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Corrections to scaling in two-dimensional dynamicXY and fully frustrated XY models

B. Zheng!? F. Ren'? and H. Reh
!Physics Department, Zhejiang University, Hangzhou 310027, People’s Republic of China
°FB Physik, UniversitaHalle, 06099 Halle, Germany
(Received 17 June 2003; published 21 October 2003

With large-scale Monte Carlo simulations, we investigate the two-dimensional dyné@ynand fully frus-
tratedX'Y models. Dynamic relaxation starting from a disordered or an ordered state is carefully analyzed. It
is confirmed that there is a logarithmic correction to scaling for a disordered start, but a power-law correction
for an ordered start. Rather accurate values of the static expgreamd the dynamic exponentre estimated.
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[. INTRODUCTION dynamics share some similar featufd®]. Spin-glass dy-
namics[2,11,14,43—4bstructural glass dynamics, different
In the last decade, many activities have been devoted tkinds of growth dynamics, and aging phenomena in complex
nonequilibrium relaxation of critical dynamics. Traditionally, dynamic systems all may show certain scaling or quasi-
it was believed that universal dynamic scaling behavior onlyscaling behavior. Concepts and methods, experiments and
exists in the long-time regime of dynamic evolution. In 1989,theories in these fields benefit from each other.
however, with renormalization group methods Janssen, What we emphasize is that the short-time dynamic scaling
Schaub, and Schmittmann derived a dynamic scaling fornfiorm not only is conceptually interesting, but also—more
for the O(N) vector model, which is valid up to thmacro-  interestingly and importantly, provides new techniques for
scopicshort-time regim¢1]. The dynamic process they con- the measurements of both dynamic and static critical expo-
sidered is that the system initially at a very high temperatureents as well as the critical temperatyf:8,11,48, for a
state with a small or zero magnetization is suddenlyreview see Ref[9]. Since the measurements are carried out
guenched to the critical temperature, and then released ib the short-time regime, the dynamic approach does not suf-
dynamic evolution of modeA. It is important that a new fer from critical slowing down. Compared with those meth-
independent critical exponent must be introduced to describeds developed in equilibrium, e.g., the nonlocal cluster algo-
the scaling behavior of the initial magnetization. This ex-rithms, the dynamic approach does study the original local
plains the anomalous behavior of the remanent magnetizatynamics and can be applied to disordered or frustrated sys-
tion in spin-glass dynamidg]. tems. Furthermore, it is very difficult to numerically solve
On the other hand, the power-law decay of the magnetidynamic equations with a continuous time to the long-time
zation in critical dynamics starting from a completely or- regime, but the short-time dynamic approach works well
dered state was found in rather early times, even though [t10].
was originally expected only in the long-time regime of dy- Recently, the idea of extracting information of the equi-
namic evolution[3,4], and therefore was not referred to be librium state from nonequilibrium states has been extended
the “short-time” behavior. The dynamic exponenican be to first-order phase transitions, and shows its efficidB6-
estimated from such a nonequilibrium relaxation. 41]. Such a methodology should also be very interesting in
Inspired and stimulated by these works, in the past yeargxperiment§47,4§|.
nonequilibrium short-time critical dynamics has been sys- In understanding the universal behavior of short-time
tematically investigated with Monte Carlo methdds-11]. critical dynamics, it is very essential to distinguish the mac-
Simulations have been extended from simple spin modelgoscopic and microscopic time scales. The dynamic scaling
[9,10,17 to statistical systems with quenched disorder oremerges only in thenacroscopicshort-time regime, after a
frustration[13—17, XY models and Josephson junction ar- time scalet,,;. which is large enough in microscopic sense.
rays[18—25, quantum spin systems and lattice gauge theot,;c is not universal. In Monte Carlo simulations,,;. is
ries [26—-28, dynamic systems without detailed balancerather small for the simple Ising and Potts models, e.g., from
[29-31], melting transitiong32—34 and fluid system$35]  several to 100 Monte Carlo time ste®§. However, this will
as well as first-order phase transitidi®@—41. More com- not be the case for statistical systems with non-nearest-
plete list of the relevant references before 1998 can be foundeighbor interactions, and especially with disorder, frustra-
in Ref.[9]. All these results confirm the existence of a rathertion, or many metastable states. For accurate measurements
general dynamic scaling form in critical dynamic systems af the critical temperatures and critical exponents, correc-
early times, and approximate scaling behavior in weak firsttions to scaling must be taken into account.
order phase transitions. The physical origin of the dynamic The XY model and the fully frustrateXY model have
scaling behavior is the divergent or very large correlatingbeen intensively studied in the past years. K¥model is
time around the phase transition temperatures. the simplest model exhibiting continuous symmetry and a
Actually, scaling behavior in nonequilibrium critical sys- Kosterlitz-Thouless phase transition in two dimensions, and
tems is not such a unique phenomenon in nature. For exnay describe the critical behavior of thin films of superfluid
ample, phase ordering dynamics and nonequilibrium criticahelium. The fully frustratecK'Y model and its variants attract
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the attention of physicists because of their relevance to su! : — :
perconducting Josephson junction arrays in a transversé\, \ \
magnetic field. The dynamic approach has been found to bé
rather efficient and successful in dealing with K& and : :
fully frustrated XY models[18—25. : / /
Bray, Briant, and Jervis have theoretically shown that: : ]
there is a logarithmic correction for the two-dimensioR3 :
model in the dynamic process starting from a dlsordered
state[19] (see also Ref49]). It is believed that the logarith-
mic correction is induced by the vortex pair annihilation. : i :
However, the presented numerical data in R&8] cannot \

