PHYSICAL REVIEW E 68, 046131 (2003

Scaling of the linear response function from zero-field-cooled and thermoremanent magnetization
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In this paper we investigate the relation between the scaling properties of the linear response function
R(t,s), of the thermoremanent magnetizatidfRM) and of the zero-field-coole@FC) magnetization in the
context of phase-ordering kinetics. We explain why the retrieval of the scaling properf&s, sf from those
of TRM and ZFC magnetization is not trivial. Preasymptotic contributions generate a long crossover in TRM,
while ZFC magnetization is affected by a dangerous irrelevant variable. Lack of understanding of both these
points has generated some confusion in the literature. The full picture relating the exponents of all the quan-
tities involved is explicitly illustrated in the framework of the laremodel. Following this scheme, an
assessment of the present status of numerical simulations for the Ising model can be made. We reach the
conclusion that on the basis of the data available up to now, statements on the scaling propR(ties cin
be made from ZFC magnetization but not from TRM. From ZFC data for the Ising modeldwith3,4 we
confirm the previously found linear dependence on dimensionality of the expa@nemtering R(t,s)
~s~(+a¢(t/s). We also find evidence that a recently derived form of the scaling funé{®)) using local
scale invariance argumenisl. Henkel, M. Pleimling, C. Godighe, and J. M. Luck, Phys. Rev. Le87,
265701(2001)], does not hold for the Ising model.
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[. INTRODUCTION initially prepared at very high temperature and quenched at
the timet=0 to a final temperaturé<T.. In a process of

The behavior of systems out of equilibrium is a subject ofthis type the initial magnetization is zero and remains zero at
wide current interedtl]. Most of the attention is focused on all times(o;(t))=0 for t=0. Quantities of interest are]
glassy or disordered systems. Nonetheless, many of the ithe autocorrelation function
teresting features of slow relaxation, such as aging, can be
studied also in the simpler context of a phase-ordering pro- C(t,s,tg,tsc,teg) =(ai(t) 0i(9)), 2
cess. This is the dynamical process which takes place, for
instance, when a ferromagnet is suddenly cooled from abovgheret=s=0 are two times after the quench and the linear
to below the critical point. Then, ordered regions grow by (autgresponse function
coarsening. The process is slow, i.e., the typical size of these
regions increases with the power lavit)~t'?, wherez is Hoi(1))
the dynamic exponent. For dynamics with nonconserved or- R(t,S,tg,tsc teq) = m :
der parametefNCOP), as it will be considered in this paper, ' h=0
z=2 independent of dimensionality. In an infinite system
equilibrium is never reached. Phase ordering has been stusthereh;(s) is the external field conjugated to the order pa-
ied for a long time now2]. However, despite its relative rameter. Traditionally, in phase-ordering studies most of the
simplicity when compared to the complexity of glassy be-attention has been devoted to the correlation functidn
havior, there still remains lack of consensus and considerabihile the response function has remained in the background.
confusion about the properties of the off equilibrium re- In addition to the two observation tim¢sands, in Egs.
sponse function. This paper is devoted to clarify the issue(1) and(2) we have explicitly indicated also a dependence on
This is not a problem of minor importance, given that phasdghe following characteristic times.
ordering is regarded as a paradigmatic example of out of to~A "% This is a microscopic time related, through the

()

equilibrium behavior. dynamic exponeng, to such a microscopic length as the
For definiteness, let us think of an Ising ferromagnet withlattice spacing or the inverse momentum cutbff*.
Hamiltonian tsc. The process of phase ordering is characterized by

dynamical scaling in the asymptotic time regi¢or late
stage. The characteristic timés. separates the preasymp-

H[o]= —32 50, (1) totic from th_e agymptotic regime, i.e., it gives a measure of
) how much time is needed after the quench for scaling to set
in.
teq- After the formation of domains of ordered regions,
*Email address: corberi@na.infn.it equilibrium is rapidly reached in the interior of domains. The
"Email address: lippiello@sa.infn.it characteristic time needed to establish this local equilibrium
*Email address: zannetti@na.infn.it is the same as the equilibration time in the pure ordered
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phases. It is given by.,~&*, where¢ is the equilibrium  botha andf(x,y) are much less known thamandg(x,y).
correlation length in the pure phases at the final temperaturBespite considerable efforts, no consensus has been reached
T andz is the dynamic exponent introduced above. as of yet on the value o&. The situation for the scaling

The correlation and response functions can always bifaunctionf(x,y) 's not much better. Recently, Henkel, Pleim-
written as the sum of two contributio]: ing, Godreehe, and LuckHPGL) [8], using local scale in-

variance[9], have derived an explicit form of the scaling
C(t,5,t0,tse teq) = Cst(t—S,t0,teq) + Cag(t,S,to, teo), function which is suppo_sed to be of general valid_ity. How-
(4) ever, under close scrutiny this form appears neither to be
obeyed in those cases where an exact solution is available,
R(t,S,t0,tsciteq) = Rsl(t—=S,t0,teq) + Rag(t,Sito,tso), nor to fit numerical data for Ising systems, as will be shown
(5) in Sec. Il
There is more than one reason for such an unsatisfactory
where the stationary contributions are what one has in equktate of affairs. The first one is due to a qualitative analysis
librium in the pure phases. Therefore, the usual quctuationElo] of the relation between the response function and the
dissipation theorem is satisfied density of defects. A naive use of this argument leads to the
conclusion that is independent of dimensionality, e.g., for
6) scalar systema=1/z. In this form, due to its simplicity, this
as argument has become deeply rooted in the literaftarél—
13], despite the accumulation of exalc4-16, approxi-
The rest, the aging contribution€,4(t,s,to,tsc) and  mated[5,13], and numerical resultf5,17,1§ incompatible
Rag(t,Sto,ts), are what is left over due to the existence of with it. As we shalll seeR,¢(t,S,tp) is trivial in the sense that
slow out of equilibrium degrees of freedom. The above splitit is proportional to the defect density only in the short time

1 9C4(t—s,tp,t
Rst(t_S,thteq):$M-

is useful fors sufficiently large, i.e., for regime, but in no case this implies thats independent of
7 dimensionality. Another reason is that in simulations
$>1eq () Rag(t,S,tp) is too noisy to work with and, in order to deal

with more manageable quantities, one must resort to the in-
mtegrated response functiofiRFs). The price for this is that
reconstructing the scaling properties Bf(t,s,ty) from

in order to have well separated time scales for equilibriu
and nonequilibrium behaviors and for

s>t (8  those of an IRF is not as simple as it might look at first sight
¢ [18]. This will be the main theme of the paper.
in order for Coq(t,S,to,tsd) and Ryg(t,s,tg,ts) to exhibit We will show that, through_ the conjb_med use qf exact
scaling behavior. results and numerical simulations, definite conclusions can
In connection with the aging contributions there are twobe reached for the exponeatby analyzing in detail what
basic questions. actually goes on in the different methods employed to evalu-
(i) How do C,q(t,S,tg,ts) and Rag(t,S,to,tse) scale in ~ ate it. For what concerns the scaling functibfx,y), in-
the late stage? stead, our understanding of the problem remains incomplete.
(i) What is the relation betweel,4(t,s,to,ts) and The paper is organized as follows. In Sec. Il we review
Rag(t,Sto tso), if any? existing information abouR,(t,s,t,), make general consid-

