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Chaos and its quantization in dynamical Jahn-Teller systems
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We investigate thé&®e, Jahn-Teller system for the purpose of revealing the nature of quantum chaos in
crystals. This system simulates the interaction between the nuclear vibrational modes and the electronic motion
in non-Kramers doublets for multiplets of transition-metal ions. Inclusion of the anharmonic potential due to
the trigonal symmetry in crystals makes the system nonintegrable and chaotic. Besides the quantal analysis of
the transition from Poisson to Wigner level statistics with increasing the strength of anharmonicity, we study
the effect of chaos on the electronic orbital angular momentum and explore the magfaetior as a function
of the system’s energy. The regular oscillation of this factor changes to a rapidly decaying irregular oscillation
by increasing the anharmonicitghaoticity).
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[. INTRODUCTION electronic orbital angular momentum and measures a degree
of level splitting of highly excited states induced by the
Recently the study on quantization of classically chaotidattice-electron interaction. The oscillating structure in the
Hamiltonian systems has received wide attention. An accuenergy dependence of tigefactor is expected to reflect the
mulation of numerical and experimental data indicatedfeature of the underlying classical dynamics.
Wigner-type level statistics, wave function scars, and other The organization of the paper is as follows. In Sec. Il a
characteristic featurdd.,2]. model for Jahn-TelleEy® e4 system is proposed. Section IlI
In addition to toy models such as a kicked rotatornbte-  deals with the classical analyses of the model. Both the sys-
Heiles System, some realistic Systems such as a hydrogéﬂms, with and without anharmonic terms, are examined.
atom in a magnetic field and microwave cavities are alsé>ection IV presents a quantization of the system together
being investigated1—3]. Quantum mechanics of chaotic With the level statistics. Section V is concerned with a pro-
systems also suggests insight beyond a simple quantal marfiosal of the experiment to verify the quantum signature of
festation of chao§4,5]. Therefore, it is crucial to have more chaos in the dynamical Jahn-Teller system. A novel effect on
and more experimentally accessible quantum systems whidhe g factor is explored there. Final section is devoted to

exhibit chaos in its classical treatment. summary and discussions.
In this paper we choose the Jahn-Teller system simulating
transition-metal ions embedded in the host crystals such as [I. DYNAMICAL JAHN-TELLER SYSTEM

[1I-V semiconductors and halides crystals. Among them we
consider thekE;® ey model associated with the irreducible
representation for the cubic symmetry group, namely, th
two-dimensional (2D) lattice-vibration modese, linearly

We investigate the electronic states of degenegter-
itals of d levels in transition-metal ions coupled with 2D
vibrational modes, expressed by coordinat€®;, and Q,.
The E;® e, model is the typical system showing dynamic

coupled to doubly degenerate electronic stdigq6]. This : i : i
system has an adiabatic doubly folded lattice potential Wim]ahn—Te'IIer effects, \.N.h'Ch has peen discussed |n'the .f|eld of
nagnetism for transition-metal iofi6,10]. The Hamiltonian

the conical intersection of the potential surfaces, whose gedn . . .

metric phase was one of the topics some time [@g8)]. The matrix H for this system is expressed as

lattice potential here can be harmonic or anharmonic. From 22( 32 P2 Q. O

the classical dynamical viewpoint in the adiabatic limit, as - _ = | 2 1+ 7 |4 <t 2

shown below, the system with the 2D harmonic potential is 2 (0Qf aQ§> Q: —Q

integrable, leading to regular motions, and on adding the

anharmonic term, it becomes nonintegrable and ch&éfic where | is the 2<2 unit matrix andV(Q) is a potential

A systematic investigation of the quantal counterpart of clasenergy. The nuclear mass is set to unity. The second term of

sical chaos in these systems is desirable. Furthermore, sin&). (1) is the so-called Jahn-Teller interactiéty_+ with k

the model is a representative for paramagnetic ions, it ideing the coupling parameter between electronic states and

experimentally important to see the effect of chaos on th&ibrational modes. Bases for electronic orbitilslying be-

magneticg factor. This factor is an expectation value for hind Eq. (1) are (r|uy=u(r)=3z>—r? and {(r|v)=uv(r)
=x?—y2. WhenV(Q) is a harmonic potential given by

+VQI, (D)

*Electronic address: hisa@physics.s.chiba-u.ac.jp; Vv _ 1 2(02 2
== + 2
URL: http://zeong.s.chiba-u.ac jpisa/ o(Q) 2% (Qi+Q2), @