distinguish the twAnsaze a possible biggez or a logarith-

mic correction. On the other hand, there has been some cor:
troversy over the value of the dynamic exponelsee, e.g., 5
Ref.[20] and references thergirin the case with a logarith- / /
mic correction to scaling, standard measurements of the criti+ Saat :
cal exponents without taking into account the correction to:
scaling could be correct only asymptotically in the lirbit
—. Therefore, it is very essential to clarify the logarithmic :

correction. : : :
In a recent papef21], careful Monte Carlo simulations ; ' ~ ?
have been performed for the two-dimensional dynaki¢ \, \ \

model at a temperatue=0.89, possible corrections to scal-
ing in dynamic processes starting from both ordered and dis- FIG. 1. A ground state of the 2D FFXY model. Dotted lines
ordered states are examined, and relevant critical exponerﬁ'§n°te negative links, while solid lines correspond to positive links.
are determined relatively accurately. The lattice is divided into four sublattices by the orientations of
In this paper, simulations are extended to several temper&Pins-
tures below the transition temperatufe;, and more sys-
tematic analysis of the data will be presented, including that 1 R
of the nonequilibrium spatial correlation function. Further- —H=-KX f;S-§, 1)
more, to reveal the effect of frustration, simulations for the
two-dimensional dynamic fully frustratedY model have
been carried out. Dynamics of a statistical system with a
Kosterlitz-Thouless phase transition and with frustrationwhere S=(S .S:,) is a planar unit vector at site of a
should be rather complicated. Our results show that dynamigquare lattice, the sum is over the nearest neighborsT &d
scaling behavior does exist, even though corrections to scalhe temperature. For th¥Y model, f; =1 on all links. A
ing are much stronger than in the case without frustration. Téimple realization of the FFXY model is by takirfg = —1
fully understand the scaling behavior, however, the groun®n half of the vertical linkgnegative link$ and +1 on the
states of the system should be known. Fortunately, this is thethers(positive links [50], as is shown in Fig. 1. It is well
case for the fully frustrate&kY model we consider in this known that the two-dimension&D) XY and FFXY model
paper. Our approach is a first trial in this direction. We aimundergo a Kosterlitz-Thoules&T) phase transition. In lit-
not only to reveal the dynamic scaling behavior, but also tcerature, the transition temperatufey is reported to be be-
provide relatively accurate measurements of the critical extween 0.89 and 0.90 for the 2®Y model [18,22,51,52,
ponents, because simulations of the systems with #hile between 0.440 and 0.446 for the 2D FFXY model
Kosterlitz-Thouless phase transition and with frustration in[53,54. For the FFXY model, there is also a second-order
equilibrium is rather difficult. phase transition in connection with chiral degrees of free-
The models and the scaling analysis of the dynamic bedom. But in this paper, only the KT transition is concerned.
havior are described in Sec. Il. Numerical simulations are Sinceéi is a planar unit vector, the Hamiltonian does not
presented in Sec. Ill. The final section contains the conclueontain intrinsic dynamics. In this paper, we consider the
sions. Monte Carlo dynamics, which is believed to be in the same
universality class of the Langevin dynamics. Following Refs.
[19,21], we adopt the “heat-bath” algorithm in which a trial
Il. SCALING BEHAVIOR AND CORRECTIONS move is accepted with probability [1/+ exp(AE/T)], where
TO SCALING AE is the energy change associated with the move. This
algorithm is somewhat faster than the standard Metropolis
algorithm in a state far from equilibrium. The dynamic pro-
The two-dimensionaKY model and fully frustratedKY  cess we simulate is that the system initially in a completely
(FFXY) model can be defined by the Hamiltonian ordered or disordered state is suddenly quenched to the KT

