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Edge distribution method for solving elliptic boundary value problems with boundary singularities
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Elliptic boundary value problems are difficult to treat in the vicinity of singularities, i.e., edges and corners,
of the boundary. The concentration of electrical charge on the edges and corners of a conductor is perhaps the
simplest example of such problems. Here we provide a rapid method for accurate treatment of these problems.
It utilizes a Green’s-function-based implementation of last-passage Monte Carlo diffusion methods. This is
combined with a diffusion algorithm for the scaling of solutions to the Laplace equation near a corner singu-
larity to yield the solution of a benchmark problem: the charge distribution near the edge and corner of a
conducting cube.
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I. INTRODUCTION

Probabilistic potential theory@1,2# allows the accurate so
lution of elliptic partial differential equations~PDE’s! using
methods naturally suited to parallel programming. Thus
shows promise as a source of computational methods
application domains in which numerically intensive pro
lems of this kind must be solved. In the present research
restrict our study to the Laplace and Poisson equations.
important application areas are the calculation of molecu
potentials in protein biophysics@3–5# and the calculation of
permeabilities of samples of porous media@6–8#.

This paper is a contribution to a project of solving the
problems using a class of ‘‘charge-based’’ methods, i
methods that focus on calculating the surface charge, i.e.
normal gradient of the solution at all surfaces on wh
boundary conditions are imposed. From this information, o
can reconstruct the solution at an arbitrary point, using, e
the method of moments@9#.

The set of methods developed or extended within t
project includes walk on spheres~WOS! method @10,11#,
first-passage methods@3,12–14#, Green’s function first-
passage methods@7,15,16# ~good for problems with very ir-
regular boundaries!, and last-passage methods@17,18#, in
which diffusing particles are created at the site where t
are to be absorbed, and carry out time-reversed Brown
motion ~good for multiabsorber problems, and for problem
in which surface charge is highly concentrated in a nonu
form manner!.

The first-passage method generates a surface charge
tribution, one charge at a time: each diffusing particle i
tiates outside the conducting surface, diffuses until it fi
reaches the surfaces, and is absorbed, leaving a unit cha
the contact point.

By contrast, the last-passage method uses an integra
mula for the surface charge density to calculate this quan
at a discrete set of points, e.g., the points chosen by an a
tive integration algorithm, to calculate the total charge on
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surface. Alternatively, the charge density can be calcula
on a uniform two-dimensional mesh, the entire surfa
charge distribution being obtained by interpolating the poi
using quadratic splines.

It is difficult to use probabilistic potential theory to obta
the surface charge density at any point with high accura
The law of large numbers shows that a quantity defined
the sum ofN independent, random contributions has a wid
in distribution that is proportional to 1/AN. In problems for
which the surface charge distribution is smooth, this sl
convergence can be overcome by calculating, from the s
Brownian paths that provides(x), the matrix of partial de-
rivatives of this quantity. One then obtains the quantitys(x)
with high accuracy by using a stochastic version of Taylo
theorem@19#. In problems for which the boundary contain
singularities~edges and corners!, this process must be aug
mented; this is the basic purpose of this paper.

In the most basic elliptic PDE, the surface charge, i.e.,
gradient of the solution, is concentrated near singulari
~edges and corners! of the boundary. The calculation of th
charge singularity at a generalized corner, a meeting poin
three or more boundary surfaces, is very demanding w
standard applied math techniques are used. Among met
currently being applied to the study of boundary singularit
are the multipole method@20#, boundary element metho
extrapolation@21,22#, and the use of singular basis function
in the Galerkin method@23#.

In this paper we present a method for obtaining the
havior of charge distributions near surface singularities, a
using that information to obtain the functions(x) over the
entire surface. We call this method the edge distribution~ED!
method.

