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Dynamical model and nonextensive statistical mechanics of a market index on large time window
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The shape and tails of partial distribution functions~PDF! for a financial signal, i.e., the S&P500 and the
turbulent nature of the markets are linked through a model encompassing Tsallis nonextensive statistics and
leading to evolution equations of the Langevin and Fokker-Planck type. A model originally proposed to
describe the intermittent behavior of turbulent flows describes the behavior of normalized log returns for such
a financial market index, for small and large time windows, and both for small and large log returns. These
turbulent market volatility~of normalized log returns! distributions can be sufficiently well fitted with ax2

distribution. The transition between the small time scale model of nonextensive, intermittent process, and the
large scale Gaussian extensive homogeneous fluctuation picture is found to be at ca. a 200 day time lag. The
intermittency exponentk in the framework of the Kolmogorov log-normal model is found to be related to the
scaling exponent of the PDF moments, thereby giving weight to the model. The large value ofk points to a
large number of cascades in the turbulent process. The first Kramers-Moyal coefficient in the Fokker-Planck
equation is almost equal to zero, indicating ‘‘no restoring force.’’ A comparison is made between normalized
log returns and mere price increments.
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I. INTRODUCTION

The time lag dependent price increments, returns, log
turns, normalized log returns of financial market indic
stocks, and foreign currency exchange markets are know
be non-Gaussian distributed and rather exhibit fat-ta
power-law distributions@1–5#. The origin of the so called
large volatility characterized by such fat-tailed distributio
is a key question; the fat tails in such data are thought to
caused by some ‘‘dynamical process’’ through a hierarch
cascade of short- and long-range volatility correlatio
though Gopikrishnanet al. consider that correlations an
tails have different origins@5#. Destroying all correlations
e.g., by shuffling the order of the fluctuations, is known
cause the fat tails almost to vanish. It is still an open ques
whether both the fat-tailed power law of partial distributio
functions~PDF! of the various volatilities and theirevolution
for different time delaysin financial markets can be de
scribed.

The fat tails indicate an unexpected high probability
large price changes. These extreme events are of utmos
portance for risk analysis. They are considered to be a se
strong bursts in the energy dissipation of so called cluster
high price volatility. In doing so the PDF and the fat-ta
event existence are thought to be similar to the notion
intermittency in turbulent flows@6#. Indeed, employing the
Fokker-Planck equation approach@7#, recent studies@8–11#
have shown that the dynamics of a market results from
flow of information between long and short time scale
Since the distributions of returns obey a Fokker-Planck eq
tion, the time evolution of the priceincrementsignal Dy
measured for a time lagDt is governed by a Langevin equa
tion @7#

dDy

dDt
5D (1)

„Dy~Dt !,Dt…1h~Dt !AD (2)
„Dy~Dt !,Dt…,
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the drift D (1) and diffusionD (2) coefficients being those o
the Fokker-Planck equation@8–11#. It is often assumed tha
h(Dt) is a correlated noise with Gaussian statistics. Th
such a dynamics may be analogous to the dissipation of
ergy from large to small spatial scales in three-dimensio
turbulence as pointed out already in Refs.@6,12,13#.

On the other hand, the non-Gaussian character of the f
developed turbulence@14# has been linked to nonextensiv
statistical physics@15–23#; whence recently there has been
large number of studies, e.g., Refs.@6,17,24–27# of financial
markets employing the nonextensive statistics includ
those involving fully developed turbulence approach as
Ref. @14#. The nonextensivity, i.e., some anomalous scal
of classically extensive properties such as the entropy
linked to a single parameterq, e.g., in the Tsallis formulation
of nonextensive thermostatistics.

In this paper on the study of the behavior of a financ
index, i.e., the S&P500, onlarge time windows we apply, as
in Refs.@24,27# for short time windows, a recently suggeste
model of hydrodynamic turbulence that serves as a dyna
foundation for nonextensive statistics@19–21#. Indeed, long
time lag effects must be also investigated. Furthermore,
known that some distinction must be made concerning
type of financial marketsignal which is examined. We will
compare results based on price increment and normalized
return1 time series.

In Sec. II, we describe the distribution of returns for t
daily closing price signal of the S&P500 index for the tim
interval between Jan. 01, 1980 and Dec. 31, 1999, thu
series ofN55056 data points. Daily closing price values
the S&P500 index for the period of interest were dow
loaded from the website in Ref.@56#. We characterize the
tail~s! of the distribution for variousDt ’s, i.e., from 1 up to

1Throughout this paper the natural logarithm will be used.
©2003 The American Physical Society22-1
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40 days, and will observe the value of the PDF tails, for su
time lags, outside the best Gaussian through the data. In
III, we calculate the power-law exponents characterizing
integrateddistribution of the~normalized log! returns over
different time lags for the S&P500 index daily closing pri
through a detrended fluctuation analysis and from po
spectral density analysis point of view. Results are compa
to shuffled data for estimating the value of the error bars
Sec. IV, Tsallis’ statistical approach is outlined, and distrib
tions of ~normalized log! returns for time lags betweenDt
51 and 40 days are examined. It is found that theq value of
the nonextensive entropy converges to a value51.22 for
Dt540 days, starting withq51.39 forDt51, values similar
to those reported for the intraday evolution of other financ
indices, e.g., NASDAQ in Ref.@28# and slightly lower than
those for S&P500 minute data@24#. The probability density
f Dt(b) of the volatility b in terms of the standard deviatio
of the normalized log returns of the S&P500 for differe
time lags is found to obey thex2 distribution. The intermit-
tency exponentk of the Kolmogorov log normal model is
found to be related to the scaling exponent of the PDF m
ments, thereby giving weight to the model. The large va
of k points to a large number of cascades in the underly
turbulent process.