The second question belongs to the general area of the ofifations on the scaling function, and comment on the HPGL
of equilibrium generalization of the fluctuation-dissipation theory. In Sec. lll we analyze the problem of retrieving the
theorem[4]. This is a problem not as trivial as it is believed properties ofR,4(t,s,tp) from those of an IRF concentrating
to be for phase-ordering systerf& 6], with interesting im-  on the zero-field-cooled magnetization. Section IV is devoted
plications on the connection between statics and dynamic® the same problem from the side of the thermoremanent
[7]. In this paper we concentrate on the first question whichnagnetization. In Sec. V we use the solution of the laxge-
is preliminary to the second one. model as an explicit illustration clarifying what goes on

Assuming thas is large enough for Eq$7) and(8) to be ~ when different IRF are employed to obtain information on
satisfied and dropping, the scaling form oC,q(t,s,tg) is  Rag(t;S;to). Concluding remarks are made in Sec. VI.
given by

Caglt,Sito) ~s~Pg(t/s,to/s). ) IIl. WHAT IS KNOWN ABOUT R,

It is well known [2] thatb=0. Furthermore, fos>t, one This paper is devoted to the study of the exporeeand
can sety=0 in g(x,y) and it is also well known that fox ~ the scaling functiorf(x,y) entering Eq(10). We first sum-
>1 one hasg(x,0)=g(x)~x"M? where\ is the Fisher- marize what is known from exact and approximate analytical
Huse exponent. Information abo®,q(t,s,to), instead, is results providing direct access ®.q(t,s,to). We, then,

scanty. Writing the scaling relation analogous to E).in ~ make general considerations bfx,y) and some remarks on
the form the HPGL form for it.

Ising model &= 1. In the exact analytical computation of
Rag(t,s,to)=s‘(1+a)f(t/s,t0/s) (100  the response functidi4,15 in thed=1 kinetic Ising model
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with Glauber dynamics, after takingets. and neglecting
to/s, one finds

Rag(t,8)~s Y(t/s—1)"12 (12)
from which follows
a=0 (12)
and
f(x,00~(x—1)"2 (13

Furthermore, the correlation function is given 1,20

2 2
C(t,s)z;arc& 1Tus

which givesC(t,s)~(t/s) %2 for t/s>1. Hence, recalling
z=2, one has\=1 and Eq.(13) can be rewritten as

(14)

xat 1/2—\/z

f(x,0)~ (15

(X— 1)a+1/2'

It should be mentioned that=0 has been found numerically

also in the case of the kinetic Ising chain with Kawasaki

dynamics[21].

Large-N model.Solving analytically the larg& model
we have found 16] (see also Sec. MRyy(t,s,tp) of form
(10) with

a=(d—2)/2 (16)
and
wat1l-Mz_q
f(X'Y)Nm, (17

where d is arbitrary and\ =d/2. Notice thata=0 for d
=2.

Gaussian auxiliary field (GAF) approximatioBerthier,
Barrat, and Kurchafil3] have calculated analytically an IRF
using a GAF approximation based on the Ohta-Jasno
Kawasaki method2]. From their computation it is easy to
extractR,4(t,s,to) which is in form(10) with

a=(d—1)/2 (18

and

a+1/2—\/z

f(x,y)~ (19

(X_ 1+y)a+l/2

with A =d/2. Their calculation involves a diffusion constant

of the formD=(d—1)/d which prevents lettingl—1, so
they consided=2. We have worked oUt5] an alternative

PHYSICAL REVIEW &B, 046131 (2003

A. General form of f(x,y) and implications for R,4(t,s,to)

All the above results fof (x,y) are of the form
(20)

wheree=0 if the correlation length in the low-temperature
pure phase is finite, like in the=1 Ising model and in the
GAF approximation, oe=1 if the low-temperature phase is
critical [22] like in the largeN model[16] (see also Sec. MV

We now make the phenomenological assumption that Eq.
(20) is valid in general. Then the task becomes that of finding
the exponents, «, andB. For this it is useful to look at the
short and long time behaviors.

Short time behaviorLet us rewriteR,4(t,s,t,) introduc-
ing the time differencer=t—s in Eq. (20),

(rls+1) P—e

. 2
(T+te)” 1 2

Rag(tysato) = Sa(1+a){

Keeping 7 fixed and lettings to become large, to lowest
order in7/s we find

€

Rag(t,S,tg)~s~? (22)

(t+tg)“
with

é=(1l+a)—(a—e) (23
and wheree is the same as in Eq20). Therefore, from the
short time behavior one can extragt An important obser-
vation is that in the three explicit cases considered abéve,
coincides with the exponent entering in the time dependence
of the density of defects. At the ting this is given by

L(s) "~s™ "7, (24)
whereL (s) andz are the domain size and the dynamic ex-
ponent introduced above,=1 for N=1, n=2 for N>1,
andN is the number of components of the order parameter

W[_Z]. One can, then, immediately verify that

o=n/z. (25

In the d=1 Ising model and in the GAF approximation
wheree=0 and
a=a+1/2 (26)

from Eq. (23) we get §=1/2, while in the largeN model
with e=1 and
a=a+1l

(27)

we gets=1.
Long time behavioln the large time regim&/s>1, from

GAF approximation, without restriction on dimensionality, Egs.(10) and (20) follows

which extends Eq918) and(19) to d=1. Then, we recover
a=0 ford=1 as in the Ising case.

Rag(t,S,tg)~s~ 4+ (t/s) =/ (28)
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with lll. ZERO-FIELD-COOLED MAGNETIZATION

Indirect information onR,4(t,s,t;) comes from numeri-
Ar/z=a+p. (29 cal results on IRF. In general, an IRF is defined by

Summarizing, the exponends «, andB can be obtained, in
principle, by making three different measurements on
Rag(t:S,to): (1) sdependence for fixed's givesa [from Eqg.
(10)]; (2) s dependence for fixed gives 6 [from Eq.(22)];  with t=t,=t,=0 and using Eq(5) one has
and(3) t dependence for fixed gives\r/z [from Eq.(28)].
Before going into this, let us comment on the form of the m(tto,t,t0, tse teg) = mst—to, t =11, 10, tsc, teg)
scaling function derived by HPGL in Rdi3].

+Mag(tvt21t1at01tsc)- (33

tz
1’*"’(1:1'[2!':111:0vtSC!teq):ft dSRt!SItO!tSC!teq) (32)
1

B. Response function from local scale invariance We will concentrate on the second contribution in the right

Without making separatiof) between stationary and ag- _hand si.de. The reason for introduciﬂg an IRF is Fhat the
ing components and neglecting the dependence,oHPGL integration over (;,t,) lowers the noise. However, if one

assume that the full response functig(t,s) obeys the scal- has to resort to an IRF, there is the related problem of re-
ing form trieving the properties oR(t,s) from it. This is not straight-

forward. IRFs usually employed are the following.
R(t,s)~s (T oo (t/s). (30) (1) The thermoremanent magnetizaticFRM),

Then, using local scale invariance arguments they make the P(ttw to,bsciteq) = u(tta=tw 1= Olo, Lo teg), (34)

prediction that, in general, for phase ordering, one has obtained by looking at the response at the tini@ an exter-

nal field acting in the interval (©,)
xa+t1l-M\z (2) The zero-field-cooledZFC) magnetization,
fHPGL(X)N—(X_l)aH. (3D

x(t,ty,to vtscyteq) =p(t =1t =1yt vtscvteq): (35

where\ is the Fisher-Huse exponent, provided there are n@btained by looking at the response at the timghen the

long range correlations in the initial condition. In support of field acts in the intervalt(,,t).

