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Minimal model for tag-based cooperation
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Recently, Rioloet al. [Nature(London 414, 441(2001) | showed by computer simulations that cooperation
can arise without reciprocity when agents donate only to partners who are sufficiently similar to themselves.
One striking outcome of their simulations was the observation that the number of tolerant agents that support
a wide range of players was not constant in time, but showed characteristic fluctuations. The cause and
robustness of these tides of tolerance remained to be explored. Here we clarify the situation by solving a
minimal version of the model of Riolet al. It allows us to identify a net surplus of random changes from
intolerant to tolerant agents as a necessary mechanism that produces these oscillations of tolerance, which
segregate different agents in time. This provides a new mechanism for maintaining different agents, i.e., for
creating biodiversity. In our model the transition to the oscillating state is caused by a saddle node bifurcation.
The frequency of the oscillations increases linearly with the transition rate from tolerant to intolerant agents.
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I. INTRODUCTION numbers. In each generation every agent acts as a potential
donor forP other agents chosen at random. Hence it is, on
The emergence of cooperation in evolving populationsaverage, also chosdhtimes as a recipient. After each gen-
with exploitative individuals is still a challenging problem in eration each agentcompares his payoff with the payoff of
biological and social sciences. Most theories that explain coanother randomly chosen ag¢rind adoptd; andr; if j has
operation are based on direct reciprocity, as the famous ite& higher payoff. In addition, every agent is subject to muta-
ated prisoner’s dilemmfl]. Cooperation can also arise from tion. With probability 0.1 an agent receives a nevdrawn
indirect reciprocity when agents help others only if these ardrom a uniform distribution and also with probability 0.1 a
known to be sufficiently altruisti€2]. In most of these mod- new T which is Gaussian distributed with standard deviation
els a finite population of agents is simulated, pairs of agentg=0.01 around the old. If this new T becomes smaller
meet randomly as potential donator and receiver. A donatioghan zero, it is set to 0. Obviously, it seems to be the best
involves some cost to the donor while it provides a largerstrategy for an individual to donate as little as possible, i.e.,
benefit to the receiver. Agents reproduce depending on theib have a very smalll. However, the whole population
payoffs after a certain number of such meetings. Obviouslywould be better off if everybody would cooperate. This
selfish individuals who do not donate would quickly spread“tragedy of the commons” can be solved in different ways,
in the population if help is not channeled towards more coe.g., by volunteering4—6].
operative players. If agents do not meet repeatedly—as in a Riolo et al. solve this problem by channeling help to-
large population—direct reciprocity does not work. Indirectwards others who are sufficiently similar to the donator. In-
reciprocity can solve this problem when donations are giverstead of a cooperative population, the formation and decay of
only to those individuals who are known as sufficiently help-cooperative clusters is observed for certain parameter ranges
ful. This mechanism effectively protects a cooperative poputhigh P and lowc, see Fig. 1L The average tolerance of a
lation against exploiterg2]. cooperative cluster grows slowly over time. Occasionally, it
Riolo et al. [3] introduced a model in which cooperation declines sharply. This decline occurs when the cluster is ex-
is not based on reciprocity, but on similarity. In this model ploited by agents that are sufficiently similar to the cluster’s
donations are channeled towards individuals who are suffiagents to get support, but do not help themselves. However,
ciently similar to the donator. To distinguish between differ-the mechanism that generates these tides of tolerance re-
ent groups of individuals every agenhas a tagr,e[0,1]. mained uncleaf7].
School ties, club memberships, tribal costumes, or religious Here we develop a minimal model for tag-based coopera-
creeds are all tags that induce cooperation. In additiontion, which displays these “tides of tolerance” if there is a
agents have a tolerance threshdld=0, which determines net average drift towards more cooperation. We find that
the tag interval that the agent classifies as its own group. Athese fluctuations vanish if such a drift is not included in the
agenti donates to another aggrif their tags are sufficiently model. The importance of this observation stems from the
similar, | 7;— 7j|<T;. The cost of such a donation fois ¢ fact that if we have species that can distinguish between
>0 while the benefit foj is b>c. For simplicity,b is nor-  themselves and others and donate only to others with the
malized to 1, since a multiplication of payoffs with a con- same tag, then this would in the long run lead to a single
stant factor does not change the game. Initially, the tag androup of cooperating species having a single tag. But if we
the tolerance threshold are uniformly distributed randomintroduce a small rate of biased conversions from intolerant
to tolerant species, we observe a waxing and waning in time
of species with different tags. In other words, the small con-
*Electronic address: traulsen@theo-physik.uni-kiel.de version rate leads to a coexistence of different species, where

