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Dynamical model and nonextensive statistical mechanics of a market index on large time windows
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The shape and tails of partial distribution functidi®DF) for a financial signal, i.e., the S&P500 and the
turbulent nature of the markets are linked through a model encompassing Tsallis nonextensive statistics and
leading to evolution equations of the Langevin and Fokker-Planck type. A model originally proposed to
describe the intermittent behavior of turbulent flows describes the behavior of normalized log returns for such
a financial market index, for small and large time windows, and both for small and large log returns. These
turbulent market volatility(of normalized log returpsdistributions can be sufficiently well fitted with g
distribution. The transition between the small time scale model of nonextensive, intermittent process, and the
large scale Gaussian extensive homogeneous fluctuation picture is found to be at ca. a 200 day time lag. The
intermittency exponent in the framework of the Kolmogorov log-normal model is found to be related to the
scaling exponent of the PDF moments, thereby giving weight to the model. The large vatugoaits to a
large number of cascades in the turbulent process. The first Kramers-Moyal coefficient in the Fokker-Planck
equation is almost equal to zero, indicating “no restoring force.” A comparison is made between normalized
log returns and mere price increments.
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I. INTRODUCTION the drift D*) and diffusionD(?) coefficients being those of
the Fokker-Planck equatid®—11]. It is often assumed that
The time lag dependent price increments, returns, log rez(At) is a correlated noise with Gaussian statistics. Thus,
turns, normalized log returns of financial market indices,such a dynamics may be analogous to the dissipation of en-
stocks, and foreign currency exchange markets are known &gy from large to small spatial scales in three-dimensional
be non-Gaussian distributed and rather exhibit fat-tailedypylence as pointed out already in Ré%12,13.
power-law distributiond1-5]. The origin of the so called  op, the other hand, the non-Gaussian character of the fully
large volatility characterized by such fat-tailed d'St”bUt'O”Sdeveloped turbulencfl4] has been linked to nonextensive
is a key question; the fat tails in such data are thought {0 be,igtical physic§15-23; whence recently there has been a
caused by some “dynamical process” through a hierarchic arge number of studies, e.g., Ref§,17,24—27 of financial
cascade of short- and long-range volatility correlations, . oo employing the nonextensive statistics including

though Gopikrishnaret al. consider that correlations and those involving fully developed turbulence approach as in
tails have different origing5]. Destroying all correlations, g 1ully clope pp .
Ref. [14]. The nonextensivity, i.e., some anomalous scaling

e.g., by shuffling the order of the fluctuations, is known to _ . . :
cause the fat tails almost to vanish. It is still an open questior‘?f classmally extensive properties such as the entropy, 1S
whether both the fat-tailed power law of partial distribution Iked to a single parametey e.g., in the Tsallis formulation
functions(PDP of the various volatilities and theavolution ~ Of nonextensive thermostatistics. _ S
for different time delaysn financial markets can be de-  In this paper on the study of the behavior of a financial
scribed. index, i.e., the S&P500, olarge time windows we apply, as
The fat tails indicate an unexpected high probability ofin Refs.[24,27 for shorttime windows, a recently suggested
large price changes. These extreme events are of utmost irffiodel of hydrodynamic turbulence that serves as a dynamic
portance for risk analysis. They are considered to be a set ¢pundation for nonextensive statistitk9—-21. Indeed, long
strong bursts in the energy dissipation of so called clusters dime lag effects must be also investigated. Furthermore, it is
high price volatility. In doing so the PDF and the fat-tail known that some distinction must be made concerning the
event existence are thought to be similar to the notion ofyPe of financial markesignal which is examined. We will
intermittency in turbulent flow§6]. Indeed, employing the Ccompare results based on price increment and normalized log
Fokker-Planck equation approaEHi, recent studiefg—11] ~ returt time series. o
have shown that the dynamics of a market results from a N Sec. Il, we describe the distribution of returns for the
flow of information between long and short time scales.daily closing price signal of the S&P500 index for the time
Since the distributions of returns obey a Fokker-Planck equanterval between Jan. 01, 1980 and Dec. 31, 1999, thus a
tion, the time evolution of the pricéncrementsignal Ay  Series ofN=5056 data points. Daily closing price values of

tion [7] loaded from the website in Ref56]. We characterize the

tail(s) of the distribution for varioud\t’s, i.e., from 1 up to

ZATi’: D®(Ay(At),At)+ n(At) VDB (Ay(AL),At),

(1 Throughout this paper the natural logarithm will be used.
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40 days, and will observe the value of the PDF tails, for such 10° (— : . : . : .
time lags, outside the best Gaussian through the data. In Se: PY
[ll, we calculate the power-law exponents characterizing the 102 e
integrateddistribution of the(normalized log returns over
different time lags for the S&P500 index daily closing price 10
through a detrended fluctuation analysis and from power
spectral density analysis point of view. Results are comparec .
to shuffled data for estimating the value of the error bars. In8_
Sec. IV, Tsallis’ statistical approach is outlined, and distribu- Qj i
tions of (normalized log returns for time lags betweefut
=1 and 40 days are examined. It is found thatghalue of
the nonextensive entropy converges to a valug.22 for 10211075 .
At=40 days, starting witlq=1.39 forAt=1, values similar ee
to those reported for the intraday evolution of other financial :
indices, e.g., NASDAQ in Ref.28] and slightly lower than e ® o
those for S&P500 minute daf24]. The probability density 107 t ' t ' L '