The basic idea of the ED method is the following: a lar
fraction of the total surface charge is found near the corn
and edges. But this fraction is difficult to calculate with th
last-passage methods just described, because mesh int
tion algorithms converge slowly when applied to rapid
varying functions. The surface charge density at points n
an edge can be written

s~x,d!5dp/a21se~x!, ~1!
©2003 The American Physical Society28-1
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whered is the distance from the edge anda is the exterior
angle between the two intersecting surfaces that form
edge, i.e., it is the angle as swept out through space exte
to the conductor~see Fig. 2.! Here the edge distribution
se(x) is defined by the fact that it is independent ofd for
small d. The charge density at all points near to an edge
completely determined by its edge distributionse(x). This
quantity needs to be calculated only once for each geom
cally distinct edge in a problem. In this paper, we provide
efficient last-passage method for calculating the funct
se(x). For conductors of high symmetry, such as tho
treated here, the edge distribution is best obtained by u
the simulation-tabulation method@16#.

In this paper, we introduce the edge distribution meth
as an important extension of last-passage methods. We d
onstrate its value by calculating the charge distribution n
the edges and corners of a cubic conductor.

An additional result of this study is to provide a rapi
accurate method of exploring corner singularities. T
charge density near a corner of a conductor is known
become singular as a power of the distance from the cor
Here we restrict our study to corners formed by three loca
planar surfaces; even in this case, the exponent of the si
larity is known to depend on the geometry of the corner.

Existing numerical methods for determining this singul
ity require the use of specialized eigenfunction expansi
@24–27#. Here we show that probabilistic potential theo
provides a simple, general solution to this class of proble

This paper is organized as follows: in Sec. II, we revie
the last-passage method for the charge density on a con
ing surface held at unit voltage. In Sec. III, we develop t
ED method for fast calculation of charge density near
edges of a conductor. In Sec. IV, the ED method is applie
calculate the charge distribution near the edges and cor
of a basic test case: the conducting cube. Discussions
conclusions are contained in Sec. V.

II. THE LAST-PASSAGE ALGORITHM
AND ITS LIMITATIONS

In this section, we review the last-passage method
charge density on a conducting surface held at unit volt
with respect to infinity and note some difficulties associa
with the method@18#.

First, we review the last-passage method for charge d
sity on a conducting surface held at unit voltage with resp
to infinity. The last-passage algorithm for charge density
lies on the basic isomorphism of probabilistic potent
theory @1,2#. We briefly review this isomorphism.

Consider the potentialF~x! at a point x near a set of
conducting surfaces. This quantity is closely related@18,20#
to the probabilityP(x) that a diffusing particle initiates at th
point x and executes Brownian motion in an environment
absorbing surfaces whose geometry is identical to the se
conducting surfaces, and diffuses very far away without e
being absorbed at any of these surfaces.@To be precise, one
hasP(x)512F(x).# This formula is of central importanc
in the solution of Laplace~and related! equations; it allows
one to express the solutions of these equations as weig
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averages over the properties of Brownian paths.
This isomorphism, together with basic probability theo

yields a formula for the surface charge densitys~x! at a point
on a boundary of a conducting object. BecauseP(x) is a
harmonic function, it obeys the following equation:

P~x1e!5E dVy g~x1e,y!P~y!. ~2!

Here,g(x1e,y) is the Laplacian Green’s function associat
with Dirichlet, or absorbing, boundary conditions on the s
face]V of the closed regionVy surrounding the pointx ~see
Fig. 1!. In probabilistic language,g(x1e,y) is the probabil-
ity density associated with finding a diffusing particle lea
ing point x1e and making first passage at the pointy on a
surface surrounding the pointx1e. Equation~2! expresses
the mean-value theorem for the harmonic functionP(x): in
order to leave pointx and diffuse far away, a diffusing par
ticle must leave pointx and make first passage at a pointy
@28#. It must then leave pointy and diffuse far away. Note
that, for smalle, the first factor in the integrand is propo
tional to e; the second factor becomese independent. The
charge density at the pointx is given by Gauss’s law@29# as

s~x!52
1

4p

d

de U
e50

F~x!. ~3!

Using the isomorphism of the probabilityP(x) to the elec-
trostatic potentialF(x) gives

s~x!5
1

4p

d

deU
e50

P~x1e!. ~4!

Substituting Eq.~2! gives

s~x!5
1

4pE dVy ḡ~x,y!P~y!. ~5!

