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Diffusion in channeled structures: Xenon in a crystalline sodalite
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The theory of Ronis and Vertenstdil. Chem. Phys35, 1628(1986] is used to calculate the permeability
of xenon in Theta-1, a crystalline sodalite containing one-dimensional channels. The required time-correlation
functions are obtained from numerical simulations performed using a small number of target crystal atoms. The
dynamics of the target atoms reproduce those of the full crystal by the means of a generalized Langevin
equation of motion. An approximate expression for the potential of mean force inside the crystal is derived.
The plane average space-dependent diffusion coeffi€ién} obeys the Smoluchowski prediction at infinite
dilution. The permeability is reported and compared in detail with that obtained from transition state theory.
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[. INTRODUCTION tions are valid only for an uniform system, and imply a dif-
fusion equation for the guest component of the form
Understanding the diffusion of a guest component inside
channeled structuresuch as membrane channels, zeolites, an(r,t) —DV2
" ! = n(r,t), (1.3
and many silicateshas been a problem of interest for many ot
years. Crystalline channeled structures have many applica- ) )
tions in gas phase separation and are also widely used #41eren(r,t) is the number density of the guest.
catalysts in chemical reactiofi$,2]. The diffusion of one or ~In the second approach, transition state theory or one of
more guest components inside the crystal plays an importa#§ modified versiongcf. Refs.[10-12) is used in a hopping
role in any of these applications. In this work, we develop amodel to calculate the hopping rate constants. Of course,
systematic approach that allows us to understand the diffuransition state theory makes several assumptions, the key
sion process microscopically and calculate the macroscopi@nes being that the motion closely follows the reaction coor-
permeability of channeled structures to a guest componen@inate and that there are no recrossings. This paper proposes
Specifically, we will apply the theory to the diffusion of a@n alternative and more general method that can also be used

noble gases through Theta-1, a high silicate zeolite tha© Verify the validity of transition state theory.

shows a remarkable selectivity in catalysis applicatiffis For bounded systems with large potential gradients, a
and could be a good candidate to study single-file diffusiofnore correct starting point is the generalized diffusion equa-
[3,4]. tion,

Early theoretical calculations on channeled structures fo-
cused mainly on the heat of sorptiph,6]. These calcula-
tions were performed using a model potential for the guest- ot
crystal interactions on a rigid lattice. Next, the diffusion in
channels was studied through molecular dynamig)
simulation[7-9], where a diffusion coefficient was calcu-
lated from Einstein or Green-Kubo relations; cf. E¢k.1) . %
and (1.2) below. For high internal potential energy barriers, L(r|r’)5f dt(JT(r,t)JT(r’)>, (1.5
where barrier crossing events are rare, a common way to 0
proceed was to determine a hopping rate constant using tra
sition state theory10-12.

In homogeneous systems, the diffusion coefficientan
be obtained using an Einstein relation,

an(r,t)

:Vrjdr’f(r|r’)-VrrﬁM(f’,t), (14

whereu(r,t) is the chemical potential and where the gener-
alized Onsager diffusion coefficient,

[8ads to a space-dependent, nonlocal, diffusion coefficient
generalizing Eq(1.3). In this last equation)' is the dissipa-
tive (random part of the diffusion current defined by a pro-
jection operatof13,14).

In all the approaches just mentioned, one still needs to

(r(y=r(0)?

D= lim (1.1)  make contact with what is measured experimentally; e.g., the
t—oo 6t net fluxj of material passing through the channeled material.
In steady state, this typically obeys the macroscopic phenom-
or equivalently by a Green-Kubo relation, enological constitutive relation
J=P(u"—p )0, (1.9

l ©
D:—f dt(v(t)-v(0)), (1.2 ) - . )
3Jo whereP is the permeability ang.~ are the chemical poten-

tials in the = phases. The net flow is assumed to lie along
wherer is the position of the guesy is its velocity and the z axis andz=0 is the midplane inside the channeled
(---) denotes an equilibrium average. These last two equastructure.
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The simple diffusive or hopping models easily yield ex- evaluation of the permeability requires a space-dependent
pressions for the permeability. The calculation based on th®nsager diffusion coefficient which is obtained in terms of
generalized diffusion equation, E€L.4), is more involved, equilibrium time correlation functions that are computed by
was considered in Ref15], and will be used here. Note that Simulating generalized Langevin equations of motion for the
this theory does not assunaepriori any reaction coordinate guest and harmonic lattice atoms presented in Sec. I, an
that dominates the dynamics of the guest. approach first discussed by Deutch and SilpEgj.

Previous molecular dynamics simulations were performed !N Sec. Ill, we show how the memory functions and ran-
using rigid[7—9] or flexible[10~12,16 lattices. The motion dom noise terms that appear in the Langevin equations of
of the lattice in Refs[10—12,1§ is, again, simulated with motion for the crystal atoms can be calculated and we dem-

molecular dynamicgin practice, however, the systems stud- onstrate that the vibrational density of states of the full
ied are fairly small, namely, a single unit cell containing 622 Theta-1 crystal is reproduced. We also give an approximate
lattice atomg In this work, the motion of the lattice is de- WaY of calculating the potential of mean force for the guest

scribed by a generalized Langevin equatiGi.E) that mim- iljside the crystal and test it against the numerical simula-
ics the effect of the infinite crystal. This approach is taken forONS. _
many reasons. First, with the GLE, it is possible to reproduce Section IV presents the details of the molecular model and
the vibrational density of states of the infinite crystal with 9ives results for the correlation functions and finally for the
high accuracy. Second, the presence of the guest will injed?€rmeability for xenon in Theta-1. A detailed comparison
energy in the crystal lattice. The use of GLE allows the dis-With transition state theor.y is made m_Sec. V. We summarize
sipation of that energy in a physically consistent way. In@nd make some concluding remarks in Sec. VI.
conventional MD, this extra kinetic energy would stay in the
system and could later on affect the guest dynamics. As was Il. THEORY
pointed out by Kopelevich and Charig7], there are also
more subtle problems associated with classical lattice models
with periodic boundary conditions; specifically, artificial ~ The diffusion of the guest component inside the chan-
feed-back mechanisms can lead to highly exaggerated someled structure is governed by the generalized diffusion
bate transport rates in MD simulations. equation, Eq.(1.4). The system will have many potential
Of course, for the same number of degrees of freedombarriers and a nontrivial energy landscape. Microscopic ex-
the GLE is more numerically expansive than conventionapressions for the permeability starting from the generalized
MD. If the vibrational spectrum of the infinite crystal is to be diffusion equation for such systems were obtained by Ronis
reproduced in MD simulations for typical zeolites, the mo-and Vertensteif15]. Here, we simply state their result. The
tion of about 16 atoms needs to be simulated. Therefore, themacroscopic permeability of the channeled material is given
flexibility of the lattice is often neglected in such problems. by
As shown by Kopelevich and Charid7], neglecting the
flexibility of the lattice does not lead to large errors for small 1 1+
guest in large channel structures. However, as expected, in- p E _m dz
cluding flexibility is mandatory for a system where the size
of the guest is larger than or comparable to the pore size or there
the guest has to pass through small bottlenecks. In other ’
words, one needs to include the flexibility if it changes sig- 1 (e
nificantly the guest available volume inside the crystal. D(z)= _J dtf dr”J dr’<J;(r,t)J;(r’)). (2.2
The importance of our approach lies in its generality. It Alo
has been shown that the use of E@ds1)—(1.3) is inconsis-
tent for inhomogeneous systefis]. We will show here that In these last equationf)(z) is a space-dependent Onsager
the transition state theory approach is not valid for system§liffusion coefficientD .. is the bulk chemical potential in the
with low energy barriergin agreement with the prediction + phasesJ] is thez component of the irreversible part of
made in Ref[17]) where the flexibility of the lattice can the current, and\ is the area of the crystalline medium. The
usually be neglected. When the energy barriers are largéntegral over (X,y) is a consequence of the fact that the net
transition state theory is expected to give a more accurateurrent through the interface is along theaxis. Note that
result, but in that case, the flexibility of the lattice usually this result is first order in membrane excess quantity and this
plays an important role. The method proposed here is generahoice ofD(z) makes the higher order corrections smaller.
since it includes the flexibility of the lattice self-consistently ~ The expression for the permeability, E@.1), was de-
through a GLE and its applicability is independent of therived on the basis of Eq1.6). The chemical potentials ap-
magnitude of the energy barriers. pearing in Eq.(1.6) are the bulk chemical potentials of the
The paper is divided as follows. In Sec. Il, a summary oftwo regions extrapolated to the=0 plane. It is more con-
the theory leading to a projection-operator, correlation-venient to rewrite Eq(1.6) in terms of the chemical potential
function expression for the macroscopic permeability is preat the two outer surfaces of the channeled medium. Siisce
sented and we show how to approximately reexpress timeonstant in the bulk in steady states, we rewrite @cf) as
correlation functions containing projected dynamics in terms
of those associated with Newtonian equations of motion. The j=P'[p(d)—pu(—=d)], (2.3