Eq. (31), they invoke the exact solution of the spherical Both these quantities do have shortcomings. For TRM the

model [23—25, which is equivalent to the largd-model, problem is evident. The integration startstgt 0, so preas-

and numerical simulations for the Ising model witks 2 and ~ ymptotic contributions are always included. The dependence

d=3. We make the following comments. on tg. cannot be neglected and this turns out to make it
In the spherical or largét model Eq.(31) indeed repro- particularly hard to extract the asymptotic behavior in the

duces the full response function. This coincides with the agcases of interest.

ing contribution(17) for x>1 but not forx=1. This differ- With ZFC magnetization there is no such problem. Taking

ence will turn out to be importar(see Sec. Y. tw>tsc, and neglecting, thereafter, one can be confident to
Equation(31) is contained in the general forf20) with be in the asymptotic region where scaling holds. So, using

€=0, B=\z—(a+1), anda=a+1. Inserting into Eq. (10) with f(x,y) of the general form E¢(20) and consider-

(23) follows that in all cases one finds the unphysical resuling the case witke=0, one has

6=0. Furthermore, one should also have-a+1 always,

while from the explicit examples considered above this is Xag(t.tw to) =1y, *F(t/ty, ,to/ty) (36)
true only in the largeN case and not in thé= 1 Ising model
or in the GAF approximation. with

HPGL theory is supposed to hold also for quenches at
Tc. In that case the validity of Eq31) has been questioned
in the framework of the field theoretic methods for the re- F(X'Y)=X_af dzﬁ'
sponse functiofi26]. o (1=z+ylx)

About the support to Eq31) from numerical simulations,
we will comment below.

Now, in order to go beyond the explicitly solvable cases,
the problem is to determine the exponeats, andg in the
Ising model withd>1. As stated in the Introduction, mea-
surement oR4(t,s,to) is too noisy, so the program outlined
in Sec. Il A on the basis of Eq$22) and (28) requires an
unrealistically long computing time. In the following section -~
we discuss how to proceed with the help of IRF. Xag(t,tw) ~ 1, x(X), (38)

1 ZBJr a—(a+1)

(37

The first observation is that if one seeks to deterngifi®m

Eq. (36) by looking at the behavior of,4 ast,, is varied and
x=t/t,, is kept fixed, one must be aware that thedepen-
dence coming from,/t,, may play a role. In other words,
y=tq/t,, may act as a dangerous irrelevant variable. Namely,
defining the exponerd, by

046131-4



SCALING OF THE LINEAR RESPONSE FUNCTION.. ..

PHYSICAL REVIEW &B, 046131 (2003

1.00 TABLE I. Values of 5, d._, andd, in the different models.
Ising GAF N=o
o7 7 5 112 112 1
d, 1 1 2
d, 3 2 4
<2050 —e
the phenomenological formula
025
(d=1)/4 for d<3
a,= 1/2 with logarithmic corrections for d=3
000 " S 1/2 for d>3.
(41

FIG. 1. Exponeng, in the Ising model at various dimension-
alities. The continuous line represents E4fl), while the dots are
the values from the exact solution of the modedat1l and from
simulations withd=2,3,4.

there may be a difference betwearin Eq. (36) anda, in
Eqg. (38). This depends on whether the integral in E3j7)
diverges or not at the upper limit of integration as-0.
This, in turn, depends on the value @f The second obser-
vation is thata can be extracted from the largebehavior of

F(x,y), as we shall see in the following. Instead, the task ofnere d.

extractingB from Eq.(37) remains exceedingly complicated.

A. The exponentsa and a,

The possibility thata, might not be identifiable witta,
due to the presence gt=t,/t,,, can be checked explicitly in
the largeN model [16] and in the GAF approximation

Since in the scalar cas®=1/2, it is evident that patter(#0)
is followed also in the Ising model witt, = 3.

We may, then, conclude that in all cases—exact, approxi-
mate, and numericala, is given by Eq(40) and that, there-
fore, the exponerd obeys the general formula

d_dL

= 5H, (42)

a

is the dimensionality whera=0. According to
this picture, the distinction among the different systems
comes through the values éf d, , andd, (see Table)l

In this respect, notice that fdf=1 both from simulations
and from GAF one ha$=1/2 andd, =1, while there is a
discrepancy betweeth, =3 andd,=2. However, this is not
worrisome. As explained in Ref5], the dimensionality de-

pendence of, belowd, takes place becaus, is the di-

[5,13], where ZFC magnetization can be calculated with armensionality below which minimization of magnetic energy

bitrary d. In both cases there is a valdg of the dimension-
ality such thaty is dangerous irrelevant abowg . This im-

plies thata, coincides witha for d<d, and is given by Egs.
(16) and(18). Insteada, is different froma and is given by

a,=é (39

for d>d, with & given by Eq.(25), which is independent of
dimensionality. Logarithmic corrections appear ctd, ,
much in the same way as at the upper critical dimensionalit
in ordinary critical phenomena. The relation betwegrand

a in these two models is given by

a for d<d,
a,= 6 with logarithmic corrections for d=d,
6 for d>d,

(40

with =1 andd,=4 in the largeN model and withé
=1/2 andd, =2 in the GAF approximation. We emphasize
that in these two solvable cases, Eg9) holds only ford
>d, wherea, #a.

Next, from extensive numerical simulatioh7,5,1§ of
the Glauber-Ising model witt=2,3,4 we have measur
obtaining data which are fairly well consistefftig. 1) with

competes effectively with minimization of surface tension in
driving interface motion. Therefore, the balance of these two
mechanisms is very sensitive to the treatment of surface ten-
sion and it should not come as a surprise that from an un-
controlled approximation, such as those of the GAF type, a
value ofd, which differs from the one observed in simula-
tions is obtained. The shift from, =3 tod, =2 means that

in the GAF approximation surface tension is overestimated
with respect to simulations.

y

B. The scaling function y(x) and the exponenta

Although the results described aboMe/,5,1§ yield un-
equivocallyd, =3 for N=1, in order to treat this point most
carefully, we have again investigated the behavior of
Xag(t,ty) with very accurate simulations of the Ising model
with NCOP,d=2,3,4, and for different values &f, in order

to get data also on the scaling functifgﬂx), which has not
been studied previously.