FIG. 1. A conducting surface is shown edge on.g(x1e,y) is the
Laplace Green’s function, i.e., it gives the probability density as
ciated with a diffusing particle initiating at the pointx1e and mak-
ing first passage on the surface]Vy at the pointy. For smalle, the
distribution of walkers leaving the point (x1e) and not touching
the horizontal surface can be writteneḡ(x,y).
8-2
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EDGE DISTRIBUTION METHOD FOR SOLVING . . . PHYSICAL REVIEW E68, 046128 ~2003!
Here,

ḡ~x,y![
d

deU
e50

g~x1e,y!. ~6!

This equation provides a factorization which is valuab
for calculatings~x! on a conducting surface: the functio
ḡ(x,y) can be treated analytically. The functionP(y) is com-
plicated, but it can be obtained by Monte Carlo simulati
using the Green’s-function first-passage~GFFP! method
@7,8,16,17#.

The functionḡ(x,y) is a point-dipole Green’s function; i
gives the solution to the Laplace Dirichlet problem for
conducting surface surrounding a point dipole at positionx.
The above derivation shows that, in the case where the p
x lies on a different conducting surface, the functionḡ(x,y)
is also a last-passage Green’s function, i.e., it gives the p
ability density associated with a Brownian particle leavi
an absorbing surface at pointx and diffusing to pointy with-
out ever returning to that surface.

The functionḡ(x,y) has been obtained analytically for
point dipole oriented normal to a flat conducting surfa
@18#:

ḡ~x,y!5
3

2p

uxyu
uxuuyu

1

ux2yu3 5
3

2p

cosu

d3
, ~7!

whereu is the polar angle andd the radius of the absorbin
half sphere. Thus, the charge density on a flat surface
conducting object is given by

s~x!5
3

8p2E dVy

cosu

d3
P~y!. ~8!

This formula is the basis for a last-passage Monte Ca
algorithm for the charge density in the problem studied he
diffusing particles are placed at random pointsy on a first-
passage sphere surrounding the pointx, according to the
probability distribution ḡ(x,y). The GFFP method
@7,8,16,17# is then used to simulate the diffusion of the
particles. If a diffusing particle fails to return to the conduc
ing surface containing the pointx, the random variableP(x)
takes on the value unity for this diffusion trial; these diffu
ing particles will contribute to the Monte Carlo evaluation
the right-hand side of Eq.~8!.

The last-passage method is inaccurate in evaluating
charge density for pointsx very near the edges and corne
of a conducting object. The charge densitys~x! tends to be
large; the first factor in the integrand of Eq.~5! tends to be
very large and the second factor tends to be very small~the
last two essentially because the radius of the hemisphed
must be chosen very small for pointsx very near the edge!.
Thus statistical errors can be very large. Next, we add
this problem.

III. THE EDGE DISTRIBUTION METHOD

In this section, we introduce a technique, the edge dis
bution method, that extends the validity of the last-pass
04612
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method to the boundary of the region containing singula
ties. For any edge of a conducting surface, the charge di
bution s~x,d! on a curve parallel to the edge, but separa
from it by distanced, with d small, can be expressed as

s~x,d!5dp/a21se~x!. ~9!

Here the edge distributionse(x) is nonsingular asd goes to
zero; the anglea is the angle between the two surfac
whose intersection forms the edge; see Fig. 2. The edge
tribution has a natural probabilistic interpretation: it is t
~rescaled! probability density that a diffusing particle make
last passage on the edge pointx. According to the discussion
of the last section, it is also the~rescaled! charge distribution
on a conductor of the same size and shape.

Once one has both the basic scaling law, Eq.~9!, and the
edge distribution for each edge, one can quickly calculate
the charge near edges and corners. The point is that
one-dimensional distribution needs to be determined o
once for each edge on each absorbing object in a calcula

For eachx value of interest, one can calculate the ed
distribution using the following formula:

se~x!5 lim
d→0

d12p/as~x,d!, ~10!

wheres~x,d! gives the surface charge density along a lin
located on one of the two intersecting surfaces, which
parallel to the edge but a distanced away from it. The limit
in this formula is evaluated by obtaining the quantitys~x,d!
for two or three small values ofd, and then extrapolating to
d50. This last quantity is obtained by simulation using t
last-passage formula, Eq.~8!.