A. Microscopic expressions for the permeability

1 1
D(z) D*O(2)+D 0O(-2)

(29
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where 2l is the thickness of the interface and of motion of the reducedguest and targgsystem are
1 1 (d 1 d t aU(rG,ra,...,ra
P _J dz—— (2.9 Pe(t) __ ! Mroge (2.6
P BJ-a D(2 dt I

is a permeability intrinsic to the material. and

B. Correlation function expression for D(z) dp, dU(re Mags o ’raNTargeI N iLt<F ot FT(t)
= € a [
We already have a correlation function expression for the dt Iy Bah

space-dependent Onsager diffusion coefficiefz) in Eq. ¢ Nraet (BT ()T

(2.2). Unfortunately, this equation cannot be used directly to _f dt, E (Falt—ty) 7>Bath'p (ty) 2.7

computeD(z) because it involves the random part of the 0o y=1 m,kgT [

current. A common practice is to séf=J, but, as was

shown in Ref[18], this is only valid in special cases, and in Where

general, it is not valid in systems that are spatially inhomo- ey — il aagt

geneous. A correlation function expression fz) that ap- F()=e"ear(1-P)F, 28
proximately includes the effects of the projection operator on I :
the time dependence of the memory function was obtainelf the contribution to the force on theh target atom at time

by Ronis and Vertensteifil5] in terms of unprojected time t exerted by the bath N the presence of ‘T’me.” target
correlation functions. Their final expression B(z) is atoms. In the last equations, the classical Liouville operator
(iL=iL qagetriLga) has been introduced in addition to

o _ aw(z) another projection operator. The projection operator
noofo dt(vg At)vg )L (---)gam is @ normalized average over the bath degrees of
D(z)= , (2.5  freedom.
” Note, that the projection operator no longer appears in the
1+ | dt(BF(z(t . :
fo (BF@()ve.2)z time dependence d¥'(t), and moreover, as was shown in

Ref.[19], will evolve independently of the guest-target mo-
wheren., is the number density in the bulk,g , is thez  tion; as such, Eq(2.7) is a generalized Langevin equation.
component of the guest velocity/(z) andF(z) are, respec- FZ(t) is a colored noise and is considered in more detail in
tively, the plane average potential of mean force and thehe next section. The last term on the right hand side of Eq.
mean force. Also(- - - ), denotes an equilibrium conditional (2.7) is the expected friction term where the memory comes
average for trajectories whose initialcoordinate isz. Infi-  in through a force-force time correlation function.
nite dilution was also assumed deriving E8.5. The cor- Note that it is possible to further project out the equations
relations that appear in this expression will be evaluated byf motion for the target atoms if we linearize the guest-target
the means of numerical simulations of the particle dynamicsnteraction with respect to the target coordinates. This is ba-
below. Given the correlation functions that appear on thesically the assumption of Deutch and Silbey, cf. Ré)],
right-hand side of Eq2.5), the calculation of the permeabil- and this approach was taken by Kopelevich and CHaiig
ity is trivial. The equations of motion that will be used in the This approximation is not valid when the size of the guest is

numerical simulations are described next. comparable to or smaller than the pore sizes. Finally, note
that the assumption that the guest does not interact directly
C. Equations of motion with the bath can be relaxed if we can linearize the guest-

In thi tion. th i f motion for the diffusi bath forces in the bath degrees of freedom; this modifies Eq.
n this section, the equations o TO lon tor tne diffusing (2.7) slightly, and in particular, makes the memory function
particle (hereafter referred to as the “guestnd the rest of depend on the instantaneous position of the guest attjme

mgtiigc;tz ?é?arg\?e?r(esriilﬁcr:t)ri(gérg; grasggfgltopmu;pr?]ies?’btgﬁ the next section, we show how the force-force correlation
. y smal y : function can be calculated, and put everything together in

simulated. The atoms in this part of the channel will be re- : ;

.order to perform the simulations.

ferred to as the target atoms and the rest of the crystal is

called the bath. One of the main goals of this work is to

preserve the effects of the crystalline bath on the motion of IIl. IMPLEMENTATION

the target and guest atoms. In order to do this, we will use a A. Effective forces and force correlation functions

projection operator approach introduced by Deutch and Sil- hi ) ) d show h h

bey[19] in their derivation of the Langevin equation of mo- !N this SeCt'OE' we reexamine E@'? a? S OV‘;] owthe

tion for a particle in a harmonic lattice. This approach was?a/ous terms that appear can be calculated. The separation

subsequently used by Tully in his work on gas-surface interOf crystal atoms into target and bath subspaces allows us to

actions[20] and by Adelman, Diebold, and Md@1] in their ~ P10Ck the force constant matrix as follows

work on gas-solid energy exchange processes. K K
By assuming that the guest does not directly interact with K=( T TB) , (3.1
the bath and that the crystal is fully harmonic, the equations Ker Kgg
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where Kyt is the N rygep< 3N 4ot Matrix linking atoms in 3Ngath b:

the target subspace ai@g is a INpgnX 3Npgan Matrix link- FI(t)= —Krg > Up | a;co wit) +—sin(wit) |.

ing atoms in the bath subspace only. The two rectangular =1 @i

matricesKgt andK+g connect the bath and target atoms. The (3.1
first term of Eq.(2.7) can be written in matrix notation as

Since thea; andb; in the last equation are Gaussian distrib-
) ) t . . .
elLt(F — el — Korfr— Keaf , 3.2 uted, Eq.(3.11) shows thaf(t) is a Gaussian colored noise.

(Fr)an (= Krrir— Krefe)san 32 Moreover, the random force-force correlation function is
whereFr, rr, andrg are, respectively, Sryget 3Nyarger  9IVEN by (FH(t)(F})Tgam, and from Eq.(3.11), is easily
and g, column vectors. The Gaussian averages are pewritten as

formed to give -
L (FHO(FD Dean=kaTKreMg
e (Fr)pan= — Kerrr(t), 3.3 MNau,
T CoOSwit)
where X ;1 uB,iuB,iTMB KgT,
i

Kes=Kr7—KreKgaKar (34 (312

is an effective force constant matrix governing the harmoniovhere we have expressed thgI in terms of the original
motion of the target atoms in the presence of the bath. eigenvectorsig ;, and where{a )= kBT/w

We now derive an expression for the force correlation As it turns out, the vibrational density of states of the
function. Recall thaFT(t) is the force on the target exerted infinite crystal is reproduced when the bath contad{4.0%
by the bath when the target atoms are frozen. In that case, th#oms. Therefore, Eq3.12 is not particularly convenient.
dynamics of the bath atoms are governed by In other words, the required eigenanalysis may be numeri-

cally too demanding.
dra(t)

dt?

B galp(t), (3.9 1. Brute force

The last section gives us a way of calculating the force-
where force correlation function in the time domain. By performing

, . a Laplace transform on E@3.12 and using the fact that
rg(t)=rg(t) + KggKgt- (3.6

In the last equationsylg is the diagonal matrix containing Z Ug,i0fUg ;= Kgg, (3.13
the masses of the bath atoms.