. . .. -30 -25 -20 -15 -10 -5 0 5 10
fat(B) of the volatility 8 in terms of the standard deviation normalized log returns Z
of the normalized log returns of the S&P500 for different
time lags is found to obey thg? distribution. The intermit- FIG. 1. Probabil_ity dist_ributio_n function Qf normalized log re-
tency exponeni of the Kolmogorov log normal model is turns Z(t,At) of daily closing price value signal of S&P500 be-
found to be related to the scaling exponent of the PDF motween Jan. 01, 1980 and Dec. 31, 1999 Adr=1 day (symbols.
ments, thereby giving weight to the model. The large valugNormalized log returns are calculated ag(t,At)=[y(t)
of « points to a large number of cascades in the underlying-(Y)adl/oac, wherey(t) =In[y(t+At)/y(t)] ando,, is the standard
turbulent process. deviation ofy(t) for time lag At. The dashed line represents a

In Sec. V, the usual Fokker-Planck approach for treatingsaussian distribution. Inset: power-law #olid line) of the nega-

the time-dependent probability distribution functions is sum-tive (—3.1) and positive ¢ 3.1) slope of the distribution outside
marized and coefficients governing both the Fokker-Planckhe Gaussian regime.

equation for the distribution function of normalized log re- i ) )
turns and the Langevin equation for the time evolution of2!SO used sometimes. Below we considerribemalized log-

normalized log returns of daily closing price signal of returns Z(t,At)=[y(t)—(y)acl/oar, where(y),, denotes
S&P500 are obtained. We will notice that there is “no restor-the average and,, gives the standard deviation gft) for
ing force.” a givenAt. The normalized log returng(t,At) depend on
Therefore, we present a coherent theory linking the shapghe timet and the time lag\t. However, in order to simplify
and tails of partial distribution functions for long and short the notations, and whenever possible without leading to con-
time lags of the daily closing values of a financial signal andfusion and misunderstanding, we will drop the explicit writ-
connect the often suggested turbulent nature of the marketsg of one or both variables. Daily closing price values of the
to a model encompassing nonextensive statistics and evol&&P500 index for the period between Jan. 01, 1980 and Dec.
tion equations of the Langevin and the Fokker-Planck type31, 1999 will serve as a standard financial sigy@), thus
We are aware that the number of data points of the timey=5056 data points.
series N=5056) might seem quite small with respect to  The distributions of the normalized log returdgt,At) of
other studies involving millions of data points. Some previ-the daily closing price signal for S&P500 index for the pe-
ous work had indicated the possible use of 5000 or so datgod between Jan. 01, 1980 and Dec. 31, 199N\fox 1 day
point series in order to obtain scaling arguments and ingreare plotted in Fig. 1. A fit is first attempted with a Gaussian
dients for model§29,30. Clearly the relative error bars or distribution forsmall values of the increments, i.e., the cen-
confidence interval being roughly proportionalNd"> have  tral part of the distribution. This central part of the distribu-
to be taken with caution. Thus the concluded universal valugion is well fitted with such a Gaussian-type curve within the
might be debated upon. Nevertheless, one positive aspegiterval Z <[ — 3,3] but departs from the Gaussian form out-
might be that scaling effects are rtob sensitivéo N. How-  sjde this interval. The negative and positive tails of the dis-
ever, we do warn throughout the paper that some cautiofibpution outside the Gaussian curve are both found to be
might also be taken concerning the stationarity of the dataequal to—3.1. In the casét=1 day, it is observed that the
Thesecaveatmight only be resolved through further work. pest Gaussian range is the same as\Mor 1 day(Fig. 2) but
the outside tail values, as estimated for the varidt's of
II. DISTRIBUTION OF RETURNS interest, are slightly different, and found to decrease with
) ) they are reported in Table I. These findingst{independent
There are severallways of calculating the returns in a ficaussian range and tail exponent behavase at odds with
nancial market. A simple one represents price incremenfhe expectation that the PDF tends toward a Gaussian for
Ay(t,At) or difference _between the_value of the prlce.5|gnal|arge At. Some Bayesian-like analysis of the PDF’s, i.e.,
y(t) at imet+At and its value at timé. Log retuns, i.e.,  ajlowing for the expected Gaussian width behavior, has been
the logarithm of the price ratig(t)=In[y(t+At)/y(t)] are  done, with appropriate conclusion. However, the error bar on

7 \
+ positive tail (X }
O negative tail ;o
— fit~-3.1 d
- - Gaussian
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at Z=-23 andZ=—7, respectively. The value ofZ=

S&FE09; Jan 1980 —Decr1939 —8.7 represents the aftershock crash of Oct. 26, 1327.
16 The analysis presented in this study is neither designed to
capture such extreme events nor their effects.
o) o
e . 1 IIl. TIME CORRELATIONS
N g v There are different estimators for the long- and/or short-
o’ g Al day range dependence of fluctuations correlati83]. In all
L|| B Atsdays cases it is useful to test the null hypothesis which debated
T o s [4,5] whether the fat tails are related to or/and caused by
O At=20days long-range volatility correlations. Destroying all correlations
10| ﬁ:zggjg: by shuffling the order of the fluctuations is known to cause
4 At=35days the fat tails almost to vanish. A Kolmogorov-Smirnov test
o A | At=40 dayls ‘ ‘ (not shown on shuffled data has indicated the statistical va-
-20 -15 -10 -5 5 10

lidity of the numerical values and the statistically acceptable
meaning of the displayed error bars.

