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Quantum iterated function systems
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An iterated function system~IFS! is defined by specifying a set of functions in a classical phase space, which
act randomly on an initial point. In an analogous way, we define a quantum IFS~QIFS!, where functions act
randomly with prescribed probabilities in the Hilbert space. In a more general setting, a QIFS consists of
completely positive maps acting in the space of density operators. This formalism is designed to describe
certain problems of nonunitary quantum dynamics. We present exemplary classical IFSs, the invariant measure
of which exhibits fractal structure, and study properties of the corresponding QIFSs and their invariant states.
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I. INTRODUCTION

An iterated function system~IFS! may be considered as
generalization of a classical dynamical system, which p
mits a certain degree of stochasticity. It is defined by a se
k functions f i :V→V, i 51, . . . ,k, which represent discret
dynamical systems in the classical phase spaceV. The func-
tions f i act randomly with given place-dependent probab
tiespi :V→@0,1#, i 51, . . . ,k, ( i 51

k pi51 @1#. They charac-
terize the likelihood of choosing a particular map at ea
step of the time evolution of the system.

There exist different ways of investigating such rando
systems. Having defined an IFS, one may ask, how is
initial point x0PV transformed by the random system. In
more general approach, one may pose a question that
does a probability measurem on V change under the actio
of the Markov operatorP associated with the IFS. If the
phase spaceV is compact, the functionsf i are strongly con-
tracting, and the probabilitiespi are Hölder continuous and
positive ~i.e., pi.0), then there exists a unique invaria
measurem* of P — see, for instance,@1–3#, and references
therein.

For a large class of IFSs, the invariant measurem* has a
fractal structure. Such IFSs may be used to generate fra
sets in spaceV. In particular, iterated function systems lea
ing to well-known fractal sets, such as the Cantor set or
Sierpiński gasket, can be found in Ref.@1#. These intriguing
properties of IFSs allowed one to apply them for image co
pression, processing, and encoding@1,4,5#.

Iterated function systems can also be used to desc
several physical problems, where deterministic dynamic
combined with the random choice of interaction. In partic
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lar, IFSs belong to a larger class of random systems stu
in Refs. @6,7#. Such a composition of deterministic and st
chastic behavior is important in numerous fields of scien
since very often an investigated dynamical system is s
jected to an external noise.

Nondeterministic dynamics may also be relevant from
point of view of quantum mechanics. Although unitary tim
evolution of a closed quantum system is purely determinis
the problem changes if one tries to take into account p
cesses of quantum measurement or a possible coupling
a classical system. In the approach of event enhanced q
tum theory ~EEQT! developed by Blanchard and Jadcz
@8#, the quantum time evolution is piecewise determinis
and in certain cases may be put into the framework of it
ated function systems@9,10#. While some recent investiga
tions in this area concentrate mostly on IFSs acting in
space of pure states@11#, we advocate a more general setu
in which IFSs act in the space of mixed quantum states.

The main objective of this paper is to propose a gene
definition of quantum IFS~QIFS!. Formally, it suffices to
consider the standard definition of IFS and to take forV an
N-dimensional Hilbert spaceHN . Instead of functionsf i ,
i 51, . . . ,k, representing classical maps, one should use
ear functionsVi :HN→HN , which represent the correspond
ing quantum maps. Alternatively, one may consider the sp
MN of density matrices of sizeN and construct an iterate
function system out ofk positive mapsGi :MN→MN . The
QIFSs defined in this way can be used to describe proce
of quantum measurements, decoherence, dissipation, or
pling with an external environment. Moreover, QIFSs off
an interesting field of research on the semiclassical limit
quantum random systems. In particular, it is interesting
explore quantum analogs of classical IFSs, which lead
fractal invariant measures, and to investigate that how
quantum effects smear fractal structures out.

This paper is organized as follows. In the following se
tion we recall the definition and basic properties of the cl
©2003 The American Physical Society10-1
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sical IFSs, and discuss several examples. In Sec. III we
pose the definition of QIFSs, investigate their properties,
relate them to the notion of quantum channels and comp
positive maps used in the theory of quantum dynam
semigroups. The quantum-classical correspondence is
subject of Sec. IV, in which we compare dynamics of exe
plary IFSs and the related QIFSs. Concluding remarks
presented in Sec. V.

II. CLASSICAL ITERATED FUNCTION SYSTEMS

Consider a compact metric spaceV and k functions
f i :V→V, where i 51, . . . ,k. Let us specifyk probability
functions pi :V→@0,1# such that for each pointxPV the
condition ( i 51

k pi(x)51 is fulfilled. Then the functionsf i

may be regarded as classical maps, which act randomly
probabilities pi . The set FCl ª $V, f i ,pi : i 51, . . . ,k% is
called aniterated function system.

Let M(V) denote the space of all probability measur
on V. The IFSFCl generates the followingMarkov operator
P acting onM(V):

~Pm!~B!5(
i 51

k E
f i
21(B)

pi~x!dm~x!, ~1!

where B is a measurable subset ofV and m belongs to
M(V). This operator represents the corresponding Mar
stochastic process defined on the code space consistin
infinite sequences built out ofk letters which label mapsf i .
On the other hand,P describes theevolution of probability
measuresunder the action ofFCl .

