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Edge distribution method for solving elliptic boundary value problems with boundary singularities
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Elliptic boundary value problems are difficult to treat in the vicinity of singularities, i.e., edges and corners,
of the boundary. The concentration of electrical charge on the edges and corners of a conductor is perhaps the
simplest example of such problems. Here we provide a rapid method for accurate treatment of these problems.
It utilizes a Green's-function-based implementation of last-passage Monte Carlo diffusion methods. This is
combined with a diffusion algorithm for the scaling of solutions to the Laplace equation near a corner singu-
larity to yield the solution of a benchmark problem: the charge distribution near the edge and corner of a
conducting cube.
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[. INTRODUCTION surface. Alternatively, the charge density can be calculated
on a uniform two-dimensional mesh, the entire surface
Probabilistic potential theoryl,2] allows the accurate so- charge distribution being obtained by interpolating the points
lution of elliptic partial differential equation€PDE’s) using  using quadratic splines.
methods naturally suited to parallel programming. Thus it It is difficult to use probabilistic potential theory to obtain
shows promise as a source of computational methods fdhe surface charge density at any point with high accuracy:
application domains in which numerically intensive prob- The law of large numbers shows that a quantity defined by
lems of this kind must be solved. In the present research, wée sum ofN independent, random contributions has a width
restrict our study to the Laplace and Poisson equations. Twin distribution that is proportional to {N. In problems for
important application areas are the calculation of moleculawhich the surface charge distribution is smooth, this slow
potentials in protein biophysid8—5] and the calculation of convergence can be overcome by calculating, from the same
permeabilities of samples of porous meffia-8§. Brownian paths that provide(x), the matrix of partial de-
This paper is a contribution to a project of solving theserivatives of this quantity. One then obtains the quantifx)
problems using a class of “charge-based” methods, i.e.with high accuracy by using a stochastic version of Taylor’s
methods that focus on calculating the surface charge, i.e., theéeorem[19]. In problems for which the boundary contains
normal gradient of the solution at all surfaces on whichsingularities(edges and cornersthis process must be aug-
boundary conditions are imposed. From this information, onenented; this is the basic purpose of this paper.
can reconstruct the solution at an arbitrary point, using, e.g., Inthe most basic elliptic PDE, the surface charge, i.e., the
the method of moment{$®]. gradient of the solution, is concentrated near singularities
The set of methods developed or extended within thigedges and cornersf the boundary. The calculation of the
project includes walk on spherd®VOS) method[10,11], charge singularity at a generalized corner, a meeting point for
first-passage methodg3,12—-14, Green's function first- three or more boundary surfaces, is very demanding when
passage method¥,15,1§ (good for problems with very ir- standard applied math techniques are used. Among methods
regular boundarigs and last-passage methofik7,18, in  currently being applied to the study of boundary singularities
which diffusing particles are created at the site where theyare the multipole metho@20], boundary element method
are to be absorbed, and carry out time-reversed Browniaextrapolatio[21,22, and the use of singular basis functions
motion (good for multiabsorber problems, and for problemsin the Galerkin metho@23].
in which surface charge is highly concentrated in a nonuni- In this paper we present a method for obtaining the be-
form manney. havior of charge distributions near surface singularities, and
The first-passage method generates a surface charge dissing that information to obtain the functian(x) over the
tribution, one charge at a time: each diffusing particle ini-entire surface. We call this method the edge distributtein)
tiates outside the conducting surface, diffuses until it firstmethod.
reaches the surfaces, and is absorbed, leaving a unit charge atThe basic idea of the ED method is the following: a large
the contact point. fraction of the total surface charge is found near the corners
By contrast, the last-passage method uses an integral foand edges. But this fraction is difficult to calculate with the
mula for the surface charge density to calculate this quantitjast-passage methods just described, because mesh integra-
at a discrete set of points, e.g., the points chosen by an adafen algorithms converge slowly when applied to rapidly
tive integration algorithm, to calculate the total charge on thevarying functions. The surface charge density at points near
an edge can be written
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where § is the distance from the edge andis the exterior 9(z +¢€,y)
angle between the two intersecting surfaces that form the
edge, i.e., it is the angle as swept out through space extern:
to the conductor(see Fig. 2. Here the edge distribution
o(X) is defined by the fact that it is independent &for y
small 5. The charge density at all points near to an edge is
completely determined by its edge distributiog(x). This ‘=
guantity needs to be calculated only once for each geometri
cally distinct edge in a problem. In this paper, we provide an
efficient last-passage method for calculating the function
o¢(X). For conductors of high symmetry, such as those
treated here, the edge distribution is best obtained by using
the simulation-tabulation methdd6].
In this paper, we introduce the edge distribution method S
as an important extension of last-passage methods. We dem- ] ) ]
onstrate its value by calculating the charge distribution near F!G- 1. Aconducting surface is shown edge g(x+ €,y) is the
the edges and corners of a cubic conductor. Laplace Green’s function, i.e., it gives the probability density asso-

