V~Q!5V0~Q!1VA~Q! ~6!

with V0 andVA in Eqs.~2! and~3!, the equations of motion
derived from Eq.~4! are

dQ

dt
5P, ~7a!

dP

dt
52

dV~Q!

dQ
2kr�, ~7b!

dr

dt
5kQ3r . ~7c!

Equation ~7c! is nothing but the Schro¨dinger equationi ṙ
5@H,r#, from which we find the constant of motionur u
51. In the study of quasiclassical dynamics, our interest
in qualitative comparison between the systems with a
without the anharmonic term, and therefore we confi
ourseleves to the adiabatic limitdz/dt50, that is, r
5(r' ,z0) with r'

2 512z0
2. Further, we find from Eq.~7c!

dz

dt
ez5kQ3r'50,

which is satisfied only whenr'iQ. Thus the adiabatic limit
is equivalent to

r'5A12z0
2 Q

Q
, ~8!

whereQ5uQu. Using Eq.~8!, Eq. ~7b! reduces to

dP

dt
52

dV~Q!

dQ
2 k̃

Q

Q
~9!

with the renormalized couplingk̃5kA12z0
2. In our

adiabatic approximation, we have no interesting fictitio
magnetic field induced by the conical intersection
Fig. 1 @17–20#, since bothQ and P here are two dimen-
sional. Further, for our purpose to explore the onset of ch
in a wide parameter range, the adiabatic approximation
be the most effective except when the energy is of the or
of k2/2v2. Consequently, the classical equation of motion

.

1-2
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the present model can be expressed only byQ,P and consists
of a set of Eqs.~7a! and~9!. This set has the first integral o
motion or the total energy

E5
P2

2
1V~Q!1 k̃

Q2

Q
. ~10!

The following analysis depends on the type of the pot
tial V(Q). First, we investigate the system with the harmo
potential only, i.e.,V(Q)5V0(Q). In this case, in addition to
the total energy~10!, we have another constant of motio
i.e., the orbital angular momentum

Jz5~Q3P!z . ~11!

The number of constants of motion agrees with the deg
of freedom ~two!. Therefore the system is integrab
@9,21,22#, showing only regular motions. Then, we inves
gate the system with the anharmonic potentialV(Q)
5V0(Q)1VA(Q). The trigonal field on the 2D plane
(Q1 ,Q2) is invariant only to operations of the cubic grou
@6#. Owing to this breaking of continuous circular symmet
the angular momentumJz in Eq. ~11! is not a constant of
motion, which makes the system nonintegrable. It should
noted that the lattice system without coupling with the el
tronic degree of freedom is identical to the He´non-Heiles
system whose dynamical features have been intensively s
ied in a context of chaos theory@9,23#.

The present system has two control parameters, i.e.,
coupling constantk̃ between electronic and vibrational d
grees of freedom and the nonlinearity parameterb respon-
sible for the trigonal field. However, the simple scaling b
low lets them merge to a relevant single parameter. Let
coordinates (Q1 ,Q2) be transformed to (q1 ,q2) through
Ab/ k̃Q15q1 ,Ab/ k̃Q25q2. The total energy is then written
as

E5
1

2

k̃

b S dq

dt D
2

1
v2

2

k̃

b
q21

k̃3/2

Ab
F1

2
Aq1

21q2
21

q1
3

3
2q1q2

2G .
~12!

Next, define the scaled timet5( k̃b)1/4t and the scaled mo
mentump5dq/dt. Finally, by scaling the energy and th
angular frequency as

e5Eb1/2k̃23/2, ~13a!

V25v2k̃21/2b21/2, ~13b!

the total energy is expressed as

e5
1

2
p21

1

2
V2q21

1

2
Aq1

21q2
21

q1
3

3
2q1q2

2 . ~14!