FIG. 2. Probability distribution functioiPDF) p,(Z) of nor- Through the (linearly) detrended quctuatllon analysis
malized log returns of the daily closing price value signal of (PFA) method, see, e.g., Reff34], we show first that the
S&P500(symbols and the Tsallis-type distribution functidfines) long-range correlationsof daily closing price signal of
for different values of\t=1, 5, 10, 15, 20, 25, 30, 35, and 40 days. S&P500 for the time interval of interest are Brownian-like.
The PDF(symbols and curvédor eachAt are displaced by 10 with The method has been used previously to identify whether
respect to the previous one; the curve ir=1 day is unmoved. long-range correlations exist in nonstationary signals and in
The large circles mark the ends of the interval in which the distri-many research fields, such as finah2@,30, bioinformatics
bution islike a Gaussian distribution. The values of the slopes of thg 35], cardiac dynamic§36], and meteorology37—39. The
positive and negative tails of the distributions outside the GaussiaDFA concepts are therefore not repeated here. For an exten-
rangeZ e[ —3,3] are listed in Table I. The values of the parameterssive list of references see Ré¢B4]. Briefly, the signal time
for the Tsallis-type distribution function for eacht are summa-  seriesy(t) is first integratedto “mimic” a random walk
rized in Table III. Y(t). The time axis is next divided intk+1 nonoverlap-

ping boxes of equal size, i.e., singone looks thereafter for
the various widths do not allow for a Statistically Convincing the best(”near) trend Z(n) in each box and calculates the
evidence through the comparison of variance classical tesfoot mean square deviation of thmtegrated signal with
Same for the tail exponents which are obtained from a veryespect toz(n) in each box. The average of such values is
small number of data points. Therefore, it seems appropriatgyken at the fixed box size in order to obtain
to pursue further the PDF analysis through other techniques
that allow one to extract a PDF tail from the difference be- \/< 1 (krn

F(n)=

0
normalized log returns Z

tween a raw data histogram and a central region Gaussian fit. o 2 [Y(i)—2z(i)]?). (2)
Notice that the Oct. 19, 1987 and Oct. 27, 1997 crashes, i=kn+1

as studied elsewhef81,32 are represented by isolated dots The box size is next varied over thevalue. The resulting

function is expected to behave like'*HoFa indicating a
scaling law characterized by (&lursy exponentHpga. For
the (integrated daily closing price signal of the S&P500
index, a scaling exponentAHpep=1.52+0.01 is found
(Fig. 3) in a scaling range extending from about 1 week to
about 250 days, i.e., 1.

Along the same line of thoughts the scaling properties of
the normalized log returrg(t,At) =[y(t) — (y)s)/os have
At Positve  Negative ] 1/(q—1) P also been tested for different time lag values, =1, 5,
10, 15, 20, 25, 30, 35, and 40 da§fS§g. 4. The DFA func-

TABLE |. Slopes of the positive and negative taffecond and
third column$ of the distributions outside the Gaussian range
Z(t,At) e[ —3,3]; values of characteristic Tsallis function param-
eters are given.

1 31 31 2.78 2.564 0.92  tjon, as defined above, of the integrated normalized log re-
5 31 3.0 2.72 2.778 0.90  turns for a time lag of 1 day behavesahite noiseand has
10 3.0 2.7 2.68 2.941 0.88  a Hausdorff measure equal to zdtater see its power spec-
15 3.0 2.6 2.66 3.030 0.86  trum in Fig. 6. However, nontrivial scaling properties occur
20 2.9 2.5 2.64 3.125 0.85
25 2.9 2.5 2.62 3.226 0.83
30 2.8 2.3 2.58 3.448 0.80 2Although the absolute value of the S&P500 drop in price is of the
35 2.7 2.3 2.50 4.000 0.78 order of 60 units in both crashes, since the price has increased, and
40 25 2.2 2.44 4.545 0.76 due to the nonlinearity of the logarithm the value Dfis much

smaller at the crash in 1997.
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10° ‘ . . TABLE II. Values of the scaling exponent from the DFA analy-
sis of normalized log returng for different values of the time lag
S&P500; Jan 1980 - Dec 1999 Wt At=5,10,15,20,25,30,35, and 40 days, and crossover boxngize
104, ¥ t+
At 1+Hpga Ny
10°} 1+H__ =1.52+0.01 S 1.27-0.04 19
_ DFA 10 1.37£0.02 35
E_C’ 15 1.39+0.02 49
L 20 1.38:0.02 70
25 1.38:0.02 91
30 1.41+0.01 108
10'k 35 1.43-0.01 117
40 1.43-0.01 128
0

0 ‘ 1 I2 IS 4
1 1 e o e box size for which the scaling holds, is related to the
periodicities of the normalized log return signals defined by
FIG. 3. DFA functionF(n) plotted as a function of the the box the value of the time lag as,~3.5At. The data and the
sizen of the integrated daily closing price value signal of S&P500 power-law fit of this functional dependence are plotted in the
between Jan. 01, 1980 and Dec. 31, 1999. Brownian-like fluctuaset of Fig. 4. The value of the slope 1.0 is the same as the

tions with 1+Hpga=1.52£0.01 are obtained for all possible time gne found by Huet al. [34] when studying the effects of

scales. sinusoidal trends and noise on tfs® called second order in
. _ Ref.[34]) DFA technique.
for the series of normalized log returns as sooA s 1 day. The power spectrum of the daily closing price signal of

The values of the scaling exponents and the maximum bog&P500 S(f)~f~# with spectral exponentsu;=2.41
sizen, (in days for which the scaling holds for each DFA +0.06 andu,=1.95+0.03 with a scale break at 250 days is
function are given in Table I, while the DFA functions to- shown in F|g 5. The Sca"ng properties of the power spec-
gether with fitting lines are plotted in Fig. 4. The values of trum of the shuffled daily closing price signal of S&P500, in
the Hausdorff measure of the normalized-log return signalsyhich, e.g., the amplitudes are randomly shuffled are shown
vary with At from Hppa=0.27+0.04 for At=5 days t0 in the inset of Fig. 5. Such a scaling spectral exponent
Hpra=0.43£0.01 forAt=40 days. Recall thatippa=0.5 =0 is the signature of a white-noise-like behavior. Recall
corresponds to Brownian motion. The value of the maximumhaw: 2.0 corresponds to Brownian motion.