The 3Ngain eigenvectorsig ; of the matrixKgg are deter- e obtain,
mined by

. s
KggUs, = o{Ug, (3.7 (Fi(s)(FD T}— |\/|1/2K —K sTMY2,
| KBB(S +Kgp)
where (3.19

YR 17 —1/2 ; _ wheres is the Laplace transform variable. This last form of
Ky =My “HKyMy ™5 with X, Y=T orB, (3.9 the force-force cgrrelation function does not require an ei-
and wherew is the eigenvalue associated with tha ei- ggnanalys[s. Instead,. it requirgs the inversion. of a large ma-
trix. Inversion of matrices requires less numerical effort than
genvector. The shifted displacement veatg(t) can be ex- . . . . .

a full eigenanalysis, especially when the matrices involved
pandelg in terms of the mass scaled eigenvecitss  are sparse. Also, the Laplace representation will be more
=Mg "Ug; as convenient to use in the simulations.

The inversion of a matrix of rank requiresO(N?) com-
puter memory and a simple estimate shows that our compu-
tation cannot be done on most common computers. One way
out of this problem is to make an approximation about the
where thea; andb; are related to initial positions and veloci- nature of the forces within the crystal. From now on, we
ties, respectively, of the bath atoms and are Gaussian distrigssume that the crystal atoms interact with their nearest

3Ngath

2 Ug i| &icog wit)+ sm(wt) (3.9

uted. The random force, EQR.9), is neighbors through stretching interactions and with their sec-
ond nearest neighbors through bending interactions, and that
F$(t): —Kqgrg(t), (3.10 these are the only interactions present. Hence, the force con-

stant matrix will be massively sparse and this allows us to
in matrix notation, and this can be rewritten in terms of theperform the inversion in Eq3.14) even ifKgg is large. This
mass-scaled eigenvectors as approach approximates the effect of the infinite bath using a
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large, but finite part of the crystal that reproduces the vibratarget(i.e., they have a target atom as their nearest or second
tional density of state accurately. We refer to this approach asearest neighb@rthe secondary bath subspaBe contains

the “brute force” method. atoms that are not directly coupled with the target atoms
(clearly, B, is much larger than the other subspacéote
2. Brillouin zones and defects that RTBzz RBZT:O-

In this section, we will demonstrate how the force-force  \ye \write Kes=K—A, where
correlation function can be calculated in an exact way. This ’
approach uses ideas first introduced by Maradudin in his

study of defects in solid22]. We rewrite Eq.(3.14) as Kot r<TE;l 0
A=| Rzt O 0],
(FHS)(FDT)=[A(0)= A(9)]/s, (3.15 :
0 0 0
where and rewriteG(s) as
A(s)= B MY 5G(5)Kg M2, (3.16 G(s)=[s*+K—A] *=[1-Go(s)A] *Gy(9). 519
with .
We separaté&,(s) into blocks as
T2 K -1
G(s)=[s"+Kgg] . (3.17 . (S)_(gll 9 520
As before, the problem with the last expression lies in the O g0 O’ '

inversion of a large matrix. The functioBy(s) defined as

Go(s)=[s?>+K] %, whereK is the mass-scaled force con-

stant matrix for the full crystal, can be obtained exactly by
using a Fourier representation and then integrating over th
first Brillouin zone of the crystal. We assume tl@g(s) is

where the 1 subspace contains the target and the bath pri-
mary zone and 2 refers to the bath secondary atoms. In this
reepresentation,

known and obtainA(s) in terms of it. To proceed, we re- ~_ sK 0 (3.21)
block K in the following way: lo o) '
RTT KTBl KT82 where
K= RBlT Rslsl I~<BlB2 : (3.18 -
~ ~ ~ - KTT KTB1
Ke,r Kgs, Kap, K= . . (3.22
where we have split the bath into two parts: the primary bath 3
subspace, refers to bath atoms that couple directly to the By evaluating[1— Go(s)A] ™ 1G(s), we find that
|
(1-9116K) g (1-0116K) g5,
G(s)= y - N . : (3.23
0210K(1—0110K) " "011+ 021 0210K(1—0116K) " "g1o+ o

There are still multiplications of large matrices in the last 1 . 1 B

expression, but notice that the only inverse that we need, A(s)= EM%’ZKTBﬁ KgtM¥2,  (3.24
(1+g,;,8K) 1, contains matrices in the 11 space. These ma- 911 (8)— oK

trices are relatively small and the inversion is much more

manageable. Moreover, by noting théts andKg are non- using Eqs(3.16 and(3.23. This expression is more conve-
zero only in the 11 subspace, only the 11 blockG{fs) is  nient than Eq(3.14) because it involves small matrices. Ev-
needed in order to compute(s), which thus becomes erything that we have done in this subsection is exact. It is
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very simple to work with Eq(3.24) provided that we have (A L B B B
calculated gy(s) beforehand. E 3
The periodicity of the lattice can be used to obt&i(s), 6f 3
and hence, g(s), in terms of integrations over the Brillouin 3 3
zone. Since these methods are standsee, e.g., Ref23]), 5E E
we simply state the result; i.e., =z E 3
&k
a.p %\ 42_ 3
[Go(9)]7=| 5= 3 of E
' = 3B 3
s°+K i o F E
, (T (k)T 2 3
:J dk ek Ri-R)Y &1 3 E
(2m)® P SP+wi(k) : 3
(3.29
where the indices andj indicate which unit cell the atoms
lie in, and wherea and 8 denote the atoms within the unit w (10"gec™)

cell and the Cartesian components of the displacements. The

prime on the integral sign restricts the integration to the ﬁrstt . FI;B_. L ;hﬁ exact densilty fft_sta§®II line) fgr Izitha'l ob-
Brillouin zone of the crystal, Alsows(k) and e (k) are, ained in a Brillouin zone calculation is compared with the approxi-

. - ) mate density of state@ashed ling that is generated using our
respectively, thepth eigenvalues and eigenvectors of the ma_representation of the memory function, E8.27). The force con-

trix I~<(k) defined by stants are specified in Sec. IV A.
R*B(k)=>, e kRRap (3.26  this section, we drop the integral term in E@.7) at the
R expense of introducing extra dynamical fields, and in order

) ) ) ) _to do this, we introduce an analytic approximation to the
whereR is the lattice vector connecting the respective unitmemory functions.
cells of atomsx and 3. In frequency space, the force-force correlation function is

This method requires an eigenanalysis of a matrix of rankgescribed by Eq(3.14). We approximate the Laplace trans-
3Ny, for every wave numberk), whereNy is the number of  form of the memory function matrix as

atoms in the unit cell. On the other hand, the numerical
evaluation of the Fourier transform has to be done carefully
such that an accurate result is obtained. In particular, the B(F(s)FiT)~
sampling of wave vectors has to be on a scale finer than

27/|R;—R;|, which is a problem when large separations are _ .
needed. whereA, B, andC are MNrygep< 3N15er Matrices. Analyti-

Thus, we have two ways of calculating the force-forceC@l €xpressions foA andC can be obtained from the—0

correlation function. The first, is a brute force way in the @nds—e limit of Eq. (3.14). After examining several differ-
sense that we make the bath as large as we(itenupper €Nt schemes for obtainirig, each giving roughly equivalent
bound is determined by the amount of computer memory wéesults, we decided to obtain teand theB matrices from
can usg and perform the matrix inversion using a sparse? linear least square fit while tt@matrix was obtained from
subroutine. The other approach is to use the theory of defect§€ asymptotic relations. Note that our approximation for the
together with a Brillouin zone calculation @By(s). This Memory functions captures the decay and the oscillatory be-
approach is exact on paper, but the numerical integratio@vior of the memory function. _

prescribed by Eq3.25) introduces inaccuracies. Another ap-  AS shown in Ref[20], the vibrational density of states
proach would be to approximate thedependence ab (k) d(w) can be expressed in terms of the memory function as
and do the integrals exactly. We tried all three approaches ~

and they give comparable results. We decided to use the g(w)=Tr{Rg C(iw)]}, (3.29
brute force method as it is free of the above problem.

_— 3.2
A+Bs+Cs? (3.27

where
B. Differential equations

- -1
The Langevin equation derived in Sec. Il C is not conve- = @ —1/2/t T\ g 1= 1/2

nient for numerical use. First, while we are able to calculate Cle)=|st—5 +AM (Fr(S)Fr)M )

the force-force correlation function in time or frequency, we (3.29

do not have a simple analytic representation for this function.