A. Models
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transition temperatur@y+ or below, and then released to To determine z independently we introduce a time-
dynamic evolution of modeA. dependent Binder cumulant

Denoting a spin at the tim’easé(t), as usual, we define
the magnetization, its second moment, the autocorrelation,
and the spatial correlation of theY model at the time as

u(t,L)=M®/M?2-1. (8)

When the nonequilibrium spatial correlation length at the
R R time t is much smaller than the lattice sizg U~ 1/L9.
M(t)E< > Si(t)> / L? (20 Simple finite size scaling analysis leads to

i

U(t,L)~t%z 9
2
M(z)(t)5<[2 Si(t)} >/ L4, (3)  Hered=2 is the spatial dimension.
In general, there may exist corrections to scaling in the
early times, for example, the power-law corrections to scal-
A(t)z<2 §<0)~§<t>> / L2 (4 ng[21]
I
M (t)~t~ 7?(1+c/t?), (10)
and
U(t)~t¥%(1+c/tb). (12
C(X't)5< EI §i(t)'§i+x(t)> / L2, ) Inthe cases of the simple Ising and Potts models, corrections

to scaling are rather wedl®]. For the models with many
respectively. Heré is the lattice size. metastab]g states such as system_s with dlsordgr, frustration or
KT transitions, however, corrections to scaling could be

Due to the frustration of the couplings, spins in thestron For accurate estimate of critical exponents, one needs
ground state of the FFXY model do not orient in the same 9. b '

direction as in theX'Y model, rather the lattice is divided into to take into account corrections to scaling.

four sublattices and spins on these four sublattices have dif-

ferent orientations. This is also shown in Fig. 1. Another C. Quench with disordered start

ground state is obtained by translating the configuration in  For the dynamic process quenched from a completely dis-
Fig. 1 by one lattice spacing in the vertical direction. ordered statéa disordered startvith a zero orsmallinitial

For the FFXY model, the magnetization is defined as th i TN ; ; )
projection of the spins on the configuration of the groun(jﬂagnetlzatlonM(O) (Mo,0), a generalized dynamic scal

