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An iterated function systerfiFS) is defined by specifying a set of functions in a classical phase space, which
act randomly on an initial point. In an analogous way, we define a quantuniQFS), where functions act
randomly with prescribed probabilities in the Hilbert space. In a more general setting, a QIFS consists of
completely positive maps acting in the space of density operators. This formalism is designed to describe
certain problems of nonunitary quantum dynamics. We present exemplary classical IFSs, the invariant measure
of which exhibits fractal structure, and study properties of the corresponding QIFSs and their invariant states.
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[. INTRODUCTION lar, IFSs belong to a larger class of random systems studied
in Refs.[6,7]. Such a composition of deterministic and sto-
An iterated function systerfiFS) may be considered as a chastic behavior is important in numerous fields of science,
generalization of a classical dynamical system, which persince very often an investigated dynamical system is sub-
mits a certain degree of stochasticity. It is defined by a set ofected to an external noise.
k functionsf; :Q0—Q, i=1,... k, which represent discrete  Nondeterministic dynamics may also be relevant from the
dynamical systems in the classical phase sggac&he func-  point of view of quantum mechanics. Although unitary time
tions f; act randomly with given place-dependent probabili-evolution of a closed quantum system is purely deterministic,

tiesp;:Q—[0,1], i=1,... k, = ,p;=1[1]. They charac- the problem changes if one tries to take into account pro-
terize the likelihood of choosing a particular map at eachcesses of quantum measurement or a possible coupling with
step of the time evolution of the system. a classical system. In the approach of event enhanced quan-

There exist different ways of investigating such randomtum theory (EEQT) developed by Blanchard and Jadczyk
systems. Having defined an IFS, one may ask, how is af8], the quantum time evolution is piecewise deterministic
initial point xge Q transformed by the random system. In aand in certain cases may be put into the framework of iter-
more general approach, one may pose a question that hoated function systemf9,10]. While some recent investiga-
does a probability measuge on () change under the action tions in this area concentrate mostly on IFSs acting in the
of the Markov operatoP associated with the IFS. If the space of pure stat¢dl], we advocate a more general setup,
phase spac€ is compact, the functionf are strongly con- in which IFSs act in the space of mixed quantum states.
tracting, and the probabilities; are Hdder continuous and The main objective of this paper is to propose a general
positive (i.e., p;j>0), then there exists a unique invariant definition of quantum IFSQIFS). Formally, it suffices to
measureu, of P—see, for instancd,1-3|, and references consider the standard definition of IFS and to take(loan
therein. N-dimensional Hilbert spacé{y . Instead of functiond;,

For a large class of IFSs, the invariant measugehas a i=1,... Kk, representing classical maps, one should use lin-
fractal structure. Such IFSs may be used to generate fractahbr functionsv; : Hy— Hy , Which represent the correspond-
sets in spac€). In particular, iterated function systems lead- ing quantum maps. Alternatively, one may consider the space
ing to well-known fractal sets, such as the Cantor set or the\y of density matrices of siz&l and construct an iterated
Sierpirski gasket, can be found in Ré¢fl]. These intriguing  function system out ok positive mapsG; : My— My. The
properties of IFSs allowed one to apply them for image com-QIFSs defined in this way can be used to describe processes
pression, processing, and encodjig4,5). of quantum measurements, decoherence, dissipation, or cou-

Iterated function systems can also be used to describgling with an external environment. Moreover, QIFSs offer
several physical problems, where deterministic dynamics ign interesting field of research on the semiclassical limit of
combined with the random choice of interaction. In particu-quantum random systems. In particular, it is interesting to

explore quantum analogs of classical IFSs, which lead to
fractal invariant measures, and to investigate that how do

*Electronic address: lozinski@if.uj.edu.pl quantum effects smear fractal structures out.
TElectronic address: karol@cft.edu.pl This paper is organized as follows. In the following sec-
*Electronic address: Wojciech.Slomczynski@im.uj.edu.pl tion we recall the definition and basic properties of the clas-

1063-651X/2003/6@}/04611@9)/$20.00 68 046110-1 ©2003 The American Physical Society