In Sec. V, the usual Fokker-Planck approach for treat
the time-dependent probability distribution functions is su
marized and coefficients governing both the Fokker-Pla
equation for the distribution function of normalized log r
turns and the Langevin equation for the time evolution
normalized log returns of daily closing price signal
S&P500 are obtained. We will notice that there is ‘‘no rest
ing force.’’

Therefore, we present a coherent theory linking the sh
and tails of partial distribution functions for long and sho
time lags of the daily closing values of a financial signal a
connect the often suggested turbulent nature of the mar
to a model encompassing nonextensive statistics and ev
tion equations of the Langevin and the Fokker-Planck ty
We are aware that the number of data points of the t
series (N55056) might seem quite small with respect
other studies involving millions of data points. Some pre
ous work had indicated the possible use of 5000 or so d
point series in order to obtain scaling arguments and ing
dients for models@29,30#. Clearly the relative error bars o
confidence interval being roughly proportional toN1/2 have
to be taken with caution. Thus the concluded universal va
might be debated upon. Nevertheless, one positive as
might be that scaling effects are nottoo sensitiveto N. How-
ever, we do warn throughout the paper that some cau
might also be taken concerning the stationarity of the d
Thesecaveatmight only be resolved through further work

II. DISTRIBUTION OF RETURNS

There are several ways of calculating the returns in a
nancial market. A simple one represents price increm
Dy(t,Dt) or difference between the value of the price sign
y(t) at time t1Dt and its value at timet. Log returns, i.e.,
the logarithm of the price ratioỹ(t)5 ln@y(t1Dt)/y(t)# are
04612
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also used sometimes. Below we consider thenormalized log-

returns Z(t,Dt)5@ ỹ(t)2^ ỹ&Dt#/sDt , where ^ ỹ&Dt denotes
the average andsDt gives the standard deviation ofỹ(t) for
a givenDt. The normalized log returnsZ(t,Dt) depend on
the timet and the time lagDt. However, in order to simplify
the notations, and whenever possible without leading to c
fusion and misunderstanding, we will drop the explicit wr
ing of one or both variables. Daily closing price values of t
S&P500 index for the period between Jan. 01, 1980 and D
31, 1999 will serve as a standard financial signaly(t), thus
N55056 data points.

The distributions of the normalized log returnsZ(t,Dt) of
the daily closing price signal for S&P500 index for the p
riod between Jan. 01, 1980 and Dec. 31, 1999 forDt51 day
are plotted in Fig. 1. A fit is first attempted with a Gaussi
distribution forsmall values of the increments, i.e., the ce
tral part of the distribution. This central part of the distrib
tion is well fitted with such a Gaussian-type curve within t
intervalZP@23,3# but departs from the Gaussian form ou
side this interval. The negative and positive tails of the d
tribution outside the Gaussian curve are both found to
equal to23.1. In the caseDt>1 day, it is observed that the
best Gaussian range is the same as forDt51 day~Fig. 2! but
the outside tail values, as estimated for the variousDt ’s of
interest, are slightly different, and found to decrease withDt;
they are reported in Table I. These findings (Dt-independent
Gaussian range and tail exponent behavior! are at odds with
the expectation that the PDF tends toward a Gaussian
large Dt. Some Bayesian-like analysis of the PDF’s, i.
allowing for the expected Gaussian width behavior, has b
done, with appropriate conclusion. However, the error bar

FIG. 1. Probability distribution function of normalized log re
turns Z(t,Dt) of daily closing price value signal of S&P500 be
tween Jan. 01, 1980 and Dec. 31, 1999 forDt51 day ~symbols!.

Normalized log returns are calculated asZ(t,Dt)5@ ỹ(t)

2^ ỹ&Dt#/sDt , whereỹ(t)5 ln@y(t1Dt)/y(t)# andsDt is the standard

deviation of ỹ(t) for time lag Dt. The dashed line represents
Gaussian distribution. Inset: power-law fit~solid line! of the nega-
tive (23.1) and positive (23.1) slope of the distribution outside
the Gaussian regime.
2-2
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DYNAMICAL MODEL AND NONEXTENSIV E . . . PHYSICAL REVIEW E 68, 046122 ~2003!
the various widths do not allow for a statistically convincin
evidence through the comparison of variance classical
Same for the tail exponents which are obtained from a v
small number of data points. Therefore, it seems appropr
to pursue further the PDF analysis through other techniq
that allow one to extract a PDF tail from the difference b
tween a raw data histogram and a central region Gaussia

Notice that the Oct. 19, 1987 and Oct. 27, 1997 crash
as studied elsewhere@31,32# are represented by isolated do

FIG. 2. Probability distribution function~PDF! pDt(Z) of nor-
malized log returns of the daily closing price value signal
S&P500~symbols! and the Tsallis-type distribution function~lines!
for different values ofDt51, 5, 10, 15, 20, 25, 30, 35, and 40 day
The PDF~symbols and curves! for eachDt are displaced by 10 with
respect to the previous one; the curve forDt51 day is unmoved.
The large circles mark the ends of the interval in which the dis
bution islike a Gaussian distribution. The values of the slopes of
positive and negative tails of the distributions outside the Gaus
rangeZP@23,3# are listed in Table I. The values of the paramete
for the Tsallis-type distribution function for eachDt are summa-
rized in Table III.