In the cases we study in this paper, the functionse(x) can
be obtained as follows: first we substitute fors(x,d) a form
of the integral expression, Eq.~8!. It is necessary to choos
an appropriate form of the Dirichlet Green’s functio
g(x,y). Because we treat the region near the intersection
two planar, absorbing surfaces, we choose a Green’s func
corresponding to a first-passage surface which is a chop
cylinder, whose central axis contains the edge in ques
~see Fig. 2!. This Green’s function can be obtained analy
cally as an infinite series. The surface charge is obtained
taking a normal derivative of the functiong(x,y), at each
conducting surface, to giveḡ(x,y). Finally, the limitd→0 in
Eq. ~10! can be taken analytically. The resulting formula
the basis for a diffusion Monte Carlo calculation of the ed
distribution ~see Fig. 3!.

We describe in detail the calculation of the edge distrib
tion Green’s function for the geometry of the cube, i.e., fo
pair of planar conducting surfaces meeting at an angle oa
53p/2.

The geometry associated with the edge distribut
Green’s function in the case of a cube is shown in Fig. 2. T
diffusing particle begins at a pointx on the edge of the cube
It is surrounded by a first-passage surface which is a th
quarter cylinder of lengthL and radiusa. It is the portion of
a cylinder, with centerline given by the edge, that is outs
the absorbing cube. The potential inside the three-qua
8-3
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J. A. GIVEN AND C.-O. HWANG PHYSICAL REVIEW E68, 046128 ~2003!
cylinder at a point whose cylindrical coordinates are (r,f,z)
due to a charge at position (r8,f8,z8) is obtained as@29#

F~r,f,z!5
4

L (
n51

`

sinS 2

3
f D sinS 2

3
f8D sinS npz

L D
3sinS npz8

L D I 2/3~npr8/L !

I 2/3~npa/L ! F I 2/3S npa

L D
3K2/3S npr

L D2K2/3S npa

L D I 2/3S npr

L D G .
~11!

Here we assume thatr8,r. Also, I 2/3 andK2/3 are modified
Bessel functions of the first and second kinds, respectiv
of order two-thirds. From the above potential, we can get
charge density distributiong(r,f,z) @29#.

The last-passage Green’s functionḡ(r,f,z) on the side of
the cylinder~see Fig. 3! is given by

ḡ~r,f,z!5 lim
d→0

d1/3
1

4p

]

d]f8
U

f850

g~r,f,z!, ~12!

that is,

ḡ~r5a,f,z!5
1

G~5/3!22/3

2

3pLa (
n51

`

sinS 2

3
f D

3sinS npz

L D sinS npz8

L D S np

L D 2/3 1

I 2/3S npa

L D .

~13!

On the end caps of the cylinder, this function is given by

FIG. 2. The cylindrical first-passage surface of radiusa and
length L centered on the edge of a cube. Here]Vy is a chopped
cylindrical surface that intersects the pair of absorbing surfa
meeting at anglea53p/2.
04612
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ḡ~r,f,z50!5
1

G~5/3!22/3

2

3pL (
n51

`

sinS 2

3
f D

3S np

L D 5/3

sinS npz8

L D 1

I 2/3S npa

L D
3F I 2/3S npa

L DK2/3S npr

L D
2K2/3S npa

L D I 2/3S npr

L D G . ~14!

For the edge distribution of a cube~see Fig. 2!, se(x) is
obtained as

se~x!52E
0

aE
0

3p/2

ḡ~r,f!z50P~y!r dr df

1aE
0

LE
0

3p/2

ḡ~f,z!r5aP~y!df dz. ~15!

IV. NUMERICAL RESULTS FOR EDGE DISTRIBUTIONS

In this section, we present our results for the charge s
gularities of the problem studied in this paper: a conduct

s

FIG. 3. Calculation procedure for the functionḡ(x,y) that gives
the~singular! probability density associated with a diffusing partic
leaving the edge of an absorbing cube at the pointx, and making
first passage at the pointy on the surrounding cylinder. Calculation
requires two steps: first the anglef8 is taken to zero, putting the
absorbing particle on the surface of the cube. Then the lengthd is
taken to zero, putting the diffusing particle on the edge.
8-4
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EDGE DISTRIBUTION METHOD FOR SOLVING . . . PHYSICAL REVIEW E68, 046128 ~2003!
cube. We will calculate the edge distribution of the condu
ing cube using two different methods.