LOZINSKI, ZYCZKOWSKI, AND SEOMCZYNSKI PHYSICAL REVIEW E 68, 046110 (2003

sical IFSs, and discuss several examples. In Sec. lll we prainuous functionu:Q0— R. Let us mention that the hyperbo-
pose the definition of QIFSs, investigate their properties, andlcity conditions (i)—(iii) are not necessary to assure the ex-
relate them to the notion of quantum channels and completistence of a unique invariant probability measure—some
positive maps used in the theory of quantum dynamicabther, less restrictive, sufficient assumptions were analyzed
semigroups. The quantum-classical correspondence is the Refs.[2,3,13—-17.
subject of Sec. 1V, in which we compare dynamics of exem- Observe that in the above case, in order to obtain the
plary IFSs and the related QIFSs. Concluding remarks arexact value of an integralou du, , it is sufficient to find
presented in Sec. V. the limit of the sequencg,u d(P"w) for an arbitrary initial
measurew. This method of computing integrals over the
invariant measurg., is purelydeterministid1]. Sometimes
it is possible to perform the integration over the invariant
Consider a compact metric spa¢e and k functions —Mmeasure analytically, even though, displays fractal prop-
f.:Q—Q, wherei=1, ... k. Let us specifyk probability erties[18]. Alternatively, ar_andom iterated algorithmmay
functions p; :Q1—[0,1] such that for each pointe Q) the be employed by generating a random sequerge(},
condition =¥_,pi(x)=1 is fulfilled. Then the functiond; 1 =0.1. ..., by thelFS, which originates from an arbitrary
may be regarded as classical maps, which act randomly WitF1Itlal point Xo. Due to the enrgtl)dlc theorem for I.FSS
probabilities p;. The set F¢:={Q,f;,p;:i=1,... k} is 2’19’29.’ the mean valge_(mbijzou(xj) CONverges with
called aniterated function system probability one in the limith—o to the desired integral

Let M(Q) denote the space of all probability measures’ 24 du, for a large class od.

. If probabilitiesp; are constant we say that an IFSisthe
gna(ét.ir;;hinli/sl(}‘éggenerates the followinilarkov operator first kind Such IFISS are often studied in the mathematical

literature (see Ref.[1], and references therginMoreover
K they also have some applications in physics. For example,
_ _ they were used to construct multifractal energy spectra of
(PM)(B)_; ff‘—l(B)p'(X)d'“(X)' @ certain quantum system®1], and to investigate second-
' order phase transitionN®2]. On the other hand, IFSs with
where B is a measurable subset 6f and x belongs to place-dependent probabilities can be associated with some

M(Q). This operator represents the corresponding Marko'@ssical and quantum dynamical systef80,23-27. In

stochastic process defined on the code space consisting ga??rl]o?zs\’gt%;he bpsségﬁgﬁifapégd?n;g%%gz té?g;fsrgca#%ns’
infinite sequences built out d&fletters which label maps . u Y unct y

) . . second kind 18].
On the other handp dgscrlbes theavolution of probability If Q is a compact subset dt" and d. represents the
measuresinder the action off,.

: : . - Euclidean distance, d2 is a compact manifolde.g., sphere
_Con5|_der a‘} IFS defme_d onan mtervalElrand consisting - 2 torusT") equipped with th(fnatur&Riemdgngniampdis—
of invertible C* maps{f;:i=1,... kj. This IFS generates yncaq., then an IFS will be calledlassical For concrete-
the associated Markov operatBron the space of densities egs we provide below some examples of classical IFSs. The
[12], which describes one-step evolution of a classical denfirst example demonstrates that even simple linear niaps
sity y may lead to a nontrivial structure of the invariant measure.
45100 Example 1Q=[0,1], k=2, p;=p,=1/2, and two affine
_ -1 1 i (X transformations are given byf(xX)=x/3 and fy(x)
P[Y](X)_Z pi(fi " O) (1, (X))‘ dx ‘ (@ —x/3+2/3 for xe Q. Since both functions are contractions
with Lipschitz constants ;=L,=1/3<1, this IFS is hyper-

Il. CLASSICAL ITERATED FUNCTION SYSTEMS

where forxe Q the sum goes oveir=1, ... k, such that bolic. Thus, there exists a unique attractive invariant measure

xef,(Q). MU, . Itis easy to showWl] that u, is concentrated uniformly
Let d(x,y) denote the distance between two pointand  On the Cantor set of the fractal dimensidr:In 2/In 3.

y in the metric spac€). An IFS F, is calledhyperbolic if it ~ The following example presents an IFS of the second

fulfills the following conditions for alli =1, . . . k. kind.

(i) f, are Lipschitz functions with the Lipschitz constants ~ Example 2As before, 0 =[0,1], k=2, f,(x)=x/3, and
Li<1, ie., they satisfy the contraction condition f2(X)=x/3+2/3 forxe (). The probabilities are now place
d(f;(x),fi(y))=<L;d(x,y) for all x,y e Q. dependentpl_(x)=x gpd p?.(x)_zl—x. Although th|§ IFS is

(i) The probabilitiesp; are Hdder continuous, i.e., they hot hyperbolic[condition (iii) is not fulfilled], a unique in-
fulfill the condition |p;(x)— pi(y)|<K;d(x,y)® for some Varant measurg., still exists. It is also concentrated on the

ae(0,1], K, eR* for all x,ye Q. Cantor set, but now in a nonuniform w¥8]. The measure

(i) All probabilities are positive, i.ep;(x)>0 for any M« displays in this case multifractal properties, since its gen-
xe O eralized dimension depends on thenlRieparameter.