X -ing form can be written down, e.g., for th¢éh moment of the
state, and the second moment as well as the spatial correcti agnetization
function are calculated separately for each sublattice. But the
autocorrelation function remains the same as in(Bg.Here ~ M®)(t, my,L)=\"*"2M®O (X =%, \*omy, N 1L), k=1,2.
it is very important that the definitions of the magnetization 12
and its moments, and therefore the macroscopic initial states
all rely on the ground state. If the ground state is not knownHere x, is an independent exponent describing the scaling
the “order parameter” must be defined differently. Then thebehavior ofm;,.
dynamic scaling behavior may not be so simple as analyzed For a quench with a disordered start, corrections to scal-
below. ing are very strong for the 2XY model. In Ref[19], it is
shown that there should be logarithmic corrections to scal-
B. Quench with ordered start ing. It is believed that the logarithmic corrections are related
. to the vortex pair annihilation, and do not disappear within
For the dynamic process querlched from a completely Oréarly times[19,49.
dered statéan ordered starte.g.,M(0)=(1,0), we assume W first consider the case of,=0 and with a sufficiently
a universal dynamic scaling form in teacroscopic short-  |arge lattice. Assuming a logarithmic correction for the non-
time regime, for example, for theth moment of the magne-  equilibrium spatial correlation length, from scaling analysis
tization and finite size scaling analysis, the second moment should

MO(LL) = A K72MO -2 01, k=12, (6 Coraveioliike
@)(t)~ n (2-n)lz
Here M (t)=M®)(t) is the x component of the magnetiza- MPO~{U[1+einm ]} ’ 13
tion vector, » is the usual static exponert,s the dynamic  gnd the autocorrelation
exponent, and is an arbitrary scale factor. Taking=t*?
and neglecting the finite size effect, one immediately obtains A(t)~{t/[1+cIn(t)]}0~ 92 (14
the power-law behavior
Similarly, the scaling behavior of the spatial correlation func-
M(t)~t~ 7%, (7) tion with a logarithmic correction to scaling is
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FIG. 2. The time-dependent Binder cumulant of the 2D dynamic  FIG. 3. The magnetization of the 2D dynan{t’ model with an
XY model with an ordered start. Solid lines are for temperature®rdered start. Solid lines are for temperatufes0.90, 0.89, 0.80,
T=0.90, 0.89, 0.80, and 0.7@rom above with a lattice sizel and 0.70(from below with a lattice sizeL =256. The dashed line
=256. The dashed line shows a power-law fit fo=0.80. The  shows a power-law fit fol =0.90. Dots fitted to the solid lines are
crossed line is obtained with= 128 for T=0.89. with power-law corrections to scaling. The crossed line is obtained
with L=128 for T=0.89.

C(x,t)={t/[1+cIn(t)]}~ "2 F (x/{t/[ 1+ cIn(t)]}*?).
(15) played with solid lines on a log-log scale. To uncover pos-
sible corrections to scaling, we measure the slope of the
For a nonzero but sufficiently smath,, one can deduce curves ofU(t) andM(t) in a time intervalt;,10 24Q, with
from Eq. (12) t, varying from 50 to 800. The results are listed in Table I.
For the Binder cumulant)(t), the slope for different,
M (mg,t)~t?, (16)  fluctuates within 0.5%, comparable to statistical errors.

0 i_s re_Iated toxo by =(xo— 7/2)/z [1,9]. If the I_attice size_ TABLE I. The slope of the curves dd(t), M(t), A(t), and

L is big enoughlz;[)tle above power-law behavior holds in a1\/I(2)(t) in Figs. 2—-5 measured in a time intery&f ,10 244 for the

time scalety~m, “"°. Typically, the exponend is positive. 2D dynamicXY model. The transition temperatufg is believed

Therefore, this anomalous behavior is also called a criticalo be between 0.90 and 0.89.

initial increase of the magnetization.
Usually, the correction to scaling favi(mg,t) is weak ty T=0.90 0.89 0.80 0.70

because the nonzem, could suppress the effect of the vor-

- . . ) . 50 1.005 0.999 1.000 0.998

tex pairs. Even if there is a correction, it does not affect so 100 1.004 0.97 0.999 0.997
much our estimate of the dynamic exponengd 7, for the ' ' ' '