We have also checked for scaling behavior and possible

periodicities in the power spectrum of the time series of the
10° £ Z(t,At) of J
S&P500; Jan 1980 — Dec 1999 o 1/250
10° ¢ i 5 '
X ) S&P500; Jan 1980 - Dec 1999
\L o = A t=5 days 102k |
1 - ~ . s el
g1o A t=1 day
L
. slope = 1.0 10" N 1
10° :%102 E - My = 2.41 £0.06
fx n . 10 : WJ:‘MI\{*‘N ”’2 =1.95+0.03
107 3 10 | shuffled i, ]
1 'Tv ‘I'Q
10 5 1 u=0 "P
10 10 10] 10" "
_ time lag A t (days) 5
10° : ; 10° + —
10° 10’ 10° 10° 10*
box size n (days) i
1710000 1/1000 £1/100
1 1 H 4 Il : L 1
FIG. 4. DFA funct|onF(_n) plotted as a function of Fhe box_ size 191 0000 Pyr S v :
n of the integrated normalized log returdét,At) of daily closing f (1/day)

price value signal of S&P500 between Jan. 01, 1980 and Dec. 31,

1999 for different time lagat=1, 5, 10, 15, 20, 25, 30, 35, and 40 FIG. 5. Power spectrun®(f) of the daily closing price value
days. Values of the scaling exponemis,:, for the various DFA  signal of S&P500 between Jan. 01, 1980 and Dec. 31, 1999. A scale
functions are summarized in Table II. Inset: power-law functionalbreak at around =1/250 day * separates two scaling regions. In-
dependence of the value of the cross over box Bjzas a function  set: scaling of the power spectrum of the daily closing price signal
of time lagAt. of S&P500 as a white-noise signal with~0.
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s | Z(t,A1) of S&P500; Jan 1980 — Dec 1999

At=1 day

At=5 days

A t=20 days

A t=35 days

A t=40 days -|

1

. .
1/100 110 1

f (1/day)

.
1/10000 1/1000

FIG. 6. Power spectrun®(f) of the normalized log returns
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dependent probability distributiop(x,t) of the stochastic
variablex. The functional is reduced to the classical exten-
sive Boltzmann-Gibbs form in the limit af— 1. The Tsallis
parameteiq characterizes the nonextensivity of the entropy.
Subject to certain constraints the functional in E2).seems

to yield a probability distribution function of the form
[6,15,19,24,27

_ 1 [ CBg2a(q—1)|x[?*| ~Ha-D
for the stochastic variablge where
r 1
1 [CBe2a(q—1)| ¥~ q-1 .
Z, “| 2a—(q-1) 1 ( 1 1)’ ®)
IN'N—|T\—s—=—
2a qg-1 2«

Z(t,At) of daily closing price value signal of S&P500 between Jan.in which C is a constant andQa<1 is the power-law ex-

01, 1980 and Dec. 31, 1999 for different time lags=1, 5, 20, 35,
and 40 days. Each curve is displaced by 3@vith respect to the

ponent of the potentidl (x) = C|x|2“ that provides the “re-
storing force” F(x) in the Beck model of turbulencgl9—

previous one; the power spectrum of the normalized log returns fop1,23. The latter is described by a Langevin equation

At=1 day is not displaced. The dashed line frém1/70 days*
to f=1/2 days* has a slope.=1.86, corresponding to the g,
exponent. The horizontal dashed line frdms 1/10 4 days * to f

=1/128 days* corresponds to what should be expected for white

dx

Ji =~ YFOOHR),

(6)

noise and is in agreement with the Scaling of the DFA function forwhere»y is a parameter anB(t) is Gaussian white noise. A

the same data as in Fig. 4.

normalized log returnZ(t,At) =[y(t) — (y) )/ o, for dif-
ferent(selected values of the time lag\t=1, 5, 20, 35, and
40 days(Fig. 6). A white-noise-like behavior of the power
spectrum of such returns always occurs foflAt days;
e.g., dashed line in Fig. 6 fof<<1/128 andAt=40 days.

nonzero value ofy corresponds to providing energy tor
draining energy fromthe system by the outside2]. The
paramete3, in Egs.(4) and(5) is the mean of the fluctuat-
ing volatility 3, i.e., the local standard deviation [off over
a certain window of sizen [6]. We will use this model as-
suming that the normalized log returBét,At) representhe
stochastic variable, as in Eq.(6), or Ay in Eq. (1). We will

This is in accordance with the results of the DFA analysissearch whether E@4) is obeyed foix=Z(t,At), thus study-

(Fig. 4 and Table ). A scaling behavior is found at large
frequenciesf satisfying the relationshipe=2Hpega+1, as
indicated in Fig. 6, e.g., by the dashed line with slqpe
=1.86 for f>1/128 for the cas&t=40 days.

ing p(x)=pa(Z) for various time lagsit.

Just as in the Beck model of turbuleAd&9—21] we as-
sume that the volatility3 is y? distributed with degree (see
another formula in Ref.23)):

Periodicities in the power spectrum of the normalized log-

return time series foAt>1 day were expected to be found

vB

vI2
R vl2—1 _ =
since these periods are somewhat embedded into the time '4t(8)= Fr 73 (2,80) o ex;{ 230)’ v

series by the way they are obtained and the Fourier transform

)

technique. It is easily observed that the maxima and the _ _
minima of the spectrum correspond to harmonics and sub¥herel is the Gamma function3,=(3), and the number

harmonics of 1At.