' — 2 — — —

The Markov operatoP associated with a hyperbolic IFS ~ Example 3 Q=[0,1]X[0,1JCR*, k=4, p;=p,=ps
has a uniquénvariant probability measurg:, satisfyingthe = P4=1/4. Four affine transformations are given by
equationPu, = u, . This measure isittractive i.e., P"u X 13 0\/x " 1/3 0\ [x 2/3
converges weakly ta., for every ue M() asn—x. In fy = , £ = + ,
other words, [ qu dP"w tends tofqu du, for every con- y 0 1/ly y 0 1/ly 0
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a)

Q). Analyzing quantum systemisl,is usually treated as a free
parameter, and the semiclassical limit is studied by letting
N— o0,

A quantum state can be described by an elenghtof
Hy normalized according toy/|)=1. Since for any phase
a the element|y’)=¢€'*|y) describes the same physical
state ag), we identify them, and so the space of all pure
statesPy has 2N—2 real dimensions. From the topological
point of view, it can be represented as the complex projective
spaceCPN™! equipped with the Fubini-StudyS) metric
given by

Des(|¢),|#)) =arccoi ¢|4)|. (4)

:
q It varies from zero fot¢)=|¢) to /2 for any two orthogo-
FIG. 1. “Tartanlike” invariant density of the QIFS defined in nal states. In the simplest case of a two-dimensional Hilbert
Example 14 for (8 N=3%, (b) N=3%, and (c) SPaceH,, the space of pure statdy reduces to the Bloch
N =3°-dimensional Hilbert space, shown in the generalized HusimSPhereCP'=S?, and the FS distance between two quantum
representation. Invariant measure of the corresponding classical IF$ates equals the natur@iemanniai distance between the
on the torugEq. (3)] occupies a fractal sétl). corresponding points on the sphere of radius 1/2.
Definition 1.To define apure statesRIFS it is sufficient
« 1 0\/x « 1 0\/x 0 to use the general definition.of IFS giver) in Sec. Il, taking
fs( ):( )( ) f4( >:< )( )+( ) for Q) the spacePy . We specify the following two sets d&f
y 0 1/3\y y 0 1/3\y 2/3 linear invertible operators.
3) (1) V,:Hy—Hy (i=1,...Kk), which generate maps
Fi:Py—Pn (i=1,...K) by

Also, this IFS is not hyperbolic, since the transformations
f; are not globally contracting; the former two contract along Fi(lg)) = Vi(l9)) ®)
x axis, while the latter two contract along ti@xis only. An : Vi(| N
invariant measurew, for this IFS is presented in Fig.(d).

The support ofu, is the Cartesian product of two Cantor
sets. Thus, its fractal dimensionds=2 In 2/In 3.

Example 4 Let O=S?. Take k=2, p;=p,=1/2, and
choosef, to be the rotation along axis by angley; [later
referred to afk,(x1)]. In the standard spherical coordinates,
f1(6,¢0)=(6,6+ x1). The second functiori, is a rotation pil#)) = [Wi(|p))II? (6)
by angley, along an axis inclined by angJ@ with respect to
z axis. Since both classical maps are isometries, this IFS ifpr any|¢) e Py.
by no means hyperbolic. The properties of the Markov op-  Clearly, for every|#) e Py the normalization condition
erator depend on the angf and the commensurability of 2:(:1pi(|¢>):1 is fulfilled. In this situation a QIFS may be
the anglesg; . However, the Lebesgue measure on the sphergefined as the set
is always an invariant measure for this IFS.

Example 5Q0=[0,1], k=2, p;=p,=1/2, f1(x)=2x for . o .
x<1/2, and fy(x)=2(1—x) for x=1/2 (tent map; Fn={Pn: Fi:Pn—Py; pi:Pu— 001 =1, ’k}'(7
fo(x)=2x for x<1/2 andf,(x)=2x—1 for x=1/2 (Ber- )
noulli map. Both classical maps are expanditand cha- ) ) o
otic), thus the IFS is not hyperbolic. The Lebesgue measure Such a QIFS may be realized by choosing an initial state
on[0,1] is an invariant measure for this IFS. | $0) € Py and generating randomly a sequence of pure states

(I¢))jen. The state |¢g) is transformed into|¢,)

=F;(| o)) with probability p;(| ¢o)), later|¢,) is mapped

(2 Wi Hy—Hy (i=1,... k), forming an operational
resolution of identity, =¥ ,W/W,=1, which generate prob-
abilities p; : Py—1[0,1] (i=1,... k) by

Ill. QUANTUM ITERATED FUNCTION SYSTEMS into [ ¢p,) =F;(|$1)) with probability p;(| ¢1)), and so on. If
we chooseW, = \p; 1, then the probabilities are constant:
A. Pure states QIFSs pi(|¢))=p; for i=1,... k. An arbitrary QIFSF, deter-