Consider an IFS defined on an interval inR and consisting
of invertible C1 maps$ f i : i 51, . . . ,k%. This IFS generates
the associated Markov operatorP on the space of densitie
@12#, which describes one-step evolution of a classical d
sity g

P@g#~x!5(
i

pi„ f i
21~x!…g„ f i

21~x!…Ud fi
21~x!

dx
U, ~2!

where for xPV the sum goes overi 51, . . . ,k, such that
xP f i(V).

Let d(x,y) denote the distance between two pointsx and
y in the metric spaceV. An IFSFCl is calledhyperbolic, if it
fulfills the following conditions for alli 51, . . . ,k.

~i! f i are Lipschitz functions with the Lipschitz constan
Li,1, i.e., they satisfy the contraction conditio
d„ f i(x), f i(y)…<Lid(x,y) for all x,yPV.

~ii ! The probabilitiespi are Hölder continuous, i.e., they
fulfill the condition upi(x)2pi(y)u<Kid(x,y)a for some
aP(0,1#, KiPR1 for all x,yPV.

~iii ! All probabilities are positive, i.e.,pi(x).0 for any
xPV.

The Markov operatorP associated with a hyperbolic IF
has a uniqueinvariant probability measurem* satisfying the
equationPm* 5m* . This measure isattractive, i.e., Pnm
converges weakly tom* for everymPM(V) asn→`. In
other words,*Vu dPnm tends to*Vu dm* for every con-
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tinuous functionu:V→R. Let us mention that the hyperbo
licity conditions ~i!–~iii ! are not necessary to assure the e
istence of a unique invariant probability measure—so
other, less restrictive, sufficient assumptions were analy
in Refs.@2,3,13–17#.

Observe that in the above case, in order to obtain
exact value of an integral*Vu dm* , it is sufficient to find
the limit of the sequence*Vu d(Pnm) for an arbitrary initial
measurem. This method of computing integrals over th
invariant measurem* is purelydeterministic@1#. Sometimes
it is possible to perform the integration over the invaria
measure analytically, even thoughm* displays fractal prop-
erties @18#. Alternatively, arandom iterated algorithmmay
be employed by generating a random sequencexjPV,
j 50,1, . . . , by theIFS, which originates from an arbitrar
initial point x0. Due to the ergodic theorem for IFS
@2,19,20#, the mean value (1/n)( j 50

n21u(xj ) converges with
probability one in the limitn→` to the desired integra
*Vu dm* for a large class ofu.

If probabilitiespi are constant we say that an IFS isof the
first kind. Such IFSs are often studied in the mathemati
literature ~see Ref.@1#, and references therein!. Moreover
they also have some applications in physics. For exam
they were used to construct multifractal energy spectra
certain quantum systems@21#, and to investigate second
order phase transitions@22#. On the other hand, IFSs with
place-dependent probabilities can be associated with s
classical and quantum dynamical systems@3,20,23–27#. In
analogy with the position-dependent gauge transformatio
such IFSs may be callediterated function systems of th
second kind@18#.

If V is a compact subset ofRn and dE represents the
Euclidean distance, orV is a compact manifold~e.g., sphere
S2 or torusTn) equipped with the natural~Riemannian! dis-
tancedR , then an IFS will be calledclassical. For concrete-
ness we provide below some examples of classical IFSs.
first example demonstrates that even simple linear mapf i
may lead to a nontrivial structure of the invariant measur

Example 1. V5@0,1#, k52, p15p251/2, and two affine
transformations are given byf 1(x)5x/3 and f 2(x)
5x/312/3 for xPV. Since both functions are contraction
with Lipschitz constantsL15L251/3,1, this IFS is hyper-
bolic. Thus, there exists a unique attractive invariant meas
m* . It is easy to show@1# thatm* is concentrated uniformly
on the Cantor set of the fractal dimensiond5 ln 2/ln 3.

The following example presents an IFS of the seco
kind.

Example 2. As before,V5@0,1#, k52, f 1(x)5x/3, and
f 2(x)5x/312/3 for xPV. The probabilities are now plac
dependent,p1(x)5x andp2(x)512x. Although this IFS is
not hyperbolic@condition ~iii ! is not fulfilled#, a unique in-
variant measurem* still exists. It is also concentrated on th
Cantor set, but now in a nonuniform way@18#. The measure
m* displays in this case multifractal properties, since its g
eralized dimension depends on the Re´nyi parameter.

Example 3. V5@0,1#3@0,1#,R2, k54, p15p25p3
5p451/4. Four affine transformations are given by

f 1S x

yD 5S 1/3 0

0 1D S x

yD , f 2S x

yD 5S 1/3 0

0 1D S x

yD 1S 2/3

0 D ,
0-2
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f 3S x

yD 5S 1 0

0 1/3D S x

yD , f 4S x

yD 5S 1 0

0 1/3D S x

yD 1S 0

2/3D .

~3!

Also, this IFS is not hyperbolic, since the transformatio
f i are not globally contracting; the former two contract alo
x axis, while the latter two contract along they axis only. An
invariant measurem* for this IFS is presented in Fig. 1~d!.
The support ofm* is the Cartesian product of two Canto
sets. Thus, its fractal dimension isd52 ln 2/ln 3.