First, let us illustrate the algorithm. There are several
ways to isolate the aging contributiop,g(t,t,). The most
obvious is to compute the totg}(t,t,) by simulating a
quenched system and then to subtract from it the stationary
part xs(t,t,) obtained by simulation of a system in equilib-
rium at the final temperature of the quench. A different algo-
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rithm was introduced by Derridg27] regarding the station- TABLE II. Lattice size N' and number of realizations in the
ary contribution as due to thermal fluctuations inside the bulkcomputation ofy,4(t,t,) at different waiting times.
of domains and the aging part as produced from the inter
faces. The next step is to isolate the spins belonging to an d=2 d=3 d=4
interface. In order to do this a parallel simulation is per-  tw N Realiz. N Realiz. N Realiz.
f_orm_ed of two sy_stems_ yvit_h different _in_it_ial conditions. The o5 1024 2000 108 1000 4% 1600
first is prepared in equilibrium at the initial temperature and

, , . 50 1024 2000 158 1000 6% 180
then is quenched to the final temperatiiravhile the second 100 1028 2000 1568 1500 68 75
is in equilibrium at the final temperatuie from the begin-
ning. These two systems evolve with the same thermal his- 250 1024 2300 158 2700
tory at the temperatur&. At each time step spins that are 500 1024 15000
flipped in the first system but not in the second are consid- 1000 1024 17000
ered as interfacial and their response is assigned to the aging 1750 1024 17000
part. 2500 1024 6000

These two methods are equivalent, but also numerically
very inefficient. Let us refer to them as global methods. The
reason for inefficiency is that in order to extract the respons&ions. Simulations have been performedTdl .=0.66 for
produced by the spins on the interfaces one has to simulagl values ofd (for the lattice size and the number of realiza-
the whole lattice. Since the interface density decreases d®ns see Table JI y,4(t,t,) is measured in unitd~ 1 and
t~ 2 a huge amount of CPU time can be saved by an algotime in units of Monte Carlo steps. For each thermal history
rithm updating only the interfacial spins. We stress that a faswve have changed also the random field configuration.
algorithm is crucial in order to have reliable results in a First, we have obtained, by plotting x4(t,ty) versus
numerically hard problem such as this. Therefore, we have, , for fixed values ofx=t/t,,. In the range ot,, explored
adopted a no-bulk-flip algorithm, where a list of interfacial there is excellent power law behavior. Wi+ 7 we find
spins is updated at each move following the criterion that dFig. 2) a,=0.28 for d=2, a,=0.47 ford=3, anda,
spin belongs to an interface if at least one of the nearest0.50 ford=4. These numbers reproduce the results ob-
neighbors is not aligned. Only moves of the interfacial spingained previously{17,5,18 confirming thata, in the Ising
are allowed. We then take the response of this system amodel obeys closely Eq$40) and (42) with §=1/2, d,
Xag(tity). =3, andd, =1 (see also Fig. )l Furthermore, the observed

In d=1 it can be showrj14] that the no-bulk-flip algo- behavior is with good accuracy independenxadis is shown
rithm corresponds to taking the limit of an infinite ferromag- in the inset of Fig. 2. The presence of a logarithmic correc-
netic coupling §—«) in the Ising Hamiltonian and that this tion atd=3 is hard to establish from the data of Fig. 2 since
isolates exactly the aging part of the response function. Witlwe have only one decade if,. In Refs.[17,5 where
d>1 theJ— limit and the no-bulk-flip algorithm produce x,4(t,t,) was plotted against for fixed t,, over four de-
different dynamical evolutions and an argument analogous teades, the logarithmic behavior is accessible. Also, it should
the one in thad=1 case cannot be made. What happens ide mentioned that Eq41) is a phenomenological formula,
that the limitJ—c does not isolatey,4(t,t,) because, be- so itis hard to say whether the measured valye 0.47 for
sides freezing spins in the bulk, it also freezes most of thel= 3 is due to logarithmic corrections or to some other effect
interfacial spins. Notice that the no-bulk-flip dynamics doesnot captured by Eq41). In any case, the quality of the data
not obey detailed balance. This is simply due to the fact that
bulk spins are frozen. However, this is not a serious problem . .
since we already know that by restoring moves in the bulk 05
detailed balance is recovered producing the stationary con
tribution in the response function, which we are not inter-
ested in.

We have performed the simulations with the no-bulk-flip
algorithm, after checking that the results are consistent
within 5% with those of the global algorithms. In practice, <,
we measure the quantity =

-

N
Xag (ttw)= E <0'|>h,, (43

10> .
whereh; is a quenched configuration of an uncorrelated ran- 10' 10°

dom field, which takes the valuesh, with probability 1/2. M
The angular brackets stand for the average over thermal his- F|G. 2. Xag(t,ty) Vst for fixed x=t/t,,. The slope yields, .

tories, generated with the no-bulk-flip algorithm, and theThe plotted lines correspond to=7. Values ofa, for different
overbar denotes the average over random field configurasalues ofx are depicted in the inset.
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o—o t,=25

e—at =50

e_otw=250
&—a t,=500
024 o—o t,=1000 n

a—at =1750
x—xtw=25()()

|

1 10

X
FIG. 3. Scaling functiony(x) for the d=2 Ising model with FIG. 5. Scaling functiony(x) for the d=4 Ising model with
T/Tc=0.66. T/Tc=0.66.

for d=2 allows to definitely rule ou,=0.5, predicted by ~whena>1. This, in turn, would lead to the unphysical con-
the qualitative argument referred to in the Introduction and tcclusion thaty,(t,t,,) does not decay to zero for largend
be discussed shortly. fixedt,, whend>d, . Therefore, we find that Eq26) holds

Next, in order to investigate the scaling functigx) in  for the Ising model not only fod=1, but also at higher
Eq. (38), notice that from Eqs(36) and (37) follows the dimensionality.

large x behavior In conclusion, Eqs(42) and(26) are our main results for
a and « in the Ising model withd ranging from 1 to 4 and
x @ for a<1 with Eq. (40) explaining howa is related toa,, .
y(x)~4 x 2Inx for a=1 (44)

C. Qualitative conjecture ona,
x¢"a" 1 for a>1. L .
We may now comment on the qualitative conjecture men-
Using the values ofa, from Fig. 2, we have plotted tioned in the Introduction. Statind0,7] that the aging con-
X . !

a, _ . . tribution of ZFC magnetization ought to be proportional to
;W_)é)ag(t’t‘”) versusx=1/t, for different values of,, (Figs. the density of defects and assuming scaling, one finds

Collapse of the data is obtained farsufficiently large, Tl

where the scaling function decays with a power law and an Xaglttw) =t "X (ttw), 49

exponent which coincides with, . This is consistent with where 5 is given by Eq.(25). This requiresa, = & for all d

Eq. (44) only if a=a+1/2 as in Eq (26) and this rules out  contrary to the evidence presented above and summarized in

a=a+1, which ought to apply according to the HPGL Eq. (40), which restricts the validity of Eq(39) to d>d,

theory. Another way to see that=a+1 is untenable is that This makes a big difference, for instance, in the 2 Ismg

this would imply thaty(x) goes to a constant for large  model where from Eq(40) a,=1/4, while from Eq.(45)
follows a,=1/2. In order to understand why E@L5) breaks

T ' - ] down below d,, let us go back to the behavior of

o—o1,=25 1 Rag(t,S,tp) in the short time regime. From E(R2) we may
581,250 1 write

o—etw=100 g

a8 1,250 . Rag(t,S,to)~s~°h(7,to), (46)

whereh(,tp) is some function of the time difference. The
meaning of this is that the response, due to an impulsive
perturbation at the tims, is proportional to the density of
defects at that instant of time with a proportionality factor
containing the retardation effect. This does not hold anymore
in the long time regimer>s. When the time intervat is
large with respect tes, multiple defect transits may have
occurred through the observation site, spoiling fo{#®).
Sticking to the short time regime, i.e., taking t,,<t,, and
using Eq.(46), from definition(35) follows