To describe a quantum dynamical system we consider mines by formula(l) the operatorP acting on probability
complex Hilbert spac&{. When the corresponding classical measures ofPy .
phase spac€) is compact, the Hilbert spacgy is finite Such defined QIFSFy cannot be hyperbolic, since the
dimensional and its dimensiadx is inversely proportional to quantum mapg=; are not contractions with respect to the
the Planck constarft measured in the units of the volume of Fubini-Study distance iPy.
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Example 6. Q=Py=CPN"1 k=2, p;=p,=1/2, probability that the measurement outcome, iand the state
Fi(|#))=U4(¥)), andF,(|¢)) =U,(|)), where the op- of the system after the measurement if the result was actually
eratorsU; (i=1,2) are unitary. In this case, both quantumi, respectively.
maps are isometries. Thus, the natural Rieman(farbini- A homogenous QIFS generates not only the Markov op-
Study) measure ifPy is invariant, but as we shall see in the eratorP acting in the space of probability measures/efy,
following section, its uniqueness depends on the choice dput also the linear, trace-preserving, and positive operator
U, andU,. A My— My defined by

B. Mixed states QIFSs

k k
. _ (p)= oV
Mixed states are described Ij:dimensional density op- Alp): 2‘1 Pi(p)Gi(p) 2'1 VieVi A

eratorsp, i.e., positive Hermitian operators acting iy
with trace normalized to unityp=p", p=0 and tp=1. for peMy.
They may be representgth a nonunique wayas convex A mixed statep is A invariant if and only if it is the
combinations of projectors. We shall denote the space oharycenterof someP invariant measuré, i.e.,
density operators by, .
Definition 2.Now we can formulate the general definition
of a mixed states QIF&s a set ”;‘;:f pdu(p), (12
My

szz{MN, Gi :MN—>MN, Pj :MN—>[0,1]:
see Ref[27].

1=1,... Kk, ® Example 7. Q=My, k=2, p;=p,=1/2, G4(p)

where the map§, , i=1, . . . k transform density operators =U1pU1, andGy(p)=U,pU}. This is just Example 6 in
into density operators, and for every density operatonother form; the normalized identity matrix, =1/N is A
pe My the probabilities are normalized, i.€5¥_,pi(p) invariant irrespective of the form of unitary operatdss,
=1 i=1,2. Note thatp=p, may be represented as E{.2),
The above definition of QIFS is more general than thehere the measui@, uniformly spread ovePy (theFubini-

previous one, since in particul®; andp;, may be defined by ~Study measuieis P invariant. . _
To define hyperbolic QIFSs one needs to specify a dis-

VipV! tance in the space of mixed quantum states. There exist sev-
Gi(p)=—r (9)  eral different metrics inVy, which may be applicablésee,
tr(VipVy)

e.g., Refs[28,29, and references thergirThe standard dis-
tances: theHilbert-Schmidt (HS) distance

and
pi(p):=tr(W;pW)) (10 Dus(p1.p2) =Vt (p1=p2)7], (13
fori=1,... kandpe My, where the linear mapg; and  thetrace distance
W, are as in Definition 1. Thus, each QIFS &%) can be
extended to a QIFS oMy . Note that in this cas@;(p) Dol pr.p2) =t (p1=pa)2=|lp1—pall (14)

=tl’(WiTWip). Hence, we can alternatively define the prob-
abilities by pi(p)=tr(Lip) (i=1,...k, pe M), where
the linear operatorg; are Hermitian, positive, and fulfill the
identity SF_, £;=1. S
Now the dynamics takes place in the convex body of all Deured p1.02) = V2{1—t (p1°p2p79) 2]}, (15)
density matricesMy. The space of mixed statesty
has N2—1 real dimensions in contrast to the the latter based on the idea of purification of mixed quantum
(2N—2)-dimensional space of pure stateg. ForN=2 it  stateq31,32, are mutually bounde[B3]. They generate the
is just the three-dimensiondloch ball i.e., the volume same natural topology iMy . Having endowed the space of
bounded by the Bloch sphere. mixed states with a metric, we may formulate immediate
The special class of QIFSs is a class laimogenous conclusion from the theorem on hyperbolic IFSs. We define a
QIFSs introduced in a more general setting by one of théyperbolic QIFS as in the preceding section, and the follow-
authors[27]. A QIFS is calledhomogenousf both p; and  ing proposition holds.
G;p; are affine maps for=1, . .. k. The mixed states QIFS Proposition 1. If a QIFS (8) is homogenous and hyper-
being a generalization of a pure state QIFS and defined biolic (that is, the quantum mapS; are contractions with
formulas (9) and (10) is homogenous ifW;=V; for  respect to one of the standard distances\fty, p; are
i=1,... k. Interesting examples of such systems acting orHolder continuous and positiyethen the associated Markov
the Bloch sphere were recently analyzed by Jadczyk andperatorP possesses a unique invariant measureThis
Oberg [11]. For a homogenous QIFS$; and G; may be invariant measure determines a unigdeinvariant mixed
interpreted in terms of a discrete measurement process as thtatep e My given by Eq.(12).

and theBures distancg30]
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Note that for a homogenous hyperbolic QIFS, the se=U;pU! (i=1, ... k). In particular, Example 7 belongs to
quenceA"(po) tends in the limitn— o to a unique invariant this class. In the sequel such QIFSs will be caligdtary.
statep irrespective of the choice of an initial statg [27]. For a unitary QIFS not only, is an invariant state o,