Example 4. Let V5S2. Take k52, p15p251/2, and
choosef 1 to be the rotation alongz axis by anglex1 @later
referred to asRz(x1)]. In the standard spherical coordinate
f 1(u,f)5(u,f1x1). The second functionf 2 is a rotation
by anglex2 along an axis inclined by angleb with respect to
z axis. Since both classical maps are isometries, this IF
by no means hyperbolic. The properties of the Markov o
erator depend on the angleb and the commensurability o
the anglesx i . However, the Lebesgue measure on the sph
is always an invariant measure for this IFS.

Example 5. V5@0,1#, k52, p15p251/2, f 1(x)52x for
x,1/2, and f 1(x)52(12x) for x>1/2 ~tent map!;
f 2(x)52x for x,1/2 and f 2(x)52x21 for x>1/2 ~Ber-
noulli map!. Both classical maps are expanding~and cha-
otic!, thus the IFS is not hyperbolic. The Lebesgue meas
on @0,1# is an invariant measure for this IFS.

III. QUANTUM ITERATED FUNCTION SYSTEMS

A. Pure states QIFSs

To describe a quantum dynamical system we consid
complex Hilbert spaceH. When the corresponding classic
phase spaceV is compact, the Hilbert spaceHN is finite
dimensional and its dimensionN is inversely proportional to
the Planck constant\ measured in the units of the volume

FIG. 1. ‘‘Tartanlike’’ invariant density of the QIFS defined i
Example 14 for ~a! N534-, ~b! N535-, and ~c!
N536-dimensional Hilbert space, shown in the generalized Hus
representation. Invariant measure of the corresponding classica
on the torus@Eq. ~3!# occupies a fractal set~d!.
04611
s

,

is
-

re

re

a

V. Analyzing quantum systems,N is usually treated as a fre
parameter, and the semiclassical limit is studied by lett
N→`.

A quantum state can be described by an elementuc& of
HN normalized according tôcuc&51. Since for any phase
a the elementuc8&5eiauc& describes the same physic
state asuc&, we identify them, and so the space of all pu
statesPN has 2N22 real dimensions. From the topologic
point of view, it can be represented as the complex projec
spaceCPN21 equipped with the Fubini-Study~FS! metric
given by

DFS~ uf&,uc&)5arccosu^fuc&u. ~4!

It varies from zero foruf&5uc& to p/2 for any two orthogo-
nal states. In the simplest case of a two-dimensional Hilb
spaceH2, the space of pure statesP2 reduces to the Bloch
sphere,CP1.S2, and the FS distance between two quantu
states equals the natural~Riemannian! distance between the
corresponding points on the sphere of radius 1/2.

Definition 1.To define a(pure states)QIFS it is sufficient
to use the general definition of IFS given in Sec. II, taki
for V the spacePN . We specify the following two sets ofk
linear invertible operators.

~1! Vi :HN→HN ( i 51, . . . ,k), which generate maps
Fi :PN→PN ( i 51, . . . ,k) by

Fi~ uf&) ª
Vi~ uf&)

iVi~ uf&)i . ~5!

~2! Wi :HN→HN ( i 51, . . . ,k), forming an operational
resolution of identity,( i 51

k Wi
†Wi5I, which generate prob-

abilities pi :PN→@0,1# ( i 51, . . . ,k) by

pi~ uf&) ª iWi~ uf&)i2 ~6!

for any uf&PPN .
Clearly, for everyuf&PPN the normalization condition

( i 51
k pi(uf&)51 is fulfilled. In this situation a QIFS may be

defined as the set

FN5$PN ; Fi :PN→PN ; pi :PN→@0,1# : i 51, . . . ,k%.
~7!

Such a QIFS may be realized by choosing an initial st
uf0&PPN and generating randomly a sequence of pure st
(uf j&) j PN . The state uf0& is transformed into uf1&
5Fi(uf0&) with probability pi(uf0&), later uf1& is mapped
into uf2&5F j (uf1&) with probabilitypj (uf1&), and so on. If
we chooseWi5Api I, then the probabilities are constan
pi(uf&)5pi for i 51, . . . ,k. An arbitrary QIFSFN deter-
mines by formula~1! the operatorP acting on probability
measures onPN .

Such defined QIFSFN cannot be hyperbolic, since th
quantum mapsFi are not contractions with respect to th
Fubini-Study distance inPN.

i
FS
0-3



m

e

-

n

s
to

th

b

a

e

th

b

o
an

s

ally

op-

ator

is-
sev-

um

f
te
e a
w-

-

v
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Example 6. V5PN.CPN21, k52, p15p251/2,
F1(uc&)5U1(uc&), and F2(uc&)5U2(uc&), where the op-
eratorsUi ( i 51,2) are unitary. In this case, both quantu
maps are isometries. Thus, the natural Riemannian~Fubini-
Study! measure inPN is invariant, but as we shall see in th
following section, its uniqueness depends on the choice
U1 andU2.

B. Mixed states QIFSs

Mixed states are described byN-dimensional density op
eratorsr, i.e., positive Hermitian operators acting inHN
with trace normalized to unity,r5r†, r>0 and trr51.
They may be represented~in a nonunique way! as convex
combinations of projectors. We shall denote the space
density operators byMN .