U(t) 200 1.002 0.995 0.999 0.996

value of § usually is rather small.
400 1.001 0.995 1.001 0.995

800 1.000 0.997 1.004 0.995
Ill. NUMERICAL SIMULATIONS

50 0.0623 0.0592 0.0452 0.0365

In order to detect any corrections to scaling and obtain 100 0.0620 0.0589 0.0450  0.0363
accurate values of the critical exponents, we have performeg) (t) 200 0.0618 0.0587  0.0448  0.0361
the simulations up td=10 240 Monte Carlo time steps with 400 0.0617 0.0585  0.0446  0.0360

a lattice sizelL =256. An exceptional case is for the disor-

- o 800 0.0616 0.0584 0.0444 0.0359
dered start with smathy, where it is only up td=1000. To

investigate the finite size effect, some simulations are also 50 0.640 0.631 0.583 0.563
performed forL=128 and 512 maximally td=40960. 100 0.643 0.634 0.586 0.566
Samples of the initial configurations for averaging are froma(t) 200 0.645 0.636 0.589 0.570
12000 to 24000, depending on the models, temperatures, 400 0.648 0.639 0.592 0.574
and initial states. To estimate the errors, samples are divided 800 0.651 0.643 0.596 0.579
into some subsamples. In addition, errors induced by fluctua-

tions along the time direction are also taken into account. 50 0771 0.765 0774 0778

100 0.773 0.767 0.776 0.781
M 3)(t) 200 0.776 0.770 0.777 0.784

400 0.779 0.772 0.780 0.787
In Figs. 2 and 3, the Binder cumulant and magnetization 800 0.783 0.778 0.784 0.792

of the 2D dynamicXY model with an ordered start are dis-

A. Quench with ordered start for XY model
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TABLE 1l. The extracted exponents for the 2D dynam{’ model after taking into account the power-
law corrections forM (t) with an ordered start, and logarithmic corrections K&f)(t) and A(t) with a
disordered starty/2z in the third row forM(t) is obtained with a fixed correction exponént 1. The value
z, of the dynamic exponerttis estimated frond/z, » is calculated fromy/2z by takingz; as input,z, is
from (d— n)/z with 7 as input, andz; is calculated frond/z— 6 and 6.

T=0.90 0.89 0.80 0.70
U(t) diz 1.00010) 0.9955) 0.9994) 0.9955)
z 2.002) 2.01(1) 2.001) 2.01(1)
M(t) 72z 0.06144) 0.05812) 0.04413) 0.03582)
b 1.13 1.03 0.95 1.07
72z 0.0611 0.0580 0.0442 0.0357
Fixed b 1 1 1 1
7 0.2463) 0.2342) 0.1762) 0.1441)
Ref. [51] 7 0.239 0.229 0.179 0.146
M @)(t) (d—n)/z 0.86012) 0.87719) 0.89710) 0.9208)
Z, 2.043) 2.012) 2.032) 2.022)
A(t) diz—6 0.7565) 0.7384) 0.7115) 0.6956)
M(mg,t) 0 0.2412) 0.2492) 0.2634) 0.2804)
3 2.01(2) 2.022) 2.0502) 2.0502)