All we have are inefficient ways to obtain the function at aln Fig. 1, we compare the approximate vibrational density of

discrete collection of points. Second, the Langevin equatiostates with the exact result calculated using Brillouin zone

is a stochastic colored-noise integro-differential equation. Irsums. The agreement is excellent.
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In Appendix A we show that this set of equations of motion
0 for the target atoms is equivalent to EQ.7), as long as the

,—\ — memory function can be written as in E@.27).

C. Potential of mean force approximation

At this point, we have everything that we need to perform

FIG. 2. In this figure, the gray atom is a bath atom while the Simulations of the guest motion inside the channel used to
black ones are target atoms. The motion of the second target atom §@iculate the correlation functions appearing in the diffusion
illustrated. For potentials that include only stretching and bendingtoefficient[cf. Eq.(2.5]. The only quantity that is still miss-
energies, the bath atom does not feel the motion since the angleing is the plane potential of mean force. In this section, we
remains unchanged. derive an approximation for the potential of mean force

W(rg) for the guest in the channeled structure.

Note that the matrix(FRs)F} T} does not have a rank The mean forcek-(rg), can be obtained from the follow-
equal to Npyger. This is expected since every atom in the ing potential of mean force:
target space does not interact directly with the bath. In fact,
for the hgrmonic interactions considered here, only target W(rg)=—kgT In
atoms which have a bath atom as their nearest or second-
nearest neighbor can interact with the bath, and only these
have nonzero random forces. In reality, the rank of the matrix =—kgTIn
is even smallefe.g., as indicated by extra zero eigenvajues
This implies that there are extra motions of the target atoms

that do not couple to the bath. An example of such a motionV€re the definition o)* is obvious and wher&y is now
is illustrated in Fig. 2. Therefore, henceforth, we work in athe displacement of the target atoms from their equilibrium

reduced spacéwhereA, B, andC are nonsingulardeter- positions in the absence of the guest. The interaction poten-

mined by the number independent target motions that coupl lal between the target and t_he guest, WhiCh. is still unspeci-
to the bath. ied, will not have a simple linear or quadratic form. There-

fore, in general, the integral appearing in the last equation
cannot be done analytically. Nonetheless, given the stiffness
of the lattice, we can find a good approximation Wf(rg).

We rewrite the target displacement vector Rg=R{"
+ SRy and Taylor expand the interaction potential about
R{”). For the following choice foR{"),

j dRre” BILU2RTK R +U(rg ,Ry)]

: (3.39

f dR;e AY’

With our expression, E(q3.27), for the force-force corre-
lation function, we can replace the noise and friction term in
the Langevin equation, Eg2.7), by an extra dynamical
field, —y(t). The equations of motion for the guest and tar-
get atoms are now written as

dpg(t)  dU[rg(1),Rr(1)]

at g (330 KetR=F(rg ,RP); (3.39
dP+(t) dU[rg(t),Re(t)] . i.e., the position where the net force on the target atoms
g~ KenRr(t)— d—RT_y(t)’ vanishes, the potential of mean force can be rewritten as
(3.3) 1
and W(re)=U(re RF) + SRETKRE
d? d 1 — BI26RID(rg) 6R
C@’LBE’LA y(t)=7(t)+M P+(t). (3.32 —kgTIn| | déRse TREIT
_ —pBsU
The extra dynamical field/(t) is a generalized Ornstein- kgT In(e 2 (339
Uhlenbeck procesg24] with random initial conditions that h
satisfy where
(yy") =kgTA™, (3.333 #U(rg,R)
| _ D(I’G)EKeﬁ-l—%, (3.37)
(yy")=(yy")=0, (3.339 T
and f déRTe—g/zsRh(rG)&RT(_ )
(yy")y=kgTC ™1, (3.330 (- )= , (339
f d 5RTe—,3/25R$D(rG)5RT
and where the white noise variabigt) satisfies
() mt")Ty=kgTBS(t—1"). (3339 and
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their equilibrium positions to ones that, on average, mini-
mize the free energy of the system. Another scenario may be
that, during the aging, the target atoms undergo a uniform
collective translation that would put the guest at a minimum.
Clearly, this should not happen. In order to prevent such a
collective motion, we tethered some of the edge atoms of the
bath (specifically, those atoms that were not fully coordi-
nated. In Appendix B, by using continuum elastic theory, we
show that the tethering of boundary atoms does what we
want for a three-dimensional system, namely, it makes a uni-
form translation of the target atoms impossible without an
energy cost. On the other hand, this simple calculation shows
that for one- and two-dimensional systems, the translation of
a small portion inside the crystal costs no energy even
though the edges of the crystal are tethered, and is another
manifestation of the well known Mermin-Wagner instability

—0.1f

-0.24

10"Force (N)

0 1 2 3 4 . . . .
time (ps) in low dimensional solid$26].
FIG. 3. The force acting on xenon in Theta-1 during the aging is IV. RESULTS

shown as the noisy curves. The curve showing large fluctuations is
obtained at 300 K, the other at 3 K. The straight lines are the
approximate values for the mean force at 300 K and 3 K. The guest |n this section, we briefly describe the system that we will
is at (6.49633 A, 8.07333 A, 2.36156)AThe system and the po- be working with. In particular, we specify the harmonic force

A. Specification of the system and potentials

tential are defined in Sec. IV A constants and the form of the guest-target interaction poten-
tial. For practical purposes, we chose a sodalite having dis-
1 °U(rg,R{) , connected, one-dimensional, channels. This will allow us to
=30 TX Ry+---, (3.39  calculate plane averages using a single channel. The zeolite
' T we chose is Theta-ITON). This system is a high silicate

) o o zeolite. We therefore assume that it has no Al atoms and thus,
where theX in the last equation implies that the multidimen- pas the further advantage of not having any counter ions.
;iqnal matrix product i§ taken appropriately. The first integralrheta-1 contains two ten-membered oxygen-ring channels
is just another Gaussian integral while thgelff™) can be  per unit cell. The target space that we used contains five unit
expanded in cumulantsee Ref[25]). By neglecting terms  cells alongz and embeds the channel out to a radius of 6.5 A
that do not contribute to the mean force, we can write the fulfyom the channel axis. The target zone contains 210 atoms
expression for the potential of mean force as (140 oxygens and 70 siliconand is electrically neutral. The
crystallographic unit cell for Theta-1 is cubic and is de-
scribed in Ref.[27]. The full unit cell contains 72 atoms.
Notice that there is a reflection planexithrough the middle
of the unit cell. The target zone is depicted in Fig. 4. The
harmonic force constants were obtained from R28] and
are summarized in Table I.

- . We assume that the potential energy of xenon inside a
K TE {(=BsU)")) (3.40 sodalite is well described by a Lennard-Jones term plus an
B j! ’ ' induced dipole-electric field interaction; i.e.,

1
W(re)=U(re RF) + SRETKRE

+ 2= In{de{KD(ro)}

NTarget o 12 o 6
where{(- - -)) are cumulant averages and where the poten- (g.f r )= S 4 ( |,G) _( i,G
tial has been shifted by constants so as to vanish when the = ¢ 1" " " Nragel — &4 "71C] |y, o e
guest is noninteracting.
At low temperatures, the first temperature correction to _ %
) : . E-E, 4.7
the potential of mean force will be linear iR, and the cu- 2

mulants give higher order temperature corrections. In this
work, we only keep the linear temperature dependence angfhere
drop the remaining terms; this turns out to give an excellent Ntarget
approximation at room temperature for our system. In Fig. 3, E= 2 Qifi.c 4.2
we compare the numerically simulated force on a frozen i=1 47760ri3(3 '
guest with that obtained from E3.40. ’
This section will be concluded with a brief remark. In the is the electric field felt by the noble gas atom due to the
simulations, before releasing the guest, the lattice must bpartial charges on the crystal atoms. In the last two equa-
aged such that the target atoms have enough time to shifions, r; c=|ri—rg|, € ¢ and o; ¢ are the Lennard-Jones
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$i=~% T 1 4.3

If we have a way to calculatd;; and if we know the inter-
atomic equilibrium separationf=2"%; ;, we can deter-
mine ¢ ;. The equilibrium separation will be taken as the
sum of the radius of the atoms involved, whig is com-

monly determined by the London formu(ef. Ref.[31]),

A»-—§ BB (4.4)
T2 MY E+E) '

or the Kirkwood-Muller formula(cf. Refs.[32,33)),

-1

: (4.5

@i

o
Aij—GmCZaiaj(Xl—l—X
i i

whereg; is the polarizability of atom and y; is its magnetic
susceptibility.