Example 8.Let Q=My, k=2, p1=p,=1/2, G{(p) but also the measur@* is invariant for the Markov operator
=(p+2pq)/3, andG,(p)=(p+2p,)/3, where we choose P induced by this QIFS.
both projectorg; =[1){(1| andp;=|2)(2] to be orthogonal. Although a unitary QIFS consists of isometries, the op-
Since both homothetie§; are contractiongwith the Lips-  eratorA, need not preserve the standard distances between

chitz constants 1/3), this QIFS is hyperbolic and a uniqueyny two mixed states. For the Hilbert-Schmidt metric we
invariant measuren exists. In analogy with the IFS dis- payve

cussed in Example 1 we see that the suppofi @bvers the
Cantor set at the line joining both projectops and p,. -

However, this is nothing but a rather sophisticated represen- Dus(Au(pr).Au(p2)) = Dus(pr,po). (18
tation of the maximally mixed two-level statep,
=(p1+p,)/2, which follows from the symmetry of the Can-
tor set and may be formally verified by performing the inte-
gration prescribed by Eq12).

In fact this statement is true for any bistochastic channels as
shown by Uhlman39], but it is false for arbitrary CP maps,
since the Hilbert-Schmidt metric is not monotof#d]. On
the other handA is a contraction for the Bures distance
(Riemanniain and the trace distancénot Riemannia)
which are monotone and do not grow under the action of any
From the mathematical point of view it may be sufficient CP map[41,28. Choosing forp, the maximally mixed state
to require that the map is positive that is, it transforms a p, =1I/N, which is invariant with respect td, for every
positive operator into another positive operator. From theunitary QIFS, we see in particular that the distance of any
physical point of view it is desirable to require a strongerstatep; to p, does not increase in time. Similarly, the von
condition of complete positivity related to a possible cou-Neumann entropy given byH(p)=—tr(plnp) for
pling of the quantum system under consideration with arp e My does not decrease during time evolutidi). On the
environment. A map\ is completely positivéCP map, if  other hand, the inequality in E¢18) is weak, and in some
the extended map ®1 is positive for any extension of the cases the distance may remain constant. The question, under
initial Hilbert space,Hy— Hny® He, Which describes cou- which conditions this inequality is strong, is related to the
pling to the environmenit34,35. problem, for which unitary QIFSs the maximally mixed state
It is well known that each trace-preserving CP m&ap p, isS a unique invariant state df, . This is not the case, if
(sometimes calledquantum channglcan be representgdot  all operatorsU; commute, since then all density matrices
uniquely in the following Stinespring-Kraus form diagonal in the eigenbase bf; are invariant. Such a situa-
tion may occur also in subspaces of smaller dimension. To
L B o N, describe such a case we shall call unitary matrices of the
p _AK(P)_J.Z«l VipVj  with J.Zl ViVi=l, (18 same sizeommon block-diagonaif they are block diagonal
in the same basis and with the same blocks. The uniqueness
where linear operatorg; (j=1, ... k) are calledKraus op- of the invariant state of a unitary QIFS is then characterized
erators [34,36. For any quantum channel acting in an by the following proposition, the proof of which is provided
N-dimensional Hilbert space, the number of operatonged  in the Appendix.
not exceed\? [37]. Each quantum channel can be treated Proposition 2. Let us assume that all probabilitigs

C. Completely positive maps and unitary QIFSs

k k

(but not necessarily uniquelyas a pure or mixed state ho- (i=1,... k) are strictly positive. Then the maximally
mogenous QIFS. Conversely, for each homogenous QIF3nixed statep, is not a unique invariant state for the operator
formula (11) defines a quantum channel. Ay if and only if unitary operatordJ; (i=1,... k) are

If, additionally, S¥_,V;V/=1 holds, thenA(I/N)=1/N, ~ common block diagonal.
and the mapA is calledunital. It is the case if all Kraus It follows from the proof of this proposition that in this
operators are normanVf=V;er (j=1,... k), however, case there exists# p, such thats, is an invariant measure

this condition is not necessary. A unital trace-preserving CHor the operatoPy induced by the QIFS. .
map is calledbistochastic An example of a bistochastic ~ T0 show an application of Proposition 2 consider a two-

channel is given byandom external fields38] defined by ~ level quantum system, calleglibit, which may be used to
carry a piece of quantum information. Let us assume that it is

K . subjected to a random noise, described by the following
p'=Ay(p)=2, pi UipUl, 17 map:
whereU;, i=1,2, ...k, areunitary operators and the vec-

, _ p
tor of non-negative probabilities is normalized, i.BX_, p; p=p =Au(p)=(1=plp+ §[Ulp01+02p02+03p03]'
=1. The Stinespring-Kraus fori@i6) can be reproduced set- (19
ting V;=+/p;U;. Note that the random external fields7)
may be regarded as a homogenous QIFS of the first kind This bistochastic map, defined by the unitary Pauli matri-
(with constant probabilitioswith k unitary mapsG;(p) cesoj, is calleddepolarizing quantum channpt2], and the
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parameterp plays the role of the probability of error. This K

map transforms any vector inside the Bloch ball toward the pa=A(pa)=trg(UoUT)= > aiVipaVAT. (22

center, so the length of the polarization vector decreases. In =1

the formalism of QIFSs this quantum channel is equivalent

to the following example. Since for p} :=Iy/N we haveA(p})=trg(U(p,®p3)U")
Example 9.Q=7,, k=4, U;=1, Uy=0y, Us=0,, =p4,the CP map\ is bistochastic.