An additional result of this study is to provide a rapid ciated with a diffusing particle initiating at the poixt e and mak-

accurate method of exploring corer singularities. Thed first passage on the surfag, at the pointy. For smalle, the

charge density near a comer of a conductor is known tdlstrlbutlon of walkers leaving the poin{ €) and not touching

: . he hori | surf i .
become singular as a power of the distance from the corne(er.e orizontal surface can be written(x,y)

Here we restrict our study to corners formed by three loca”yaverages over the properties of Brownian paths

planar surfaces; even in this case, the exponent of the singu- This isomorphism, together with basic probability theory,

larity .iS .known to erend on the geometry .Of thg corner. yields a formula for the surface charge density) at a point
Existing numerical methods for determining this smgular-On a boundary of a conducting object. Becal{) is a

ity require the use of specialized eigenfunction expansion . . ; ) N
[24-27. Here we show that probabilistic potential theory Rarmonic function, it obeys the following equation:

provides a simple, general solution to this class of problems.

This paper is organized as follows: in Sec. Il, we review P(x+ e)=f dQ, g(x+€,y)P(y). 2
the last-passage method for the charge density on a conduct-
ing surface held at unit voltage. In Sec. Ill, we develop the

ED method for fast calculation of charge density near th‘?Nith Dirichlet, or absorbing, boundary conditions on the sur-

edges of a conductor. In Sec. 1V, the ED method is applied t ; ; :
calculate the charge distribution near the edges and corne:%ceo’)Q of the closed regioti}, surrounding the point (see

: ) . ) . g. 1). In probabilistic languageg(x+ €,y) is the probabil-
of a basic test case: the conducting cube. Discussions a density associated with finding a diffusing particle leav-
conclusions are contained in Sec. V.

ing pointx+e and making first passage at the pojnbn a
surface surrounding the poimt+e. Equation(2) expresses
Il. THE LAST-PASSAGE ALGORITHM the mean-value theorem for the harmonic functi®x): in
AND ITS LIMITATIONS order to leave poink and diffuse far away, a diffusing par-
ticle must leave poink and make first passage at a pont
In this section, we review the last-passage method fo[2g]. |t must then leave poiny and diffuse far away. Note
charge density on a conducting surface held at unit voltagenat, for smalle, the first factor in the integrand is propor-
with reSpeCt to |nf|n|ty and note some difficulties associateq:ionaj to € the second factor becomesindependent_ The

with the method 18]. charge density at the pointis given by Gauss's la29] as
First, we review the last-passage method for charge den-

sity on a conducting surface held at unit voltage with respect 1 d

to infinity. The last-passage algorithm for charge density re- o)== 71— d_‘ D (). )
. N . o . T de|

lies on the basic isomorphism of probabilistic potential €=0

theory[1,2]. We briefly review this isomorphism.