1063-651X/2003/6@}/0461298)/$20.00 68 046129-1 ©2003 The American Physical Society



A. TRAULSEN AND H. G. SCHUSTER PHYSICAL REVIEW B8, 046129 (2003

1.0 P3
Q
E 0.80
£ 0.9
2 0.40
§ 0.24
Zo.
0.0

0 100 200 300 400 500
Generations

0.0
0.04
g 0.03
S 0.02
o]
& 0.01
0.0

0 100 200 300 400 500
Generations P1

FIG. 1. Population dynamics for the first 500 generation of the
model of Rioloet al.[3]. The average tolerance and the donation b2
rate—i.e., the fraction of encounters that lead to a donation—show

fluctuations. When a cooperative cluster becomes dominant, its tol- F.lG.' 2. The trf_:ljectorles of the repllcatpr dynamics move from
. : . the inside of the simplex onto the boundaries. The corners represent
erance increases until the cluster becomes extioet (1, b

~1.0, andP=3) the pure strategiep;. Arrows indicate the stability of the fixed
- ' points at the edges. There are two stable attractors cplfédand

. . . . . _ pP'ue (dark gray corresponding to stable lines of fixed points of Eq.
different species appear cyclically at different times. ThIS(Z)_ At the top only players with red tags survive whereas at the

consitutes a new mechanism that generates biodiversity in gottom only players with blue tags can exist. The two basins of

group of competing species. attractions of these stable attractors are separated by a planar sepa-
This paper is organized as follows. First, the model ofratrix given by Eq.(3). This separatrix is the basin of attraction for

Riolo et al.is simplified in order to allow an analytical treat- the fixed point in the Nash equilibrium indicated by a black circle

ment. Then the system without the effects of mutations igc=0.4 andb=1.0).

analyzed. Thereafter, we introduce a drift that increases the

tolerance and leads to oscillations of tolerance. We show thagvolutionary unstable mixed Nash equilibrium if these two

the truncated mutations in the model of Ri@bal.also lead strategies are used with probability

to such a drift. If the intolerant agents do not even cooperate within their
own group we recover the prisoner’s dilemih&, see Ap-
pendix A.
Il. SIMPLIFIED REPLICATOR MODEL Instead of simulating a finite group of agents, we calculate
A. Definition of the model only the evolution of the probability that an agent uses a

Here we simplify the model of Riolet al.[3] in order to certain strategy. In the following, andp, are the frequen-
; : . cies of tolerant red and tolerant blue agents, respectipgly.
allow for an analytical treatment. In a first step we restrict theand are the frequencies of the corresponding red and blue
game to only two tags, red and blue. Similarly, we allow only. Pa q fot ot ot P 9
Qtolerant agents. Ap;+p,+pz+p,=1, the state of the

two tolerances. The agents can either only donate to othef . : A
bearing the same tag if they have zero tolerafieed or to ~ SyStem is completely determined W=(p1,p2,_p3). The
every other agentT(=1). This leads to four possible strate- trajecto_ry can therefore be wsuah_zed_as a trajectory in the
gies. Then we allow partners to donate and to receive in aH'rée-dimensional simplex shown in Fig. 2.

single interaction instead of defining different roles for do- !N order to apply standard replicator dynamié$we cal-
nators and receivers. We end up with the payoff matrix  culate the mean payoffs from the payoff matrix as

I =(b—c)(p}+Pp5+pPs) —CPj,
(Tag,T) (Red, 2 (Blue,1) (Red,Q (Blue, O

I15=(b—c)(pi+ps+py) —Cps,

(Red, 1 b—c b—c b—c —-C

(Blue, 1) b—c b—c -C b—c I15=(b—c)(p}+ps) +bps, (1)
(Red, 0 b—c b b—c 0

(Blue,0 b b—c 0 b—c IT,=(b—c)(p5+py) +bpi,

The strategies withT=1 are obviously dominated by the
strategies withT=0, because the payoff of an intolerant
player is always larger than the payoff of the corresponding
tolerant player. There are pure Nash equilibria for the intol-wherell; is the payoff of the strategy with frequengy.
erant strategie&ed, Q and(blue, Q. In addition, there is an Using Eq.(1) the replicator equations can be written as