IV. TSALLIS STATISTICS

Based on the scaling properties of multifrac{al6], Tsal-

lis [15,41] proposed a generalized Boltzmann-Gibbs thermo-
statistics through the introduction of a family of nonexten-

sive entropy functionab, given by

, ©)

1
= — _ q
Sq kq_l(l f p(x,t)9dx

with a single parameteq and wherek is a normalization
constant. The main ingredient in Ed3) is the time-

of degrees of freedom can be found from

2(B)?
= ®)
T8
The Tsallis parametey satisfieq 19]
B 2ar
g=1+ av+1’ ©)

3The approach used here was recently suggested to be an appro-
priate model of hydrodynamic turbulence for financial markets in
Ref.[27].
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FIG. 7. Probability density ,;(8) of the local volatility 3 [Eq. (10)] in terms of standard deviation of the normalized log retu(isAt)
of S&P500 in nonoverlapping windows with sine=32 days for different time lag&symbols (a—i) At=1, 5, 10, 15, 20, 25, 30, 35, and
40 days. Linesy? distribution as given by Eq7).

To justify our assumption that the “local” volatility of the values of the degree of the y? distribution are then ob-
normalized log returnZ(t,At) is of the form ofy? distribu-  tained using Eq(8). The spread Bmin.Bmax Of the local
tion, we checked the distribution of the normalized log re-volatility 8 decreases with increasing the time lag as it is
turns of the daily closing price of S&P500. We have calcu-expected from a2 distribution function due to the exponen-
lated the standard deviation of the normalized |Og return%iaj function in Eq(?) for |arge values of the degree of
within various nonoverlapping windows of size, ranging  freedomv. The value ofy much varies as a function of
from 25 to 1000 days and the time lags considered. The fits are always excellent.
However, theB, and v values are quite dependent on the

(k¥ D)m (k¥ D)m 2
N el 2y | — . parameters used in the numerical analysis. Based on these
B m iz%ﬂ 25(0) (m iz%ﬂ Z(|)> - (10 results, e.g., Fig. 7, it can be accepted that ttuebulent

marke) model B distributions can be sufficiently well fitted
In doing so we have a various number/of nonoverlap-  for our purpose with g2 distribution, thereby justifying the
ping windows for various time lagAt, and have searched initial assumptior.
for the most efficient size of the window in order not to lose In order to investigate the impact of the parameter on
data points and therefore information. The resulting empirithe tail behavior of the Tsallis-type distribution function we
cally obtained distributions of the local volatilif{gq. (10)]
of normalized log returns for the different time lags of inter-

est are plotted in Fig. 7 for an intermediary case 32. The 4sattin formula[23] might also be tested in future work.
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FIG. 8. Probability distribution functions of the normalized log returns of daily closing price signal of S&R§athols for (a) At
=1 day and fixedg=1.39. The Tsallis-type distribution functiofi§q. (4)] obtained for various values of the parameterl. 0, 0.9, and
0.8, dashed, solid, and dash-dotted lines, respectivBlysame aga) but for At=40 days andj=1.22; (c) for At=1 day and fixedx
=1.0 for various values afj=3/2, 7/5, and 4/3, dashed, solid, and dash-dotted lines, respectivelydasdme agc) but for At=40 days
andq=7/5, 4/3, and 5/4.

tested Eq.4) for fixed q in two cases : for a time lagt
=1 day andg=1.39[Fig. 8@)] and for a time lagAt=40
days andg=1.22 fora=1, 0.9, and 0.§Fig. 8b)]. Next,
we tested Eq(4) for fixed =1 and varyingg: for a time lag
At=1 day and fog=3/2, 7/5, and 4/4Fig. 8c)] and for a
time lagAt=40 days forq="7/5, 4/3,and 5/4Fig. 8d)]. As
expected, the tails of the distribution functions approach a
Gaussian-type wheq is approaching 1. For completeness,
the corresponding cases of the distribution of price incre-
ments are shown and briefly discussed in the Appendix. whereK, =3 for a Gaussian process, is positive for all val-
In doing so the probability distributions of the normalized ues ofq<7/5 as expected, since its positiveness is directly
log returns for the different values of the time 1Ag=1, 5, related to the occurrence of intermitteni@}. Moreover, the
10, 15, 20, 25, 30, 35, and 40 days can be shown in Fig. Bmit q<7/5 also implies that the second moment of the
together with the lines representing the best fit to the TsalliSsallis-type distribution function will always remain finite, as
type of distribution function. In Table IIl the statistical pa- is necessarily due in the type of phenomena studied here.
rameters related to the Tsallis type of distribution functionFurthermore, if we assume that the Kolmogorov log normal
are summarized, including a criterion for the goodness of thenodel of turbulencd47] is applicable and lef\t, be the

fit, i.e., the Kolmogorov-Smirnov distanak s, which is de-
fined as the maximum distance between the cumulative prob-
ability distributions of the data and the fitting lines. Note that
the kurtosigsee Table Il for the Tsallis type of distribution
function

(5-30)

Kr=KL—(7_5q), (11
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TABLE lll. Values of the parameters characterizing the S&P500 1¢°

daily closing price data between Jan. 1, 1980 and Dec. 31, 1999 ir
the nonextensive thermostatistics approach. For the definition of the
Kolmogorov-Smirnov distancdys see the text. (a)
107k
At g a CpBy pa(Z=0) pa(Z2=0) K, dks
Data Eq.(4)

1 139 092 065 0.505 0.611  49.800 0.072 Sy42L At =120 days ;
5 136 090 062  0.447 0600  13.800 0.100 < 9 =