1063-651X/2003/6@}/0462018)/$20.00 68 046201-1 ©2003 The American Physical Society



YAMASAKI et al. PHYSICAL REVIEW E 68, 046201 (2003

U(p,0) is the harmonic and/or anharmonic potential, and the third
one is the quasiclassical form for the Jahn-Teller interaction
where o is Pauli matricess=(oy,0y,0,). Noting thato
space is independent of the real space, we chogser,,

and o, corresponding tar,, o3, ando, respectively. It is
convenient to represent the quantum state by using the den-
sity matrix p:

1
=3

®)

1+z x—iy
x+iy 1-z)’

wherer=Tr(po)=(Xx,y,z)=(r, ,z) is a real vector. Using
FIG. 1. Adiabatic potential of Mexican-hat or sombrero shape.the potential

p= \/Q21+ sz. The potential has the degenerate minimum.

V(Q)=Vo(Q) +Va(Q) (6)
the corresponding adiabatic potential for EG) has the ) , . ,
Mexican-hat or sombrero shape in Fig. 1, whe@y wnh Vo andV, in Egs.(2) and(3), the equations of motion
—pcosf and Q,=psiné. The potential minima lie ap  derived from Eq(4) are
=po=k/w? with an arbitrary value ofg. Namely, the dQ
minima are infinitely degenerate. The energy for the minima — =P, (7a)
is k?/2w?. Vibronic levels for the quantum Hamiltonia) dt
were discussed in numerical calculations using small dimen-

sional Hamiltonian matricefl1]. Recently this model has d_P_ . dv(Q) Ckr (7b)
been investigated from a viewpoint of the geometric phase dt dQ L
[10,12. On the other hand, the effect of the trigonal fields
expressed as the anharmonic term, dr
FTe kQXr. (70

VA(Q)=—(b/3)(Q3-3Q,Q3), (3)

Equation (7c) is nothing but the Schidbnger equationi p
=[H,p], from which we find the constant of motiom|

> . L . =1. In the study of quasiclassical dynamics, our interest lies
=Vo(Q) +Va(Q) in the low-energy approximation thatis in qualitative comparison between the systems with and

fixed t0 po. Howeverz we nume_rlcally calculate elgenvalueswithout the anharmonic term, and therefore we confine
and eigenvectors without having recourse to such an ap- . T _ .

9 . . S ourseleves to the adiabatic limidlzZdt=0, that is, r
proximation. We derive level-spacing distributions to see the N 5 .
effect of chaos on quantum systefiis-3,14-16. Further- =(r..2o) with r{ =1—2z;. Further, we find from Eq(7c)
more we investigate the quantglfactor, whose oscillating dz
structure was shown three decades ago by Washimiya in the e =kOXr, =0

: .. d ez Q 1 1

system without anharmonicity. We explore the effect of t
chaos on they factor in the system with the anharmonicity. L o . o
The dynamical Jahn-TellgdT) system was also studied by yvhlch is satisfied only when, |Q. Thus the adiabatic limit
Bulgac and Kusnezof17—24 in a system with the three- IS €duivalent to
dimensional harmonic potential. However, we should note
that the dimensionality of lattice-vibration modes character- =1-£ 9
) . . o ri=vl-z 3, (8
ized by the irreducible representation is two and not three Q
according to the theory of a point-symmetry group applied to .
real crystals and that our model is a better reflection of thavhereQ=[Q|. Using Eq.(8), Eq. (7b) reduces to

I [6].
real crystal[6] dp dv(Q) _Q
a- do “Q ®
Ill. QUASICLASSICAL DYNAMICS AND CHAOS t Q Q

was also analyzed as to some low-lying levglg,13. In
short, O’Brien investigated systefd) with potential V(Q)

In the first place, we shall analyze the quasiclassical counyith the renormalized coupling~k:k\/1—zoz, In our
terpart of Hamiltoniar(1), which is given by adiabatic approximation, we have no interesting fictitious
magnetic field induced by the conical intersection in
Fig. 1[17-20, since bothQ and P here are two dimen-
sional. Further, for our purpose to explore the onset of chaos
in a wide parameter range, the adiabatic approximation will
where the first term is a kinetic energy for classical vibra-be the most effective except when the energy is of the order
tional modes with coordinaté®=(Q;,Q,), the second one of k?/2w?. Consequently, the classical equation of motion for

1 2 2
H=5(P1+P2)+V(Q+k(Q-0), (4)
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the present model can be expressed onlpbly and consists
of a set of Eqs(7a) and(9). This set has the first integral of
motion or the total energy