4
<H>‘=§l piIl;,
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following, we setg=1. Our main interest is the attractors of 3 4, A 0.0
the system, and a modification gfwould only modify the G 160 200 100 200
" enerations Generations
velocities on the attractor.
0.14 0.1q
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i i i =1 =]
B. Fixed points and separatrix g 0.04 g 0.03
The dynamics of the syste(@) can roughly be character- S 2
ized as follows, see Fig. 2. Most initial conditions lead to 0.0 100 500 0. 100 550

fixed points where only one tag survives. The frequency of Generations Generations
intolerant players is typically higher than the frequency of ) ) . .
tolerant players here. There is a separatrix that divides the FIG. 3. Population dynamics for the first 200 generation of the

basins of attraction of the two tags. On one side of the sepan@de! of Rioloet al. [3] without tolerance mutationsleft) and

ratrix red players will survive and on the other side bluewithout tag mutationgright). Without tolerance mutations the do-

players. In addition, we find several fixed points on the edgeglation rate fluctuates due to tag mutations. After less than 100 gen-
describéd in the foilowing erations all players inherit the same tolerance. Without tag muta-

As i licat t th ixed Nash ilibri tions the donation rate quickly rises to 100% when all players have
SN am./ rep !Ca or Sys em, the mixe ) ash equi ' ”u_mthe same tag. The fluctuating tolerance does no longer influence the

p"=(0,03) is a fixed point. Here the basin of attraction is system €=0.1, b=1.0, andP=3).

the separatrix. The separatrix shown in Fig. 2 can be calcu-

lated from the stability of _thls fixed pomt,_whlch is discussed pb t=pL+ ph(ITL—(I1,)) + &(1—p' — pb—pk),

for a more general case in Appendix B! is always part of

the separatrix, its normal corresp_onds to the eigenvg:g,tor pb = pL+ ph(IT—(I1)) —ept.
=(1-c,1+c,2) of the corresponding Jacobi matd% with
the eigenvalue.;=(3—c)/2>1. We find the equation The solution of these equations shown in Figs. 4 and 5 dis-
1 play oscillations in tolerance. These oscillations can be con-
S_r1—(1—c)pS—(1+0C)pS 3 sidered as the deterministic equivalent to the tides of toler-
Ps=5[1-(1-c)pi—(1+c)pz] @ e in Ref[3].

In the model of Riolcet al.[3] such a drift is generated by
for points on the separatrix. As we hayp'™*(p3,p5,p3) truncated mutations. The average tolerance is usually of the
—p'(p$,p5.p5)1-€;=0, the system never leaves this planeorder of o. Therefore the truncation of negative tolerances
again. decreases the probability for mutations that lower the toler-

In addition, there are two fixed lines if only one tag is @nce, and leads to a drift towards higher tolerances. We re-
present:p®=(1—x,0x) and p®®=(0,1-x,0), where 0 Peated the simulations of Riolet al. and found that 50.0%
<x=1 is the fraction of intolerant players. The stability of Of the tolerance mutations increa$evhile only 39.8% de-
the fixed points on these lines dependsyoffor 1-x>c,  creaseT. The average mutation increasgsby 1.3<10
the points are unstable and intolerant players with the oppdc=0.1, P=3, average over 10 000 realizations with 30 000
site tag can invadésee Appendix B Finally, there is an generations eaghlf we omit the tolerance mutations in the
unstable fixed line for a completely tolerant populatipri ~ model of Rioloet al., one(low) tolerance is quickly inherited
=(1-v,y,0), where Gsy<1. The stability of this fixed line by the whole population, see Fig. 3. The majority of players
is discussed in Appendix B. belongs to a dominant cluster. The mean tag of this cluster—

So far, the system does not show any oscillation. It simplyand hence the donation rate—drifts slowly due to mutations
relaxes to one of the fixed points described above. In th&f the tags. Without mutations of the tags one tag is inherited

following section a mechanism that generates oscillation®y the whole population after a short initial period. Conse-
will be discussed. quently, the donation rate becomes 100%, and tolerance mu-

tations do no longer influence the system.

