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Topology of correlation-based minimal spanning trees in real and model markets
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We compare the topological properties of the minimal spanning tree obtained from a large group of stocks
traded at the New York Stock Exchange during a 12-year trading period with the one obtained from surrogated
data simulated by using simple market models. We find that the empirical tree has features of a complex
network that cannot be reproduced, even as a first approximation, by a random market model and by the
widespread one-factor model.

DOI: 10.1103/PhysRevE.68.046130 PACS number~s!: 89.75.Fb, 89.75.Hc, 89.65.Gh
re
e
u

e

c

i

ou

ra
ab
t

os

th
t

lly
im
od

ct
ST

i
ia
c

e

e
se

he
he
rd

rn

-
ce

to
d of

ster
at

sed

for
t in

on
al

stry
las-
the
are
the
-

-
m-

the
dy-
mes

se-
i-
del

rix.
m of
rre-
om
re-

io
he
The study of topological properties of networks has
cently received much attention. In particular, it has be
shown that many natural and social systems display an
expected amount of correlation@1# and cannot therefore b
described in terms of random graphs@2#. The topological
properties of several graphs describing physical and so
systems have been recently investigated. Examples are
WWW @3,7#, Internet@4,5#, social networks@6#, and financial
markets@11#. In the last cited case, the investigated graph
a spanning tree. Spanning trees are particular types
graphs. They connect all the vertices in a graph with
forming any loops. Therefore, if the number of vertices@8# is
n, one hasn21 arcs to connect them. There are seve
examples of spanning trees in nature and several observ
have been proposed in order to classify them and study
possible optimization with respect to some external c
function @9#.

In this paper we compare the topological properties of
minimal spanning tree~MST! of empirical data recorded a
the New York Stock Exchange~NYSE! with MSTs obtained
from simple models of the portfolio dynamics. Specifica
we consider a model of uncorrelated Gaussian return t
series and the widespread one-factor model. This last m
is the starting point of the Capital Asset Pricing Model@10#.
Our comparison shows that the random and the one-fa
model fail to describe the topological properties of the M
extracted from a portfolio of stocks simultaneously traded
a financial market. Topological properties of this financ
system can be therefore used to falsify widespread finan
models.

The topological characterization of the correlation-bas
MST of real data was originally investigated in Ref.@11#. In
their study, authors investigated a portfolio of'6000 stocks
by estimating the correlation coefficient on a yearly tim
period by using'250 daily data. In the present study, we u
a smaller number of stocksN and a larger number of daily
recordsT. Our choice is motivated by the request that t
correlation matrix be positive definite. In fact, when t
number of variables is larger than the number of time reco
the covariance matrix is only positive semidefinite@12#.

The variable under investigation is the daily price retu
r i(t) of asseti on day t. Given a portfolio composed ofN
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assets traded simultaneously in a time period ofT trading
days, we extract theN3N correlation matrix. Each correla
tion coefficientr i , j can be associated with a metric distan
di , j between assetsi and j through the relationdi , j

5A2(12r i , j ) @13,14#. The distance matrix is then used
determine the MST connecting all the assets. The metho
constructing the MST linkingN objects is known in multi-
variate analysis as the nearest neighbor single linkage clu
algorithm @12#. In a previous study three of us showed th
the structure of the MST changes with the time horizon u
to compute price returns@15#.

The dataset used here consists of daily closure prices
1071 stocks traded at the NYSE and continuously presen
the 12-year period 1987–1998~3030 trading days!. The ratio
T/N.2.83 is significantly larger than one and the correlati
matrix positive definite. Figure 1 shows the MST of the re
data. The color code is chosen by using the main indu
sector of each firm according to the Standard Industrial C
sification system and the correspondence is reported in
figure caption. Regions corresponding to different sectors
clearly seen. Examples are clusters of stocks belonging to
financial sector~purple!; to the transportation, communica
tions, electric gas, and sanitary services sector~green!; and to
the mining sector~red!. The mining sector stocks are ob
served to belong to two subsectors, one containing oil co
panies~located on the right side of the figure! and the other
containing gold companies~left side of the figure!.

The empirical MST of real data can be compared with
results obtained from simple models of the simultaneous
namics of a portfolio of assets. The simplest model assu
that the return time series is uncorrelated Gaussian time
ries, i.e.,r i(t)5e i(t), wheree i(t) are Gaussian random var
ables with zero mean and unit variance. This type of mo
has been considered in Refs.@17,18# as a null hypothesis in
the study of the spectral properties of the correlation mat
In the cited references it has been shown that the spectru
the real correlation matrix has a very large eigenvalue co
sponding to the collective motion of the assets. A rand
model does not explain this empirical observation and the
fore this fact clarifies why a better modeling of the portfol
dynamics is obtained by using the one-factor model. T
©2003 The American Physical Society30-1
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one-factor model assumes that the return of assets is
trolled by a single factor~or index!. Specifically, for any
asseti we have

r i~ t !5a i1b i r M~ t !1e i~ t !, ~1!

wherer i(t) andr M(t) are the returns of the asseti and of the
market factor at dayt, respectively,a i and b i are two real
parameters, ande i(t) is a zero mean noise term characteriz
by a variance equal tose i

2 . Our choice for the market facto

is the Standard & Poor’s 500 index and we assume thae i
5se i

w, wherew is a random variable distributed accordin
to a Gaussian distribution.