P2 ~Q2
E= 5 +V(Q+kg (10)

1

The following analysis depends on the type of the poten-
tial V(Q). First, we investigate the system with the harmonic
potential only, i.e.V(Q)=V,(Q). In this case, in addition to
the total energy(10), we have another constant of motion,
i.e., the orbital angular momentum

J,=(QXP),. (11

The number of constants of motion agrees with the degrees
of freedom (two). Therefore the system is integrable
[9,21,23, showing only regular motions. Then, we investi-
gate the system with the anharmonic potenti&{Q)
=Vo(Q)+Va(Q). The trigonal field on the 2D plane
(Q1,Q,) is invariant only to operations of the cubic group
[6]. Owing to this breaking of continuous circular symmetry,
the angular momenturd, in Eq. (11) is not a constant of
motion, which makes the system nonintegrable. It should be
noted that the lattice system without coupling with the elec-
tronic degree of freedom is identical to the dm-Heiles
system whose dynamical features have been intensively stud-
ied in a context of chaos theof9,23].

The present system has two control parameters, i.e., the

coupling constank between electronic and vibrational de-
grees of freedom and the nonlinearity paraméteespon-

-0.02 -0.01 0 0.01 0.02

P

g
sible for the trigonal field. However, the simple scaling be-
low lets them merge to a relevant single parameter. Let the
coordinates Q,,Q,) be transformed to (;,q,) through
Vb/kQ,=q;,Vb/kQ,=q,. The total energy is then written
as L T
1 -08-06-04-02 0 0.2 04 06 08 1

1k dq)z w?k ~|<3’2[1 a3 d
E== =] + 5 q*+ —=|5Vai+ a5+ = — 193]

2 b( dt 2 bq \/B 2 R 3 9192 FIG. 2. (Colon Poincaresections atp,=0. Q/w=1. (a) €

(12 =0.01, (b) e=0.4, and(c) e=0.7. The scaling of units is written in

~ the text.
Next, define the scaled time= (kb)Y4 and the scaled mo-
mentump=dg/dr. Finally, by scaling the energy and the tions for energies=0.01, 0.4, and 0.7. While in Fig.(®

angular frequency as we find almost all trajectories to be regular, Figb2shows
that Kolmogorov-Arnold-Mose(KAM ) trajectories begin to
e=EbY%k 372, (139  collapse and some trajectories become chaotic. Finally, in
Fig. 2(c) chaotic trajectories dominate almost all phase
02= @k V-2 (13  space. These results imply that the domain of chaos expands
gradually with increasing the scaled energy or the anharmo-
the total energy is expressed as nicity under a fixed value of the scaled angular frequency.
L 3 We have also solved Eq7) without use of the adiabatic

2,0l 15— U 2 approximation. Then, the degree of freedom becomes three.
TR VAt oy (14 Inpgase thak andb are less thgn unity, the relative fraction of

chaos in phase space is quite small: We call this behavior
Eliminating k from Egs. (133 and (13b, we find e “partial chaos.” However, if bottk andb are as large as 5,
=(0/w)®Eb?, which tells that the enhancement of the an-the global chaos as seen in FigcRappears. In case df
harmonic term is equivalent to the increase of the scaled=0, we find no indication of irregularity. We shall now pro-
energye under a fixed value df)/w. In our numerics below, ceed to investigate a quantal counterpart of these classical
we choosd)/w=1. Figure 2 shows Poincasairface of sec- features.

EZEP
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IV. QUANTUM SYSTEMS

In this section we investigate the quantal manifestation of
chaos and of regular motions without resorting to the adia-
batic limit. The construction of the energy matrix is as fol-
lows (see Refs[11] and[24]): The basis wave function is

described as the product of electronic wave functionér)
and vibrational oneg(Q). The former is given in terms of
u(r) ando(r) below Eq.(1) as

1
Ui(f)=ﬁ[u(r)iiv(f)], (15

while the latter is the eigenstate with the eigenvakyg,
=nhw for the 2D harmonic oscillator:

¢n,m(paa):Fn|m|(p)eim01 (16)

where n=1,2,... and m=n-1n-3,...,—n+1.
Fnm(p) is the confluent hypergeometric functif@4]. Thus,

PHYSICAL REVIEW E 68, 046201 (2003

(@l Hod @ )
:k<¢n,m|Pe_i0| ¢n’,m’>

h 12
:k(%[ni(m-i-l)]} 5”',ni15m’,m+1- (21)