10 1.34 0.88 0.60  0.462 0.592 9.800 0.091 CB, =0.39 |:|

15 1.33 0.86 0.58  0.472 0.582 8.657 0.085 o Y O data \

20 1.32 0.85 056  0.459 0572  7.800 0.085 10°F g s |

25 1.31 0.83 0.54  0.447 0.560 7.133 0.087 S&P500. Jan 1980 - Dec 1668

30 1.29 0.80 0.52  0.443 0.549 6.164 0.088 :

35 125 0.78 050  0.432 0.538 5.000 0.087 4ol . . ]

40 1.22 0.76 0.48  0.445 0.525 4.467 0.077 =3 normalizedfog — 3
120 1.01 0.74 0.39  0.431 0.467 3.031 0.052

200 1.01 1.00 0.26  0.398 0.406 3.031 0.040 10°

scale at which thewhole partial distribution function be-

comes Gaussian, then the kurtokisshould scale as Ll
At _
K=Ky At, (12 Y02 At =200 days
Q_<]
Therefore

- -+ Gaussian
S&P500; Jan 1980 — Dec 1999

_ 5-T(At/At)?

= . 13
a 3—5(At/At)? a3

107 '
In order to obtain an estimate fdrt, , we observe that -5 normalized ?o eturns Z 5
the turbulence model, Ed4), fits well the normalized log 9

returns for At=120 days andj=1.01[Fig. 9a)]. The @ FIG. 9. Partial distribution function of normalized log return of
parameter ¢=0.74) in this case plays an important role in gajly closing price of S&P500 for a large time lag, i.¢a) At
controlling the tails such that the Tsallis-type distribution —120 days andb) At=200 days. The solid line marks the best fit

function for negative values d fits the data whose prob- with a Tsallis-type distribution function, E¢4), while the Gaussian
ability distribution function still deviates from Gaussian. In distribution function is drawn with a dashed line.

fact, further increasing the time lag to the valii¢=200
days leads to a complete coincidence between the distribwlependencdEgs. (11) and (12)] of the rescaled kurtosis
tion functions in the Tsallis and Gaussian forms for the presK, /K, as shown in the inset of Fig. 10.
ently investigated datgFig. 9b)]. Corresponding parameter Note that in the framework of the Kolmogorov log normal
values are also listed in Table Ill. This short observationmodel[47,20, 5=4«/9, wherek is called the intermittency
convincingly indicates where the transition occurs betweerexponent. Therefore, we find=0.88 for the intermittency
the small time scale model of nonextensive, intermittent proexponent of normalized log returns of the S&P500 daily
cess, and the large scale Gaussian extensive homogenealssing price in the time interval of interest. This valuerof
fluctuation picture[6,15] and refine the estimate of the is higher than the value of the intermittency exponent
Gaussian range in Figs. 1 and 2. =0.25 for turbulence recently obtained from experimental
In Fig. 10 the Tsallis parameteris shown as a function atmospheric datp48]. Early estimates have varied from 0.18
of the rescaled time laght/At_, whereAt, is the integral to 0.85 using different experimental techniquet—51.
scale, the scale at which thehole probability distribution  Large values of the intermittency exponent, ranging from 0.2
function converges to Gaussian. The crosses represent theto 0.8, have been reported in studies of multiparticle produc-
values for which the best fit to the S&P500 dékag. 2) is  tion [52]. It was found that the range of intermittency expo-
obtained with Eq.(4). With this value of the integral scale nent values depend on the number of cascades; the smaller is
At , we find the value of the exponeat=0.39 as the one the number of stages of the multiplicative cascade the
for which Eq.(13) fits best with theg values. The exponent smaller is x, and converselfFig. 2(b) in Ref. [52]]. In
value §=0.39 also allows one to fit well with the power-law analogy with such findings, a value &f=0.88 can be con-
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1.4 . ; 16 . ; ; . . . .
x x fitin Figs. 2 and 9
— Eq.(13) S&P500; Jan 1980 — Dec 1999
q
1.3F ]
[*)
10 6=0.39 x
[ 3
| Sg X
1.2¢ f » | ]
x" .
A
® Eq(12) .
10° =
11r 10° 102 107" 10° ]
AtAt
L At =200 days
S&P500; Jan 1980 - Dec 1999 .

1 L L L L
1072 107" 10° 0 5 10 15 20 25 30 35 40
AYA tL time lag A t (days)

FIG. 11. Characteristic parameters of the Tsallis-type distribu-
tion function as defined in Ref27]: Tsallis g parametercrosses
a (squares constantC B, used in the fi{open circle the width of
the Tsallis-type distribution &vzv: [2a—(q—1)]/[2aCBy(q—1)]
from Eq.(4) (triangles (rescaled by a factor of 1)fand asymptotic
pehavior of 22~2/(CPBo) for a—1 (full circles) (rescaled by a
factor of 1/6.