TABLE I. Slopes of the positive and negative tails~second and
third columns! of the distributions outside the Gaussian ran
Z(t,Dt)P@23,3#; values of characteristic Tsallis function param
eters are given.

Dt Positive Negative 2q 1/(q21) a

1 3.1 3.1 2.78 2.564 0.92
5 3.1 3.0 2.72 2.778 0.90

10 3.0 2.7 2.68 2.941 0.88
15 3.0 2.6 2.66 3.030 0.86
20 2.9 2.5 2.64 3.125 0.85
25 2.9 2.5 2.62 3.226 0.83
30 2.8 2.3 2.58 3.448 0.80
35 2.7 2.3 2.50 4.000 0.78
40 2.5 2.2 2.44 4.545 0.76
04612
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at Z5223 and Z527, respectively.2 The value ofZ5
28.7 represents the aftershock crash of Oct. 26, 1987@32#.
The analysis presented in this study is neither designe
capture such extreme events nor their effects.

III. TIME CORRELATIONS

There are different estimators for the long- and/or sho
range dependence of fluctuations correlations@33#. In all
cases it is useful to test the null hypothesis which deba
@4,5# whether the fat tails are related to or/and caused
long-range volatility correlations. Destroying all correlatio
by shuffling the order of the fluctuations is known to cau
the fat tails almost to vanish. A Kolmogorov-Smirnov te
~not shown! on shuffled data has indicated the statistical v
lidity of the numerical values and the statistically accepta
meaning of the displayed error bars.

Through the ~linearly! detrended fluctuation analysi
~DFA! method, see, e.g., Ref.@34#, we show first that the
long-range correlationsof daily closing price signal of
S&P500 for the time interval of interest are Brownian-lik
The method has been used previously to identify whet
long-range correlations exist in nonstationary signals and
many research fields, such as finance@29,30#, bioinformatics
@35#, cardiac dynamics@36#, and meteorology@37–39#. The
DFA concepts are therefore not repeated here. For an ex
sive list of references see Ref.@34#. Briefly, the signal time
seriesy(t) is first integrated to ‘‘mimic’’ a random walk
Y(t). The time axis is next divided intok11 nonoverlap-
ping boxes of equal size, i.e., sizen; one looks thereafter for
the best~linear! trend z(n) in each box and calculates th
root mean square deviation of the~integrated! signal with
respect toz(n) in each box. The average of such values
taken at the fixed box sizen in order to obtain

F~n!5AK 1

n (
i 5kn11

(k11)n

@Y~ i !2z~ i !#2L . ~2!

The box size is next varied over then value. The resulting
function is expected to behave liken11HDFA indicating a
scaling law characterized by a~Hurst! exponentHDFA . For
the ~integrated! daily closing price signal of the S&P50
index, a scaling exponent 11HDFA51.5260.01 is found
~Fig. 3! in a scaling range extending from about 1 week
about 250 days, i.e., 1 y.

Along the same line of thoughts the scaling properties
the normalized log returnsZ(t,Dt)5@ ỹ(t)2^ ỹ&Dt#/sDt have
also been tested for different time lag values, i.e.,Dt51, 5,
10, 15, 20, 25, 30, 35, and 40 days~Fig. 4!. The DFA func-
tion, as defined above, of the integrated normalized log
turns for a time lag of 1 day behaves aswhite noiseand has
a Hausdorff measure equal to zero~later see its power spec
trum in Fig. 6!. However, nontrivial scaling properties occu

2Although the absolute value of the S&P500 drop in price is of
order of 60 units in both crashes, since the price has increased
due to the nonlinearity of the logarithm the value ofZ is much
smaller at the crash in 1997.
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M. AUSLOOS AND K. IVANOVA PHYSICAL REVIEW E 68, 046122 ~2003!
for the series of normalized log returns as soon asDt>1 day.
The values of the scaling exponents and the maximum
size nx ~in days! for which the scaling holds for each DF
function are given in Table II, while the DFA functions to
gether with fitting lines are plotted in Fig. 4. The values
the Hausdorff measure of the normalized-log return sign
vary with Dt from HDFA50.2760.04 for Dt55 days to
HDFA50.4360.01 for Dt540 days. Recall thatHDFA50.5
corresponds to Brownian motion. The value of the maxim

FIG. 3. DFA functionF(n) plotted as a function of the the bo
sizen of the integrated daily closing price value signal of S&P5
between Jan. 01, 1980 and Dec. 31, 1999. Brownian-like fluc
tions with 11HDFA51.5260.01 are obtained for all possible tim
scales.

FIG. 4. DFA functionF(n) plotted as a function of the box siz
n of the integrated normalized log returnsZ(t,Dt) of daily closing
price value signal of S&P500 between Jan. 01, 1980 and Dec
1999 for different time lagsDt51, 5, 10, 15, 20, 25, 30, 35, and 4
days. Values of the scaling exponentsHDFA for the various DFA
functions are summarized in Table II. Inset: power-law functio
dependence of the value of the cross over box sizenx as a function
of time lagDt.
04612
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box size for which the scaling holdsnx is related to the
periodicities of the normalized log return signals defined
the value of the time lag asnx'3.5Dt. The data and the
power-law fit of this functional dependence are plotted in
inset of Fig. 4. The value of the slope 1.0 is the same as
one found by Huet al. @34# when studying the effects o
sinusoidal trends and noise on the~so called second order in
Ref. @34#! DFA technique.