IIl. INTRODUCTION OF A BIASED DRIFT I .
A. Qualitative behavior

In order to generate oscillations in the system we have t0 pq attractor of the systet) is shown in Fig. 4, and the
destabilize the attracting fixed points and force the systeng o evolution of the strategies can be seen ir,1 Fig. 5. If

through the separatrix. This can be realized by introducingyisia|ly a1l strategies are present, the system shows periodic
first ad hoca drift that increases the fraction of tolerant j¢.ijiations for smalk andc=0.1. One tag becomes domi-

agents at the cost of the intolerant fraction of the same tag. | ant. The fraction of tolerant players increases due to the
we introduce such biased conversions into our model{H&q. biased conversions imposed by-0 and intolerant players

becomes with the opposite tag can invade and destroy the cluster,

1ttt . givjng rise to a new QOmjnant cluster with the opposite tr_:lg.

Py "=p1t P11 = (Il)) +epg, (4 This attractor shown in Fig. 4 has essentially the whole sim-
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FIG. 5. The waxing and waning of the four different groups of
agents(red agents: black, blue agents: gray, full linds=1, and
dashed linesT=0) are caused by the following mechanism. A
FIG. 4. Attractor of the systertd) for c=0.1. The black line is cluster of tolerf’;\nt |.'ed agents |s.|nvaded by intolerant blue agents

. ) . .. who convert via directed mutations to their tolerant counterpart,
the attractor, the gray points are the fixed points. The plane is the. =~ “" s : .
: - L : -~ _giving rise to a blue cluster which is then invaded by red intolerant
separatrix fore=0. The arrows indicate how the biased conversions -
; . . agents. Although initially the number of red and blue tolerant agents
drive the system through the separatrix to the corner with only;: f .
S L . . differed only by 1%, a tiny number (0.5%) of intolerant agents of
tolerant individuals. Here individuals with the other tag can invade . .
) ) S each tag is enough to generate large clusters that are segregated in
and steer the system to a corner with mostly intolerant individuals,;
. . ) . “time (¢=0.01,c=0.1, andb=1.0).
Biased conversions lead to a tolerant corner again and the circle
continues(e=0.01,c=0.1, andb=1.0).

2¢ g?
plex as a basin of attraction. Only for very small or very high 1-c- c +m
values ofc other fixed points become stable. The system can
be analyzed in two parts far<1. Near the edgep™® and o &?
p°® the replicator dynamics becomes irrelevant and the sys- pe = c2—¢c3 ’ ®)
tem is mainly driven by biased conversions. Further away 5
from these edges the system is driven by the replicator dy- ot (1-2c)e ¢
namics. Here the dynamics is not altered by the biased con- c—c2 (c—1)%c
versions.

Our bhiased conversions lead the system from an edge that

is dominated by one color to an edge that is dominated byue to the symmetry in the tags™ can easily be calculated
the other color. For smati the trajectory leaves these edgesby exchangingp, with p, and p; with ps,=1—p;—p,
near the corners of the pure tolerant strategies, cf. Fig. 4-p;. As described above, we fino®*=(1—c,0¢c) for ¢
However, these corners are never crossed as they are fixed0. Increasinge moves it towardsp?. For e=c(1—c)/4
points. ps* andp? collapse, herg® becomes stable.
For c<0.73 we have no fixed points that are stable in all
. . directions. The whole simplex is essentially the basin of at-
B. Fixed points traction of the attractor shown in Fig. 4.
Let us now analyze the systed) in more detail. The
fixed linep""=(1—-vy,y,0) of Eq.(2) is still a fixed line of C. Bifurcation at £=0
Eq. (4). For c<2¢g, a fraction of the fixed line remains . ) .
stable, see Appendix B for details. However, as we are inter-. 1N€ transition from the system without biased conver-
ested ine<1 the fixed line is usually unstable. Due to the SIons(i.e., e=0) to the system with biased conversions can
flow from intolerant to tolerant players, the edge® and i?]elggagzed in detail by considering the Poinaaegp shown
p”“are no longer fixed. The fixed poipf'=(0,0;) in the At >0 the fixed lines where only one tag is present van-
mixed Nash equilibrium moves away from the edgedoi0  jsh This is caused by a saddle node bifurcafib@. A fixed
and is now given by?= (e/c,e/c,3 —e/c). The stability of  line disappears at this bifurcation, and a small channel is
this fixed point is discussed in Appendix B.