Eliminating k̃ from Eqs. ~13a! and ~13b!, we find e
5(V/v)6Eb2, which tells that the enhancement of the a
harmonic term is equivalent to the increase of the sca
energye under a fixed value ofV/v. In our numerics below,
we chooseV/v51. Figure 2 shows Poincare´ surface of sec-
04620
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tions for energiese50.01, 0.4, and 0.7. While in Fig. 2~a!
we find almost all trajectories to be regular, Fig. 2~b! shows
that Kolmogorov-Arnold-Moser~KAM ! trajectories begin to
collapse and some trajectories become chaotic. Finally
Fig. 2~c! chaotic trajectories dominate almost all pha
space. These results imply that the domain of chaos expa
gradually with increasing the scaled energy or the anhar
nicity under a fixed value of the scaled angular frequenc

We have also solved Eq.~7! without use of the adiabatic
approximation. Then, the degree of freedom becomes th
In case thatk andb are less than unity, the relative fraction o
chaos in phase space is quite small: We call this beha
‘‘partial chaos.’’ However, if bothk andb are as large as 5
the global chaos as seen in Fig. 2~c! appears. In case ofb
50, we find no indication of irregularity. We shall now pro
ceed to investigate a quantal counterpart of these clas
features.

FIG. 2. ~Color! Poincare´ sections atp250. V/v51. ~a! e
50.01, ~b! e50.4, and~c! e50.7. The scaling of units is written in
the text.
1-3
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IV. QUANTUM SYSTEMS

In this section we investigate the quantal manifestation
chaos and of regular motions without resorting to the ad
batic limit. The construction of the energy matrix is as fo
lows ~see Refs.@11# and @24#!: The basis wave function is
described as the product of electronic wave functionsu6(r )
and vibrational onesf(Q). The former is given in terms o
u(r ) andv(r ) below Eq.~1! as

u6~r !5
1

A2
@u~r !6 iv~r !#, ~15!

while the latter is the eigenstate with the eigenvalueEnm
5n\v for the 2D harmonic oscillator:

fn,m~r,u!5Fnumu~r!eimu, ~16!

where n51,2, . . . and m5n21,n23, . . . ,2n11.
Fnumu(r) is the confluent hypergeometric function@24#. Thus,
the basis wave functions for the present model are given

Fn,m
6 5u6~r !fn,m~r,u!. ~17!

Corresponding to Eq.~1!, the interaction matrixHJT is ex-
pressed as

HJT5Vu~r !Q11Vv~r !Q25
r

A2
@Vu2~r !eiu2Vu1~r !e2 iu#

~18!

with the matrix elements ofVu6 given by

^u6uVu1~r !uu6&5^u6uVu2~r !uu6&50,

^u7uVu6~r !uu6&57A2k. ~19!

As for the lattice-vibration factorre6 iu in Eq. ~18!, we have
nonvanishing matrix elements as

^fn,mure2 iuufn11,m11&5^fn11,m11ureiuufn,m&

5F \

2v
~n1m11!G1/2

,

^fn,mure2 iuufn21,m11&5^fn21,m11ureiuufn,m&

5F \

2v
~n2m21!G1/2

.

As a result, the matrix elements for Eq.~18! are

^Fn,m
1 uHJTuFn8,m8

2 &

5k^fn,mureiuufn8,m8&

5kH \

2v
@n6~m21!#J 1/2

dn8,n71dm8,m21, ~20!
04620
f
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^Fn,m
2 uHJTuFn8,m8

1 &

5k^fn,mure2 iuufn8,m8&

5kH \

2v
@n6~m11!#J 1/2

dn8,n61dm8,m11 . ~21!

If we assign the quantum numbersj 561 to Fn,m
6 , HJT

without the anharmonic term connects the states with
same quantum number,,5m2(1/2)j ( j 561). As dis-
cussed by Longuet-Higgins@11#, the present matrix decom
poses into matrices labeled by quantum number,. For any
given value of ,, m can take two values,21/2 and ,
11/2 corresponding toj 521 and11, respectively. Thus,
the pth eigenfunction for a given, is expressed asCp,, . If
we consider the trigonal field~3!, levels with ,63N (N
51,2,3, . . . ) arecoupled to levels of,, as discussed in Ref
@11#. The energy matrix is decomposed into only three ir
ducible presentationsAg , Bg , andEg . By the exact diago-
nalization of each submatrix for the Hamiltonian includin
HJT, we can get eigenvalues and eigenvectors. The re
depends on two parameters, the coupling constantk and the
strength of the trigonal fieldb.