The power spectrum of the daily closing price signal
S&P500 S( f ); f 2m with spectral exponentsm152.41
60.06 andm251.9560.03 with a scale break at 250 days
shown in Fig. 5. The scaling properties of the power sp
trum of the shuffled daily closing price signal of S&P500,
which, e.g., the amplitudes are randomly shuffled are sho
in the inset of Fig. 5. Such a scaling spectral exponenm
50 is the signature of a white-noise-like behavior. Rec
that m52.0 corresponds to Brownian motion.

We have also checked for scaling behavior and poss
periodicities in the power spectrum of the time series of

a-

1,

l

TABLE II. Values of the scaling exponent from the DFA anal
sis of normalized log returnsZ for different values of the time lag
Dt55,10,15,20,25,30,35, and 40 days, and crossover box sizenx .

Dt 11HDFA nx

5 1.2760.04 19
10 1.3760.02 35
15 1.3960.02 49
20 1.3860.02 70
25 1.3860.02 91
30 1.4160.01 108
35 1.4360.01 117
40 1.4360.01 128

FIG. 5. Power spectrumS( f ) of the daily closing price value
signal of S&P500 between Jan. 01, 1980 and Dec. 31, 1999. A s
break at aroundf 51/250 day21 separates two scaling regions. In
set: scaling of the power spectrum of the daily closing price sig
of S&P500 as a white-noise signal withm'0.
2-4
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DYNAMICAL MODEL AND NONEXTENSIV E . . . PHYSICAL REVIEW E 68, 046122 ~2003!
normalized log returnsZ(t,Dt)5@ ỹ(t)2^ ỹ&Dt#/sDt for dif-
ferent~selected! values of the time lagDt51, 5, 20, 35, and
40 days~Fig. 6!. A white-noise-like behavior of the powe
spectrum of such returns always occurs for 1/f <Dt days;
e.g., dashed line in Fig. 6 forf ,1/128 andDt540 days.
This is in accordance with the results of the DFA analy
~Fig. 4 and Table II!. A scaling behavior is found at larg
frequenciesf satisfying the relationshipm52HDFA11, as
indicated in Fig. 6, e.g., by the dashed line with slopem
51.86 for f .1/128 for the caseDt540 days.

Periodicities in the power spectrum of the normalized lo
return time series forDt.1 day were expected to be foun
since these periods are somewhat embedded into the
series by the way they are obtained and the Fourier transf
technique. It is easily observed that the maxima and
minima of the spectrum correspond to harmonics and s
harmonics of 1/Dt.

IV. TSALLIS STATISTICS

Based on the scaling properties of multifractals@40#, Tsal-
lis @15,41# proposed a generalized Boltzmann-Gibbs therm
statistics through the introduction of a family of nonexte
sive entropy functionalSq given by

Sq5k
1

q21 S 12E p~x,t !qdxD , ~3!

with a single parameterq and wherek is a normalization
constant. The main ingredient in Eq.~3! is the time-

FIG. 6. Power spectrumS( f ) of the normalized log returns
Z(t,Dt) of daily closing price value signal of S&P500 between Ja
01, 1980 and Dec. 31, 1999 for different time lagsDt51, 5, 20, 35,
and 40 days. Each curve is displaced by 1025 with respect to the
previous one; the power spectrum of the normalized log returns
Dt51 day is not displaced. The dashed line fromf 51/70 days21

to f 51/2 days21 has a slopem51.86, corresponding to theHDFA

exponent. The horizontal dashed line fromf 51/1024 days21 to f
51/128 days21 corresponds to what should be expected for wh
noise and is in agreement with the scaling of the DFA function
the same data as in Fig. 4.
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dependent probability distributionp(x,t) of the stochastic
variablex. The functional is reduced to the classical exte
sive Boltzmann-Gibbs form in the limit ofq→1. The Tsallis
parameterq characterizes the nonextensivity of the entrop
Subject to certain constraints the functional in Eq.~3! seems
to yield a probability distribution function of the form
@6,15,19,24,27#

p~x!5
1

Zq
H 11

Cb02a~q21!uxu2a

2a2~q21! J 21/(q21)

~4!

for the stochastic variablex, where

1

Zq
5aH Cb02a~q21!

2a2~q21! J 1/2a GS 1

q21D
GS 1

2a DGS 1

q21
2

1

2a D , ~5!

in which C is a constant and 0,a<1 is the power-law ex-
ponent of the potentialU(x)5Cuxu2a that provides the ‘‘re-
storing force’’ F(x) in the Beck model of turbulence@19–
21,23#. The latter is described by a Langevin equation

dx

dt
52gF~x!1R~ t !, ~6!

whereg is a parameter andR(t) is Gaussian white noise. A
nonzero value ofg corresponds to providing energy to~or
draining energy from! the system by the outside@42#. The
parameterb0 in Eqs.~4! and~5! is the mean of the fluctuat
ing volatility b, i.e., the local standard deviation ofuxu over
a certain window of sizem @6#. We will use this model as-
suming that the normalized log returnsZ(t,Dt) representthe
stochastic variablex, as in Eq.~6!, or Dy in Eq. ~1!. We will
search whether Eq.~4! is obeyed forx[Z(t,Dt), thus study-
ing p(x)[pDt(Z) for various time lagsDt.