Table Il contains a summary of what has been used in the
literature to calculate the Lennard-Jones parameters. None of
these studies used accurate partial charges for the silicon and
the oxygen. In Refd.5,6], a fully ionic structure is assumed.

In Ref.[34], the oxygen partial charge is introduced solely to
balance the charge of the counterions, while in [R&5), the
partial charges are neglected. The atomic polarizability for
the channel atoms determined in Rgfs,6] seems reason-
able. The values for the polarizabilities for the ionic and
neutral atoms arerpo=0.802, ap-2=3.88, ag=5.38 and
asi+4=0.0165 & (cf. Ref.[36]). We expect values that are
between these limiting cases for silicate atoms and the values
reported in Refd.5,6] are in that range. The other parameters
in Refs.[5,6] are those of a fully ionic crystdthe radius, the

FIG. 4. (Color onling The target zone. The oxygen atoms are in iONization potential, and the magnetic susceptibilion the
red and the silicon atoms are in blue. A minimgex and a maxi-  Other hand, Refi34] uses reasonable values for the polariz-
mum (b) W(z) plane are shown. Note that the binding pocket is onability while Ref.[35] uses the polarizability of neutral oxy-
the near side of the channel for the plaag gen. In addition, Refi34,35 use the same oxygen radius
which is bigger than that of C%. This radius is the van der
parameters. rglgted o the gues.t-Si or gue;t—O interactgns, Waséscgigngo:hzﬁ)é%eknog gg&%fﬂ?ﬂese approaches, we
is the permittivity of vacuumg; is the partial charge on the  yeciged to use our own parameters using the accurate partial
ith target atom, and is the polarizability of the guest. charges values and interpolating the needed parameers (

There seems to be a consensus for the calculated values (9]‘ ... ) from the CRC reference valuésf. Ref.[36]) of the
the partial charges in silicates in the quantum mechanicgleytral and ionized atoms. We will use the London formula
literature (see, e.g., Refd29,30)); namely,qo=—1.2e and  wjth the polarizabilities of Refd5,6] and we will interpolate
dsi= 2.4e, wheree is the electron charge. For the values of the jonization potentials for $¢* and O '? using data in
the Lennard-Jones parameters, we did not find good agreene literature[36]; the parameters thus obtained are summa-
ment in the literature. A common way to proceed is to writerized in Table Il. By using the London formula, E¢¢.4),
the Lennard-Jones potential between molecwdadj as and the data in Tables Ill and Il one obtains the Lennard-
Jones parameters for the noble gas—zeolite atom interactions
listed in Table IV.

Henceforth, we consider the case of xenon diffusing in-
side Theta-1. The potential of mean force inside the channel

TABLE |. Silicate force constant28].

Motion Force constant can be calculated using E(.40 and some constant poten-
Si-O stretch 5610 BJA2 tial of mean force surfaces are shown in Fig. 5. There are
0-Si-0 bend 1.3%10 8 Jrad ? broad binding regions staggered on either side of the chan-
Si-O-Si bend 0.3X 1018 Jrad 2 nel. The binding pockets are almost flat energetically; a

closer examination shows that there are three binding sites in
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TABLE Il. Parameters for zeolites silicon and oxygen.

Ref. Atom q(e) Radius (A) a (A3) E(eV) x(cm®/mol)x 108
[5,67 0 —2 1.40 1.65 13.55 12.58
Si +4 0.42 0.02 166.73 1.00
[34]b @) —0.15, -0.20 1.52 1.25, 1.40 N/A 10.0, 9.9
[35] O 0 1.52 0.85 N/A N/A
This work (0] —-1.2 1.08 1.65 3.887
Si +2.4 0.53 0.02 39.855

4n these references, the values for all the parameters are determined from the fully ionized atoms except for
a which is determined more accurately from refractivity experimécfsRef. [5]).

®This comes from work on zeolites Maand N&'. When two values are reported, it refers to the two zeolite
types, respectively. The charge on the oxygens is there to neutralize the charge carried by the counterions.
Also, it is assumed that the Si/Al atoms do not contribute to the potential.

‘Here, the Si/Al atoms as well as the partial charges are neglected.

each pocket; one is exactly in the middle of the d@il x) T 1 3
and the other two are symmetrically placed on either side. AH=W,,in+ T+ > Z hw;, 4.7
The barrier for motion between the central binding site and =1
either of the ones to its side is very small, aboutk@TlL at
300 K. Hence, there will not be any specific contributions to
the permeability from the saddle points on these paths, an\g/herewmm is the minimum in the potential of mean force
we have_omitted them fron_1 t_he figL_Jres for the sake of clarity,nq where the last term is a sum over the zero point energy
The figures show that it is easier for the xenon atom t0u¢ vipration of the guest at the absolute minimuthis as-
move between binding sites on the same side of the channgj, e that the potential of mean force near the minimum is
(the energy barrier is lowgrThe reaction coordinate linking 5 most harmonic Assuming that this last term is small, we
two minimum energy sites is also_shqwn in thege figuresobtain a heat of sorption akH~6.4kgT at 300 K. Experi-
Notice that one of these patfsath 1 in Fig. Jlinks binding e hta) measurements for xenon absorbed in mordenite gives
sites that lie on the same side of the channel. The dffath AH=14.1%,T [5] and for xenon absorbed in zeolite Na-Y,
2 in Fig. 9 bridges binding sites that are on opposite sides. It H=7.21gT [39] at 300 K. Since the sorption occurs in’
turns out that path 1 ha; a lower activati_on energy thgn Patitferent system, we do not expect our number to agree. On
2. The free energpotential of mean forges _plot.ted against  he other hand, this confirms that our model potential does
the z compon(_ent along path 1 and path 2 in Fig. 6. give heats of sorption that are the right order of magnitude.
The potential of mean forcd/(r), can be used to calcu- e did not find any experimental data for xenon absorbed in
late the plane potential of mean ford#(z), as Theta-1. However, Ref35] calculates, using a rigid lattice
and no polarization, a value for the activation energy of xe-
non in Theta-1E, .= 1.24&gT at 300 K. This number can be
J' dxdye AW 4.6 compared with the path’s activation energies of Fig. 6 which
Acen unit cell ' ' givesW, .= 1.9%gT, 2.96<BT or 2.1%gT at 300 K depend-
ing on the path. Also, Kmer et al. [40] obtained an activa-
tion energy studying the self-diffusivity of xenon in silicalite
[a three-dimensiona(3D) interconnected ten-oxygen ring
channel silicateassuming that the temperature dependence
of the self-diffusivity is well described by

e_ﬁW(Z) =

whereAcg is the area of the unit cell perpendicularzand
the integration is restricted to the unit céfiote that each
unit cell contains two channelsThe resulting plane poten-
tial of mean force along the channel axis is shown in Fig. 7.
This figure also shows the minimum potential of mean force
in each plane. The enthalpy of sorptichH, of xenon in D=D,e PEac, (4.8
Theta-1 can be estimated from RE5] as

TABLE IV. Lennard-Jones parameters for the gas-channel inter-

TABLE lll. Parameters for the noble gas atoms. actions =300 K).

Atom Radius(A) [38] o (A% [36] E(eV) [36] Gas atom  ogix (A)  egix/kgT  oox (A)  eox/KgT
Ne 1.560 0.3956 21.56460 Ne 1.8622 0.0385 2.3522 0.1841
Ar 1.900 1.6411 15.75962 Ar 2.1622 0.0512 2.6522 0.3440
Xe 2.224 4.0440 12.12980 Xe 2.4537 0.0500 2.9437 0.4378
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FIG. 5. (Color onling Constant potential of mean force surfaces for xenon in Thétaxd unit cells along the channel axis are shown
at 300 K. The surface energy is indicated in the corner of each part. The absolute minimum 6s9dt;T. Steepest descent reaction
coordinates are shown in red and blue.