Definition 2.Now we can formulate the general definitio
of a mixed states QIFSas a set

FNª$MN , Gi :MN→MN , pi :MN→@0,1#:

i 51, . . . ,k%, ~8!

where the mapsGi , i 51, . . . ,k transform density operator
into density operators, and for every density opera
rPMN the probabilities are normalized, i.e.,( i 51

k pi(r)
51.

The above definition of QIFS is more general than
previous one, since in particularGi andpi may be defined by

Gi~r!ª
VirVi

†

tr~VirVi
†!

~9!

and

pi~r!ªtr~WirWi
†! ~10!

for i 51, . . . ,k andrPMN , where the linear mapsVi and
Wi are as in Definition 1. Thus, each QIFS onPN can be
extended to a QIFS onMN . Note that in this casepi(r)
5tr(Wi

†Wir). Hence, we can alternatively define the pro
abilities by pi(r)5tr(Lir) ( i 51, . . . ,k, rPMN), where
the linear operatorsLi are Hermitian, positive, and fulfill the
identity ( i 51

k Li51.
Now the dynamics takes place in the convex body of

density matricesMN . The space of mixed statesMN
has N221 real dimensions in contrast to th
(2N22)-dimensional space of pure statesPN . For N52 it
is just the three-dimensionalBloch ball, i.e., the volume
bounded by the Bloch sphere.

The special class of QIFSs is a class ofhomogenous
QIFSs introduced in a more general setting by one of
authors@27#. A QIFS is calledhomogenousif both pi and
Gipi are affine maps fori 51, . . . ,k. The mixed states QIFS
being a generalization of a pure state QIFS and defined
formulas ~9! and ~10! is homogenous if Wi5Vi for
i 51, . . . ,k. Interesting examples of such systems acting
the Bloch sphere were recently analyzed by Jadczyk
Öberg @11#. For a homogenous QIFS,pi and Gi may be
interpreted in terms of a discrete measurement process a
04611
of

of

r

e

-

ll

e

y

n
d

the

probability that the measurement outcome isi, and the state
of the system after the measurement if the result was actu
i, respectively.

A homogenous QIFS generates not only the Markov
eratorP acting in the space of probability measures onMN ,
but also the linear, trace-preserving, and positive oper
L:MN→MN defined by

L~r!ª(
i 51

k

pi~r!Gi~r!5(
i 51

k

VirVi
† ~11!

for rPMN .
A mixed stater̃ is L invariant if and only if it is the

barycenterof someP invariant measurem̃, i.e.,

r̃5E
MN

r dm̃~r!, ~12!

see Ref.@27#.
Example 7. V5MN , k52, p15p251/2, G1(r)

5U1rU1
† , andG2(r)5U2rU2

† . This is just Example 6 in
another form; the normalized identity matrix,r* 5I/N is L
invariant irrespective of the form of unitary operatorsUi ,
i 51,2. Note thatr̃5r* may be represented as Eq.~12!,
where the measurem̃, uniformly spread overPN ~theFubini-
Study measure!, is P invariant.

To define hyperbolic QIFSs one needs to specify a d
tance in the space of mixed quantum states. There exist
eral different metrics inMN , which may be applicable~see,
e.g., Refs.@28,29#, and references therein!. The standard dis-
tances: theHilbert-Schmidt (HS) distance

DHS~r1 ,r2!5Atr@~r12r2!2#, ~13!

the trace distance

D tr~r1 ,r2!5trA~r12r2!25uur12r2uu tr , ~14!

and theBures distance@30#

DBures~r1 ,r2!5A2$12tr@~r1
1/2r2r1

1/2!1/2#%, ~15!

the latter based on the idea of purification of mixed quant
states@31,32#, are mutually bounded@33#. They generate the
same natural topology inMN . Having endowed the space o
mixed states with a metric, we may formulate immedia
conclusion from the theorem on hyperbolic IFSs. We defin
hyperbolic QIFS as in the preceding section, and the follo
ing proposition holds.

Proposition 1. If a QIFS ~8! is homogenous and hyper
bolic ~that is, the quantum mapsGi are contractions with
respect to one of the standard distances inMN , pi are
Hölder continuous and positive!, then the associated Marko
operatorP possesses a unique invariant measurem̃. This
invariant measure determines a uniqueL-invariant mixed
stater̃PMN given by Eq.~12!.
0-4
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Note that for a homogenous hyperbolic QIFS, the
quenceLn(r0) tends in the limitn→` to a unique invariant
stater̃ irrespective of the choice of an initial stater0 @27#.

Example 8.Let V5MN , k52, p15p251/2, G1(r)
5(r12r1)/3, and G2(r)5(r12r2)/3, where we choose
both projectorsr15u1&^1u andr15u2&^2u to be orthogonal.
Since both homothetiesGi are contractions~with the Lips-
chitz constants 1/3), this QIFS is hyperbolic and a uniq
invariant measurem̃ exists. In analogy with the IFS dis
cussed in Example 1 we see that the support ofm̃ covers the
Cantor set at the line joining both projectorsr1 and r2.
However, this is nothing but a rather sophisticated repres
tation of the maximally mixed two-level stater*
5(r11r2)/2, which follows from the symmetry of the Can
tor set and may be formally verified by performing the in
gration prescribed by Eq.~12!.