Here, we concentrate on the nearest-neighbor le
spacing distributionP(s), which plays a prominent role in
the quantum description of classically chaotic quantum s
tems. The random matrix theory presents a natural fra
work for describing fluctuation properties of spectra of qua
tum systems, whose corresponding classical model exh
chaotic behaviors. In fact the correlations in Gaussian
sembles of random matrices are found to match very clos
the empirical correlations among energy levels in classic
chaotic systems. If the phase space is totally chaotic,
distribution of level spacings is Wigner-like@Guassian or-
thogonal ensemble~GOE!#,

Pw~s!5
p

2
s expS 2

p

4
s2D .

By contrast, in classically regular quantum systems the lev
are independent of each other, and therefore the spac
obey Poisson distribution,

Pp~s!5exp~2s!.

Considering these standard criteria, we present the le
spacing distribution for the Hamiltonian~1! in the following.

First, we consider the system without trigonal field (b
50). For the manifold of,51/263m (m50,1,2. . . ,),
Fig. 3~a! shows level-spacing distribution characterized
the Poisson distribution, which tells that this system is re
lar in the classical dynamics@25#. Figure 3~b! shows inte-
grated values of histograms in shown Fig. 3~a!, which well
fits the function 12e2s.

Then we reveal the role of trigonal field. Figure 4 show
the dependence of eigenvalues on the parameterb, where a
multitude of avoid crossings can be found.

Figure 5~a! shows a level-spacing distribution in the ca
of b55. It should be noted that the distribution perfect
agrees with the Wigner one withP(s)→s ass→0. In Fig.
1-4
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5~b! we show the corresponding integrated level-spacing
tribution, which also well fits the Wigner one~GOE!. We
would like to point out the following fact: In the correspon
ing classical system withk54 andb55 without the use of
the adiabatic approximation, the almost whole regions in
phase space exhibit stochastic behavior. However, the sy
under consideration is generic: the phase space of the un
lying classical dynamics consists of both regular KAM to
and chaos. In fact, for the relatively small value ofb ~e.g.,
0,b&1), we get the Brody distribution which interpolate
the Poisson and the Wigner ones. In the semiclassic
asymptotic limit of sufficiently small effective Planck con
stant, one would expect the Berry-Robnik distribution@26–
28# that allows us to estimate the relative measure of
chaotic part in the classical phase space. The Brody distr
tion is more effective in the present analysis, however,
cause we are concerned with the quantal rather than
semiclassical regime.

FIG. 3. ~Color! ~a! Histograms of level-spacing distribution fo
k54,b50 ~without trigonal field!. Curves of Poisson distribution
and GOE are also drawn by open rectangles and crosses, re
tively. ~b! Integrated level-spacing distribution with the use of da
in ~a!.

FIG. 4. ~Color! Dependence of eigenvalues (;p5120) on an-
harmonic parameterb. The unit of energy is\v.
04620
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In addition, we investigate the wave-function statistic
We focus on the probability density to find the first bas
state @F2[u2(r )f1,0(r,u)# populated in each of the en
semble of eigenstates. To be explicit, we choose the sc
probability densityx[ua1pu2/a2 as a stochastic variable
wherea1p is the first coefficient to appear later@in Eq. ~23!#
anda2 stands for the average ofua1pu2 over the ensemble o
eigenstates.

Figure 6 shows a wave-function statistics for the sca
probability density in the case ofk54, b55. We find that
the histogram almost agrees with Porter-Thomas distribu

PPorter-Thomas~x!5
1

A2px
exp~2x/2!,

ec-

FIG. 5. ~Color! ~a! Histograms of level-spacing distribution.~b!
Integrated level-spacing distribution fork54,b55 ~with trigonal
field!. Curves of Poisson distribution and Wigner distribution a
also drawn by open rectangles and crosses, respectively.

