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Topology of correlation-based minimal spanning trees in real and model markets
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We compare the topological properties of the minimal spanning tree obtained from a large group of stocks
traded at the New York Stock Exchange during a 12-year trading period with the one obtained from surrogated
data simulated by using simple market models. We find that the empirical tree has features of a complex
network that cannot be reproduced, even as a first approximation, by a random market model and by the
widespread one-factor model.
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The study of topological properties of networks has re-assets traded simultaneously in a time periodTdfading
cently received much attention. In particular, it has beerdays, we extract thbl X N correlation matrix. Each correla-
shown that many natural and social systems display an urtion coefficientp; ; can be associated with a metric distance
expected amount of correlatidd] and cannot therefore be d;; between assets and j through the relationd;
described in terms of random grapf®|. The topological —=.2(1-p; ;) [13,14. The distance matrix is then used to
properties of several graphs describing physical and socigletermine the MST connecting all the assets. The method of
systems have been recently investigated. Examples are t@nstructing the MST linkindN objects is known in multi-
WWW [3,7], Interne{ 4,5], social network$6], and financial - yariate analysis as the nearest neighbor single linkage cluster
markets[11]. In the last cited case, the investigated graph ISq1gorithm[12]. In a previous study three of us showed that

a spanning tree. Spanning trees are particular types Qhe sirycture of the MST changes with the time horizon used
graphs. They connect all the vertices in a graph without compute price returrig5]

forming any loops. Therefore, if the number of verti¢8is The dataset used here consists of daily closure prices for

n, one hasn—1 arcs to connect them. There are several1071 stocks traded at the NYSE and continuously present in
examples of spanning trees in nature and several observab}?s

have been proposed in order to classify them and study t e 12—year. pe_r|oq.1987—1998030 trading days The rat|o.
possible optimization with respect to some external cos /N.:2.83.|.s S|gn|f.|c§1ntlyllarger than one and the correlation
function[9]. matrix positive deflmte_. Figure 1 showsf the MST qf t_he real
In this paper we compare the topological properties of thdata. The color_ code is c_hosen by using the main _mdustry
minimal spanning treéMST) of empirical data recorded at sector of each firm according to the Standar_d Industrial _Clas-
the New York Stock Exchang@YSE) with MSTs obtained sification system and the correspondence is reported in the
from simple models of the portfolio dynamics. Specifically figure caption. Regions corresponding to different sectors are
we consider a model of uncorrelated Gaussian return timglearly seen. Examples are clusters of stocks belonging to the
series and the widespread one-factor model. This last mod&hancial sector(purple); to the transportation, communica-
is the starting point of the Capital Asset Pricing Mofie0].  tions, electric gas, and sanitary services se@meen; and to
Our comparison shows that the random and the one-factdhe mining sector(red. The mining sector stocks are ob-
model fail to describe the topological properties of the MSTserved to belong to two subsectors, one containing oil com-
extracted from a portfolio of stocks simultaneously traded inpanies(located on the right side of the figyrand the other
a financial market. Topological properties of this financialcontaining gold companieeft side of the figurg
system can be therefore used to falsify widespread financial The empirical MST of real data can be compared with the
models. results obtained from simple models of the simultaneous dy-
The topological characterization of the correlation-basedamics of a portfolio of assets. The simplest model assumes
MST of real data was originally investigated in REE1]. In  that the return time series is uncorrelated Gaussian time se-
their study, authors investigated a portfolio.e6000 stocks ries, i.e.r;(t) = €;(t), wheree;(t) are Gaussian random vari-
by estimating the correlation coefficient on a yearly timeables with zero mean and unit variance. This type of model
period by using=250 daily data. In the present study, we usehas been considered in Ref47,18 as a null hypothesis in
a smaller number of stockd and a larger number of daily the study of the spectral properties of the correlation matrix.
recordsT. Our choice is motivated by the request that theln the cited references it has been shown that the spectrum of
correlation matrix be positive definite. In fact, when the the real correlation matrix has a very large eigenvalue corre-
number of variables is larger than the number of time recordsponding to the collective motion of the assets. A random
the covariance matrix is only positive semidefirife?]. model does not explain this empirical observation and there-
The variable under investigation is the daily price returnfore this fact clarifies why a better modeling of the portfolio
ri(t) of asseti on dayt. Given a portfolio composed dfi ~ dynamics is obtained by using the one-factor model. The
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FIG. 1. (Color) Correlation-based minimal spanning tree of real
data from daily stock returns of 1071 stocks for the 12-year period
1987-1998(3030 trading days The node color is based on Stan-
dard Industrial Classification system. The correspondence is red for FIG. 2. (Color) Correlation-based minimal spanning tree of a
mining, cyan for construction; yellow for manufacturing; green for numerical simulation of the one-factor model of Ej). The color
transportation, communications, electric, gas, and sanitary servicegode is the same as used in Fig. 1.
magenta for wholesale trade; black for retail trade; purple for fi-

nance, insurance and real estate; orange for service industries; ligfle one obtained from real data. It is evident that the struc-
blue for public administration. ture of sectors of Fig. 1 is not present in Fig. 2. In fact the