FIG. 10. The functional dependence of the Tsalliparameter
on the rescaled time lagt/At, for At =200 days and5=0.39
[see Eq.(13)] (line); the symbols represent the values of the
parameter listed in Table Il and used to plot the fitting lines in Figs.
2 and 9. Inset: scaling properties of the rescaled kurtigsi«, ,
whereK, =3 is the kurtosis for a Gaussian process, as a function o
the rescaled time lagt/At, satisfying Eq(11) (open symbolsand

Eq. (12) (full symbols. ~2/(CpBy). Itis obvious that for large time Iags(rZ, tends to

. . — 2/(37 ). . . .pe
sidered to be related to a high number of cascades in a mufiverge[24] like =(At)=="%; this can be easily verified on
a log log plot(not shown.

tiplicative process, leading to the observed partial distribu-~ o . L .
tion functions of the normalized log returns of the S&Ps00 ' limitof g—1 the Tsallis-type distribution function con-
verges to Gaussigras seen in Fig. ®)]. The values of the

index. : N .
One can explore the Tsallis type of the probability distri- PArametersy, , CBo, which best fit with the data using
bution function, Eq.(4), in two limits. For small values of EQ-(4), and 2y, are plotted as a function of the time lag in

normalized log returng the probability distribution function Fig. 11.

converges to the form
V. FOKKER-PLANCK APPROACH

pAt(z)miex _Mmm ) (14) On the other hand, the evolution of a time-dependent
Z, 2a—(gq—1)

probability distribution function is usually described within
the Fokker-Planck approach. This method provides further

Therefore, the Tsallis-type distribution function converges ta A . . . .
. . - information on the correlations present in the time series and
a Gaussian, i.eq¢—1, for small values of the normalized

log returns, for anyAt investigated herésee Figs. 1 and)2 :tebeg}\r/}szwzr; the Jo;]t F;I?F)s mt Sdgr)tzgd tgﬁa\é%rrlgsbéefﬁis
It is also of interest to check the probability of return to the = P \21:88, - - - 2nn Bl

. . . . issue by determining the joint PDF foN=2, i.e.,
origin p,(Z=0) (Table Ill). There is a slight difference be- i : .
tween the values of the probability of “return to the origin” P(Z3,Atp; A%y, ALy). The symmetiically tilted character of

. the joint PDF contour leveldFig. 12 around an inertia axis
ffr the datg an_d the one obtained frc_)m .EQ) p“.(z 0) with slope 1/2 points out to some statistical dependence, i.e.,
=1/Z,. This difference decreases with increasiAty and : ;
q . : o a correlation, between the normalized log retufiis At) of
completely disappears in the Gaussian ligpit 1, a—1.

’ . the daily closing price signal of S&P500. A lack of correla-
In the limit of large values of normalized log returds tions w}:)uld pl?t IOthe ingrtia axis on the main diagonal

the Tsallis-type distribution converges to a power law (Fig. 12
- 1 (q—l)Cﬁ02a|Z|2a —1/(q-1) s The conditional probability function is
Pad =7 | 2a—(q-1) ' P(Zis1, At 1;Z; AL
Studying the Tsallis type of distribution function one can p(Zi,At)

obtain from Eq(4) an expression for the width of the Tsallis forj=1,... A/~ 1. For anyAt,<At;<At,, the Chapman-
type of probability distribution function, @@Z[Z_a—(q Kolmogorov equation is a necessary condition of a Markov
—1)]/[2aCBo(g—1)]. In the limit of a—1 the width of  process, one without memory but governed by probabilistic
the Tsallis-type distribution @2=(3—q)/2CBo(q—1), i.e.,  conditions

P(Zis1,At 4|2 At = (16)
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4 T T T T T T T 15 T
S&P500; Jan 1980 - Dec 1999 i - °
3L log 10 PZyAt,Z AL) 7 1 D .
2f : (a) S&P500
[ ]
1F °
[
NV or . 0.5¢ s o 1
b o Yoo
[
° %o0p
-2 ] 0 W—
| () At, =1 day & .
-3l s At =5 days "
i / i ® e
" -3 -2 -1 0 1 2 3 4 05 -2 = 0 1 2 3
V4 - normalized log returns Z
4 ' ' i ! i ' ' 5 1 °
S&P500; Jan 1980 - Dec 1999 o &
3f : g B 1
log,, P(Z,A1,Z,A1) 7 p®@ (b) S&P500
A .
1 -
ok ] 0.5¢ 8
—1F
2+
e : (b) At, = 5days
-af . t —10days °
g 0 ' : :
4 s s . i s ' s -3 -2 -1 0 1 2 3
= =S -2 =1 20 1 2 3 4 normalized log returns Z

. - . . FIG. 13. Kramers-Moyal drift and diffusion coefficier(@ D)
FIG. 12. Typical contour plots of the joint probability density and (b) D@ as a functign of normalized log returfor daily

function p(Z,,At,;Z,,At,) of daily closing price of S&P500 for @)_ 2
+
the period of interest Jan. 01, 1980 and Dec. 31, 1999. Dashed “nézslosmg price of S&PS00 D 0.2627~0.000%+0.02.

have a slopet+ 1 and emphasize the correlations between probabil- (1)
ity density functions for@ At,—1 day andAt,~5 days andb) in terms of a drift D'*(Z,7) and a diffusion coefficient

(2) —
At,=5 days andAt;=10 days. Contour levels correspond to D(Z,7) (thus values ofr represenidt;, i=1,...).
10g,0p(Z,,At,:Z,,At)=—1.0, —1.5, —2.0, —2.5, and —3 The coefficient functional dependence can be estimated

from center 1o border. ' directly from the mome.n.tﬂ;/l(") (known as Kramers-Moyal
coefficients of the conditional probability distributions:

P(Z2,At,]Z1,Aty) 1 o ,

M<k>:A—Tf dZ(Z2' —=2)%p(Z ,7+A7|Z,7), (19

:f d(Z)p(Z;,At,]Z; At p(Ax; ,Ati|Zy,Aty).