Just as in the Beck model of turbulence3 @19–21# we as-
sume that the volatilityb is x2 distributed with degreen ~see
another formula in Ref.@23#!:

f Dt~b![
1

G~n/2! S n

2b0
D n/2

bn/221expS 2
nb

2b0
D , n.2,

~7!

whereG is the Gamma function,b05^b&, and the number
of degrees of freedomn can be found from

n5
2^b&2

^b2&2^b&2
. ~8!

The Tsallis parameterq satisfies@19#

q[11
2a

an11
. ~9!

3The approach used here was recently suggested to be an a
priate model of hydrodynamic turbulence for financial markets
Ref. @27#.
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FIG. 7. Probability densityf Dt(b) of the local volatilityb @Eq. ~10!# in terms of standard deviation of the normalized log returnsZ(t,Dt)
of S&P500 in nonoverlapping windows with sizem532 days for different time lags~symbols! ~a–i! Dt51, 5, 10, 15, 20, 25, 30, 35, and
40 days. Lines:x2 distribution as given by Eq.~7!.
re
u
rn

d
se
ir

r-

is
-
f

ent.
e

hese

e

To justify our assumption that the ‘‘local’’ volatility of the
normalized log returnsZ(t,Dt) is of the form ofx2 distribu-
tion, we checked the distribution of the normalized log
turns of the daily closing price of S&P500. We have calc
lated the standard deviation of the normalized log retu
within various nonoverlapping windows of sizem, ranging
from 25 to 1000 days

b~k!5A1

m (
i 5km11

(k11)m

Z2~ i !2S 1

m (
i 5km11

(k11)m

Z~ i !D 2

. ~10!

In doing so we have a various number ofM nonoverlap-
ping windows for various time lagsDt, and have searche
for the most efficient size of the window in order not to lo
data points and therefore information. The resulting emp
cally obtained distributions of the local volatility@Eq. ~10!#
of normalized log returns for the different time lags of inte
est are plotted in Fig. 7 for an intermediary casem532. The
04612
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values of the degreen of the x2 distribution are then ob-
tained using Eq.~8!. The spread@bmin ,bmax# of the local
volatility b decreases with increasing the time lag as it
expected from ax2 distribution function due to the exponen
tial function in Eq. ~7! for large values of the degree o
freedomn. The value ofn much varies as a function ofm
and the time lags considered. The fits are always excell
However, theb0 and n values are quite dependent on th
parameters used in the numerical analysis. Based on t
results, e.g., Fig. 7, it can be accepted that the~turbulent
market! modelb distributions can be sufficiently well fitted
for our purpose with ax2 distribution, thereby justifying the
initial assumption.4

In order to investigate the impact of thea parameter on
the tail behavior of the Tsallis-type distribution function w

4Sattin formula@23# might also be tested in future work.
2-6



DYNAMICAL MODEL AND NONEXTENSIV E . . . PHYSICAL REVIEW E 68, 046122 ~2003!
FIG. 8. Probability distribution functions of the normalized log returns of daily closing price signal of S&P500~symbols! for ~a! Dt
51 day and fixedq51.39. The Tsallis-type distribution functions@Eq. ~4!# obtained for various values of the parametera51. 0, 0.9, and
0.8, dashed, solid, and dash-dotted lines, respectively;~b! same as~a! but for Dt540 days andq51.22; ~c! for Dt51 day and fixeda
51.0 for various values ofq53/2, 7/5, and 4/3, dashed, solid, and dash-dotted lines, respectively; and~d! same as~c! but for Dt540 days
andq57/5, 4/3, and 5/4.
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tested Eq.~4! for fixed q in two cases : for a time lagDt
51 day andq51.39 @Fig. 8~a!# and for a time lagDt540
days andq51.22 for a51, 0.9, and 0.8@Fig. 8~b!#. Next,
we tested Eq.~4! for fixed a51 and varyingq: for a time lag
Dt51 day and forq53/2, 7/5, and 4/3@Fig. 8~c!# and for a
time lagDt540 days forq57/5, 4/3,and 5/4@Fig. 8~d!#. As
expected, the tails of the distribution functions approac
Gaussian-type whenq is approaching 1. For completenes
the corresponding cases of the distribution of price inc
ments are shown and briefly discussed in the Appendix.

In doing so the probability distributions of the normalize
log returns for the different values of the time lagDt51, 5,
10, 15, 20, 25, 30, 35, and 40 days can be shown in Fi
together with the lines representing the best fit to the Tsa
type of distribution function. In Table III the statistical pa
rameters related to the Tsallis type of distribution functi
are summarized, including a criterion for the goodness of
04612
a
,
-

2
is

e

fit, i.e., the Kolmogorov-Smirnov distancedKS , which is de-
fined as the maximum distance between the cumulative p
ability distributions of the data and the fitting lines. Note th
the kurtosis~see Table III! for the Tsallis type of distribution
function

Kr5KL

~523q!

~725q!
, ~11!

whereKL53 for a Gaussian process, is positive for all va
ues ofq,7/5 as expected, since its positiveness is direc
related to the occurrence of intermittency@6#. Moreover, the
limit q,7/5 also implies that the second moment of t
Tsallis-type distribution function will always remain finite, a
is necessarily due in the type of phenomena studied h
Furthermore, if we assume that the Kolmogorov log norm
model of turbulence@47# is applicable and letDtL be the
2-7
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scale at which thewhole partial distribution function be-
comes Gaussian, then the kurtosisKr should scale as

Kr5KLS Dt

DtL
D 2d

. ~12!