FIG. 6. ~Color! Histograms of the wave-function statistics fo
density distribution for the case ofk54, b55 with trigonal field;
integrated density distribution is shown by black circles. Curves
Porter-Thomas distributionP(x) and integrated Porter-Thomas on
I (X) are also drawn by crosses and thin line, respectively.
1-5
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FIG. 7. ~Color! g factor g(«)d« («50.25) for the electronic orbital angular momentum.,51/2 andk50.707. ~a!, ~b!, ~c!, and ~d!

correspond tob50, 0.2, 0.3, and 1.41, respectively. The unit of energy is\v. Envelop functions composed for Gaussian distribution typ
are also depicted.
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whose significance was realized at ‘‘the dawn of rand
matrix theory.’’

While most of the studies on quantum chaos have b
limited to the analysis of level-spacing distributions,
wave-functions scars and Thomas-Porter distribution,
shall here embark upon the investigation of experiment
accessible new indicators. We pay attention to magnetism
the dynamical Jahn-Teller system. In particular, we disc
the magneticg factor in the following section@29#.

V. ELECTRONIC ORBITAL ANGULAR MOMENTUM

The essential features of the Jahn-Teller coupled syst
are caused by the interaction between the nuclear mot
and the electrons in non-Kramers doublets for multiplets od
levels. In particular, the quenching of the electronic orb
angular momentum—the so-called magneticg factor—in
those doublets is the fundamental subject in magnetism
transition-metal ionic compounds. As well known, the sta
Jahn-Teller effect removes the ground state degenerac
electronic states. This effect leads to the complete disapp
ance of the orbital angular momentum, leaving only s
degree of freedom. On the other hand the dynamic Ja
Teller systems for the relatively weak coupling have a p
sibility of the nonvanishing orbital angular momentum
non-Kramers doublets because of the continuous distor
of lattices. In fact, in the absence of a trigonal field theEg
^ eg system has the freedom of the continuous distortion
n

e
y
in
s

s
ns

l

of

of
ar-
n
n-
-

n

f

lattices along the continuous minima of the adiabatic ‘‘Me
can hat’’ potential.

Washimiya@29# payed attention to the dependence of e
pectation value of this orbital angular momentum^Lz& in the
excited levelsCp,, derived in Sec. IV. He pointed out th
oscillatory behavior of̂ Lz& with increasing energy levels
The nonvanishing valueŝLz& are given as

^Lz&p5^Cp,,51/2uLzuCp,,51/2&

5F (
n51

`

~21!nan,p
2 GJ,p

51,2,3, . . . ~22!

for the vibronic state of,51/2. Here,an,p’s are the coeffi-
cients of the harmonic oscillator functions. As already me
tioned, the vibronic wave function is given by

Cp,,5a1pu2~r !f1,0~r,u!1a2pu1~r !f2,1~r,u!

1a3pu2~r !f3,0~r,u!1a4pu1f4,1~r,u!1•••.

~23!

In Eq. ~22!, J represents the elements in the principal dia
onal of the matrix (J5^u1uLzuu1&52^u2uLzuu2&). In
short, the differences ofuan,pu2 between even- and odd- num
bers ofn in the eigenfunction labeled byp play an essentia
role. As p increases, the oscillatory behavior of the angu



fa
m

th
sh
o

o
o
oy

o
di

b

g

-
t

s
F

ul

e

ile
r
r
ll

of
s
u

s,
ven
artial

the

tem

e
s the
. In
sily
the
an

cing
pe

la-
-

r
el-

st,
r

os,
ese
ri-

s
the
ic-
sys-
e of
ue
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momentum is found. The periods of this oscillation are
long in comparison with the variation by odd and even nu
bers for the small couplingk. With increasingk, the absolute
value of the angular momentum decreases. The origin of
oscillation has not been clarified up to now, though Wa
imiya’s finding is essential for understanding properties
this vibronic systems.