Their measured value wds,;;=2.0kgT at 300 K. In our tiplications(specifically, we used the NIST sparse subroutine
case, this should be compared with the barriefz) which ~ packagd41]). The threshold is chosen such that the effect on
is 1.4KgT. Note that in Sec. Il B we assumed that the po-the vibrational density of states of the crystal is negligible.
tential of mean force was defined relative to its value in theBecause the induced dipole/electric field interaction in the
adjacent bulk phases. If an experiment is carried out wherpotential is long range, we added a static bath background
Theta-1 separates two solutions, the potential of mean forceorrection potential, obtained by the means of Ewald sums
has to be shifted by the configurational Helmholtz free en{see, e.g., Ref.23]), in the simulations. Finally, the simula-
ergy of the guest in the bulkVg, . tions were performed by integrating the set of differential
equations, cf. Eqs(3.30—(3.32 using a second order sto-
B. Simulati its and bility of in Theta-1 chastic Runge-Kutta integratdé2]. The aging time was
- Simulation results and permeability of xenon in Theta 4.096<x10"2s and the simulation length was 8.192
Before presenting the results of the simulation, there are<10 2 s or 12.28% 10 *?s. The time step used was 5.0
still a few remarks that must be made. First, the simulationx 10" %®s. We calculated the correlations for every initial
will have to perform many matrix-column vector multiplica- starting points by averaging over 2000 independent trajecto-
tions. These matriceq¢, A, B, andC, are all sparse to ries and performed this numerical work on a Beowulf cluster
some extent. In order to reduce the computation time, we sefonsisting of 16 processors.
the elements smaller than some threshold in these matrices to The space dependent diffusion coeffici@tz)/n.. is ob-
zero, and then use sparse matrix routines to perform the mutained from the plateau value of
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t
an.dtlf d”KUGJ(h)UGz%e_BWU)
0 Unit cell
D(zt)=

t ] (4.9)
Aoart f dt f dri(BF (z(t1))v g o)™ PO~
0 Unit cell

whereW(r) is the potential of mean force at a poif¥(z) is The permeabilityP’ as defined in Sec. Il A can now be
the plane potential of mean force defined in E4.6) and calculated. As is clear from Eq&.4) and (2.5 the intrinsic
Ace is the xy area of the unit cell. Each plane integration permeability will be inversely proportional to the thickness
was performed using a grid that contains between 25 and 48f the material and independent of the area, as is expected
points, chosen in such a way that the potential of mean forcEom a resistor network analogy. By calculating the perme-
in that plane and the plane average potential of mean forc@bility of a single channel in a single unit ceélchanner, it is

are accurately reproduced. The correlation functions wergtraightforward to obtain the macroscopic permeability. For
obtained from the numerical simulations and space groug Neta-1 we find that

symmetries pertaining to a single channel were used to re-
duce the numerical effoby four). Values between the grid
points were interpolated using a bicubic spline and these n,,efWeuik
were used to numerically perform the plane integration. The

quantity D(z,t)e®"@/n., is shown in Figs. 8 and 9 for  where we have included the explicit correction associated

=2.519[maximumW(z) pland, and 0.944 625 Aminimum  with the free energy of the guest in the adjacent phases,

W(z) plang. Wi, Since the potentials used here have their zero defined
Figures 8 and 9 also illustrate the effect that the correctiomelative to vacuum.

term in the denominator in Eq4.9) has on the integral of The diffusion of xenon in Theta-1 has not yet been stud-

the velocity correlation function. In fact, neglecting that cor-ied experimentally. However, as mentioned abovergka

rection is equivalent to neglecting the 1 on the current fieldst al. [40] examined the self-diffusion of xenon in silicalite.

J in Eq. (1.5 which has been shown to be incorr¢dg],  The high-temperature limit self-diffusion coefficient that

even if the naive Green-Kubo integral converges. Also, notéhey obtain with Eq.(4.8) is D,=(0.9+0.2)x10° m*s™*.

that the correction factor in the maximuni(z) plane lowers ~This — can Wbe compared thg‘ ,oun value, i.e.,

the average of the velocity correlation function integsse [D(Z)/”x]e_ﬁ ®=(1.37-0.10)x10 °* m* s %, which,

Fig. 8, while it raises the average of the velocity correlation9/ven the differences between the two systems and the quan-

function integral in the minimunW(z) plane. The effect of tities measured or calculated, is in reasonable agreement with

the correction in the minimum energy plane is in agreemenéri]goixspti\;gﬁg?rl Vv%:tuheil.’l It?]éhfogféitSoiiﬁznéﬁggzsguségsﬁ'
with the prediction made in Ref18]. y P '

The dynamics can change the relative contributions to
D(z) within a given plane over what would be expected V. TRANSITION STATE THEORY

simply on the basis of the Boltzmann weigletg., as in a Another approach that one could have used in order to get
Smoluchowski approa¢hThis is illustrated in Fig. 10. Itis e permeability of the system is transition state theese,
clear from these figures that the dynamics can drastically;_g_, Ref.[43]). This theory treats the motion of the guest
affect the shape of the various contributions within a givenpetween two neighboring binding sites as an activated hop-
plane. Regions with low potentials often have less correlate@ing process, where the kinetics are described by hopping
dynamics, while those with high potentials will have morerate constants that are fully determined by motion near the
coherent motion; what contributes B(z) is a compromise steepest descent path linking two binding sites. We found
between the Boltzmann weight and the coherence of the mawo types of saddle pointéransition statesfor our potential
tion. of mean force. Their corresponding steepest descent paths
Table V lists the calculated space-dependent diffusion coare shown in Fig. 5. The assumptions behind transition state
efficient D(z)/n.. for several planes. We also show thesetheory are that there is an equilibrium between the reactants
results graphically in Fig. 11 for one unit cell alongn Sec.  and the transition state and that there are no recrossings.
Il A, we assumed that the quanti(z)e?V@ is constant Also, transition state theory will be accurate only if the av-
near the barrier tops. This quantity is shown as the dasheerage mation of the guest inside the crystal follows the reac-
line in Fig. 11; clearly the assumption is valid. If the line is tion coordinates associated with each transition state. This
fitted to a constant, we find thdD(z)/n..]efV@=(1.37 last assumption can be verified in the following way.
+0.10)x 10 8 m? s™1. Note that the results of this section  If we start an ensemble of trajectories at the saddle point,
were all obtained from simulations using sparse matrices; wave should see that, on the average, the guest moves to one of
have checked that the results are not significantly differenthe two binding sites following the prescribed path. We
when we use the full matrices. started trajectories at the two saddle poifgach ensemble

!

=3.035x 10" s/(mkg),
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10° [D(z,t)/n.]e™™™ (m®/s)

e s bt b e bt b bl

2 3 4 5 6
z (4)

time (ps)

FIG. 8.[D(2)/n.,]e"@/%eT for z=2.519 A is extrapolated from

FIG. 6. The potential of mean force along patfidhshed ling  the plateau value of the full line. The dashed line is the uncorrected
and path Zfull line). The energy is plotted as a functionofand  result. This plane is a maximum energy plane, with respect to
as a function of the distancé along the path in the insetThe  W(z).
activation energy for path 1 is 1.RgT and, for path 2, 2.1&T or
2.0&gT (depending on the starting pojrat 300 K. path is very different from the behavior expected from the

steepest descent path.