opened through which the system moves slowly to the other
In addition, we find two more fixed poing®®" andp®~. side of the separatrix. The width of this channel is controlled
For =0 they correspond to the points where the populatiorby . For smalle a linear dependence betweenand the

with only one tag loses stability. These fixed points can beoscillation frequency of the attractor is observed as shown in
calculated analytically, see Appendix C for details. The ex+ig. 7. Such a linear dependence is expected in a saddle node

pansion fore<1 of p** is bifurcation with linear perturbation terms; andep, [11].
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FIG. 8. Influence of the coston the donation ratésquarey the
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0.0 02 04 06 038 1.0 the tags(diamonds$. All symbols are averages over 10000 initial
pi conditions and 100—10 000 time steps. The number of time steps is
taken as a uniformly distributed random number to exclude effects
FIG. 6. The Poincaremap of thep, shows the “channel’ resulting f_rom changes of the oscillation fre_quency. The Ii_nes are
through which the trajectory crosses the separatrix. The black linefi€ analytical results foc>0.73, see Appendix C. The fraction of
are the function and the bisector. The distance between the functid@!erant players decreases as the time intervals where the tag is
and the bisector has been magnified by a factor of 10. Therefore tH8vaded become longer. This has also an effect on the donation rate.
course of iteration is drawn only schematicallymarks the point ~ For ¢=0.66 a large change of the symmetry parameter is observed
where the separatrix is crossed due to biased conversiongfygen ~ When one symmetric attractor is replaced by two attractors which
p,. Herep, increases further, as the fractipp that exploitsp; is are not symmetr_lc. The fraction of toleranF players and the donation
still very small. Fors=0 the function and the bisector will match, 'ate decrease slightly at=0.66. The donation rate and the symme-

the separatrix can no longer be crosgee-0.01, c=0.1, andb try parameter increase until the fixed poips become stable at
=1.0). ’ ' c~0.73. Here these parameters decrease again. \Whdmally

becomes stable at=(1+1-16¢€)/2~0.96, the symmetry is
complete agairfe=0.01 andb=1.0).

In our model two small channels are openedeby0, as
the separatrix is crossed twice in one oscillation. The rein-
jection in our model is caused by the replicator dynamicscome stable foe =c/2 begin to influence the dynamical sys-
which drives the system to the channel of the opposite tagem.
The dependence of the oscillation frequency on the param-
etere for c=0.1 is shown in Fig. 7. For values ef>0.02, .
the dynamics changes. Here the fixed poipts that be- D. Influence of the cost of cooperatiore

Here we analyze the influence of the cost of cooperation
(c) on our system by defining different measures of order in
our model and by observing the influencecadn these mea-
sures. The donation rate is the probability that one player
donates to anothed=(1—p3(p,+pPs) —Pa(pP1+P3)). The
fraction of tolerant individuals can be measured &g
=(p1+py), and the asymmetry between the tags aas
=|(p1+p3)—{po+pa)|. Here(-) denotes a time average. In
addition, an average over different initial conditions is nec-
essary.

Figure 8 shows that these measures display changes at
~0.02, c~0.66,c~0.73, andc~0.96. We now discuss the
reasons for these transitions. Fox e the pointsp’ ™= (1
—v,y,0) are stable fixed points. In the case &ofc<2¢

FIG. 7. Dependence of the oscillation frequency on the mutationOnly a part of this fixed line is stable, see Appendix B for

rate e. The squares and the triangles are the numerical values fOQetalls. Forc>2e¢ these fixed points become unstable, this
c=0.1 andc=0.2, respectively. The line is a fit of the frequencies |€2dS t0 a decrease of the asymmetry between tags at
for £<0.01. For smalle the frequency increases &s-ac”. We =2¢

found 8=1.0036-0.0003 forc=0.1 andg=1.0021-0.0002 forc For cooperation costs>2e¢, the typical qualitative be-
=0.2. A linear dependence is expected if the perturbation is lineapavior is described above. The attractor of such a system can
in &, as in our case. For high valuesafhe fixed linep”* becomes ~ be seen in Fig. 4. For higher coststhe intolerant players
partially stable fore=c/2 and begins to influence the system. can invade earlier as their advantage is larger. In the follow-

Therefore the frequency decreases=(1.0). ing we restrict ourselves to the case«£0.01. The quali-

105 104 10-3 102 10-1
3
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way to a new cooperative cluster. In other words, the tempo-
rally segregated dynamical coexistence of different tags is
only possible if such a drift towards more tolerance exists.
Without such a drift only one species would be selected. This
is similar to the dynamical coexistence of species in the
rock-paper-scissors ganid2]. The drift provides a new
mechanism for maintaining a dynamical biodiversity in bio-
logical systemg13].