Us=03, p1=1—p, and p,=p3=p,=p/3> 0. Since the

Pauli matrices are not common block diagonal, the maxi- IV. QUANTUM-CLASSICAL CORRESPONDENCE

mally mixed statep, is a unique invariant state of the CP

map (19) associated with this unitary QIFS. To investigate various aspects of the semiclassical limit of

To introduce an example of QIFS arising from atomic the quantum theory it is interesting to compare a given dis-
physics, consider a two-level atom in a constant magneti€rete classical dynamical system generated:6y— () with
field B, subjected to a sequence of resonant pulses of ele@ family of the corresponding quantum maps, usually defined
tromagnetic wave. The length of each wave pulse is equal t8sFy: Hy— Hy With an integeiN. Several alternative meth-
its period T and it interacts with the atom by the periodic 0ds of quantization of classical maps in compact phase space
HamiltonianV/(t)=V(t+T). Let us assume that each pulse have been applied to construct quantum maps corresponding
occurs randomly with probabilitp. Thus, the evolution op- to the baker map on the tor{id3,44], the Arnold cat map

erator transforms any initial pure state by the operator [45] and other automorphisms on the tofé$], the periodi-
cally kicked top[47], and the baker map on the sphé48].

To specify in which manner the classical and the quantum
maps are related, it is convenient to introduce a set of coher-
ent statesly) e Hy, indexed by classical pointg of the
in the absence of the pulse, or by the operator phase spacf. (For more properties of coherent states and a

general definition consult the book by Pereloni49].) They
: . satisfy the resolution of identity formulafo|y){y|dy=1,
_F _ and allow us to represent any statdy its Husimi represen-
Yz Cex;{ h ( HOT+J'0 V(t)dt” 1 tation, H(y) =(y|ply) (ye Q). Quantization of a classical
mapf, which leads to a family of quantum mapy is called
. .. regular, if for almost all classical pointg the classical and
n the presence of the pulse. .The unperturbed Ham'lton'a'fhe guantum images are connected in the sense that the nor-
Ho is proportional toB,J, (J; IS the z component of the malized Husimi distribution of stat€y|y) integrated over a
angular momentum operajoandC denotes the chronologi- finjte vicinity of the pointf(y) tends to unity in the limit
cal operator. Thus, this random system may be described Y.« [50]. Another method of linking a classical map with
the following unitary QIFS. a family of quantum maps is based on tegorov property

Example 10.0=7,, k=2, py=1-p, andp,=p, the  which relates the classical and the quantum expectation val-
Floquet operatort, [Eq. (20] andU, [Eq. (21)] as speci-  yes[51,52.
fied above. The maximally mixed statg = 1/2, correspond- In a similar way we may construct QIFSs related to cer-
ing to the center of the Bloch ball, is the invariant state of the[ain classical IFSs. More precise|y’ a sequence of pure states
Markov operator given by Eq17). For a generic perturba- QIFSFy={Py;Fin.Pin :i=1, ... k} induced by two sets
tion V, the matricesU; and U, are not common block of linear maps VinsWinHy—Hy (i=1,... k) [see
diagonal, and sp, is the unique invariant state for operator Eqs. (5) and (6)] is a quantization of a classical IFS
(17) related to the QIFS. Fo={Q;Fi,pi:1,... k}, when the functionsF;, are

The QIFSs arise in a natural way if considering a quantunuantum maps obtained by the quantization of the classical

system acting orHy coupled with amancilla: a state in an  maps f; and the probabilitiesp; y computed at coherent
auxiliary m-dimensional Hilbert spacg(,,,, which describes states]y) fulfill

the environment. Initially, the composite state describing the

system and the environment is in the product form; pa , N
®p2, wherep?:=1,/m is the maximally mixed state, but Pin(Y)YD = Wi (YN —— pi(y)
the global unitary evolution couples two subsystems to- foryeQ and i=1,... k. (23

gether. A unitary matrixJ of size Nm acting on the space

Hn®Hy may be represented in its Schmidt decomposition  To jllustrate the procedure let us consider random rota-
form asU==/, g V/'® V¥, where the number of terms is tions on the sphere, performed alongndz axes. This spe-
determined by the size of the smaller space,cial case of Example 4 may be easily quantized with the help
K =min{N?n?}; the operatorS/iA andviB act onHy andH,,, of the componentd; (i=x,y,z) of the angular momentum
respectively, and the Schmidt coefficients are normalized asperatorJ, satisfying the standard commutation relations,
ZiKzlqi=l. Restricting our attention to the systefone  [J;,J;]= € J. The size of the Hilbert space is determined
needs to trace out the variables of the environniemthich by the quantum numbgrasN=2j+1.