We estimate the model parameters for each asset from
time series with ordinary least squares method@10# and we
use the estimated parameters to generate an artificial m
according to Eq.~1!. A consequence of this equation is th
the variance~the squared volatility! of asseti can be written
as the sum of a term depending on the market factor an
idiosyncratic term. The fraction of variance explained by t
factor r M is approximately described by an exponential d
tribution with a characteristic scale of about 0.16. The r
dom model can be considered as the limit of the one-fa
model when the fraction of variance explained by the fac
goes to zero.

In the MST obtained with the random model, few nod
have a degree larger than few units. This implies that
MST is composed of long files of nodes. These files join
nodes of connectivity equal to few units. The MST obtain
with the one-factor model is very different from the one o
tained with the random model. In Fig. 2 we show the MS
obtained in a typical realization of the one-factor model p
formed with the control parameters obtained as descri
above. The structure of this MST is also very different fro

FIG. 1. ~Color! Correlation-based minimal spanning tree of re
data from daily stock returns of 1071 stocks for the 12-year pe
1987–1998~3030 trading days!. The node color is based on Sta
dard Industrial Classification system. The correspondence is re
mining, cyan for construction; yellow for manufacturing; green f
transportation, communications, electric, gas, and sanitary serv
magenta for wholesale trade; black for retail trade; purple for
nance, insurance and real estate; orange for service industries;
blue for public administration.
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the one obtained from real data. It is evident that the str
ture of sectors of Fig. 1 is not present in Fig. 2. In fact t
MST of the one-factor model has a starlike structure with
central node. The largest fraction of node links directly to t
central node and a smaller fraction is composed by the n
nearest neighbors. Very few nodes are found at a distanc
three links from the central node. The central node cor
sponds to General Electric and the second most conne
node is Coca Cola. It is worth noting that these two stoc
are the two most highly connected nodes in the real M
also.

The MSTs obtained by simulating the models are differ
in each realization. However, a statistical characterization
MST is possible. In order to characterize quantitatively t
structure of the MST we make use of two topological qua
tities. The first one is the distribution of the degreek. In
random graph this quantity is distributed according to a
nomial distribution which for large networks tends to a Po
son distribution. In many real networks it has been sho
that the degree is distributed according to power law dis
bution signaling the presence of long range correlation. T
second topological quantity is frequently used for orien
graphs. For any vertexi in the tree we count the total numbe
of verticesa in the uphill subtree whose root isi. This quan-
tity is called drainage basin area in oriented graphs of ri
networks@19#, whereas it is usually referred as the in-degr
component in graph theory. To calculate the in-degree co
ponent in a correlation-based MST, we orient the MST
cording to the number of steps each node is far from
most connected node~sink!. When more than one sink i
present in the MST a preferential one is randomly cho
among them.

We show in Fig. 3 the frequency distribution for the d
gree k for the real data and for the average of over 1
realizations of the random model and of the one-fac
model. The degree distribution for the MST of the real da
is approximated by a power law behavior with expone
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FIG. 2. ~Color! Correlation-based minimal spanning tree of
numerical simulation of the one-factor model of Eq.~1!. The color
code is the same as used in Fig. 1.
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22.6 for one decade followed by a set of isolated points w
high degree. A power law behavior with a similar expone
has been observed in Ref.@11# and in another recent stud
@20#. The highest degreekmax5115 is observed for the Gen
eral Electric, one of the most capitalized company in
NYSE. As we pointed out in a previous work@15#, some
important companies clearly emerge for its high degree va
indicating that they act as a reference for other compan
The random model displays an approximately exponen
decay of the degree distribution. The value of the maxim
degree is small,kmax57.3460.92, showing that no asse
plays a central role in the MST. The correlation-based M
of the random model can be considered as the MST of a
of N points randomly distributed in a Euclidean space w
d5T dimension @16#. The N points have independen
identically Gaussian distributed coordinates r i
5„r i(1),r i(2), . . . ,r i(T)… with i 51,2, . . . ,N. It has been
shown that the distribution of degree of the random MST
Euclidean space converges to a specific distribution in
mean field limit d→` @21#. The numerical values of the
degree of frequency obtained from this mean field limit a
shown as a star in Fig. 3 fork51, . . . ,7. Theagreement of
theoretical values with the numerical simulations is ve
good showing that the mean field limit is already a go
approximation for ourT parameter.