C. Completely positive maps and unitary QIFSs

From the mathematical point of view it may be sufficie
to require that the mapL is positive, that is, it transforms a
positive operator into another positive operator. From
physical point of view it is desirable to require a strong
condition of complete positivity related to a possible co
pling of the quantum system under consideration with
environment. A mapL is completely positive~CP map!, if
the extended mapL ^ I is positive for any extension of th
initial Hilbert space,HN→HN^ HE , which describes cou
pling to the environment@34,35#.

It is well known that each trace-preserving CP mapL
~sometimes calledquantum channel! can be represented~not
uniquely! in the following Stinespring-Kraus form:

r85LK~r!5(
j 51

k

VjrVj
† with (

j 51

k

Vj
†Vj5I, ~16!

where linear operatorsVj ( j 51, . . . ,k) are calledKraus op-
erators @34,36#. For any quantum channel acting in a
N-dimensional Hilbert space, the number of operatorsk need
not exceedN2 @37#. Each quantum channel can be treat
~but not necessarily uniquely! as a pure or mixed state ho
mogenous QIFS. Conversely, for each homogenous Q
formula ~11! defines a quantum channel.

If, additionally, ( j 51
k VjVj

†5I holds, thenL(I/N)5I/N,
and the mapL is called unital. It is the case if all Kraus
operators are normal,VjVj

†5Vj
†Vj ( j 51, . . . ,k), however,

this condition is not necessary. A unital trace-preserving
map is calledbistochastic. An example of a bistochasti
channel is given byrandom external fields@38# defined by

r85LU~r!5(
i 51

k

pi UirUi
† , ~17!

whereUi , i 51,2, . . . ,k, areunitary operators and the vec
tor of non-negative probabilities is normalized, i.e.,( i 51

k pi

51. The Stinespring-Kraus form~16! can be reproduced se
ting Vi5ApiUi . Note that the random external fields~17!
may be regarded as a homogenous QIFS of the first k
~with constant probabilities! with k unitary mapsGi(r)
04611
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5UirUi
† ( i 51, . . . ,k). In particular, Example 7 belongs t

this class. In the sequel such QIFSs will be calledunitary.
For a unitary QIFS not onlyr* is an invariant state ofLU ,
but also the measuredr

*
is invariant for the Markov operato

PU induced by this QIFS.
Although a unitary QIFS consists of isometries, the o

eratorLU need not preserve the standard distances betw
any two mixed states. For the Hilbert-Schmidt metric w
have

DHS„LU~r1!,LU~r2!…< DHS~r1 ,r2!. ~18!

In fact this statement is true for any bistochastic channels
shown by Uhlmann@39#, but it is false for arbitrary CP maps
since the Hilbert-Schmidt metric is not monotone@40#. On
the other hand,LU is a contraction for the Bures distanc
~Riemannian! and the trace distance~not Riemannian!,
which are monotone and do not grow under the action of
CP map@41,28#. Choosing forr2 the maximally mixed state
r* 5I/N, which is invariant with respect toLU for every
unitary QIFS, we see in particular that the distance of a
stater1 to r* does not increase in time. Similarly, the vo
Neumann entropy given by H(r)52tr(r ln r) for
rPMN does not decrease during time evolution~17!. On the
other hand, the inequality in Eq.~18! is weak, and in some
cases the distance may remain constant. The question, u
which conditions this inequality is strong, is related to t
problem, for which unitary QIFSs the maximally mixed sta
r* is a unique invariant state ofLU . This is not the case, if
all operatorsUi commute, since then all density matrice
diagonal in the eigenbase ofUi are invariant. Such a situa
tion may occur also in subspaces of smaller dimension.
describe such a case we shall call unitary matrices of
same sizecommon block-diagonal, if they are block diagonal
in the same basis and with the same blocks. The unique
of the invariant state of a unitary QIFS is then characteriz
by the following proposition, the proof of which is provide
in the Appendix.

Proposition 2. Let us assume that all probabilitiespi
( i 51, . . . ,k) are strictly positive. Then the maximall
mixed stater* is not a unique invariant state for the operat
LU if and only if unitary operatorsUi ( i 51, . . . ,k) are
common block diagonal.

It follows from the proof of this proposition that in thi
case there existsrÞr* such thatdr is an invariant measure
for the operatorPU induced by the QIFS.

To show an application of Proposition 2 consider a tw
level quantum system, calledqubit, which may be used to
carry a piece of quantum information. Let us assume that
subjected to a random noise, described by the follow
map:

r→r85LU~r!5~12p!r1
p

3
@s1rs11s2rs21s3rs3#.

~19!

This bistochastic map, defined by the unitary Pauli ma
cess i , is calleddepolarizing quantum channel@42#, and the
0-5
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parameterp plays the role of the probability of error. Thi
map transforms any vector inside the Bloch ball toward
center, so the length of the polarization vector decrease
the formalism of QIFSs this quantum channel is equival
to the following example.

Example 9.V5P2 , k54, U15I, U25s1 , U35s2 ,
U45s3 , p1512p, and p25p35p45p/3. 0. Since the
Pauli matrices are not common block diagonal, the ma
mally mixed stater* is a unique invariant state of the C
map ~19! associated with this unitary QIFS.