Therefore

q5
527~Dt/DtL!2d

325~Dt/DtL!2d
. ~13!

In order to obtain an estimate forDtL , we observe that
the turbulence model, Eq.~4!, fits well the normalized log
returns forDt5120 days andq51.01 @Fig. 9~a!#. The a
parameter (a50.74) in this case plays an important role
controlling the tails such that the Tsallis-type distributi
function for negative values ofZ fits the data whose prob
ability distribution function still deviates from Gaussian.
fact, further increasing the time lag to the valueDt5200
days leads to a complete coincidence between the distr
tion functions in the Tsallis and Gaussian forms for the pr
ently investigated data@Fig. 9~b!#. Corresponding paramete
values are also listed in Table III. This short observat
convincingly indicates where the transition occurs betwe
the small time scale model of nonextensive, intermittent p
cess, and the large scale Gaussian extensive homogen
fluctuation picture@6,15# and refine the estimate of th
Gaussian range in Figs. 1 and 2.

In Fig. 10 the Tsallis parameterq is shown as a function
of the rescaled time lagsDt/DtL , whereDtL is the integral
scale, the scale at which thewhole probability distribution
function converges to Gaussian. The crosses representq
values for which the best fit to the S&P500 data~Fig. 2! is
obtained with Eq.~4!. With this value of the integral scal
DtL , we find the value of the exponentd50.39 as the one
for which Eq.~13! fits best with theq values. The exponen
valued50.39 also allows one to fit well with the power-la

TABLE III. Values of the parameters characterizing the S&P5
daily closing price data between Jan. 1, 1980 and Dec. 31, 199
the nonextensive thermostatistics approach. For the definition o
Kolmogorov-Smirnov distancedKS see the text.

Dt q a Cb0 pDt(Z50) pDt(Z50) Kr dKS

Data Eq.~4!

1 1.39 0.92 0.65 0.505 0.611 49.800 0.07
5 1.36 0.90 0.62 0.447 0.600 13.800 0.10

10 1.34 0.88 0.60 0.462 0.592 9.800 0.09
15 1.33 0.86 0.58 0.472 0.582 8.657 0.08
20 1.32 0.85 0.56 0.459 0.572 7.800 0.08
25 1.31 0.83 0.54 0.447 0.560 7.133 0.08
30 1.29 0.80 0.52 0.443 0.549 6.164 0.08
35 1.25 0.78 0.50 0.432 0.538 5.000 0.08
40 1.22 0.76 0.48 0.445 0.525 4.467 0.07

120 1.01 0.74 0.39 0.431 0.467 3.031 0.0
200 1.01 1.00 0.26 0.398 0.406 3.031 0.0
04612
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dependence@Eqs. ~11! and ~12!# of the rescaled kurtosis
Kr /KL as shown in the inset of Fig. 10.

Note that in the framework of the Kolmogorov log norm
model@47,20#, d54k/9, wherek is called the intermittency
exponent. Therefore, we findk50.88 for the intermittency
exponent of normalized log returns of the S&P500 da
closing price in the time interval of interest. This value ofk
is higher than the value of the intermittency exponentk
50.25 for turbulence recently obtained from experimen
atmospheric data@48#. Early estimates have varied from 0.1
to 0.85 using different experimental techniques@49–51#.
Large values of the intermittency exponent, ranging from
to 0.8, have been reported in studies of multiparticle prod
tion @52#. It was found that the range of intermittency exp
nent values depend on the number of cascades; the smal
the number of stages of the multiplicative cascade
smaller is k, and conversely†Fig. 2~b! in Ref. @52#‡. In
analogy with such findings, a value ofk50.88 can be con-

in
he

FIG. 9. Partial distribution function of normalized log return
daily closing price of S&P500 for a large time lag, i.e.,~a! Dt
5120 days and~b! Dt5200 days. The solid line marks the best
with a Tsallis-type distribution function, Eq.~4!, while the Gaussian
distribution function is drawn with a dashed line.
2-8
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sidered to be related to a high number of cascades in a
tiplicative process, leading to the observed partial distri
tion functions of the normalized log returns of the S&P5
index.

One can explore the Tsallis type of the probability dist
bution function, Eq.~4!, in two limits. For small values of
normalized log returnsZ the probability distribution function
converges to the form

pDt~Z!'
1

Zq
expH 2

Cb02a

2a2~q21!
uZu2aJ . ~14!

Therefore, the Tsallis-type distribution function converges
a Gaussian, i.e.,a→1, for small values of the normalize
log returns, for anyDt investigated here~see Figs. 1 and 2!.
It is also of interest to check the probability of return to t
origin pDt(Z50) ~Table III!. There is a slight difference be
tween the values of the probability of ‘‘return to the origin
for the data and the one obtained from Eq.~4! pDt(Z50)
51/Zq . This difference decreases with increasingDt and
completely disappears in the Gaussian limitq→1, a→1.

In the limit of large values of normalized log returnsZ,
the Tsallis-type distribution converges to a power law

pDt~Z!'
1

Zq
H ~q21!Cb02a

2a2~q21!
uZu2aJ 21/(q21)

. ~15!