contained 2000 memberand we averaged the trajectories  For the minimum energy path linking binding sites on the
conditional on which binding sites they end up in. The re-same side of the channel, the potential energy in the saddle
sults are shown as 3D plots in Fig. 12, and clearly show fronplane suggests that trajectories that are directed away from
the average paths are qualitatively different than the steepetie center along will be backscattered towards the center of
descent path. Moreover, while many of the trajectories thathe channel. For the other saddle plane, it is now the trajec-
are started at a saddle point end up in the nearest neighbtaries that are initially aimed away from the centerxithat
minima, a significant fraction of trajectories also end up fur-will be backscattered towards the center. Klyecomponents
ther away on the time scale of the velocity correlation func-of the average trajectories for path 1 are plotted in Fig. 13
tion; for cases shown in Figs. (& and 12b), only 66.5%  against theiiz component to emphasize the differences with
and 66.7%, at 300 Kblue curve, of the population is ac- the steepest descent path and illustrate the last comments.
counted for by those that end up in the nearest neighbor site$he error bars in these figures show that the steepest descent
respectively. In either example shown in Figs.(@2and path is within the standard deviation associated with the av-
12(b), the short-time behavior of the average trajectories that

do end up in the minima predicted by the minimum energy [T
_2;_"'I """" TTTTT TTITT IIIII""|""I'_§ N/Q\ 2_— —
: ; E
_33_ E 3 -
: >
3 E =
B E :
. —4r = { R -
~ o =
= _sf E I
‘ E R AW A ]
—6f E
F Ob bt bt bbb G b |
E o = 0 1 2 3 4 565 6 7 8
TR T T T Vi T time ]
0 1 2 3 4 (ps)
z (&) FIG. 9. [D(2)/n,]eV@’keT for z=0.944 625 A is extrapolated

from the plateau value of the full line. The dashed line is the un-
FIG. 7. The plane potential of mean force for the middle unit corrected result. This plane is a minimum energy plane with respect
cell of the channel is represented by the full curve. The dashetb W(z).
curve shows the value of the minimum in every plane.
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erage of the trajectories, but it is clear that the steepest déx), transition state theory does not properly describe the av-
scent paths alone do not accurately describe the dynamicserage motion of xenon in Theta-1. Our potential, which is
Another way to verify the validity of transition state very flat, is probably one of the reasons for this breakdown
theory is to look at the parametgdt(v(t)v,),e W’%eTin  of transition state theory.
the transition planes, as shown in Fig. 14. For transition state If the flatness of the potential is the main reason why
theory to be right, the plane averages in E49) must be transition state theory breaks down for our system, it is in-
dominated by the value dfdt(v,(t)v,),e W’ keT along the teresting to investigate the effects of reducing the tempera-
reaction coordinates. Hence, we expect a spike at the saddiere on the dynamics. The conditional average trajectories
point in the saddle planes. It is clear from these figthe  starting at the two saddle points at 3 K are shown in Figs.
saddle point is indicated by anX” in each plane that the 12(a) and 1Zb) as the green curves. These curves represent
transition state contributes to the plane average, but that th#6.8% and 98.6% of the populations for trajectories started at
rest cannot be neglected. Figure 14 shows that the saddibe saddle points 1 and 2, respectively. As expected, at least
point gives the largest contribution while in saddle plane 2for path 1, the trajectories follow the steepest descent paths
the saddle point is not even the point with the largest contrimore closely at lower temperature.
bution. We conclude that for this particular temperat{a@0 For the path 2 saddle point, the average trajectory still

TABLE V. The diffusion coefficient in different planes.

Name z(R) [D(2)/n,.]x1B m?’st e AW@  [D(z2)/n.,]efVDx10° m’s*
Minimum W(z) plane  0.944625 38.11 24.05 1.5844
Saddle plane path 2 1.48 16.73 13.09 1.2782
Intermediate plane 1 1.57438 14.83 10.85 1.3669
Intermediate plane 2 2.36156 7.38 5.75 1.2847
Maximum W(z) plane 2.519 7.67 5.74 1.3349
Saddle plane path 1 3.27 25.22 18.03 1.3988
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FIG. 11. The space-dependent diffusion coefficiéntz)/n.. FIG. 13. Thex andy components of the steepest descent path 1
(solid ling) and[D(z)/n..]eV@’ksT (dashed ling (dashed ling and the average trajectorull line). The starting

point is at(6.9295 A, 7.8445 A, 3.27 A The averag& component
does not follow the steepest path as well as it did for path has to follow the reaction coordinate because it lies in the reflection
at low temperature. This happens for two reasons. First, illane. The errors bars indicate the standard deviation associated
the region where path 2 merges into path 1, the steepedfith the average.

descent(path 3 bends sharply and the guest jumps out OfW erek; is the rate constant associated with pitN is the

steepest descent region, using the kinetic energy it has pick f bindi Kets i h |
up in moving down the barrier. Second, the binding pocket mber of binding pockets in one chanriasumed large

has its two absolute minima on either side of #aflection A 'S the number of channels per unit area, and the eqilib-
. ; . . . rium constantK., andK, govern the equilibrium between
plane in the unit cell, and the barrier separating them is ex d

tremely small compared to the kinetic energy picked U the bulk and the first binding pocket or that between the three

. pbinding sites within a pocket, respectively. Finally, we have
down the barrier; hence, the forces are not large enough tﬁs d the linear approximatiod... ~KkgTn.. /n.,

keep the guest localized near the ends of the steepest descen ransition state theory makes an unambiguous prediction

curve. é(jr the hopping rate constanks andk, [44]. By assuming

In a hopping model that Incorporates hops along path; atK.4 can be obtained from a Langmuir adsorption model
and 2 and assumes fast equilibrium between the three bin here ?)ulk atoms are absorbed onto a surfgve first bind-
ing sites in each of the low energy pockets, the steady-stat"exlg planes in the crystalwe find that

flux is given by
2m(kgT)3
maK (VK

2kiK Keq
(5.1 2K, +1

__ 2pcKeq(k1KL+2k2) —ul)
(2K, +1)Nn kgT H+7H=)

172
) e AW ~Woy) (5.2)

~—

4
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FIG. 12. (Color online The steepest descent patlial, and the steepest descent pattbR(in red are compared with the conditional
averages of the trajectories started at the appropriate saddle point at @d@eKand 3 K(green. The surface is at-5.3gT.
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and Prst

3
T 5.439x 10"% s/(mkg),

3\ 12
4koKeq _ [ 27(kgT) o AW~ Wy (5.3  Which is clearly different from the value obtained with our