Therefore, corrections to scaling are negligible here. Even isize effect forL =256 up tot=10 240 should be negligibly
we fit the curves with theAnsatzin Eq. (11), it gives the  small in our simulations.
same results as without corrections to scaling. In Fig. 2, the In Table II, the dynamic exponeatand static exponeny
dashed line shows a power-law fit to the curveTef0.80.  calculated fromd/z and »/2z are listed, and values of
The fit is almost perfect starting frots 50. estimated from simulations in equilibrium are taken from
For the magnetizatioM (t), however, the slope for dif- Ref.[51] for comparison. The dynamic exponenis very
ferentt,; shows a definite decreasing trend. This trend coulctlose to the theoretical value=2. Our 7 is somewhat big-
induce an error of 2% or 3% in the measurements of theer than that in Refl51] at temperatures arounfr, but
critical exponents. In Fig. 3, the dashed line is a power-lansmaller at lower temperatures. If we linearly interpolate the
fit to the curve of T=0.90. Obviously, the curve off value of » to T=0.8933, it is 0.2383), about 2% smaller
=0.90 deviates visibly from the power-law behavior in the than the value 0.243(4) in a recent paf@#&Z]. But these two
first some hundred time steps. To describe the corrections tealues are still consistent if the errors are taken into account.
scaling, we fit the curves to E¢LO). In Fig. 3, dots represent
the curves with the corrections to scaling, and fit nicely to ot T
the simulation data(solid lineg starting already fromt s
=20. The resulting values 0§/2z andb are listed in the first
two rows of the sectoM(t) in Table II. A®
Looking at the values db for different temperatures, one
finds that they are around 1. One may wonder whether the
correction exponenb here is “universal” or not. We have
performed the fitting with a fixeth=1 for all temperatures.
The corresponding values afi2z are given in the third row
of the sectorM (t) in Table Il. Within errors, they are con-
sistent with those values without fixirg Therefore, the cor-
rection exponent may be indeed universal for different
temperatures.
To investigate the finite size effect, we have simulated the 00} T T
dynamic process for the temperature- 0.89 with a lattice t
sizeL=128. The Binder cumulant and magnetization have g 4. The autocorrelation of the 2D dynam¥&r model with
been plotted with crossed lines in Figs. 2 and 3. For comy gisordered start. Solid lines are for temperatiffesd.90, 0.89,

parison, the Binder cumulant has been divided by a factor 0h.80, and 0.7@from below. The dashed line shows a power-law fit
4. Up to the timet=2560, the curves foL =128 and 256 to T=0.70. Dots fitted to the solid lines are with logarithmic cor-

overlap almost completely. Since the time scale for a finiterections to scaling. But the slope of the dashed line is 0.579, far
system is~L% andz is about 2, we conclude that the finite from 0.695 with a logarithmic correction to scaling.

001
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FIG. 5. The second moment of the 2D dynarXi¥ model with FIG. 6. Data collapse of the correlation functi@x,t) of the
a disordered start. Crossed, circled, dashed, and solid lines are fop dynamicXY model with a disordered start. Solid lines are for
temperature§ =0.90, 0.89, 0.80, and 0.70, respectively. t=20, 40, 80, 160, 320, 640, 1280, 2560, 5120, and 10(&4één
left). Circles, squares, diamonds, triangles up, triangles left, tri-
B. Quench with disordered start for XY model angles down, triangles right, pluses, and crosses fitted to the curve

of t=160 are curves df=20, 40, 80, 320, 640, 1280, 2560, 5120

In Figs. 4 and 5, the autocorrelation and the second moand 10240, but rescaled according to E&5) with z=2.01, 7
ment of the 2D dynamiXY model with a disordered start =0.234, andc=0.704.
are displayed on a log-log scale. Looking at the curves by
eyes, they are not too far from a power-law behavior. In Fig. In principle, the dynamic exponeamtand the static expo-
4, for example, the dashed line shows a power-law fit to thenent » as well as the constaatmay be also extracted from
curve of T=0.70. It seems that the fit is rather good startingthe data collapse of(x,t). But the accuracy is not as high
from t~800, but the situation is actually not so simple.  as in the measurements fro{t) andM(3)(t).

To reveal the corrections to scaling, we have also mea- To complete our investigation, especially to verify the
sured the slope of the curves Aft) andM®@)(t) in a time  scaling behavior ofA(t) with an exponentd/z— 6, we fi-
interval [t;,10 240, with t; varying from 50 to 800. The nally perform simulations with a disordered start but a small
results are listed in Table I. For bofk(t) andM®)(t), the  nonzero initia}l magnetizatiomno. Since we need a small
slope shows an increasing trend. The difference amonP’““‘?" magnetizationm, and therefore suffer from large fluc-
slopes with different, is about 2% or 3%, comparable with tuation in longer times, the simulations are performed only
that for M (t) in the preceding section. If one fits the curves up t0t=1000. In Fig. 7,M(my,t) is displayed with solid
with power-law corrections to scaling, however, the correcines on I_og-Iog scgle. From_these data, we can not detect a
tion exponenb is rather small. According to the argument in logarithmic correctian. In a time interv4ll00,1000, direct .
Ref. [19], the corrections are logarithmic, i.e., the limiting measurements of thg slope yield the same exponents as with

. . a power-law correction.
case ofb—0. In Fig. 4, dots represent the curves with the
logarithmic corrections to scaling, and fit to the numerical
data (solid lineg from rather early times. In Table I, the
resulting values of (2 %)/z andd/z— # are given.