Consider the potentiadb(x) at a pointx near a set of
conducting surfaces. This quantity is closely reldt&8,20]
to the probabilityP(x) that a diffusing particle initiates at the
point x and executes Brownian motion in an environment of o(X)=— ‘
absorbing surfaces whose geometry is identical to the set of 4m de €=0
conducting surfaces, and diffuses very far away without ever
being absorbed at any of these surfa¢@s.be precise, one Substituting Eq(2) gives
hasP(x)=1—®(x).] This formula is of central importance
in the solution of Laplacéand relateg equations; it allows
one to express the solutions of these equations as weighted

G

"

Here,g(x+ €,y) is the Laplacian Green'’s function associated

Using the isomorphism of the probabili§(x) to the elec-
trostatic potentiatb(x) gives

P(x+e). (4)

1
00= 5= 40, GxYP) ®)
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Here, method to the boundary of the region containing singulari-
ties. For any edge of a conducting surface, the charge distri-
©6) bution o(x,8) on a curve parallel to the edge, but separated

_ d
90Y)= e - g(x+ey). from it by distances, with 8 small, can be expressed as

e=0

This equation provides a factorization which is valuable a(x,8)=6""1gy(x). 9
for calculatingo(x) on a conducting surface: the function
g(x,y) can be treated analytically. The functiBiy) is com-  Here the edge distributionrs(x) is nonsingular as goes to
plicated, but it can be obtained by Monte Carlo SimU'ationzero; the ang|ea is the ang]e between the two surfaces
using the Green's-function first-passag€FFP method  whose intersection forms the edge; see Fig. 2. The edge dis-
[7.,8,16,17. tribution has a natural probabilistic interpretation: it is the
The functiong(x,y) is a point-dipole Green’s function; it (rescaledl probability density that a diffusing particle makes
gives the solution to the Laplace Dirichlet problem for alast passage on the edge poinAccording to the discussion
conducting surface surrounding a point dipole at posion of the last section, it is also tHeescaled charge distribution
The above derivation shows that, in the case where the poin a conductor of the same size and shape.
x lies on a different conducting surface, the functgx,y) Once one has both the basic scaling law, @ and the
is also a last-passage Green’s function, i.e., it gives the prokedge distribution for each edge, one can quickly calculate all
ability density associated with a Brownian particle leavingthe charge near edges and corners. The point is that this
an absorbing surface at poixand diffusing to poiny with-  one-dimensional distribution needs to be determined only
out ever returning to that surface. once for each edge on each absorbing object in a calculation.

The functiong(x,y) has been obtained analytically for a  For eachx value of interest, one can calculate the edge
point dipole oriented normal to a flat conducting surfacedistribution using the following formula:

[18]:

ao(X) = lim 8~ "2 g(x, ), 10
_ 3 |xy| 1 3 cosfd ¥ 50 (.2 10

X' = — = , 7
W)= 2 KV —yP 27 @ @)

where a(x,8) gives the surface charge density along a line,
where @ is the polar angle and the radius of the absorbing located on one of the two intersecting surfaces, which is
half sphere. Thus, the charge density on a flat surface of parallel to the edge but a distanéeaway from it. The limit

conducting object is given by in this formula is evaluated by obtaining the quantiti,d)
for two or three small values af, and then extrapolating to
3 cosé 6=0. This last quantity is obtained by simulation using the
"(X)ZQJ dQ, e P(y). () |ast-passage formula, E¢B).

In the cases we study in this paper, the functiQ(x) can

This formula is the basis for a last-passage Monte Carl®€ obtained as follows: first we substitute fefx, 5) a form
algorithm for the charge density in the problem studied here®f the integral expression, E¢B). It is necessary,to choose
diffusing particles are placed at random poigtsn a first- an appropriate form of the Dirichlet Green's function
passage sphere surrounding the pointaccording to the g(x,y). Because we treat the region near the intersection of
probability ~distribution g(x,y). The GFFP method tWo planar, absorbing surfaces, we choose a Green's function
[7,8,16,17 is then used to simulate the diffusion of these corresponding to a first-passage surface which is a chopped
particles. If a diffusing particle fails to return to the conduct- cylinder, whose central axis contains the edge in question
ing surface containing the point the random variabl®(x) ~ (see Fig. 2 This Green's function can be obtained analyti-
takes on the value unity for this diffusion trial; these diffus- Cally s an infinite series. The surface charge is obtained by
ing particles will contribute to the Monte Carlo evaluation of taking a normal derivative of the functiag(x,y), at each
the right-hand side of E(8). conducting surface, to givg(x,y). Finally, the limit 50 in