The MST obtained from the one-factor model is char
terized by a rapidly decaying degree distribution and by
asset with a very high value of the degree. The value of
maximum degree iskmax5718629. The corresponding as
set is the center of the starlike structure of Fig. 2. The reg
with the highest value of the degree contains informat
about the stocks that act as reference for a large set of o
stocks. To get more insight into the structure of this highk
region we show a rank plot of the degree both for the r

FIG. 3. Frequency distribution of the degree of the MST of r
data~circle!. We also show the mean degree distribution of rand
~triangle! and one-factor~square! model averaged over 100 numer
cal realizations of the MST. In the main panel, the gray reg
indicates the 95% confidence interval of the simulations of the o
factor model. The stars are the theoretical values of the de
frequency for the random model in mean field limit. The ins
shows the corresponding rank plot of the degree in the three ca
Here, the 95% confidence interval of the simulations of the o
factor model is of the order of the size of the symbol used.
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data and for the considered models in the inset of Fig. 3.
the random model many nodes have a similar value of
degree which ranges to less than an order of magnitude.
is due to the fact that there is no hierarchy in the rand
model. The rank plot of the degree of the MST for the on
factor model is essentially different from the one observed
empirical data. We are able to prove that this result is sta
tically robust by showing in Fig. 3 the 95% confidence i
terval on the degree distribution computed starting from
numerical simulations of the one-factor model. Figure
shows unambiguously that there is a single highly connec
node~the center! and a rapidly decaying degree as a functi
of the rank. This fact corresponds to the simple one-cen
hierarchy of the MST of the one-factor model. To better a
preciate the relevance of this result, it is worth noting that
one-factor model is able to explain more that 80% of t
correlation coefficients observed in real data. Neverthe
our results show that the topology of the MST of one-fac
model is very different from the MST of real data. This a
parent contradiction is due to the fact that the MST filters
the more relevant information about the correlation struct
@14#, whereas most of the correlation matrix is heav
dressed by noise, as shown in Refs.@17,18#.

A discrepancy between real data and models is also
served in the frequency distribution of the in-degree com
nent. Figure 4 shows the frequency distribution of the
degree component for real and surrogate data. Again here
also show the 95% confidence interval for the one-fac
model simulations. The inset of Fig. 4 shows the rank plot
the same data. In all three cases the in-degree compo
distribution has a power law shape. This is particularly cle
for the MST of the random uncorrelated time series wh
the power law lasts for more than two decades with an
ponent of'21.6. It is known that for critical random tree
the probability distribution of tree size decays as a power
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FIG. 4. Frequency distribution of the in-degree component
the MST of real data~circle!. We also show the mean in-degre
component distribution of random~triangle! and one-factor~square!
model averaged over 100 numerical realizations of the MST. In
main panel, the gray region indicates the 95% confidence interva
the simulations of the one-factor model. The inset shows the co
sponding rank plot of the in-degree component for the three ca
Here, the 95% confidence interval of the simulations of the o
factor model is of the order of the size of symbol used.
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with an exponent 3/2@22#. A critical random tree is a tree in
which the mean number of sons of each node is one.
MST the mean degree is exactly equal to 2n/(n21).2.
Hence when we orient the MST from the root to the leav
we have a tree with one son for each node. Our result sh
that the in-degree component of the MST arising from r
dom uncorrelated time series has properties similar to tha
a critical random tree. This is not the case for the one-fac
model where the power law has greater absolute slope du
the starlike structure of the tree. Neither model is actua
able to catch the oriented structure of real data whose
degree component distribution is in between the two mod
The same arguments are also valid for the region of h
values ofa as is evident from the rank plot in the inset.

In summary these results show that the topology of
MST for the real and for the considered artificial markets
different for node with both high and low degrees. If w
define the importance of a node as its degree~or its in-degree
component!, from our analysis it emerges that the real m
ket has a hierarchical distribution of importance of the no
tt

e

at

-

-
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whereas the considered models are not able to catch su
hierarchical complexity. Specifically, in the random mod
the fluctuations select randomly few nodes and assign th
small values of degree. Thus the MST of the random mo
is essentially nonhierarchical. On the other hand the MST
the one-factor model shows a simple one-center hierar
The MST of real market shows a more structured hierar
of the importance of the stocks which is not captured by
considered models. The topology of stock return correlati
based MST shows large scale correlation properties cha
teristic of complex networks in the native as well as in
oriented form. Such properties cannot be reproduced at
even as a first approximation, by simple models as a rand
model or the widespread one-factor model.
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