leads to the following quantum chann@nd to the respec- Example 11. k2, random rotations are given as the fol-
tive homogenous QIRS lowing.
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(@ classical, F={Q=5% f;=R,(6;), f,=R.(6,), Hilbert space. Lefj), with j = N be the eigenstates of
p.=p,=1/2}. The Lebesgue measure on the sphere in aithe position operator, and SImllarly) with I=1,... N be
invariant measure for this IES. the eigenstates of the momentum operator Both bases are

(b) quantum,Fy={Q =Py, F;=€'1% F,=glf2) p, related by||>p=21!\':1w|j|j)q, where the matridW is the N
=p,=1/2}. Since both unitary operators are not commonP0int diegreltem Fourier  transformation  with W
block diagonal, due to Proposition 2, the maximally mixed = = (1/yN)e > for 1,j=1, ... N. The classical maj
statep, is a unique invariant state for operatad) related to " Ed-(3), representing a threefold contraction in theirec-
the QIFSZ,. tion, corre_sponds to the transformati@y of the density

A quantization of an IFS of the second kind is given by operator given by
the following modification of the previous example.

Example 12. k-2, random rotations on the sphere with ~ Gi(p)= >, |i>q( > (3i+mlgpl3j+n)q|(ilq-
varying probabilities depending on the latitudecomputed R mn=0 (24
with respect to the axis.

The spaces and functions are as in Example 11, but In a similar way, the quantum map, corresponding to
(@ classical IFS Fq, p;=(l+cosf)2 and p, f;is defined by
=(1-cos#)/2; (b) quantum IFSFy, pi=1/2+(J,)/2] and 3L 2
P2= 1/2—<JZ>/2j with N=2j+ 1. Intere;tingly, this modifi- Gy(p)i= > ||>q( > (3i+m|gp|3;] +n>q)(j|q.
cation influences the number of invariant states of the IFS. ij=2L+1 m.n=0
Since p, vanish at the north poleg=0) of the classical (25

sphereS?, this point is invariant with respect t&c;. Simi- The mapsG; and G, are obtained in analogy 16, and

larly, the corresponding quantum statej) localized at the G,, using the eigenstates of the momentum operigy,
pole is invariant with respect to operatdrl) related to the

2

QIFS 7. - 2

The above examples of unitary QIFS dealt with simple ~ Ga(p): kE K)p ;0 (3k+m[pp[31+n), (],
regular maps —rotations on the sphere. However, an IFS (26)
may also be constructed out of nonlinear maps, which may
lead to deterministic chaotic dynamics. For instance, one sL 2
may consider the map describing a periodically kicked top. It G4(p):= > |k)p( > (3k+m[pp|3l+n), [(I],.
consists of a linear rotation with respect to theaxis by ki=2L+1 m,n=0

angle« and a nonlinear rotation with respect to thaxis by (27)
an angle depending on tlzecomponent. In a compact nota- The random system defined below may be considered as a

tion, QIFS related to the IFS introduced in Example 3:

the classical top read$g(«a,B) :=R,(zB)R.(«a), while its Example 14. Quantum tartan: Fy={Q =Py, k=4,
quantum counterpart, acting in thBl=(2j+1)-dimen- G;,G,,G3,G,; p1=p,=pP3=ps=1/4.

sional Hilbert space can be defined bYQ(a B) An invariant states for the map induced by this QIFS

:=exp(—iBJI2j)exp(—iady) [47]. This quantum map is one are illustrated in Fig. 1 foN=3% N=3°, andN=3°. In-
of the most important toy models often studied in researclvariant quantum state, is shown in the generalized Husimi
on quantum chad$3]. A certain modification of this model, representation

in which the kicking strength paramet@rwas chosen ran-

domly out of two values, was proposed and investigated by H (p.q)= 1 (a.plpla.p) 28)
Scharf and Sundaraf®4]. This random system may be put pRE 27w (q,plg,p) ’

into the QIFSs formalism:
Example 13.Randomly kicked top:(a) classical, Fg, based on the set of coherent states on the tdaup)

— vNp—N/2yNg—N/2 ;

~10=S,  fi=To(ap), f=To(@pth), Pi=p ;nYarbitrai( state|igoaﬁsgdr(ierje(rf/nzcilzs)tad&<> © chosen as
=1/2}; (b) quantum, Fy={Q=Py, F1=Tg(a,B), f, y '
=TQ(a,,8+A), p1=p,=1/2}. For_posmvea and A both <n|K>:(Z/N)—1/4e—7r(n—N/2)2/N—iTrn, (29)
unitary operators are not block diagonal, so the maximally
mixed statep, is a unique invariant state for operatdrl)  while X denotes the operators of shift in positiOﬁj}z
related to this unitary QIFS. Our numerical results obtainedj+1) with an identification|j+N)=|j) for j=1,... N.
for a=m/4, B=2, andA=0.05 suggest that the trajectory Similarly, Y shifts the momentum eigenstatelsij>—|l +1)
of any pure coherent state converges to the equilibrium exand|l+N)=|l) for | = . N. The quantum statey,p) is
ponentially fast. well localized in the vicinity of the classical poing{p) on