(17 DMz, 7)= k_1| lim M® (20)

The Chapman-Kolmogorov equation when formulated in

differentialform yields a master equation, which can take theforlAT_’o- According to Fig. 183 th%‘ drift coefficient
form of a Fokker-Planck equation[43]. Let 7 DM~0 and the diffusion coefficient®d® are well repre-

= log,(200/At), sented Fig. 13b)] by a parabola

D®)(Z)=0.26z2—0.00% +0.02 (21)

d Z,7)= ? bz )+ aZD<2>z ) |p(Z,7)
d’Tp( T Tz (2.7 972 (2.7 |p(Z,7 in the interval Ze[—0.175,0.22%—noticing that it is

(18 smaller than the one presented in Fig. 2.
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FIG. 14. Probability distribution functions of the daily closing price incremexygt) =y(t+At) —y(t) of S&P500(symbols. The
Tsallis-type distribution function$Eq. (4)] obtained(a) for At=1 day and fixedg=1.45 (CB,=0.23) and for various values of the
parameter=0.5, 0.6, and 0.7, dashed, solid, and dash-dotted lines, respectiyedgme asga) but for At=40 days;(c) for At=1 day and

fixed «=0.5 (CBy=0.23) and for various values @f=1.45, 1.30, and 1.15, dashed, solid, and dash-dotted lines, respectivelydiand
same agb) but for At=40 days.

It may be worthwhile to recall that the observed quadraticprobability distribution functions for different time lags, is
dependence of the diffusion terd(?) is essential for the well related to the Gaussian character of the distribution
logarithmic scaling of the intermittency parameter in studiesunction for such small values of the normalized log returns
on turbulence. Ze[—3,3]. DW=0 further implies that there is almost no

Finally, the Fokker-Planck equation for the distribution restoring force, i.e.;,y~0 in Eq. (6), while the quadratic
function is known to be equivalent to a Langevin equationdependence db(® in Z is obviously like an autocorrelation
for the variable, i.e.Z here (within the Ito interpretation function for a diffusion process.

[7,43-449),

d VI. CONCLUSION
$2(n=DWZ(7),7)+ 9(7\DPZ(7,7), (22

In summary, we have presented a method that provides
the evolution process of probability distribution functions
wherez(7) is a fluctuatings-correlated force with Gaussian (over 20 yearsof one financial index, i.e., the S&P500. We
statistics, i.e.{ (1) n(7'))=28(7— 7). have studied the evolution process of the tails that are out-

Thus, the Fokker-Planck approach provides the evolutiorside the centra(Gaussiairegime at small returns, thereby
process of PDF'srom small time lags to larger oneJhe  facilitating the understanding of the evolution of these distri-
fact that the drift coefficient is approximately equal to zero,bution functions in a Fokker-Planck framework. The Beck
therefore indicating that there is no correlation between théurbulence model can be well applied to describe the volatil-
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ity (of normalized log retumndistributions assuming &>  dynamical hierarchical cascade process of volatility correla-
distribution for the local volatility. An open question in non- tions.
extensive thermostatistics studies is often raised about the These points notwithstanding, we have related a financial
meaning, value, and behavior of the nonextensive exponeffarket behavior to the Tsallis nonextensive thermodynamics
or Tsallis parameteg. The intermittency exponent is found approach, i.e., more precisely to a turbulence-like process, as
to be related to the scaling exponent of the PDF moments ifinancial market and indices were often claimed to be seen
the framework of Kolmogorov log normal model, thereby [2:12,13. Finally, it seems that we have thoroughly an-
giving weight to the model and the statistical approach. ThéWered the often raised question “why to look at the tails of
large value of the intermittency exponent points to a Iargea ’g’robabmty distribution function and what does that lead
number of cascades in the turbulent process. Its range hdg"
been found to extend up to ca. 200 days. One may still won- APPENDIX
der on theg value itself. In other works, this value is related,
e.g., to the upper and lower bounds of the multifractal di- We have also searched for describing the partial distribu-
mension[17], in other words, to the bounds of thevalues tion function of the(raw) increments of daily closing price
in multifractal studies[40]. It may also be related to the signal of the S&P500 with the Tsallis-type distribution func-
value of the fractional derivative, say in a nonlinear Fokker-tion. We have applied Eq4) for x=Ay(t,At)=y(t+At)
Planck equation approad®3]. This should be some inter- —Yy(t). We have tested the Tsallis-type distribution function
esting work to pursue, again with some warning concerningor the increments ofAt=1 day for fixedgq=1.45 (CB,
the possible error bars on the generalized fractal dimensior0.23) and varyingae=0.5,0.6,0.7[Fig. 14@&)]. Applying
in multifractal studieg54]. the same set of parameters and to price incrementa yor
We have also presented the turbulence-like dynamics=40 days leads to a pretty bad fEig. 14b)]. Decreasing
through the Fokker-Planck and the Langevin equations. Wghe value ofg would not have produced better results since
have (unexpectedly found that, in the treated case, there isthe Tsallis-type distribution function would have been
almost no restoring force, i.ey~0 in the Langevin equa- bounded within smaller range aroudd/=0 values. A test
tion. A comparison is made between normalized log returngor fixed «=0.5 (CB,=0.23) and varyingq=1.45,1,30,
and mere price increments. We have examined the corrend 1.15 forAt=1 day is next shown in Fig. 1d). Again,
sponding cases of the distribution of price increments withthe same set of parameters is applied to price increments for
other possible definitions. It was found that the definitionAy=40 days and leads to a pretty bad Ftg. 14d)]. These
(through a normalized log return rather than a mere priceesults may be somewhat expected because the Tsallis-type
difference is very relevant for obtaining nice fits. This has distribution function represents a mathematical construction
been also observed in a work by Karth and Peift®®l on  that is designed for normalized variables, i.e., a variable
related matter. This warning might also shed some light orthanging within a limited range. To take into account a
the possible origin of the controver$y,5] concerning the double-peak-like structurée.g., for large time lags, see Fig.
relationship(or nof) between the fat tails caused by some14) remains an open question.
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