This mechanism prevents a single species from taking
over the whole population as it makes the dominant cluster
vulnerable. Agents can therefore exploit the cluster by ac-
cepting support without supporting the cluster. These free
riders consequently destroy the cooperative cluster again.
The cooperative cluster can only defend itself if the cost for
cooperation is sufficiently high. In this case the free riders
cannot take over the whole population.

The main results do not change if the number of tags is

the attractor. The gray points are the fixed points. The plane is thglcreased. However, the analytical treatme_nt becomes much
separatrix fors=0. The arrows indicate the parts of the attractor MOré complicated, as we have to deal with-1 coupled

where it is mainly driven by the biased conversions. The systenflonlinear equations in the case roftags. Yet, a population

does no longer cross the separatrix near the egge,=1 and ~ Model seems to be more appropriate in the case of more tags,

p,+ps=1. Near the fixed poinp® the trajectory almost closes as our model shows a subsequent realization of all tags in the

itself. For higher values of there are two separated attractocs ( Same order.

=0.66,£=0.01, andb=1.0). If one analyzes a system with a spatial distribution of

agents instead of the well-mixed case described above, one

. . . observes strong segregation between tags. Tolerant players

tative behavior does not (;har!ge uretit 0.661. The attractor need to proteciJ the?nsglves against intolgrant exploitgrsyby

for c=0.66 can be Seen in Fig. 9. , _building a border of intolerant agents around them. The spa-
For c>0.661 the biased conversion can no longer drive, )y distributed system and the strategies that help to over-

the system through the sgp_a.ratrlx. Ty\{o different attraptorgome the segregation will be discussed in R&#].

are observed for different initial conditions. In the original

model this behavior corresponds to the establishment of one

cooperative cluster which becomes tolerant due to the trun-

cated mutations. Intolerant individuals with the other tag try ACKNOWLEDGMENTS

to invade, but the dominant cluster becomes more intolerant

again and prevents an invasion. & 0.73 the fixed points

pS* become stablésee Appendix € For higher values of,

oscillations are no longer observed. For one eigenvalue

the corresponding Jacobi matdX, we had|\,|<1 even for

smallerc. In addition, there is a pair of complex conjugated

eigenvalues that crosses the unit circleat0.73. Hence we

are observing a Hopf bifurcation here. For0.73 the sys-

tem spins into the fixed points®*. For c~0.93 the imagi-

nary parts of the eigenvalues vanish. At=(1 The introduction of “never cooperate” agents which do

+1—-16€)/2~0.96, the stable fixed points®* collapse not donate at al[15] instead of the zero-tolerance agents

with the unstable fixed poimp?® in a supercritical pitchfork — eliminates the difference between tags and leads to the pay-

bifurcation. For higher values of the fixed pointp® is  off matrix

stable.

FIG. 9. Attractor of the systerf#) for c=0.66. The black line is
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ofupport by the Studienstiftung des Deutschen \oli@sr-
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APPENDIX A: PRISONERS DILEMMA

(Tag,T) (Red,+1) (Blue, +1) (Red, Q (Blue, O

IV. SUMMARY AND OUTLOOK

(Red,+1) b—c b—c —C —C

We developed a minimal model for cooperation based on (Blue, 1) b—c b—c —-C —-C
similarity. This model shows oscillations in the population of (Red, Q b b 0 0
tolerant agents as two different groups dominate the popula- (Blue, O b b 0 0

tion successively. The mechanism that drives these oscilla-
tions is a drift towards more tolerance. Without such a drift a
cooperative cluster cannot be destabilized and will not givevhich describes the prisoner’s dilemiig8].
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APPENDIX B: FIXED POINTS OF THE REPLICATOR JT+
DYNAMICS o - L
The stability of the fixed points with only one tag can be 1+(cy+y)y “Cyy-e 0
calculated as follows. Fop™9=(1—x,0x) and =0, we = (cy+y)y 1-cyy—e 0 ,