In what follows, we show a more detailed calculation
this oscillatory behavior. Furthermore, the effect of the trig
nal field is discussed in consideration that this field destr
the continuous circular symmetry and that the angular m
mentum, is not a good quantum number. Under this con
tion, we introduce the density ofg factor g(«)d« for the
electronic orbital angular momentum in the energy range
tween« and«1d« as

g~«!d«5( 8
p

U(
n51

`

~21!na,51/2,n,p
2 Ud«. ~24!

Here, the summation ofp is taken over the correspondin
energy range. It should be noted that levels for,851/2
63N(N51,2, . . . ) aremixed with the levels for,51/2 in
the presence of the trigonal field.

We show calculated results ofg(«) at k50.707 in Fig. 7.
In Fig. 7~a!, the regular oscillatory behavior ofg(«) for b
50 as a function of levelp, which was reported by Wash
imiya @29# three decades ago, is reproduced. In addition
histograms forg(«), we also show the envelop function
constructed by Gaussian coarse graining of each peak.
ures 7~b!, 7~c!, and 7~d! show the« dependence ofg(«) in
the presence of trigonal field withb50.2, 0.3, and 1.41,
respectively. Here, we can find the suppression of reg
oscillation with increasingb.

The emergence of irregular oscillation and the suppr
sion of theg factor with increasingb reflects the underlying
chaotic behavior in Sec. III. We find the important fact: wh
the level statistics can reach the Wigner distribution fo
sufficiently large value ofb, the suppression of the regula
oscillation of theg factor easily occurs for a relatively sma
value of b. In fact the values ofb51.41,k50.707 (V/v
51, kb51) in Fig. 7~d! are much less than the values
b55, k54 that guarantee the Wigner distribution in the ca
without the adiabatic approximation. As a result, the irreg
-
f

04620
r
-

is
-
f

f
-
s
-

-

e-

o

ig-

ar

s-

a

e
-

lar oscillation of theg factor is a precursor of quantum chao
namely, the suppression of its regular oscillation occurs e
when the classical phase space accommodates a p
chaos.

VI. SUMMARY AND DISCUSSIONS

We have examined the Jahn-TellerEg^ eg system from a
viewpoint of classical chaos and its quantization. Both
systemsA without a trigonal anharmonic term andB with it
are investigated.

The classical phase space is strictly regular for the sys
A and nonintegrable and chaotic for the systemB. In general,
the systemB is mixture of regular KAM tori and chaos. Th
relative fraction of chaos in the phase space increases a
energy or the strength of the anharmonicity is increased
the adiabatic approximation, the full chaos can occur ea
because of enhancement of nonlinear effects due to
strong constraint. Without such an approximation, we c
find the full chaos for relatively large values ofk andb, and
obtain only the partial chaos, if we adopt small values tok
andb.

For the corresponding quantum systems, the level-spa
distributions are shown to be of Poisson- and Wigner-ty
for the systemsA and B, respectively. We find that the
Wigner distribution is available as well by adopting the re
tively large values ofk andb. On the other hand, the depen
dence ofg factors on energy« is a quite sensitive indicato
of the symptom of chaos in comparison with the lev
spacing distribution. In the systemA theg factor shows regu-
lar oscillation with respect to excitation energy. By contra
in the systemB it shows a quenched irregular oscillation fo
the relatively small values ofk andb. Therefore, we propose
the magneticg factor as a new precursor of quantum cha
superior to the level-spacing distribution. We hope that th
predictions will be verified in future such as in the expe
ment of magnetic circular dichromism.

It will be quite important that the precursor of chao
shows up in the observable orbital angular momentum in
dynamical Jahn-Teller systems for transition-metal ion
compounds. There are other interesting themes in this
tem, such as an effect of the chaos on a spectral featur
phonon side bands, which will also be examined in d
course.
,
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