The last-passage method is inaccurate in evaluating thgd- (10) can be taken analytically. The resulting formula is
charge density for points very near the edges and corners the basis for a diffusion Monte Carlo calculation of the edge
of a conducting object. The charge densitix) tends to be ~distribution(see Fig. 3. _ o
large; the first factor in the integrand of E@) tends to be We describe in detail the calculation of the edge distribu-
very large and the second factor tends to be very stttz tion Green’s function for the geometry of the cube, i.e., for a
last two essentially because the radius of the hemispthere Pair of planar conducting surfaces meeting at an angle of

must be chosen very small for pointsrery near the edge ~ =37/2.
Thus statistical errors can be very large. Next, we address The geometry associated with the edge distribution
this problem. Green’s function in the case of a cube is shown in Fig. 2. The
diffusing particle begins at a pointon the edge of the cube.
IIl. THE EDGE DISTRIBUTION METHOD It is surrounded by a first-passage surface which is a three-

quarter cylinder of length. and radiusa. It is the portion of
In this section, we introduce a technique, the edge distria cylinder, with centerline given by the edge, that is outside
bution method, that extends the validity of the last-passagthe absorbing cube. The potential inside the three-quarter
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FIG. 2. The cylindrical first-passage surface of radausand
length L centered on the edge of a cube. Héf, is a chopped
cylindrical surface that intersects the pair of absorbing surface:
meeting at anglex=37/2.

cylinder at a point whose cylindrical coordinates gped, z)
due to a charge at positiop(,¢’',z") is obtained a$29]

® FIG. 3. Calculation procedure for the functiglx,y) that gives

4 (2 (2 [nmz ) - - . : A -
D(p,b,2)=— 2, sin = |sin = ¢’ |sin| — the (singulay probability density associated with a diffusing particle

L i=1 3 3 L leaving the edge of an absorbing cube at the prirand making

first passage at the poigiton the surrounding cylinder. Calculation

% sin nmz'\lgnmp'/L) nwa requires two steps: first the angl is taken to zero, putting the
L |/ I,4(nmall) 218 L absorbing particle on the surface of the cube. Then the lefiggh
taken to zero, putting the diffusing particle on the edge.
nmp nma nmTp
XK2’3(T>_K2’3T '2’3(T”' P S _(2¢)
,$,2=0)= ——— —— sin =
(12) o I'(5/3)22R33wL =1 13
Here we assume that <p. Also, |53 andK,,; are modified % nm B [nmz’ 1
Bessel functions of the first and second kinds, respectively, L sin L nma
of order two-thirds. From the above potential, we can get the 28 T
charge density distributiog(p, ¢,z) [29].
The last-passage Green'’s functigfp, ¢,z) on the side of nwa nmp
the cylinder(see Fig. 3is given by X o | Kasl
Gppa=lms® = gp42, (2 Ko |, ””’)H 14
y@,Z)=1IMm yyia— v 9,2Z), — o T los T |-
g(p 50 . 5(3’¢' ¢,:09 Y L L
_ For the edge distribution of a culisee Fig. 2, o¢(X) is
that is, obtained as
1 2 “ 2 faf37r/2_ dod
ol = = i —_ g X :2 y = P
=22 e S, sl 39, =2 " | " Gp.0)-P I dp ds
, 213 L (32
nmwz nwz'\(n 1 —
s sin| —— | sin| —— || 2] —— +af f 9(¢#,2),-4P(y)dpdz. (15
L L L nma 0Jo
213 T
13 IV. NUMERICAL RESULTS FOR EDGE DISTRIBUTIONS

In this section, we present our results for the charge sin-
On the end caps of the cylinder, this function is given by gularities of the problem studied in this paper: a conducting
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FIG. 4. The edge distribution of & unit cube calculated using  FIG. 5. Asymptotic edge distribution values near the corner of
Eq. (9) (crossesand using Eq(15) (circles. The edge distribution  the edge distribution for a unit cubé, is the distance along the

is shown rescaled with the value at the center of the edge of thedge from the corner and the linear regression slope(2048,
cube. Herey is the distance from the center of the edge of the cubethat is, oo~ 550-2048_

cube. We will calculate the edge distribution of the conduct-2ssociated with a corner of a conducting object. We also
ing cube using two different methods. discuss its relation to the previous work.