X

FIG. 4. Scaling functiorﬁ((x) for the d=3 Ising model with _s
T/Tc=0.66. Xag(tvtw)wtw Xs(t—tw), (47)
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where y¢(t—t,,) is a function of the time difference, which t. M2E(t/t,) for t,<<t*
in Refs.[5,17] we have identified with the ZFC magnetiza- p(tty,t*)=1 _,, .
tion associated with a single defect. Now, E@s) and(45) twIN(tw/ts E(UL,) - for  ty>t*.
do require (51
f((t/t )~ xa(t—ty) 49) Finally, for d>d, one has the simple power law
w S w/s
p(t,ty 1) =t ME(/t,,) (52

which can hold only if both functions are constant, and this
is precisely the point. As we have explained in R¢&17],
xs(t—ty,) contains the cumulative effect on a single defect of
the perturbation acting all along the time intervaj, (t).
This saturates rapidly to a constant when the defect degrees
of freedom act paramagnetically and the underlying defect
motion is uncorrelated with the external field. However, at  Taking this pattern as a guidwith d,, t* and exponents

dimensionalities low enough to reduce surface tension belowhodel dependeptet us now turn to simulations of the Ising

the threshold where the external field may take part in driVmodeL Ana]yzing data, the first thing to do is to check if a
ing defect motion,ys(t—t,) acquires a nontrivial time de- pehavior of the type

pendence which rendewms, # 6 for d<<d,. Finally, notice
that in the framework of the qualitative conjecture wébh P(t,tw)~t\,;a”;)(t/tw)

= ¢ independent of dimensionality, there is no explanation

for the exactd=1 resulta,=0. Instead, according to Eq. holds. If this is the case and if an exponentcan be mean-
(41) this exact result, far from being an anomaly, is embedingfully extracted, the next problem is relatiag to a. Ac-
ded as a limiting behavior in the smooth dimensionality de-cording to the behavior found in the |argbmode|, the iden-
pendence fod<3. tification a,=a can be made only id<d, and t,>t*.
Numerical results for TRM in the Glauber-Ising model were
first obtained by HPGL[8]. Plotting p(t,t,) againstx
=t/t,, for differentt,, in the ranget,, € (25,250) ford=2
andt,, e (15,100) ford=3 they have obtained fa, a result

of the form

and for all values ofd, in the time regime considered the
scaling function obeys

E(x)~x"M2, (53

(54)

IV. TRM

Dealing with TRM, separation(33) gives p(t,s)
=IBWRst(t—s)+fgWRag(t,s). Contrary to what happens for
ZFC magnetization, whergg; for long time saturates to a
constant, here for the stationary contribution there are two
possibilities: (i) if Rg(t—s) decays exponentiallypg(t
—t,,) also decays exponentially @ii) if Ry (t—s) decays
with a power law, like in the larg&t model, pg(t—t,,) is
subdominant with respect y@,4(t,t,). In both cases we can gnd they have made the identificatiar-a,, .
neglectps; and with it the distinction betweep andp,g. The next round of simulations was carried out by 18]

As mentioned previously, TRM is affected by preasymp-at the same temperatures and for the same system size as
totic contributions which cannot be eliminated. This makes itHpGL, but extending the range &f up to 2500 ford=2
quite difficult to establish if the asymptotic behavior hasand 250 ford=3. Performing a different data analysis, i.e.,
been reached in the simulations and ultimately to have @jotting p(t,t,,) versust,, for fixed x=t/t,,, we have found
reliable estimate od. In order to unravel what is the effect of good agreement between the slope of the curves in the large
the preasymptotic contributions on the scaling bghavior o?w region, which in the log-log plot gives the effective expo-
TRM, we have resorted as a guide to the solution of theyent(49), and the known values of/z for the Ising model
largeN model(Sec. ). Here, we anticipate the results.  ()/z=5/8 for d=2 and\/z=3/4 for d=3). This is good

Assumingt,,>tsc, in the largeN case there exists a di- evidence that in the scalar case TRM follows the crossover
mensionalityd, =4 such that ford<d, TRM undergoes a pattern obtained in the largé-model whend<d, and with
crossover with a characteristic tim&, which may also be 3 crossover timeé* larger than the maximurty, that we have
much larger thans. Introducing the effective exponent  reached in the simulations. Furthermore, on the basis of our
data, we have estimated that the larggstised by HPGL in

1/2  with logarithmic corrections for d=2

%7112 for d=3

(59

*

a, off=— M (49) Ref.[8] was not enough to enter the scaling regifne., they

. Iinty |y had always,,<tso) and therefore the values af, they have
obtained do not warrant any statement, neither on the

one finds asymptotic value ofa, nor ona. Our longer range of,
. seems to be barely sufficient to enter the preasymptotic re-

Mz for ty<t 5o gion wherea, 1y=\/z, suggesting that botd=2 andd

Apefi= a for t,>t*. (50) =3 are smaller thad,, whose value in the Ising model, so

far, we do not know. Hence, in order to observe the
Ford=d, there is a crossover from a pure power law to aasymptotic exponent one should go to much longer waiting
power law with logarithmic correction timest,, .
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TABLE llI. Lattice size VV and number of realizations in the only in the region of the larges}, reached. Taking the slope

computation ofp,4(t,ty) at different waiting times. in this region as a measure af;; , we find valueginset of
Fig. 6) which lie above 0.5 for alk and that are just below
d=2 d=3 Nz=0.625 ford=2 and \/z=0.75 for d=3. Hence, al-
tw N Realiz. N Realiz. though we have reached the same maximum valag aé in
o5 1024 2000 108 1500 Ref. [28] for d=2 and we have gone much farther far
50 1024 2000 158 2500 =3, we may state that no evidence of asymptotic behavior
100 1024 2000 156 2500 with a,=1/2 is .foun-d. Rather, the com_bination of te=2
250 1024 13000 158 2500 andd=3 data in Fig. 6 ghows _une_quwocally that, at_best,
500 1024 16 000 168 2500 only the onset of the scaling region is entered \.Nhg,r,gff is
1000 1024 18 000 a_bout to take th(_a preasymptotic valuéz, confirming the
1750 1024 23000 picture obtained in our previous wofk8]. N '
a In summary, we have accumulated sufficient numerical
2288 ;8421 3 1730%%0 evidence to establish that TRM data fit in the general pattern

of behavior obtained from the solution of the lafyanodel,

with d,>3 and a value of* which is greater than the largest

t,, reached so far. Therefore, since asymptotics has not been
Henkel and Pleimling 28] have produced new simula- reached, no statement @ncan be made from the present

tions ford=2 extending the range of, up to 5000. Plotting  knowledge of TRM.

p(t,ty) versust, for fixed x and adhering to the point of  Finally, let us make a comment on the quotation in Refs.