) MST of the one-factor model has a starlike structure with a
one-factor model assumes that the return of assets is CORgnral node. The largest fraction of node links directly to the
trolled by a single factor(or indey. Specifically, for any  central node and a smaller fraction is composed by the next-
asset we have nearest neighbors. Very few nodes are found at a distance of
three links from the central node. The central node corre-
sponds to General Electric and the second most connected
node is Coca Cola. It is worth noting that these two stocks
are the two most highly connected nodes in the real MST
also.

ri(t)=a;+ Birm(t) + €(t), (1)

wherer;(t) andr,(t) are the returns of the asseind of the
market factor at day, respectively,«; and B; are two real

e e e harectee” e s aanea b simulatng h madesare iferer
. &' _ in each realization. However, a statistical characterization of
is the Standard & Poor’s 500 index and we assume éhat MST is possible. In order to characterize quantitatively the
= O'siW, wherew is a random variable distributed aCCOfding structure of the MST we make use of two topo|ogica| qguan-
to a Gaussian distribution. tities. The first one is the distribution of the degrieeln

We estimate the model parameters for each asset from reedndom graph this quantity is distributed according to a bi-
time series with ordinary least squares methd@] and we  nomial distribution which for large networks tends to a Pois-
use the estimated parameters to generate an artificial marksedn distribution. In many real networks it has been shown
according to Eq(1). A consequence of this equation is that that the degree is distributed according to power law distri-
the variancgthe squared volatilityof asseti can be written  bution signaling the presence of long range correlation. The
as the sum of a term depending on the market factor and asecond topological quantity is frequently used for oriented
idiosyncratic term. The fraction of variance explained by thegraphs. For any vertexin the tree we count the total number
factorr,, is approximately described by an exponential dis-of verticesa in the uphill subtree whose rootisThis quan-
tribution with a characteristic scale of about 0.16. The randity is called drainage basin area in oriented graphs of river
dom model can be considered as the limit of the one-factonetworks[19], whereas it is usually referred as the in-degree
model when the fraction of variance explained by the factocomponent in graph theory. To calculate the in-degree com-
goes to zero. ponent in a correlation-based MST, we orient the MST ac-

In the MST obtained with the random model, few nodescording to the number of steps each node is far from the
have a degree larger than few units. This implies that thenost connected nodésink). When more than one sink is
MST is composed of long files of nodes. These files join afpresent in the MST a preferential one is randomly chosen
nodes of connectivity equal to few units. The MST obtainedamong them.
with the one-factor model is very different from the one ob- We show in Fig. 3 the frequency distribution for the de-
tained with the random model. In Fig. 2 we show the MSTgree k for the real data and for the average of over 100
obtained in a typical realization of the one-factor model per+ealizations of the random model and of the one-factor
formed with the control parameters obtained as describethodel. The degree distribution for the MST of the real data
above. The structure of this MST is also very different fromis approximated by a power law behavior with exponent
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FIG. 3. Frequency distribution of the degree of the MST of real F|. 4. Frequency distribution of the in-degree component of
data(circle). We also show the mean degree distribution of randomine MST of real datdcircle). We also show the mean in-degree
(triangl®) and one-factotsquar¢ model averaged over 100 numeri- component distribution of randoftriangle) and one-factofsquarg
cal realizations of the MST. In the main panel, the gray regionmode| averaged over 100 numerical realizations of the MST. In the
indicates the 95% confidence interval of the simulations of the onepain panel, the gray region indicates the 95% confidence interval of
factor model. The stars are the theoretical values of the degrege simulations of the one-factor model. The inset shows the corre-
frequency for the random model in mean field limit. The insetgponding rank plot of the in-degree component for the three cases.

shows the corresponding rank plot of the degree in the three casegere, the 95% confidence interval of the simulations of the one-
Here, the 95% confidence interval of the simulations of the onefactor model is of the order of the size of symbol used.

factor model is of the order of the size of the symbol used.
data and for the considered models in the inset of Fig. 3. For