It is very important to observed that the slope of a power-
law fit in a time interval off 800,10 240 as shown with the
dashed line in Fig. 4 is still different by 10—-15% from that
with the logarithmic corrections to scaling. The logarithmic
correction is so strong such that the effective exponent ob-
tained with a power-law fit would be correct only in the limit
of t—cw. In the measurements of the critical exponents,
therefore, it is extremely important to take into account the
corrections to scaling.

To further confirm and clarify the logarithmic corrections

01 ——

M(me, ©

to scaling, we plot the data collapse of the nonequilibrium U . e
spatial correlation functionC(x,t) in Fig. 6. Taking z '
=2.01, »=0.234, andc=0.704 obtained fromM)(t) as FIG. 7. The initial increase of the magnetization of the 2D dy-

input, data of different time rescaled suitably according to namic XY model with a disordered start. The initial valuesmog
Eqg. (15 collapse nicely to the curve df=160, except for for temperatured=0.90, 0.89, 0.80, and 0.70 are 0.008, 0.008,
some departure far<100. 0.005, and 0.003, respectively.
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102 —T—— T ——— ———— T TABLE Ill. The slope of the curves dfl (t) andM (t) in Figs. 8

E 3 and 9 measured in a time intenfah ,10 24Q for the 2D dynamic
FFXY model. The transition temperatufg is believed to be be-
tween 0.446 and 0.440.

FFXY model

t, T=0446  0.440 0.40 0.30
50 1.034 1.014 1.011 1.009

100 1.031 1.011 1.010 1.007

u(t) 200 1.028 1.007 1.009 1.007
400 1.025 1.003 1.010 1.007

800 1.025 0.999 1.012 1.008

50 0.0695 0.0563 0.0349 0.0212

-6 NS | ) N |

10 ™ 1500 T 100 0.0689 0.0556 0.0345 0.0211

' M(t) 200 0.0683 0.0547 0.0342 0.0210

FIG. 8. The time-dependent Binder cumulant of the 2D dynamic 400 0.0676 0.0537 0.0340 0.0209
FFXY model with an ordered start. Solid lines are for temperatures 800 0.0668 0.0527 0.0338 0.0209

T=0.446, 0.440, 0.40, and 0.3@com above. Dashed lines show
power-law fits toT=0.30 and 0.4Qfrom below. Dots are with
power-law corrections to scaling f@r=0.440 and 0.446from be-
low). The crossed line is obtained with= 128 for T=0.440.

to scaling, we again measure the slope of the curve$(of
and M(t) in a time interval{t,,10240, with t; varying
from 50 to 800. The results are listed in Table III.

For the Binder cumulant, as shown by the dashed lines in
Fig. 8, the corrections to scaling are small fio+ 0.40 and
0.30. But forT=0.446 andT=0.440, there exist some. In

In Table I, the dynamic exponemtextracted fromA(t),
M®@)(t), andM (my,t) is given. The values are bigger than 2
by 2% or 3%. This probably indicates that the logarithmic

correction is still not perfect in the time intervals we simu- addition, the resulting exponedfz and the correction expo-

late. : . .
In general, for the quench with an ordered start, CorrecTnentb for T=0.440 fluctuate a little, depending on the time

tions to scaling are stronger at temperatures arolg, mtgrval [t,,10240 in Wh.iCh fitting is carried out. BUt Fhe

while for the quench with a disordered start, corrections toumversial valuebztll 'StSt'" “’;‘.thef reﬁsonabllttek.] th f!t V;'th a8

scaling are stronger at lower temperatures. These phenome wer-law correction to scafing 1S shown with dots In Fig. .
e final values of the exponediz are listed in TablelV.