To introduce an example of QIFS arising from atom
physics, consider a two-level atom in a constant magn
field Bz subjected to a sequence of resonant pulses of e
tromagnetic wave. The length of each wave pulse is equa
its period T and it interacts with the atom by the period
HamiltonianV(t)5V(t1T). Let us assume that each pul
occurs randomly with probabilityp. Thus, the evolution op-
erator transforms any initial pure state by the operator

U15exp~2 iH 0T/\! ~20!

in the absence of the pulse, or by the operator

U25Ĉ expF2
i

\ S H0T1E
0

T

V~ t !dt D G ~21!

in the presence of the pulse. The unperturbed Hamilton
H0 is proportional toBzJz (Jz is the z component of the
angular momentum operator! andĈ denotes the chronologi
cal operator. Thus, this random system may be describe
the following unitary QIFS.

Example 10.V5P2 , k52, p1512p, and p25p, the
Floquet operatorsU1 @Eq. ~20!# andU2 @Eq. ~21!# as speci-
fied above. The maximally mixed stater* 5I/2, correspond-
ing to the center of the Bloch ball, is the invariant state of
Markov operator given by Eq.~17!. For a generic perturba
tion V, the matricesU1 and U2 are not common block
diagonal, and sor* is the unique invariant state for operat
~17! related to the QIFS.

The QIFSs arise in a natural way if considering a quant
system acting onHN coupled with anancilla: a state in an
auxiliary m-dimensional Hilbert spaceHm , which describes
the environment. Initially, the composite state describing
system and the environment is in the product form,s5rA

^ r
*
B , wherer

*
B
ªIm /m is the maximally mixed state, bu

the global unitary evolution couples two subsystems
gether. A unitary matrixU of size Nm acting on the space
HN^ Hm may be represented in its Schmidt decomposit
form asU5( i 51

K AqiVi
A

^ Vi
B , where the number of terms i

determined by the size of the smaller spa
K5min$N2,m2%; the operatorsVi

A andVi
B act onHN andHm ,

respectively, and the Schmidt coefficients are normalized
( i 51

K qi51. Restricting our attention to the systemA one
needs to trace out the variables of the environmentB which
leads to the following quantum channel~and to the respec
tive homogenous QIFS!:
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rA85L~rA!5trB~UsU†!5(
i 51

K

qiVi
ArAVi

A† . ~22!

Since for r
*
A
ªIN /N we haveL(r

*
A )5trB(U(r

*
A

^ r
*
B )U†)

5r
*
A , the CP mapL is bistochastic.

IV. QUANTUM-CLASSICAL CORRESPONDENCE

To investigate various aspects of the semiclassical limi
the quantum theory it is interesting to compare a given d
crete classical dynamical system generated byf :V→V with
a family of the corresponding quantum maps, usually defin
asFN :HN→HN with an integerN. Several alternative meth
ods of quantization of classical maps in compact phase sp
have been applied to construct quantum maps correspon
to the baker map on the torus@43,44#, the Arnold cat map
@45# and other automorphisms on the torus@46#, the periodi-
cally kicked top@47#, and the baker map on the sphere@48#.

To specify in which manner the classical and the quant
maps are related, it is convenient to introduce a set of co
ent statesuy&PHN , indexed by classical pointsy of the
phase spaceV. ~For more properties of coherent states an
general definition consult the book by Perelomov@49#.! They
satisfy the resolution of identity formula:*Vuy&^yudy5I,
and allow us to represent any stater by its Husimi represen-
tation, H(y)5^yuruy& (yPV). Quantization of a classica
mapf, which leads to a family of quantum mapsFN is called
regular, if for almost all classical pointsx the classical and
the quantum images are connected in the sense that the
malized Husimi distribution of stateFNuy& integrated over a
finite vicinity of the point f (y) tends to unity in the limit
N→` @50#. Another method of linking a classical map wit
a family of quantum maps is based on theEgorov property,
which relates the classical and the quantum expectation
ues@51,52#.

In a similar way we may construct QIFSs related to c
tain classical IFSs. More precisely, a sequence of pure st
QIFSFN5$PN ;Fi ,N ,pi ,N : i 51, . . . ,k% induced by two sets
of linear maps Vi ,N ,Wi ,N :HN→HN ( i 51, . . . ,k) @see
Eqs. ~5! and ~6!# is a quantization of a classical IFS
FCl5$V;Fi ,pi :1, . . . ,k%, when the functionsFi ,N are
quantum maps obtained by the quantization of the class
maps f i and the probabilitiespi ,N computed at coheren
statesuy& fulfill

pi ,N~ uy&^yu!5iWi ,N~ uy&)i2 ——→
N→`

pi~y!

for yPV and i 51, . . . ,k. ~23!

To illustrate the procedure let us consider random ro
tions on the sphere, performed alongx andz axes. This spe-
cial case of Example 4 may be easily quantized with the h
of the componentsJi ( i 5x,y,z) of the angular momentum
operatorJ, satisfying the standard commutation relation
@Ji ,Jj #5e i jkJk . The size of the Hilbert space is determine
by the quantum numberj asN52 j 11.