+

If we assign the quantum numbejs-+1 to ®, ., Hyr
without the anharmonic term connects the states with the
same quantum numbef,=m-—(1/2)j (j==*=1). As dis-
cussed by Longuet-Higgind 1], the present matrix decom-
poses into matrices labeled by quantum numbeFor any
given value of¢, m can take two valued —1/2 and ¢
+1/2 corresponding tg=—1 and+1, respectively. Thus,
the pth eigenfunction for a giver is expressed a¥,, . If

we consider the trigonal field3), levels with ¢ =3N (N
=1,2,3...) arecoupled to levels of, as discussed in Ref.
[11]. The energy matrix is decomposed into only three irre-
ducible presentationd,, By, andE,. By the exact diago-
nalization of each submatrix for the Hamiltonian including

the basis wave functions for the present model are given b¥l;r, we can get eigenvalues and eigenvectors. The result

Do (17)

Corresponding to Eq(l), the interaction matrib ;1 is ex-
pressed as

Us(r)énmip,0).

L

Hyr=Vu(1)Q1+V, (1) Qz= ﬁ[vu_(r)e”’—vw(r)e*”]
(18)
with the matrix elements 0¥ . given by
(U Vi (D]ue) =(uVy-(n)]u.)=0,
(U Ve (s ) =5 V2k. (19

As for the lattice-vibration factope™'? in Eq. (18), we have
nonvanishing matrix elements as

<(bn,m|pe_i gl ¢n+1,m+1> :<¢n+ l,m+1|pei0| ¢n,m>

1/2

A
= Z(n+m+1)

<¢n,m|pe_i 0| ¢n—1,m+ 1> = < bn- 1m+ 1|pei ‘9| ¢n,m>

1/2

é 1
5-(n-m-1)

As a result, the matrix elements for E4.8) are
<¢r‘fl—,m|HJT|(Dr:”m’>
:k<¢n,m|pei0| ¢n’,m’>

A 172
:k[%[ni(m—l)]] Sn'ns10m' m—1, (20)

depends on two parameters, the coupling condtamtd the
strength of the trigonal field.

Here, we concentrate on the nearest-neighbor level-
spacing distributiorP(s), which plays a prominent role in
the quantum description of classically chaotic quantum sys-
tems. The random matrix theory presents a natural frame-
work for describing fluctuation properties of spectra of quan-
tum systems, whose corresponding classical model exhibits
chaotic behaviors. In fact the correlations in Gaussian en-
sembles of random matrices are found to match very closely
the empirical correlations among energy levels in classically
chaotic systems. If the phase space is totally chaotic, the
distribution of level spacings is Wigner-likegGuassian or-
thogonal ensembléGOE)],

v aw
Pu(s)=5s exp{ - ZSZ) :

By contrast, in classically regular quantum systems the levels
are independent of each other, and therefore the spacings
obey Poisson distribution,

Po(s)=exp(—s).

Considering these standard criteria, we present the level-
spacing distribution for the Hamiltonigi) in the following.

First, we consider the system without trigonal field (
=0). For the manifold of¢=1/2=3m (m=0,1,2...),),

Fig. 3@ shows level-spacing distribution characterized by
the Poisson distribution, which tells that this system is regu-
lar in the classical dynamid®5]. Figure 3b) shows inte-
grated values of histograms in shown Figa)3 which well

fits the function 1-e™ 5.

Then we reveal the role of trigonal field. Figure 4 shows
the dependence of eigenvalues on the parantetethere a
multitude of avoid crossings can be found.

Figure 5a) shows a level-spacing distribution in the case
of b=5. It should be noted that the distribution perfectly
agrees with the Wigner one witR(s)—s ass—0. In Fig.
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FIG. 3. (Color (a) Histograms of level-spacing distribution for FIG. 5. (Color) (a) Histograms of level-spacing distributiofh)
k=4b=0 (without trigonal field. Curves of Poisson distribution Integrated level-spacing distribution fée=4,b=5 (with trigonal
and GOE are also drawn by open rectangles and crosses, respdield). Curves of Poisson distribution and Wigner distribution are
tively. (b) Integrated level-spacing distribution with the use of dataalso drawn by open rectangles and crosses, respectively.
in (a).