Studying the Tsallis type of distribution function one c
obtain from Eq.~4! an expression for the width of the Tsall
type of probability distribution function, 2sw

2 5@2a2(q
21)#/@2aCb0(q21)#. In the limit of a→1 the width of
the Tsallis-type distribution 2sw

2 5(32q)/2Cb0(q21), i.e.,

FIG. 10. The functional dependence of the Tsallisq parameter
on the rescaled time lagDt/DtL for DtL5200 days andd50.39
@see Eq.~13!# ~line!; the symbols represent the values of theq
parameter listed in Table III and used to plot the fitting lines in Fi
2 and 9. Inset: scaling properties of the rescaled kurtosisKr /KL ,
whereKL53 is the kurtosis for a Gaussian process, as a functio
the rescaled time lagDt/DtL satisfying Eq.~11! ~open symbols! and
Eq. ~12! ~full symbols!.
04612
ul-
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;2/(Cb0). It is obvious that for large time lags 2sw
2 tends to

diverge@24# like .(Dt)2/(32q); this can be easily verified on
a log log plot~not shown!.

In limit of q→1 the Tsallis-type distribution function con
verges to Gaussian@as seen in Fig. 9~b!#. The values of the
parametersq, a, Cb0, which best fit with the data using
Eq. ~4!, and 2sw

2 are plotted as a function of the time lag
Fig. 11.

V. FOKKER-PLANCK APPROACH

On the other hand, the evolution of a time-depend
probability distribution function is usually described with
the Fokker-Planck approach. This method provides furt
information on the correlations present in the time series
it begins with the joint PDF’s that depend onN variables,
i.e., pN(Z1 ,Dt1 , . . . ,ZN ,DtN). We started to address thi
issue by determining the joint PDF forN52, i.e.,
p(Z2 ,Dt2 ;Dx1 ,Dt1). The symmetrically tilted character o
the joint PDF contour levels~Fig. 12! around an inertia axis
with slope 1/2 points out to some statistical dependence,
a correlation, between the normalized log returnsZ(t,Dt) of
the daily closing price signal of S&P500. A lack of correl
tions would put the inertia axis on the main diagon
~Fig. 12!.

The conditional probability function is

p~Zi 11 ,Dt i 11uZi ,Dt i !5
p~Zi 11 ,Dt i 11 ;Zi ,Dt i !

p~Zi ,Dt i !
~16!

for i 51, . . . ,N21. For anyDt2,Dt i,Dt1, the Chapman-
Kolmogorov equation is a necessary condition of a Mark
process, one without memory but governed by probabilis
conditions

.

f

FIG. 11. Characteristic parameters of the Tsallis-type distri
tion function as defined in Ref.@27#: Tsallis q parameter~crosses!,
a ~squares!, constantCb0 used in the fit~open circles!, the width of
the Tsallis-type distribution 2sw

2 5@2a2(q21)#/@2aCb0(q21)#
from Eq.~4! ~triangles! ~rescaled by a factor of 1/6!, and asymptotic
behavior of 2sw

2 '2/(Cb0) for a→1 ~full circles! ~rescaled by a
factor of 1/6!.
2-9
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p~Z2 ,Dt2uZ1 ,Dt1!

5E d~Zi !p~Z2 ,Dt2uZi ,Dt i !p~Dxi ,Dt i uZ1 ,Dt1!.

~17!

The Chapman-Kolmogorov equation when formulated
differential form yields a master equation, which can take t
form of a Fokker-P1anck equation@43#. Let t
5 log2(200/Dt),

d

dt
p~Z,t!5F2

]

]Z
D (1)~Z,t!1

]2

]Z2
D (2)~Z,t!Gp~Z,t!

~18!

FIG. 12. Typical contour plots of the joint probability densi
function p(Z2 ,Dt2 ;Z1 ,Dt1) of daily closing price of S&P500 for
the period of interest Jan. 01, 1980 and Dec. 31, 1999. Dashed
have a slope11 and emphasize the correlations between proba
ity density functions for~a! Dt251 day andDt155 days and~b!
Dt255 days andDt1510 days. Contour levels correspond
log10p(Z2 ,Dt2 ;Z1 ,Dt1)521.0, 21.5, 22.0, 22.5, and 23.0
from center to border.
04612
e

in terms of a drift D (1)(Z,t) and a diffusion coefficient
D (2)(Z,t) ~thus values oft representDt i , i 51, . . . ).

The coefficient functional dependence can be estima
directly from the momentsM (k) ~known as Kramers-Moya
coefficients! of the conditional probability distributions:

M (k)5
1

DtE dZ8~Z82Z!kp~Z8,t1DtuZ,t!, ~19!

D (k)~Z,t!5
1

k!
lim M (k) ~20!

for Dt→0. According to Fig. 13~a! the drift coefficient
D (1)'0 and the diffusion coefficientsD (2) are well repre-
sented@Fig. 13~b!# by a parabola

D (2)~Z!50.26Z220.005Z10.02 ~21!

in the interval ZP@20.175,0.225#—noticing that it is
smaller than the one presented in Fig. 2.

es
l-

FIG. 13. Kramers-Moyal drift and diffusion coefficients~a! D (1)

and ~b! D (2) as a function of normalized log returnsZ for daily
closing price of S&P500 ;D (2)50.26Z220.0005Z10.02.
2-10
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FIG. 14. Probability distribution functions of the daily closing price incrementsDy(t)5y(t1Dt)2y(t) of S&P500 ~symbols!. The
Tsallis-type distribution functions@Eq. ~4!# obtained~a! for Dt51 day and fixedq51.45 (Cb050.23) and for various values of th
parametera50.5, 0.6, and 0.7, dashed, solid, and dash-dotted lines, respectively;~b! same as~a! but for Dt540 days;~c! for Dt51 day and
fixed a50.5 (Cb050.23) and for various values ofq51.45, 1.30, and 1.15, dashed, solid, and dash-dotted lines, respectively; an~d!
same as~b! but for Dt540 days.
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It may be worthwhile to recall that the observed quadra
dependence of the diffusion termD (2) is essential for the
logarithmic scaling of the intermittency parameter in stud
on turbulence.