2K, +1 mGK(ﬂZ)K(gz) method. While part of the difference could be blamed on our
use of high-temperature, harmonic, partition functions for the
, vibrational motion transverse to the reaction coordinate in
whereW; and theK{)’s are the energy and vibrational force the transition state approach, it is clear that the basic assump-
constants for motion transverse to the steepest descent pdibns of the transition state theory are not satisfied very well,
at theith saddle point, respectively. In writing Eq%.2) and  as was discussed above.
(5.3 we have ignored the vibrational motion of the lattice, In fact, the large contribution to the permeability from
other than in its contribution twjz, treated the guest vibra- regions other than the steepest descent lines manifests itself
tions classically, and have assumed a unit transmission coeif? other ways. For example, if we define an apparent activa-
ficient. tion energy asAE*=¢In P/o(—B), we find that, at 300 K,
By using Egs.(5.2) and (5.3 for the saddle points and BAE$5T= —4.38, compared WitlBAE*= —2.48 using our
paths shown in Fig. 5 in EJ5.1), we obtain method. In both cases, the number is reported with respect to
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the bulk energy, and in our method, we have ignored thédrations. In MD this is achieved when the number of simu-
temperature dependence Dfz)e?"V®. lated atoms is large. Using GLE’s allows us to drastically
reduce the number of simulated degrees of freedom .
Note that the macroscopic permeability of the Theta-1
interface may be hard to get experimentally. In fact, Theta-1
One important result of this work is thB(z)e®W(@ isnot  crystals are usually needlelike crystallites with length rang-
only constant in the vicinity of the barrier tops, it is roughly ing from 0.6—1.0um and width from 0.06—0.1@m [2]. It
constant throughout the channel for our system. This meansay therefore be difficult to construct a macroscopic inter-
that the diffusion of xenon in Theta-1 is well described as &ace where all the channels are aligned. Also, as noted by
Smoluchowski [24] process, which says thatD(z)  Karger et al. [4] in their work on single-file diffusion, 1D
xe PM2 and, as we saw above, not by transition statechannels can easily be blocked, and hence, in an experiment,
theory. not all channel will participate in the transport, thereby giv-
Our expression for the potential of mean force, 810,  ing a lower apparent single-channel permeability.
includes the relaxation of the lattice and a temperature cor- |n conclusion, we briefly summarize the main features of
rection term. It is a common practice to neglect both of thesgyr approach. First, we believe that our theory is well suited
effects. For example, experimental evaluation of diffusion infor diffusion studies in systems containing large potential
silicates(see, e.g., Ref45]), often assumes that the activa- parriers where hopping events are rare, and moreover, does
tion energy is temperature independent. Also, a rigid lattice ot makea priori assumptions about steepest descent paths
iS often Used in Simu|ati0ns and in the Calculation of the(and Wh|Ch turn out to be unwarranted for the examp|e con-
available volume for a guest inside a zeoligee, e.g., Ref. sjdered here Second, the Langevin equation is exact to the
[35]). We have verified that neglecting the temperature deextent that the guest does not interact directly with the target,
pendence of the potential of mean force does not lead tghat all the forces within the crystal are harmonic, and the
large errors. The use of a rigid lattice leads to larger, but stilyiprational density of states of the full crystal is accurately
acceptable, errors on the shape of the potential for the systef@produced by our approximation for the force-force time
investigated. There is a more important problem associategorrelation function. This leads to a practical simulation that
with the dynamical studies of a guest in a channeled strucncorporates the full vibrational motion of the crystal. In ad-
ture using a rigid lattice which is that the lattice cannot dis-gjtion, the required time correlation functions are obtained
sipate the guest’s energy—especially when the activation ergp g ps time scale.
ergy is large. . . _ Third, we introduced an accurate and simple way of ob-
We computed velocity correlation functions at some testajining the guest potential of mean force for the system and
points using a rigid lattice, and it turns out that these argye tested it against the simulation results.
similar to the ones that are obtained with flexible lattice. The  Fourth, the expression fdd(z), cf. Eq. (2.5 which re-
decay of the velocity correlation functions occur on the sameyuires the evaluation of plane averages is general and can be
time scale in both cases, and in the rigid lattice arises solelypplied to any crystal system with connected channels. With
because of the dephasing associated with the average ovich a system the guest is allowed to travel in different chan-
initial velocities (kinetic energy correlations are quite differ- nels and the simulations might have to be performed over
end. There are two main mechanisms leading to the decay qfrger extents of the full crystal. This would make the prob-
the velocity correlation functions. The first is the randomiza-jem more difficult numerically. In addition, some assump-
tion of the direction ofvg(t) . The second arises from the tions about the range of the correlations that appear in the
fact that total energy of the guest is not conserved in a flexmemory functions in Eq(1.4) made in obtaining the expres-
ible lattice and this manifests itself in the magnitude of thesjon for the permeability in Ref.15] might break down if
guest velocity. For our system, the energy exchange betwegqRe structure is too porous and does not contain solvent.
the guest and the lattice occurs on a somewhat longer time Finally, we have seen that transition state theory gives a
scale compared to that associated with randomization of thgery different prediction at room temperatures in Theta-1, in
direction, and thus, this latter effect is captured by the rigidpart due to the very anharmonic nature of the potentials, and
lattice calculations at short and intermediate times. in particular, due to the contribution of other regions of the
On the other hand, the relaxation of the lattice will havechannel to the permeability.
bigger effects on the shape of the potential in small crystal |n 3 subsequent paper, we will investigate the diffusion of
structures(i.e., B-quarta where the guest is often in the pople gases iB-quartz where the energy barriers are large.
strongly repulsive part of the pair potential, where the energor sych a system, the flexibility of the lattice plays a crucial
gies are larger, and where lattice distortions are larger. Ifgle. On the other hand, transition state theory is expected to
addition, anharmonicities and energy exchange will be morge more accurate. Another interesting aspect would be to

important. ) ) ) investigate the role of quantum mechanics in our analysis.
In this work, we used generalized Langevin equations to

simulate the target equations of motion. It is clear from Secs.
I A and Il B that the evaluation of the macroscopic perme-
. . ACKNOWLEDGMENTS
ability can be obtained from standard MD. We opted for the
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APPENDIX A: EQUATIONS OF MOTION which when multiplied by C"*M~P(s), shows that

. “1M-1p g ;

In this appendix, we demonstrate tha/(t) replaces the d22C "M P gives the expected term, i.e.,
noise and memory term in EQR.7). In what follows, theT
subscript will be omitted for matrices and vectors in the tar-

IMTIPPE=————M'P
get space. We rewrite E3.32) as 02K A+Bs+Cs? (s)
Y(t)=— MY(t) +N(t)+P’(1), (A1) and hence, to the accuracy of our approximate representation
of the memory function, Eq.3.27),
where
— t —
y(t) Ya(t)=| e MY(0) + f dtle‘M“‘“)N(tl)}
Yi)=|. |, (A2a) 0 2
y(t) t
0 +Bf dty(FR(t—t)FIHM 'P(ty), (A7)
0
N(t)E(Cl t)), (A2b)
il where the subscript 2 refers to the lower half of the column
0 vectors. Therefore, in order to include friction in the equa-
p’ A2 tions of motion, we will need to subtract the second part of
(t) C—]_M—]_P t 1 ( C) ) . . . . .
(t) Y(t) from the equations foP(t). This is indeed done in Eg.
and (3.3D).

The Y(t) must also describe the random forjasf. Eq.

(2.7] through the white noise term. From E#7) and from

, (A2d) Eq. (2.7), it is clear that the random forde'(t) should be
represented by

_ 0 -1
M c!a ciB

where each block o/ is a square matrix. The formal solu- PN Py t ~M(t—ty)
tion of Eq, (A1) is F'(t)=e ™Y(0)+ 0dtle UN(ty) 2. (A8)
Y(t)ze*MtY(O)ﬂL ftdtle*"i(‘*‘l)N(tl) A few manipulations show that this is indeed the case if
0
t NNT ( ° A9
+f dt;e”Mt-tpr(t)). (A3) (NND)= 0 kgTC 'BC™ !/ (A9)
0
) o o and if the random initial conditions for satisfy
The last term of this equation is very similar to the memory
term in our Langevin equation, E@2.7), and, in fact, it (Y,Y])=kgTA? (A10)
contains that term. Since the last term is a convolution, when
Laplace transformed, it becomes and
(M+s)"P'(s). (YY) =kgTC 1, (A11)

If we keep in mind that the upper half part Bf is zero(the = where the averages d¥(t), Y;, andY, are zero.
first 3N gec€lementg and if we denote the inverse as

APPENDIX B: ENERGY COST OF A LOCAL

DISPLACEMENT IN AN ELASTIC MEDIUM

<M+s)lEQ<s)E( (A4)

Qa1 Chz)
O21 G2/

This appendix discusses the energy cost for a local dis-
b_placement in an infinite isotropic continuum. As shown in
Ref. [46], the vector fieldu describing the displacement of
the continuum lattice at positionobeys the equation

then only the 12 and the 22 parts of the inverse will contri
ute. Evaluating the inverse, we find that

Qe A (A5) (1-20)V2u(r)+V[V-u(r)]=0, (BD)

where o is Poisson’s ratio. The free energy cost per unit
and volume is given by,
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E=p(Uy— 5 Suy) 2+ 3 kU3, (B2) u(r)=Ve(r)+VxA(r). (B5)

where summation over repeated indices is implied. Thesince we are using linear elasticity, these potentials must
quantitiesk and u are the bulk modulus and the modulus of hayve forms

compression, respectively, and the elements of the symmetric

strain tensow;, are given by B(r)=ou-rf(r) (B6)
_aui(r) | du(r)
Uik = o o (B3) and
To get the full energy of the system, E@®?2) is integrated A(r)=ouxrg(r). (B7)

over the whole system. N _
For the case of interest, the following boundary condi-The boundary conditions are then expressed in terms df the

tions will apply ind dimensions: and g functions, the differential equation is solved and the
energy cost for such a local displacement is computed. We
u(r,Q2)=0 asr—-o, (B4a  found that there was zero energy cost in one or two spatial

dimensions, while in three dimensions it becomes
u(a,Q)=du, (B4b)

where ) represents the angular coordinates. The boundary E=67T,U,M U2
condition at infinity comes from tethering the edges of the 6r+1lu
lattice, while that at =a represents, for our problem, a uni-

form displacement of the target zone along an arbitrary axistor typical values of the moduli ana this energy is large
We solved this problem in one, two, and three spatial dimeneompared withkgT, thereby confirming our hypothesis that

a. (B8)
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