. , _In addition, we investigate the wave-function statistics.
5(b) we show the corresponding integrated level-spacing disye focus on the probability density to find the first basis
trlbutlorj, Whlch_also well fits the Wigner oneGOE). We state[® =u_(r) b1 (p,6)] populated in each of the en-
WOUI? like tol pou:t out ﬂt]lf fc;fllow:er] fasct: 'Itnhthei i:r?rresponfd— semble of eigenstates. To be explicit, we choose the scaled
;ﬂg (a:;zlsblgﬁc?;p?g;(ixlation t%r(]a aImos\tN\IthlIJe reZig: icr)1 th robab|I|ty' denS|'tyxz|alp|2./a2 as a stocha§ tic variable,

’ hereay, is the first coefficient to appear latén Eq. (23)]

phase space exhibit stochastic behavior. However, the system da? stands for th 5 th ble of
under consideration is generic: the phase space of the undét?a ts?n s forthe average tﬁ1p| over the ensembie o
lying classical dynamics consists of both regular KAM tori eigenstates. . -

and chaos. In fact, for the relatively small valuetofe.g., Figure 6 shows a wave-function statistics for the scaled

0<b=1), we get the Brody distribution which interpolates probe_lbility density in the case .M:A” b=5. We finq that .
the Poisson and the Wigner ones. In the semiclassicallyqe histogram almost agrees with Porter-Thomas distribution

asymptotic limit of sufficiently small effective Planck con-
stant, one would expect the Berry-Robnik distribut{@&—

28] that allows us to estimate the relative measure of the Prorter-ThomdX) = J27x X~ x/2),
chaotic part in the classical phase space. The Brody distribu-

tion is more effective in the present analysis, however, be- X

cause we are concerned with the quantal rather than the G0 05 1 15 2 25 3 35 4

semiclassical regime.

24 —

23.5

1(X)

P(x)

23

225

Energy+k*/2+b

22

0O 02 04 06 08 1 12 14

21.5 X

o1 & i At = s
4 4.5 5 5.5 6
Parameter b

FIG. 6. (Color) Histograms of the wave-function statistics for
density distribution for the case &=4, b=5 with trigonal field;
integrated density distribution is shown by black circles. Curves of

FIG. 4. (Color) Dependence of eigenvalues-p=120) on an-  Porter-Thomas distributioR(x) and integrated Porter-Thomas one
harmonic parametds. The unit of energy i% w. I(X) are also drawn by crosses and thin line, respectively.
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FIG. 7. (Color) g factor g(¢)de (£=0.25) for the electronic orbital angular momentuér= 1/2 andk=0.707. (a), (b), (c), and(d)
correspond td=0, 0.2, 0.3, and 1.41, respectively. The unit of energyds Envelop functions composed for Gaussian distribution types
are also depicted.

whose significance was realized at “the dawn of randonlattices along the continuous minima of the adiabatic “Mexi-
matrix theory.” can hat” potential.

While most of the studies on quantum chaos have been Washimiya[29] payed attention to the dependence of ex-
limited to the analysis of level-spacing distributions, of pectation value of this orbital angular momentdiny) in the
wave-functions scars and Thomas-Porter distribution, wexcited levels¥, , derived in Sec. IV. He pointed out the
shall here embark upon the investigation of experimentallyoscillatory behavior ofL,) with increasing energy levels.
accessible new indicators. We pay attention to magnetism ihe nonvanishing valued_,) are given as
the dynamical Jahn-Teller system. In particular, we discuss

the magnetig factor in the following sectiofi29]. (L) p=(¥pe=12LAVp ¢=112)
V. ELECTRONIC ORBITAL ANGULAR MOMENTUM :{ E (_l)naﬁ p Z.p
. = :
The essential features of the Jahn-Teller coupled systems =123... (22)

are caused by the interaction between the nuclear motions
and the electrons in non-Kramers doublets for multiplets of for the vibronic state of =1/2. Here,a, »'s are the coeffi-

levels. In particular, the quenching of the electronic orbitalcients of the harmonic oscillator functions. As already men-

angular momentum—the so-called magnegicfactor—in  tioned, the vibronic wave function is given by
those doublets is the fundamental subject in magnetism of

transition-metal ionic compounds. As well known, the static W, ;=a;,u_(r) ¢ o p,0) +az,u(r)d41(p,0)

Jahn-Teller effect removes the ground state degeneracy of

electronic states. This effect leads to the complete disappear- tagpu_ (1) dadp, 0) +agusdas(p,0)+---.

ance of the orbital angular momentum, leaving only spin (23)
degree of freedom. On the other hand the dynamic Jahn-