Example 11. k52, random rotations are given as the fo
lowing.
0-6
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~a! classical, FCl5$V5S2, f 15Rz(u1), f 25Rx(u2),
p15p251/2%. The Lebesgue measure on the sphere in
invariant measure for this IFS.

~b! quantum,FN5$V5PN , F15eiu1Jz, F25eiu2Jx, p1

5p251/2%. Since both unitary operators are not comm
block diagonal, due to Proposition 2, the maximally mix
stater* is a unique invariant state for operator~11! related to
the QIFSFN .

A quantization of an IFS of the second kind is given
the following modification of the previous example.

Example 12. k52, random rotations on the sphere wi
varying probabilities depending on the latitudeu computed
with respect to thez axis.

The spaces and functions are as in Example 11,
~a! classical IFS FCl , p15(11cosu )/2 and p2

5(12cosu)/2; ~b! quantum IFSFN , p151/21^Jz&/2j and
p251/22^Jz&/2j with N52 j 11. Interestingly, this modifi-
cation influences the number of invariant states of the I
Since p2 vanish at the north pole (u50) of the classical
sphereS2, this point is invariant with respect toFCl . Simi-
larly, the corresponding quantum stateu j , j & localized at the
pole is invariant with respect to operator~11! related to the
QIFS FN .

The above examples of unitary QIFS dealt with simp
regular maps — rotations on the sphere. However, an
may also be constructed out of nonlinear maps, which m
lead to deterministic chaotic dynamics. For instance,
may consider the map describing a periodically kicked top
consists of a linear rotation with respect to thex axis by
anglea and a nonlinear rotation with respect to thez axis by
an angle depending on thez component. In a compact nota
tion,
the classical top readsTCl(a,b)ªRz(zb)Rx(a), while its
quantum counterpart, acting in theN5(2 j 11)-dimen-
sional Hilbert space can be defined byTQ(a,b)
ªexp(2ibJz

2/2j )exp(2iaJx) @47#. This quantum map is one
of the most important toy models often studied in resea
on quantum chaos@53#. A certain modification of this model
in which the kicking strength parameterb was chosen ran
domly out of two values, was proposed and investigated
Scharf and Sundaram@54#. This random system may be pu
into the QIFSs formalism:

Example 13.Randomly kicked top:~a! classical, FCl
5$V5S2, f 15TCl(a,b), f 25TCl(a,b1D), p15p2
51/2%; ~b! quantum, FN5$V5PN , F15TQ(a,b), f 2
5TQ(a,b1D), p15p251/2%. For positivea and D both
unitary operators are not block diagonal, so the maxima
mixed stater* is a unique invariant state for operator~11!
related to this unitary QIFS. Our numerical results obtain
for a5p/4, b52, andD50.05 suggest that the trajector
of any pure coherent state converges to the equilibrium
ponentially fast.

To discuss a quantum analog of an IFS with a frac
invariant measure, consider the classical IFS presente
Example 3. The classical phase spaceV can be identified
with the torus. For pedagogical purpose, let us rename b
variablesx,y into q,p, representing canonically coupled p
sition and momentum. We shall work inN53L-dimensional
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Hilbert space. Letu j &q with j 51, . . . ,N be the eigenstates o
the position operator, and similarlyu l &p with l 51, . . . ,N be
the eigenstates of the momentum operator. Both bases
related byu l &p5( j 51

N Wl j u j &q , where the matrixW is theN
point discrete Fourier transformation with Wl j

5(1/AN)e22p i l j /N for l , j 51, . . . ,N. The classical mapf 1
in Eq. ~3!, representing a threefold contraction in thex direc-
tion, corresponds to the transformationG1 of the density
operator given by

G1~r!ª (
i , j 51

L

u i &qS (
m,n50

2

^3i 1muqru3 j 1n&qD ^ j uq .

~24!

In a similar way, the quantum mapG2 corresponding to
f 2 is defined by

G2~r!ª (
i , j 52L11

3L

u i &qS (
m,n50

2

^3i 1muqru3 j 1n&qD ^ j uq .

~25!

The mapsG3 andG4 are obtained in analogy toG1 and
G2, using the eigenstates of the momentum operatoruk&p ,

G3~r!ª (
k,l 51

L

uk&pS (
m,n50

2

^3k1mupru3l 1n&pD ^ l up ,

~26!

G4~r!ª (
k,l 52L11

3L

uk&pS (
m,n50

2

^3k1mupru3l 1n&pD ^ l up .

~27!

The random system defined below may be considered
QIFS related to the IFS introduced in Example 3:

Example 14. Quantum tartan:FN5$V5PN , k54,
G1 ,G2 ,G3 ,G4 ; p15p25p35p451/4%.

An invariant states for the mapL induced by this QIFS
are illustrated in Fig. 1 forN534, N535, andN536. In-
variant quantum stater* is shown in the generalized Husim
representation

Hr~p,q!5
1

2p

^q,puruq,p&

^q,puq,p&
, ~28!

based on the set of coherent states on the torusuq,p&
5YNp2N/2XNq2N/2uk&. The reference stateuk& is chosen as
an arbitrary state localized in (1/2,1/2)

^nuk&5~2/N!21/4e2p(n2N/2)2/N2 ipn, ~29!

while X denotes the operators of shift in positionXu j &5
u j 11& with an identificationu j 1N&5u j & for j 51, . . . ,N.
Similarly, Y shifts the momentum eigenstates,Yu l &5u l 11&
andu l 1N&5u l & for l 51, . . . ,N. The quantum stateuq,p& is
well localized in the vicinity of the classical point (q,p) on
the torus@55#. This representation of quantum states cor
sponding to the classical system on the torus was used in
analysis of an irreversible quantum baker map@56#.