We obtain the edge distribution of the absorbing cube in Close enough to the corner singularity, the surface charge
two ways: simulation using the last-passage method togethglensity on a charged conductor will be dominated by a
with Egs. (12)—(14) and direct simulation using Eq10).  Single, power-law singularity of the form
Both calculations utilize 1 Brownian motion paths. They 1
both determine absorption using the WOS method, with an a(x)=AxmeE (16)
absorption layer of thickness 1. This should produce ac- L . . .
curacy of three to four decimal places. In calculating theThIS |mplles that the corre;pondmg dominant term in the
edge distribution Green’s functions for these two problems, gxpansion of the voltage will be
chopped cylinder of. =a=0.002 is used and the edge cal-
culations are done at the center of the chopped cylinder on a
cube moving the chopped cylinder along the edge of the

cube(see Fig. 2 Due to the symmetry of both problems, the g0 tm of the appropriate Laplacian eigenvalue problem.

edge distribution is obFamed N fthe range of 0-0.499 _W'thHere we assume that this dominance occurs at distances suf-
0'901 step. The res_ult IS s.hown n Fig. 4. The corner S'nguficiently far from the singularity so that one can do accurate
larity of the cube_ IS qbtamed using a least-squares f'_t AR1onte Carlo calculations of the voltage at such distances
y~0.2048-0.001 in Fig. 5, where the best result using f,m the singularity. By the basic isomorphism of probabi-
boundary element methods is 0.21258]. It seems very dif- jisiic notential theory, the voltage is equal to the fraction of
ficult to obtain an accurate result for the corner singularity bydiffusing particle that starts at a point external to the absorb-

attempting to extrapolate the edge distribution, at least f0f, ohiect and never contacts it. This is small near the corner
problems(such as the conducting cubie which the corner — qin g arity. I1deally, one would like to have a last-passage

singularity is relatively soft. It would be interesting to obtain algorithm for this quantity. However, it seems to be inher-
a direct formula for the behavior near the corner by repeatin%nﬂy difficult to find oné. Instead,we use the Green’s-

the process used above to obtain the edge distribution. Byl ,qviqn first-passage methdds] to obtain this quantity at
this seems impossible: one knows the edge singularity, blﬂistancesx1=10*4 and x,=10"° from the singularity. In

not the corner sin_gularity, exactly. So we do.not obtain &arms of the corresponding voltagds, and ®,, we have
last-passage algorithm for the corner singularity. In the foI-from Eq. (2): '
ar (Dl Xl
——vy=Inh—/ In—. 1
o Y nq)z/ an ( 8)
V. A FIRST-PASSAGE ALGORITHM

lowing section we offer a first-passage algorithm for this
guantity.
FOR THE CORNER SINGULARITY Application of this method gives for the corner singularity of
the conducting cube the resujt=0.2125 and is in good
In this section, we present a diffusion-based simulatioragreement with the boundary element result presented in the
method that rapidly evaluates the power-law singularitylast section.

d(x)=A"|x|™*"7, (17

This can be proved in general by the discrete nature of the
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We note that our results here are entirely consistent witltorner singularities, i.e., the power-law divergences that
those presented in the paper by Zhang and Zemd@idlh  characterize the behavior of solutions to elliptic PDE’s near
Those authors present a formula for the total surface chargeorners.

Q contained within a distance of a corner of a conducting

cube. This formula requires a calculation of the prefaétor ACKNOWLEDGMENTS
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