Teller systems for the relatively weak coupling have a posin Eq. (22), E represents the elements in the principal diag-
sibility of the nonvanishing orbital angular momentum in onal of the matrix E=(u,|LJu })=—(u_[L,Ju_)). In
non-Kramers doublets because of the continuous distortioshort, the differences &, ,|? between even- and odd- num-
of lattices. In fact, in the absence of a trigonal field &g  bers ofn in the eigenfunction labeled hy play an essential
®ey system has the freedom of the continuous distortion ofole. As p increases, the oscillatory behavior of the angular
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momentum is found. The periods of this oscillation are farlar oscillation of theg factor is a precursor of quantum chaos,
long in comparison with the variation by odd and even num-namely, the suppression of its regular oscillation occurs even

VI. SUMMARY AND DISCUSSIONS

2
nZl (=D af-12pp

bers for the small coupling. With increasing, the absolute when the classical phase space accommodates a partial
value of the angular momentum decreases. The origin of thighaos.
oscillation has not been clarified up to now, though Wash-
imiya’s finding is essential for understanding properties of
this vibronic systems. _ _ We have examined the Jahn-TelBy® e, system from a
In what follows, we show a more detailed calculation of yjewpoint of classical chaos and its quantization. Both the
this oscillatory behavior. Furthermore, the effect of the trigo-gystemsA without a trigonal anharmonic term amiwith it
nal field is discussed in consideration that this field destroyg,e investigated.
the continuous circular symmetry and that the angular mo- The classical phase space is strictly regular for the system
mentum¢ is not a good quantum number. Under this condi-a and nonintegrable and chaotic for the sys@nin general,
tion, we introduce the density af factor g(¢)de for the  the systenB is mixture of regular KAM tori and chaos. The
electronic orbital angular momentum in the energy range berg|ative fraction of chaos in the phase space increases as the
tweene ande +de as energy or the strength of the anharmonicity is increased. In
the adiabatic approximation, the full chaos can occur easily
_N’ because of enhancement of nonlinear effects due to the
g(s)ds—g de. (24 . - . >
strong constraint. Without such an approximation, we can
find the full chaos for relatively large values kfandb, and
Here, the summation of is taken over the corresponding obtain only the partial chaos, if we adopt small valuek to
energy range. It should be noted that levels #0r=1/2 gndb.
£3N(N=1,2,...) aremixed with the levels for =1/2 in For the corresponding quantum systems, the level-spacing
the presence of the trigonal field. distributions are shown to be of Poisson- and Wigner-type
We show calculated results g{e) atk=0.707 in Fig. 7. for the systemsA and B, respectively. We find that the
In Fig. 7(a), the regular oscillatory behavior @f(s) for b Wigner distribution is available as well by adopting the rela-
=0 as a function of levep, which was reported by Wash- tively large values ok andb. On the other hand, the depen-
imiya [29] three decades ago, is reproduced. In addition tajence ofg factors on energy is a quite sensitive indicator
histograms forg(e), we also show the envelop functions of the symptom of chaos in comparison with the level-
constructed by Gaussian coarse graining of each peak. Figpacing distribution. In the systefthe g factor shows regu-
ures 7b), 7(c), and 7d) show thee dependence of(s) in lar oscillation with respect to excitation energy. By contrast,
the presence of trigonal field witb=0.2, 0.3, and 1.41, in the systenB it shows a quenched irregular oscillation for
respectively. Here, we can find the suppression of regulathe relatively small values df andb. Therefore, we propose
oscillation with increasing. the magneti@ factor as a new precursor of quantum chaos,
The emergence of irregular oscillation and the suppressuperior to the level-spacing distribution. We hope that these
sion of theg factor with increasingd reflects the underlying predictions will be verified in future such as in the experi-
chaotic behavior in Sec. Ill. We find the important fact: while ment of magnetic circular dichromism.
the level statistics can reach the Wigner distribution for a It will be quite important that the precursor of chaos
sufficiently large value ob, the suppression of the regular shows up in the observable orbital angular momentum in the
oscillation of theg factor easily occurs for a relatively small dynamical Jahn-Teller systems for transition-metal ionic-
value of b. In fact the values ob=1.41,k=0.707 0/@  compounds. There are other interesting themes in this sys-
=1, kb=1) in Fig. 7d) are much less than the values of tem, such as an effect of the chaos on a spectral feature of
b=5, k=4 that guarantee the Wigner distribution in the casephonon side bands, which will also be examined in due
without the adiabatic approximation. As a result, the irregu-course.
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