find the Jacobian matrix - _
2yyct+cy+e —2yyc—cy—e ltcy—e

(B2)

wherey=1-y andc=1-c. The eigenvalues of this matrix
' aren;=1, A,=1+cy—¢, andrz=1+c(l-y)—e. \;<1
(1-x)(c—x+cX) 0 1+(c—1) x? (i=1,2,3) is not possible fot=0. Hence the fixed line is
(B1)  unstable fore=0. Fore>0 there is an interval of stability
given by 1-e/c<y<el/c. If this inequality and Gy=<1
. ) are both fulfilled byy, the biased conversions ensure stability
with the eigenvalues;=1, \,=1—X, andA3=1+C—X.  of the fixed point although the replicator dynamics alone
The fixed point is marginally stable as long ®=c, for X \ould make this point unstable. The first inequation can only
<c it becomes unstable. The reasoning can be adopted fgje fulfilled for c<2e. Forc<e it is always fulfilled and the

1+(1-x)(c—x+cx) O (c—1)x?
Jred= c—CX 1-x c X

the fixed linep®'“®=(0x,0). whole fixed linep ™" is stable.

A fixed point that is conserved far>0 can be found if The fixed point given by®= (e/c,e/c,1/2— e/c) reduces
all players are tolerant. Fgp' " =(1—y,y,0), the Jacobian to the mixed Nash equilibrium fos=0. The Jacobi matrix
matrix is given by at this fixed point is

1+3C8+8—C2 —(1+c)e (1-c)(c—2¢)

2c 2c 4c
(1+c)e ce—e—c®> (l+c)(c—2¢)
d_
Jo= 5C 1+ >c ac . (B3)
(1+c)e —(1+c)e (1-c)(c—2¢)
- 1+ -
c c 2c

The eigenvalues of this matrix are

y(2c—1)— Jy(y+8ec+8sc?)
4c '

)\2:1+

y(2c—1)+ y(y+8ec+8ec?)

=1+
hs=1 4c ’

(B4)

where y=2g—c. For e=0 we have\;=\,=1—c/2<1 andAz=3—(c/2)>1. The third eigenvalue corresponds to an
unstable direction. The corresponding eigenvectegis(1—c,1+c,2), which is the normal of the separatrix fo= 0. In the
case ofe >0 we havex;<1 fori=1,2,3 only ifc>(1+1—16€)/2. Hencep® becomes stable where it coincides with the
fixed pointsp®" described in Appendix C. In all other cases, at least one eigenvaliftisfoutside the unit circle.

APPENDIX C: ADDITIONAL FIXED POINTS

Numerical simulations show that the additional fixed pointsd£orO can always be found in the plane spanned by (1

—¢,0¢), (0,1—¢,0), and (0,G5). Together withp'"*=p} andp5"*=p} we have three equations that describe these points.
Two of the solutions are fixed points not described above. The first fixed pdintan be written as
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a+ \/a_,B— 2e
2c
. JaB+2(a—e)—(a?+4aB+4aaB)?
B 2c '
(1—c)(c2—B—2\aB)+(e?+4aB+4aapB)?
da

ps (CD

wherea=c(1—c) andB=a—4e. p° can be calculated by exchangipg with p, andp; with p,=1—p;—p,—ps. These
fixed points have only real coordinates #8E0. For 3=0 we haveps"=ps~=p".

The eigenvalues of the Jacobi matrix at the fixed pgiitscan be calculated numerically. For=0.01 the fixed points are
only stable ifc>0.73. Atc=(1+ J1—16€)/2~0.96 they collapse witp® in a supercritical pitchfork bifurcation and form a
single stable fixed point.

For ¢>0.73 the fixed pointp* are the only stable attractors and the order measures described in Sec. 1l D can be
calculated analytically. We find for<0.96

S5a—4s(1+c)+2\aB—(a?+4aB+4aJaB) 2

d=1-p3(P2+P4)—Pa(P1tP3)= 1o , (C2
Ba—4e+2\JaB—(a®+4aB+4aapB)?
Po=P1t P2= 5c , (C3
—a+(a?+4aB+daaB)?
a=[p1tP3— P2~ Pal= a : (C4)
For ¢>0.96 the fixed poinp® becomes stable and we finld= % + (e/c), po=2(e/c), anda=0.
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