The larger value ofN, the finer structure of the invarian
stater* is visible in the phase space. In the semiclassi
limit N→` ~which means\→0), the invariant stater
*

0-7
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tends to be localized at the fractal support of the invari
measure of the classical IFS, shown for comparison
Fig. 1~d!. Strictly speaking, for any finiteN, the Husimi dis-
tribution of r* does not possess fractal character, since s
similarity has to terminate at a length scale comparable w
A\. In other words, quantum effects are responsible
smearing out the fractal structure of the classical invari
measure. However, the classical fractal structures may
approximated with an arbitrary accuracy by quantum obje
in the semiclassical limit@57#.

V. CONCLUDING REMARKS

Classical iterated function systems display several in
esting mathematical properties and may be applied in var
problems from different branches of physics. In this work
have generalized the formalism of IFSs introducing the c
cept of QIFSs. Quantum iterated function systems may
defined in the space of pure states on a finite-dimensio
Hilbert spaceHN , or more generally, in the space of dens
operators acting onHN . As their classical analogs, QIFS
allow a certain degree of stochasticity, in the sense tha
each step of time evolution the choice of one of the p
scribed quantum maps is random.

This formalism may be applied to describe several pr
lems of quantum mechanics, including nonunitary dynam
processes of decoherence, and quantum measuremen
fact, the large class of quantum channels, called random
ternal fields may serve directly as examples of a QIFS. F
thermore, for several classical IFSs one may construct
corresponding QIFSs and analyze the relations betw
them. As shown in the last example, one may focus on
fractal properties of invariant measures of some class
IFSs and study their quantum counterpart. Thus, the con
of QIFS allows one to investigate the semiclassical limit
random quantum systems.
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APPENDIX: PROOF OF PROPOSITION 3

We start from the following lemma.
Lemma. Let U5(Unm)n,m51, . . . ,N be anN-dimensional

unitary matrix. Assume that there exist two nonempty sets
indicesA and B such thatAøB5Iª$1, . . . ,N% and AùB
5B. Then,Unm50 for nPA andmPB impliesUnm50 for
nPB andmPA.

Proof of the lemma.We compute the number of elemen
of the setA:
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uAu5 (
nPA

(
mPI

uUnmu25 (
nPA

(
mPA

uUnmu21 (
nPA

(
mPB

uUnmu2

5 (
nPA

(
mPA

uUnmu25(
nPI

(
mPA

uUnmu22 (
nPB

(
mPA

uUnmu2

5uAu2 (
nPB

(
mPA

uUnmu2,

and so(nPB(mPAuUnmu250, as required.
Now we turn to the proof of Proposition 3.
Let Ui ( i 51, . . . ,k) be block diagonal in the commo

base, and let dimension of the blocks bea1 , . . . ,aL , where
( j 51

L a j5N. Define a diagonal density matrix as a direct su

rª %

j 51

L s j

a j
Ia j

, ~A1!

where( j 51
L s j51. Then,UirUi

†5r for every i 51, . . . ,k.
Hence,r is LU invariant anddr is a PU-invariant measure
on PN for an arbitrary choice of (s j ) j 51, . . . ,L .

Let r be an invariant state forLU such thatrÞr* . Then,
r can be written in the form

r5 (
n51

N

snuCn&^Cnu, ~A2!

where uCm&PPN , ^CnuCm&5dnm (n,m51, . . . ,N), and
s1<s2<•••<sN ; s1,1/N. For gP@0,1# the density op-
erator rgªgr1(12g)r* 5(n51

N sn8uCn&^Cnu, where
sn8ªgsn1(12g)N21 (n51, . . . ,N) is also an invariant
state forLU . Put gª1/(12s1N). This choice impliess18
50 and(n51

N sn851. Assume thatsn850 for n51, . . . ,n8
andsn8.0 for n5n811, . . . ,N, wheren8>1. The equation
LU(rg)5rg can be rewritten in the form

sn85(
i 51

k

pi (
m51

N

u~Ui !nmu2sm8 , ~A3!

where (Ui)nm (n,m51, . . . ,N) are the elements of matrice
Ui ( i 51, . . . ,k) in the basis (uCn&)n51, . . . ,N .

For n51, . . . ,n8 we get

05(
i 51

k

pi (
m5n811

N

u~Ui !nmu2sm8 . ~A4!

Hence (Ui)nm50 for n51, . . . ,n8 and m5n811, . . . ,N.
Using the Lemma, we deduce that (Ui)nm50 for n
5n811, . . . ,N and m51, . . . ,n8. Thus, Ui ( i 51, . . . ,k)
are common block diagonal.
0-8
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@46# S. De Bièvre, M. Degli Esposti, and R. Giachetti, Commu

Math. Phys.176, 73 ~1990!.
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