are understandable since the vortices and vortex pairs play a :
essential role around the KT transition temperature. Ell—|_ere th_e values odi_/z for T=0.446 and 0.440 are e§t|mated
with a fixed correction exponebt=1, and the errors include

those with an unfixedb.
For the magnetization, the corrections to scaling depend
In Figs. 8 and 9, the Binder cumulant and magnetizatioralso on the temperatures. The higher the temperature is, the
of the 2D dynamic FFXY model with an ordered start arestronger the correction to scaling will be. The fit to a power-
displayed on a log-log scale. To uncover possible correctiongaw correction to scaling fof =0.30 and 0.40 yields a cor-
rection exponenb very close to 1. But the resulting values
IR T T of n/2z andb for T=0.446 and 0.440 fluctuate for different
FEXY model time intervals[t;,1024Q in which fitting is carried out.
1 Therefore, we have additionally performed some simulations
\\\\_ for T=0.440 and 0.446 with.=512 up to the timet

=40960. As is discussed in Sec. Illl A and this section, the

C. Quench with ordered start for FFXY model

M(t)

TABLE IV. The extracted exponents for the 2D dynamic FFXY
model after taking into account the power-law correctionsMdi)
andU (t) with an ordered start. The correction exponent is fixed to
be b=1. The dynamic exponert is estimated fromd/z; % is
calculated fromn/2z by takingz as input.

05| : T=0.446 0.440 0.40 0.30

M| L MR SRR | L T S T R A
100 1000 10000

! u(t) d/z 1.0196) 0.99410) 1.01Q03) 1.0073)
FIG. 9. The magnetization of the 2D dynamic FFXY model with z 1941 2.012) 1981  1.991)
an ordered start. Solid lines are for temperatifes0.446, 0.440, M(t) n/2z 0.058118) 0.05064) 0.03343) 0.02072)
0.40, and 0.3@from below. Dots fitted to the solid lines are with 7 0.2287) 0.2033) 0.1322) 0.08249)
power-law corrections to scaling. The crossed line is obtained wittRef. [55] 7 0.196 0.122 0.064
L =128 for T=0.440.
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results withL=512 tend to confirm that the correction ex- librium dynamic processes starting from both ordered and
ponentb takes a universal value= 1, even though it seems disordered states for the two-dimensionéY and FFXY
not very clear forT=0.446. Therefore, the values given in models. The results confirm that there is a logarithmic cor-
Table IV are with a fixecb=1, but the errors include those rection to scaling in case of starting from a disordered state,
with an unfixedb, and with different lattices. but a power-law correction in case of starting from an or-

We have also simulated the dynamic process for the temdered state. Rather accurate values of the static expopent
peratureT=0.440 with a lattice size.=128. The Binder and the dynamic exponenthave been obtained. The correc-
cumulant and magnetization have been plotted with crossetibn exponenb in the case with an ordered start is about 1,
lines in Figs. 8 and 9. Analyzing the data with differdnt and the estimated dynamic exponeig very close to 2. The
carefully, we conclude that the finite size effect for=256  static exponent; carries an error of about 1¥%somewhat
up tot=10 240 is negligible small. bigger for the FFXY model at the temperatufe= 0.446).

In Table IV, the dynamic exponemtand static exponent The values ofz estimated from the dynamic process with a
7 calculated fromd/z and %/2z are listed, and values af  disordered start are slightly bigger than 2, but it should only
estimated from simulations in equilibrium are taken fromindicate that the logarithmic corrections to scaling have not
Ref. [565] for comparison. The dynamic exponenis also  been perfect in the time interval we simulate.
very close to the valug=2. For T=0.446, the valuez Since the dynamic process starting from a disordered state
=1.96(1) should indicate that the transition temperaliyg  for the FFXY model is rather complicated, we have not been
may be slightly below 0.446. Our valugis bigger than that able to understand it, and further investigation is needed.
in Ref.[55].
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