We obtain the edge distribution of the absorbing cube
two ways: simulation using the last-passage method toge
with Eqs. ~12!–~14! and direct simulation using Eq.~10!.
Both calculations utilize 108 Brownian motion paths. They
both determine absorption using the WOS method, with
absorption layer of thickness 10212. This should produce ac
curacy of three to four decimal places. In calculating t
edge distribution Green’s functions for these two problem
chopped cylinder ofL5a50.002 is used and the edge ca
culations are done at the center of the chopped cylinder
cube moving the chopped cylinder along the edge of
cube~see Fig. 2!. Due to the symmetry of both problems, th
edge distribution is obtained in the range of 0–0.499 w
0.001 step. The result is shown in Fig. 4. The corner sin
larity of the cube is obtained using a least-squares fit
g;0.204860.001 in Fig. 5, where the best result usin
boundary element methods is 0.2134@25#. It seems very dif-
ficult to obtain an accurate result for the corner singularity
attempting to extrapolate the edge distribution, at least
problems~such as the conducting cube! in which the corner
singularity is relatively soft. It would be interesting to obta
a direct formula for the behavior near the corner by repea
the process used above to obtain the edge distribution.
this seems impossible: one knows the edge singularity,
not the corner singularity, exactly. So we do not obtain
last-passage algorithm for the corner singularity. In the f
lowing section we offer a first-passage algorithm for th
quantity.

V. A FIRST-PASSAGE ALGORITHM
FOR THE CORNER SINGULARITY

In this section, we present a diffusion-based simulat
method that rapidly evaluates the power-law singula

FIG. 4. The edge distribution of a unit cube calculated us
Eq. ~9! ~crosses! and using Eq.~15! ~circles!. The edge distribution
is shown rescaled with the value at the center of the edge of
cube. Here,y is the distance from the center of the edge of the cu
04612
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associated with a corner of a conducting object. We a
discuss its relation to the previous work.

Close enough to the corner singularity, the surface cha
density on a charged conductor will be dominated by
single, power-law singularity of the form

s~x!5Auxup/a212g. ~16!

This implies that the corresponding dominant term in t
expansion of the voltage will be

F~x!5A8uxup/a2g. ~17!

This can be proved in general by the discrete nature of
spectrum of the appropriate Laplacian eigenvalue probl
Here we assume that this dominance occurs at distances
ficiently far from the singularity so that one can do accur
Monte Carlo calculations of the voltage at such distan
from the singularity. By the basic isomorphism of probab
listic potential theory, the voltage is equal to the fraction
diffusing particle that starts at a point external to the abso
ing object and never contacts it. This is small near the cor
singularity. Ideally, one would like to have a last-passa
algorithm for this quantity. However, it seems to be inhe
ently difficult to find one. Instead we use the Green
function first-passage method@15# to obtain this quantity at
distancesx151024 and x251025 from the singularity. In
terms of the corresponding voltagesF1 and F2, we have
from Eq. ~2!:

p

a
2g5 ln

F1

F2
Y ln

x1

x2
. ~18!

Application of this method gives for the corner singularity
the conducting cube the resultg50.2125 and is in good
agreement with the boundary element result presented in
last section.

g

e
.

FIG. 5. Asymptotic edge distribution values near the corner
the edge distribution for a unit cube:dc is the distance along the
edge from the corner and the linear regression slope is20.2048,
that is,se;dc

20.2048.
8-5
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We note that our results here are entirely consistent w
those presented in the paper by Zhang and Zemanian@24#.
Those authors present a formula for the total surface ch
Q contained within a distanced of a corner of a conducting
cube. This formula requires a calculation of the prefactorA8
in Eq. ~16! for the charge density. We do not provide th
here. However, our method for determining corner singul
ties is completely general; it is not limited to the geometry
the cube.

VI. DISCUSSIONS AND CONCLUSIONS

This paper provides an important extension to la
passage Monte Carlo methods, allowing the treatmen
problems containing boundary singularities. Important ap
cation areas include molecular biophysics and the mate
science of composites.

An additional benefit of the edge distribution method
that it provides an efficient, flexible tool for the study
m
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corner singularities, i.e., the power-law divergences t
characterize the behavior of solutions to elliptic PDE’s ne
corners.
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