view that the TRM data are affected by a long crossover[g 29 3( of the analytical solution of the GAF approxima-

they claim(i) to have succeeded in going past the crossovefion by Berthieret al.[13] as a support to the claim thatis

time reaching the asymptotic region afit) to have found given by Eq.(55). In fact, here is where is most evident the

that EQ(SS) is verified. The objection to this claim is that in type of confusion that can arise by not being careful about

d=2 one has\/z=5/8>1/2>a,=1/4. Therefore, even if a which exponent one is talking about. In their computation
decrease of the slope from a number close\ta=0.625  Berthier et al. find a,=1/2 for d=2 with logarithmic cor-

toward 0.5 is observed over a narrow time window, there |S’ect|0n atd=2, as |n Eq (55) which, however, is meant for
no way to decide whether the true asymptotic regime hag, What one should have clear in mind is that they compute
been reached or the slope might still keep on decreasing, byn a, for d=d,, ie., right wherea,#a. This can be
going further witht,,, until reaching asymptotics at 0.25.  checked recalling that in the GAF approximatiars given

In other words, the new simulations in RE28] leave the  py Eq.(18) and thatd, = 2. Hence, ford=2 the logarithmic
issue undecided and yet longer simulations are needed. Dgorrection belongs ta and not toa. Ford=3 it is a, that
spite that, by now, there is sufficient evidence that TRM istakes the value 1/2, WhlIe from E(L8) follows a= 1 So,
not the most efficient and reliable way to get to the exponenghe results of Berthieet al. certainly cannot be quoted if one

a, we have undertaken simulations with) up to 5000 for  wants to identify witha an exponent obeying E55).
d=2 and 500 ford=3 (for the lattice size and number of

realizations see Table )l
The double logarithmic plot g#(t,t,,) versust,, for fixed
x shows(Fig. 6) that a power law behavior, possibly, sets in
In this section we study in detail the lar§e-model
[16,31] as a useful example which gives the complete picture
of what happens when looking at the different response func-
tions introduced above.

Consider a system with vector order parameiix)

=(¢1(X), ....dn(X)) and Hamiltonian of the Ginzburg-
Landau form

V. TRM AND ZFC MAGNETIZATION IN THE
LARGE-N MODEL

- 1 . - -
Hd1= | a5V 524 (37|, (50

wherer <0, g>0. In the largeN limit the equation of mo-
tion for the generic component of the order parameter in
Fourier space is given byl 6]

ty (9¢(k ) ) . .
| | —r =gk n(kD),  (57)
FIG. 6. pag(t,ty) vst,, for fixedx=7. The slopes in the largg,
region yieldinga, .¢; for different values ofx are depicted in the .
inset. where 5(k,t) is a Gaussian white noise with expectations
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(n(K,1))=0, where f(x)= [d%/(2)% 2= (8ax) 92 After solving
this equation, the response function is given by
(k) p(K' t"))y=2T(2m)96(k+k")8(t—t"). (58) g
R(t,s,t )—f d’k R(K,t,s)e K/A?
T is the temperature of the quench and the function of time o (2md
I(t)=r+g<¢2(>z,t)> (59) :(47T)_d/2%(t—3+to)_d/2, (67)

must be determined self-consistently, with the average on the

right hand side taken both over thermal noise and initiawhereto=1/(2A%).

conditions. The formal solution of E@57) is given by Let us now come to the identification of the general struc-
ture of Eq.(5). Since in the stationary regim¥é(t) is time

- . - t - _ independent, we immediately obtain
d’(k,t):R(k,t,O)(f’o(k)"‘f dsRk,t,s)n(k,s), (60)
0

Rei(t—S,tg) =(47) ¥2(t—s+1ty) 92 (68)
whereR(lZ,t,s) is the response function and
- Y(S) k2 _ Y(S) _
_ —K3(t-9) — dr2 _ _ dr2
R(k,t,s) Y(t)e (61) Rag(t,s,to) = (4m) (D) 1i(t—s+ty) %< (69

with Y(t)=exdQ(t)] and Q(t)=[idsI(s). With an uncor- Notice thatR(t—s,to) is temperature independent, imply-
related initial state at very high temperature the initial con-Ng that there is a stationary response alsolat0. This
dition ¢O(|Z): qS(IZ,t:O) can be taken to be Gaussianly dis- holds for soft spins, while for Ising spins there is no station-

tributed with expectations ary response af=0. . . .
Next, in order to investigate the scaling properties we

must first learn about the time dependenceY¢f). We do

{o(k))=0, this in theT=0 case, since quenches below the critical point
_ - deris s 2 are controlled by th&@ =0 fixed point[2]. Making the ansatz
(Po(K) dpo(k"))=A(27m) S(k+K"). (62 y(t)=At"“ from Eq.(66) one gets
The actual solution is obtained once the functié(t) is
determined. In order to do this notice that from the definition Awt™CorD=rAt 20+ ——(t+t) "% (70)
of Y(t) follows (8m)
2 and assuming that the left hand side is negligible one finds
dY<(t) - : —d 2 .
It =2[r+g(p%(x,)]Y?(1). (63)  w=d/4 with A=(8m) ¥2A/M§, whereMy=/—r/g is the

zero temperature magnetization. This is consistent if, in ad-

- - . dition to t>t,, one has also
Writing ( $?(x,t)) in terms of the structure factor 0

t>tg .= —d/(4r), (71
d%

(2m)*

C(k,tye 7, (64)  where the characteristic timg, sets the time scale over
which the three terms in E470) are all of the same order of
magnitude. Thereforé,. is the characteristic time separating
the early from the late stage.

The above described behavior'oft) is illustrated in Fig.
7 displaying the numerical solution of E66) for different
) values ofr. In all numerical computations we will také&
C(k,t)= RZ(IZ,t,O)A+2TJ dsR(k,t,s). (65) =1,T=0, and time is measured in untis The onset of the

0 scaling behavior is sharp and we have identifigdwith the

) _ _ _ ) time where the power law begirimset of Fig. 7. Then, for
Then, inserting Eq(64) into Eq.(63), we obtain the integro- g t>t__from Eqs.(67) and (69) we have
differential equation

(p2(x,1))= J

where A is the momentum cutoff and using E(0) to
evaluate ((k,t) p(k',t))=C(k,t)(2m)98(k+k’) we ob-
tain

R(t,s,to)=5" AT ¥F(t/s,ty/s) (72
dY4(t)

_ 2
T 2rY<(t)+2gAf

with

t+ !
2A?

, . T(x,y)=(4m) ¥ (x—1+y)” +a), (73)
YZ(s), (66

t 1
+49T | dsflt—s+ —
g J'o 2A2

where
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y(t)
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FIG. 7. y(t) for different values of andT=0. t4. is estimated
at the onset of the power law behavior and plotted agaistthe
inset.

a=(d—2)/2. (74

as in Eq.(16).
The connection betweem and \/z can be established

from the autocorrelation function. Keeping on considering

T=0, fromC(k,t,s)= R(lZ,t,O)R(IZ,s,O)A follows

C(t,s,t C(k.t,s)e K’ (75
= (A7)~ W27 20 (1+a) (/)@
X[tIs+1+tg/s] ), (76)
The requirement lim,..C(t,t) = MS implies
20=1+a (77)
and comparing Eq.76) with Eq. (5) we find
w=\/z. (78)

Hence, in the larg& model, N anda are not independent
exponents, since from Eq&77) and (78) follows

A=1+a. (79

Nonetheless, for generality we shall keep on using the nota—

tion with two different exponents anda.
Finally, for the aging contributiot69) we may write
Rag(t,S,to)=s @ f(t/s,ty/s) (80)
with
fx,y)=(4m)~¥3(x*

—1)(x—1+y)~ @3 (81

and writingw=1+a—\/z Eq. (17) is recovered.
The above result shows that in the lafgenodel it is not

only R,4(t,s) to scale, but also the full autoresponse function

R(t,s). This, obviously, means th&t.(t—s) obeys scaling,

PHYSICAL REVIEW &B, 046131 (2003

as it can be checked immediately from E68) and this is a
consequence of the fact that the whole low-temperature
phase is critical.