Finally, the Fokker-Planck equation for the distributio
function is known to be equivalent to a Langevin equat
for the variable, i.e.,Z here ~within the Ito interpretation
@7,43–46#!,

d

dt
Z~t!5D (1)~Z~t!,t!1h~t!AD (2)~Z~t!,t!, ~22!

whereh(t) is a fluctuatingd-correlated force with Gaussia
statistics, i.e.,̂ h(t)h(t8)&52d(t2t8).

Thus, the Fokker-Planck approach provides the evolu
process of PDF’sfrom small time lags to larger ones. The
fact that the drift coefficient is approximately equal to ze
therefore indicating that there is no correlation between
04612
c

s

n

,
e

probability distribution functions for different time lags, i
well related to the Gaussian character of the distribut
function for such small values of the normalized log retur
ZP@23,3#. D (1)'0 further implies that there is almost n
restoring force, i.e.,g'0 in Eq. ~6!, while the quadratic
dependence ofD (2) in Z is obviously like an autocorrelation
function for a diffusion process.

VI. CONCLUSION

In summary, we have presented a method that provi
the evolution process of probability distribution function
~over 20 years! of one financial index, i.e., the S&P500. W
have studied the evolution process of the tails that are
side the central~Gaussian! regime at small returns, thereb
facilitating the understanding of the evolution of these dis
bution functions in a Fokker-Planck framework. The Be
turbulence model can be well applied to describe the vola
2-11
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ity ~of normalized log return! distributions assuming ax2

distribution for the local volatility. An open question in non
extensive thermostatistics studies is often raised about
meaning, value, and behavior of the nonextensive expo
or Tsallis parameterq. The intermittency exponent is foun
to be related to the scaling exponent of the PDF moment
the framework of Kolmogorov log normal model, thereb
giving weight to the model and the statistical approach. T
large value of the intermittency exponent points to a la
number of cascades in the turbulent process. Its range
been found to extend up to ca. 200 days. One may still w
der on theq value itself. In other works, this value is relate
e.g., to the upper and lower bounds of the multifractal
mension@17#, in other words, to the bounds of thea values
in multifractal studies@40#. It may also be related to th
value of the fractional derivative, say in a nonlinear Fokk
Planck equation approach@53#. This should be some inter
esting work to pursue, again with some warning concern
the possible error bars on the generalized fractal dimen
in multifractal studies@54#.

We have also presented the turbulence-like dynam
through the Fokker-Planck and the Langevin equations.
have~unexpectedly! found that, in the treated case, there
almost no restoring force, i.e.,g'0 in the Langevin equa
tion. A comparison is made between normalized log retu
and mere price increments. We have examined the co
sponding cases of the distribution of price increments w
other possible definitions. It was found that the definiti
~through a normalized log return rather than a mere p
difference! is very relevant for obtaining nice fits. This ha
been also observed in a work by Karth and Peinke@55# on
related matter. This warning might also shed some light
the possible origin of the controversy@4,5# concerning the
relationship~or not! between the fat tails caused by som
,

d

y,

an

n
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dynamical hierarchical cascade process of volatility corre
tions.

These points notwithstanding, we have related a finan
market behavior to the Tsallis nonextensive thermodynam
approach, i.e., more precisely to a turbulence-like process
financial market and indices were often claimed to be s
@2,12,13#. Finally, it seems that we have thoroughly a
swered the often raised question ‘‘why to look at the tails
a probability distribution function and what does that le
to?’’

APPENDIX

We have also searched for describing the partial distri
tion function of the~raw! increments of daily closing price
signal of the S&P500 with the Tsallis-type distribution fun
tion. We have applied Eq.~4! for x[Dy(t,Dt)5y(t1Dt)
2y(t). We have tested the Tsallis-type distribution functi
for the increments ofDt51 day for fixedq51.45 (Cb0
50.23) and varyinga50.5,0.6,0.7@Fig. 14~a!#. Applying
the same set of parameters and to price increments forDy
540 days leads to a pretty bad fit@Fig. 14~b!#. Decreasing
the value ofq would not have produced better results sin
the Tsallis-type distribution function would have bee
bounded within smaller range aroundDy50 values. A test
for fixed a50.5 (Cb050.23) and varyingq51.45,1,30,
and 1.15 forDt51 day is next shown in Fig. 14~c!. Again,
the same set of parameters is applied to price increments
Dy540 days and leads to a pretty bad fit@Fig. 14~d!#. These
results may be somewhat expected because the Tsallis
distribution function represents a mathematical construc
that is designed for normalized variables, i.e., a varia
changing within a limited range. To take into account
double-peak-like structure~e.g., for large time lags, see Fig
14! remains an open question.
rol
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