— 2.6 for one decade followed by a set of isolated points withthe random model many nodes have a similar value of the
high degree. A power law behavior with a similar exponentdegree which ranges to less than an order of magnitude. This
has been observed in R¢ll1] and in another recent study is due to the fact that there is no hierarchy in the random
[20]. The highest degrele,,o,= 115 is observed for the Gen- model. The rank plot of the degree of the MST for the one-
eral Electric, one of the most capitalized company in thefactor model is essentially different from the one observed in
NYSE. As we pointed out in a previous wofk5], some empirical data. We are able to prove that this result is statis-
important companies clearly emerge for its high degree valuécally robust by showing in Fig. 3 the 95% confidence in-
indicating that they act as a reference for other companieserval on the degree distribution computed starting from our
The random model displays an approximately exponentiahumerical simulations of the one-factor model. Figure 3
decay of the degree distribution. The value of the maximunmshows unambiguously that there is a single highly connected
degree is smallk,,,,=7.34-0.92, showing that no asset node(the centerand a rapidly decaying degree as a function
plays a central role in the MST. The correlation-based MSTof the rank. This fact corresponds to the simple one-center
of the random model can be considered as the MST of a séiierarchy of the MST of the one-factor model. To better ap-
of N points randomly distributed in a Euclidean space withpreciate the relevance of this result, it is worth noting that the
d=T dimension [16]. The N points have independent one-factor model is able to explain more that 80% of the
identically ~ Gaussian distributed coordinatesr; correlation coefficients observed in real data. Nevertheless
=(ri(1),ri(2),...,ry(T)) with i=21,2,...N. It has been our results show that the topology of the MST of one-factor
shown that the distribution of degree of the random MST inmodel is very different from the MST of real data. This ap-
Euclidean space converges to a specific distribution in th@arent contradiction is due to the fact that the MST filters out
mean field limitd—oo [21]. The numerical values of the the more relevant information about the correlation structure
degree of frequency obtained from this mean field limit are[14], whereas most of the correlation matrix is heavily
shown as a star in Fig. 3 fde=1, ...,7. Theagreement of dressed by noise, as shown in Réfks7,18.
theoretical values with the numerical simulations is very A discrepancy between real data and models is also ob-
good showing that the mean field limit is already a goodserved in the frequency distribution of the in-degree compo-
approximation for oufl parameter. nent. Figure 4 shows the frequency distribution of the in-

The MST obtained from the one-factor model is charac-degree component for real and surrogate data. Again here we
terized by a rapidly decaying degree distribution and by aralso show the 95% confidence interval for the one-factor
asset with a very high value of the degree. The value of thenodel simulations. The inset of Fig. 4 shows the rank plot of
maximum degree i&,.=718+29. The corresponding as- the same data. In all three cases the in-degree component
set is the center of the starlike structure of Fig. 2. The regioristribution has a power law shape. This is particularly clear
with the highest value of the degree contains informatiorfor the MST of the random uncorrelated time series where
about the stocks that act as reference for a large set of othére power law lasts for more than two decades with an ex-
stocks. To get more insight into the structure of this high ponent of~—1.6. It is known that for critical random trees
region we show a rank plot of the degree both for the reathe probability distribution of tree size decays as a power law
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with an exponent 3/§22]. A critical random tree is a tree in whereas the considered models are not able to catch such a
which the mean number of sons of each node is one. In hierarchical complexity. Specifically, in the random model
MST the mean degree is exactly equal to/gh—1)=2. the fluctuations select randomly few nodes and assign them
Hence when we orient the MST from the root to the leavessmall values of degree. Thus the MST of the random model
we have a tree with one son for each node. Our result shows essentially nonhierarchical. On the other hand the MST of
that the in-degree component of the MST arising from ranthe one-factor model shows a simple one-center hierarchy.
dom unCOt’I’e|ated t|me SerieS haS properties Similar to that the MST Of rea' market ShOWS a more structured hierarchy
a critical random tree. This is not the case for the one-factops tne importance of the stocks which is not captured by the
model where the power law has greater absolute slope due {nsidered models. The topology of stock return correlation-
the starlike structure of the tree. Neither model is actualllybased MST shows large scale correlation properties charac-
able to catch the oriented structure of real data whose ingistic of complex networks in the native as well as in an
degree component distribution is in between the two modelSyriented form. Such properties cannot be reproduced at all,

The same arguments are also valid for the region of highyen as a first approximation, by simple models as a random
values ofa as is evident from the rank plot in the inset. model or the widespread one-factor model.

In summary these results show that the topology of the
MST for the real and for the considered artificial markets is  The authors acknowledge partial support from FET Open
different for node with both high and low degrees. If we Project No. COSIN I1ST-2001-33555 and G.C. acknowledges
define the importance of a node as its dedmzéts in-degree  European Commission Contract No. FMRXCT980183. F.L.
component from our analysis it emerges that the real mar-and R.N.M. acknowledge partial support from INFM and
ket has a hierarchical distribution of importance of the nodeMIUR.
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