A. TRM

We now explore the properties of the IRF in the laige-
model. Let us begin from TRM. Since the explicit fories)
and (80) with Eq. (81) show thatR¢(t—s,ty) decays faster
thanR4(t,s,tp) with the time separatioh—s, takingt>t,,
and using definition§33) and (34) the stationary contribu-
tion to TRM can be neglected. Hence, in the following we
will ignore the distinction betweep andp,4. Furthermore,
taking t,,>ts. and dropping the dependence gnwe can
write

—>\/z

p(tty, tso)= [f dsY(s)+f dsY(s)|,

( )d/2A
(82

where we have separated the preasymptotic from the
asymptotic contribution in the integral. We shall see shortly
that the first one plays a crucial role. Introducing the notation
B(ts) =S gdsY(s) and usingY(s)=As M2~ @1 in the
second integral, we find

Pttt =t M Ko+ Kyt 2 2](t/t,) "M% (83)
where
S - = Y
and
Ki= ! (89

(4m)¥2(\Iz—a)

Equation(83) is the main result from which follows the non-
trivial dependence o&, on dimensionality. Notice that all
the dependence on the preasymptotic behavior is collected in
Ko and the very presence of this nonvanishing term entails
that the asymptotic power governing TRM is eithde or a
according to the sign ofN/z—a). Therefore, writing\/z
—a—(dp—d)/dp with d,=4 we have a crossover fat
, logarithmic corrections fod=d,, and a correction to

calmg ford>d,.

Introducing the characteristic time

Ko 1[N (z—a)]
t* = W) , (86)
Eq. (83) for d#d, can be rewritten as
p(t by t*) =t MZE(t/t,, t* /ty,) (87)
with
E(xy)=Ko[1xyM*2]x 7, (88)
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where the+ and— signs apply tal<d, andd>d,, respec-
tively. In the first case the crossover tini& is given by

(Appendix

t* [tg~td4- ) (89)

showing that* is a new time scale which can become much
larger thantg.. Instead, in the second case from E86)

follows (Appendix
t* t<1 (90

implying t,, /t*>1 for anyt,,>ts.. Finally, ford=d, from
Eq. (83) we have
In(ty /tsc)

In(t* /t.,
In(t*/tJn(t o

p(t,ty [ o) = (477)d/2tw)\/z{ 1+

X (t/ty,) "M, (91)
wheret* is given by
t* [t .= eClsc (92

andC is a constantAppendiy.

PHYSICAL REVIEW E68, 046131 (2003

8
g 0.5
<

FIG. 8. Effective exponerd,, . in the largeN model vst,, for
different values of with x=20,d=2.1, andT=0. The value of,,
at the maximum corresponds tg. as shown in the inset.

whered,=4.

In order to illustrate the behavior of TRM we have solved
numerically forp(t,t,). In Fig. 8 we have plotted the effec-
tive exponeni{93) versust,, for different values of (giving

Therefore, as anticipated in Sec. IV, the scaling propertie§ise to different values ofs), with fixed x=t/t,,=20 and

of TRM exhibit the following dimensionality dependence
d<d,. There is a crossover with the effective exponent

alnp(t,t, ,t*) (t, /t¥)Mz2a

Ay eff™ —

L T Y R
X(Nz—a) (93
yielding
Nz for t,<t*
Bp.eff= { a for t,>t*. ©4

d=d,. The crossover involves a logarithmic correction

t. M2E(t/t,) for t,<t*

t,t,,t*)=1 _
p(titw 1) [tw“zlog(tW/tSC)E(t/tW) for t,>t*.
(95
d>d,. There is a pure power law for ai},>ts,
p(t,ty, t*) =t NE(t/t,) (96)
with
E(x)~x"M2,

(97)

In the end, in the larg®& model the relation betweea
and the exponerd, appearing in Eq(54) is given by

a for d<d,
a,= Nz with logarithmic corrections for d=d,
Nz for d>d,,

(98)

for d=2.1<d,. The curves show quite clearly three differ-
ent regimes: the early regime to the left of the peak followed
by the intermediate regime going Iik@"/z, whose size de-
pends ort.., and eventually by the late stage regime going
like t,,®. The valuet,,, of t,, at the peak can be identified
with tg. since it depends onaccording to Eq(71) (see inset

of Fig. 8). For completeness we have plotted the same figure
for d=5>d, (Fig. 9 which shows the existence only of the
early regime followed immediately by the asymptotic regime
with the exponeni/z (without any crossover or intermedi-
ate scaling regimeaccording to Eq(96).

B. ZFC magnetization

Taking t,,>ts. and using definition£33), (68), and(69)
we have

15 , |

oo =10’
o =10"
o0 =107

a—ar10”

) )\-/Z:d/4%\s\sge_$‘ S50 o

ap Jeff

FIG. 9. Effective exponerd,, .¢; in the largeN model vst,, for
different values of with x=20, d=5, andT=0.
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FIG. 10. Effective exponent, .¢; in the largeN model vst,,
for different values of with x=20, d=2.1, andT=0.

tl*d/Z

Xst(t—tw,to) {1-[(t—tyw)/to+1]7%}

_ 0
 (4m)¥%(d-2)

(99
and
Xag(titw o) =ty 2F (t/ty to/ty,) (100
with
1
Fouy) = (am) 95 [ duque 0r9-)
1/x
X (L=u+y/x)~ 2, (101)

Therefore, in order to establish hoyyg scales witht,, it is
necessary to know how the scaling functie(x,y) behaves

PHYSICAL REVIEW &B, 046131 (2003
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FIG. 12. Scaling functiony(x) in the largeN model with d
=2.1 andT=0. In this casea,=a=0.05.

x @ for d<d,
F(x,y)~{ X 2In(x/y) for d=d, (102
yl3/x for d>d

X"

Inserting into EqQ.(100 and comparing with Eq(38) we
recover Eqs(40) and(42). Finally, for largex we obtain the
analogous form of Eq44),

x @ for d<d,
x(x)~4 x %Inx for d=d, (103
x~1 for d>d

X
Notice that the separation of the stationary from the aging
response function has played a crucial role. Had we used

form (31) of HPGL in Eq.(101) we would have obtained a
completely different behavior, with,=2 and in place of

for smally. As already pointed out, this depends on the beEd. (40,

havior of the integral at the upper limit of integration, which

is convergentdivergenj for a<1 (a=1). Hence, from 1

—a=(d,—d)/2 with d, =4 follows
3 T T T
o—o =10’
T —er=10’ ]
—o =10~
4+ 10" —
55 _
w?{
2 _
a=1
po
1 v, o
! I !
10° 10° 10 10°

FIG. 11. Effective exponera, .¢; in the largeN model vst,,
for different values of with x=20, d=5, andT=0.

a=d/2—1 for d<2
a,= 0 with logarithmic corrections for d=2
0 for d>2.

(104)

In order to illustrate the difference in the behaviors of
TRM and ZFC magnetization we have solved numerically
for xag(t,tw) and for the corresponding effective exponent
a, efi(tw,X) (Figs. 10 and 1jiwith the same values af and
r used for TRM. These figures show that both above and
below d, there is no crossover, but there is only the early
regime followed abruptly by the asymptotic power law be-

havior, as for TRM above, (Fig. 9). Furthermore, we have
depicted in Figs. 12 and 13 the scaling functifp(x), ob-
tained by plottingtijXag(tW,x) versusx for different t,,,
which obeys the power law@03) for largex. These are the
analogous forms of Figs. 3 and 5.

We can now summarize what we have learned from the
largeN model about the connection betwesp, a, , anda.
In this case the explicit solutiofv4) is available andh is a
linearly increasing function of dimensionality vanishing at
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0.5

5 | ! !
10
10° 10" 10° 10° 0 !

FIG. 13. Scaling function;((x) in the largeN model with d

—5 andT=0. In this casea —1 anda=15. FIG. 14. Overview of the dimensionality dependence of the ex-

ponentsa,a, ,a, in the largeN model.

d, =2. The question is how much of this could have bee
inferred relying only on the information from TRM or ZFC.
The answer is _that _b_othp anda, commcle witha be_:IOW able and the least reliable one, as abundantly explained in the
certain dimensionalitiesl, andd,. At d=d, andd=d, revious sections

there are logarithmic corrections, while above these dimen® For what concérns the scaling functiétx.y), our ZFC

sionalitiesa,? anda, are d|ﬁer§nt froma and differ one from data are consistent with difx,y) in the Ising model of form
the other(Fig. 14). Although in _the largeN mode_l df’.: dy (20) with the exponenu=a+’ 1/2 in place ofa=a+1, ap-
:.4’ We.have.z kept distinct notations becadgg Whlch IS the pearing in the HPGL theory. We have also shown ihat with
\(/jvlrrwneergzlgnlaitg \;]Vgg(;er};gE)a::’oiir;?dgﬁnth:ngge?nsﬁgﬁgy e_the HPGL theory it is not possible to reproduce the short
N model they c’io coincide because of Egﬁg) Fu.rthermoreg time behavior 0R,(t,S,to). Nonetheless, our knpwledge of

: .~ 77 the scaling functionf(x,y) is still incomplete, since from
even belowd, andd, , wherea,=a, =a, there remains a ZFC data we cannot determine the expongnt

. ; X! p ) ;
considerable difference between TRM and ZFC in relation to After this survey of what can and what cannot be done
with ZFC and TRM data, it seems clear that in order to study

nThere is no doubt that among all possible IRFs that one can
employ to study the exponeat TRM is the most unfavor-

the time scalestt andt,.) over which these exponents are
observable. Comparing Figs. 8 and 10 one can see at 9

glance that the difference between these time scales in cer-ag(t’s’t‘)) the right thing to do would be to use neither of

tain conditions, here set by the valuergfcan become huge them. Rather, one should use an IRF of the general {G2n
; S y 0 9€ with t;>ts. to eliminate the crossover affecting TRM and
and if working with TRM it may require an enormoug

before reaching the asvmptotic redime wharenda can be with t,<t in order to avoid the dangerous irrelevant variable
identified 9 ymp 9 b in the ZFC magnetization. Namely, assuming fof20) of

f(x,y) and using Eq(32) one should consider

VI. CONCLUDING REMARKS AND OPEN PROBLEMS ta/t ZPraima

}Lag(t,tg,tl,to):tia‘[ (105)

.
In conclusion, we have shown that all existing analytical it (I=z+to/)”
results and the numerical evidence coming from ZFC mag;
netization in the Ising model are consistent with an exponentf t2<bt andt>t0:[_the depEndencde _det\clzvan be ne%lecte_?_ and
a of form (42). The dimensionality independent behavior € above equation can be used In two ways. Rewnting
(39) predicted by the qualitative argument fay holds only [, 2P

for d>d, wherea,+a. This is due to the presence of a Pag(titz,ty) =t L dz(l_—z)a (106
dangerous irrelevant variable. Once this is taken into ac- !

count, analytical and numerical results form a coherent picyng keeping =t, /t andx,=1,/t fixed, the exponers can

ture and the issue can be considered as settled. be measured. Next, faet, from Eq.(105) follows

For what concerns Ed55), regarded in Refq.8,28—3(Q o
as the exponerd in the Ising model, we have shown that it Laa(tt tl)wt—af 2 dzA+e-1-at=(6+a) (107
does not have any analytical foundation, because [R&l. agirer ty 1t

contains a computation of, . Furthermore, the numerical '

evidence, being based on TRM data, is inconclusive sinc§om which S+« can be measured, while, as we have
the largest,, reached so far are below the crossover tithe  seen, can be extracted frog(x). We plan to pursue the
Therefore, t,, is still far from being well inside the investigation of this IRF in future work.

asymptotic region as required for the TRM data to qualify as  Finally, the results obtained in this paper open a number
a challenge to those obtained from ZFC magnetizationof interesting problems in the general theory of phase order-
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ing. We stress that our results are phenomenological. In paffhen, usingA=(87) %?A/M3 andts.= —d/4r we find

ticular, we do not know whyl, andd, take the values they B(tso)/A=Ctq, (A3)
take.d, seems to coincide with the ordinary lower critical

dimensionality, but we do not know whether this is really so,With

or if it is just a coincidence. We can tell even less about the C=4(8m)%(1—e M3/ Ad (A4)

values taken by the upper dimensionatity. We should note ) o
the failure of the GAF approximation to reproduce the cor-2nd inserting into Eq(A1) we get
rect dependence af on d in the scalar case. In short, we (4=d) 4

: t* 1t = Ct,. =1
have no theory for the observed behavior of the response sc 4 sc
function in phase-ordering kinetics.

4/(4—d)
} (A5)

For d<4 the above equation must be taken with the minus
sign. This requirests.>[C(4—d)/4] %M or 4|r|/d<[C(4
—d)/4]*4. To lift this restriction on the value af one must
This work was partially supported from MURST through do better than the linear approximation in the estimate of
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APPENDIX

From definitions(84), (85), and(86) we have

e oz

A *ige (A1)

with the + (=) sign if A\/z—a<<(>)0, i.e ifd>(<)4. In
order to estimat®(t;) we use the linear approximation

tSC
B(tsc)=J0 e's=(e'sc—1)/r. (A2)

B(tso). Takingts. large enough, Eq89) is obtained.

If d>4, instead, from Eq(A5) follows t* <t justifying
Eq. (96).

Finally, ford=4 from Eq.(83) we get

B(tso)
Pttt te) =1, M — = In(ty/tso)

X (47)~Y2(t/t,,) "M? (AB)

and definingt* by
In(t*/tgo) = B(ts) /A, (A7)

Egs.(91) and(92) are recovered after using EGA3).
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