To discuss a quantum analog of an IFS with a fractathe torus[55]. This representation of quantum states corre-
invariant measure, consider the classical IFS presented ponding to the classical system on the torus was used in the
Example 3. The classical phase spdtecan be identified analysis of an irreversible quantum baker np&g].
with the torus. For pedagogical purpose, let us rename both The larger value of\, the finer structure of the invariant
variablesx,y into g,p, representing canonically coupled po- statep, is visible in the phase space. In the semiclassical
sition and momentum. We shall work k= 3L-dimensional limit N—« (which meanst—0), the invariant state,
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tends to be localized at the fractal support of the invariant

measure of the classical IFS, showﬂpfor comparison in|A[= D 2 Up?= 2 2 (Upel?+ 2 X Ul
Fig. 1(d). Strictly speaking, for any finit&l, the Husimi dis- neA mel neAmeA neAmeB
tribution of p, does not possess fractal character, since self-

similarity hgg to terminatpe at a length scale comparable with = D D Unl?=2 X (Upel?= 2 X [Upl?
JAi. In other words, quantum effects are responsible for neAmeA nel meA neBmeA
smearing out the fractal structure of the classical invariant )

measure. However, the classical fractal structures may be :|A|_EB sz:A |Unml®,

approximated with an arbitrary accuracy by quantum objects

in the semiclassical limif57]. and 503, 5= me ol Unn|2=0, as required.

Now we turn to the proof of Proposition 3.
V. CONCLUDING REMARKS Let U, (i=1,... k) be block diagonal in the common

Classical iterated function systems display several interbfse’ and let dimension of the blocksdg, . .. ,a, where
esting mathematical properties and may be applied in varioudj-12;=N. Define a diagonal density matrix as a direct sum
problems from different branches of physics. In this work we

have generalized the formalism of IFSs introducing the con- L oo

cept of QIFSs. Quantum iterated function systems may be pi=a& —I,, (A1)
defined in the space of pure states on a finite-dimensional =195

Hilbert spaceH,, or more generally, in the space of density

operators acting ofi{y . As their classical analogs, QIFSs Where=_;a;=1. Then,U;pU[=p for everyi=1,... k.

allow a certain degree of stochasticity, in the sense that ddence,p is Ay invariant ands, is a Py-invariant measure

each step of time evolution the choice of one of the preon Py for an arbitrary choice ofd;)j—1 . | -

scribed quantum maps is random. Let p be an invariant state fok such thap # p, . Then,
This formalism may be applied to describe several probp can be written in the form

lems of quantum mechanics, including nonunitary dynamics,

processes of decoherence, and quantum measurements. In N
fact, thg large class of quantum channels, called random ex- p= E oo W W, (A2)
ternal fields may serve directly as examples of a QIFS. Fur- n=1

thermore, for several classical IFSs one may construct the

corresponding QIFSs and analyze the relations betweewhere |¥ ) e Py, (V¥ )=36um (n,m=1,... N), and
them. As shown in the last example, one may focus on ther;<o,<---<oy; 01<1/N. For ye[0,1] the density op-
fractal properties of invariant measures of some classicatrator p,:= yp+ (1= ) pe =ZN_ ol |¥ NP,|, where

IFSs and study their quantum counterpart. Thus, the concept’ :=yo,+(1—y)N~! (n=1,... N) is also an invariant
of QIFS allows one to investigate the semiclassical limit ofstate forA . Put y:=1/(1— ¢;N). This choice implieso}
random quantum systems. =0 and=N_,o.=1. Assume thav\,=0 for n=1,...n’
ando,>0 forn=n’+1,... N, wheren’=1. The equation
ACKNOWLEDGMENTS Ay(p,)=p, can be rewritten in the form

K.Z. is grateful to E. Ott for fruitful discussions and hos-
pitality at the University of Maryland, where this work was k N
initiated. We are also thankful to R. Alicki, M. Fannes, ol=> p > [(U)nml?ol, (A3)
M. Kus, and P. Pakaski for helpful remarks. Financial sup- =1 m=1
port by Polski Komitet BadaiNaukowych under Grant No.

2P03B 072 19 is gratefully acknowledged. where U;),m (n,m=1, ... N) are the elements of matrices
U; (i=1,... k) in the basis (') n-1, ... n-
APPENDIX: PROOF OF PROPOSITION 3 Forn=1,....n" we get
We start from the following lemma. K N
Lemma. Let U=(Upp)nm=1,. . n be anN-dimensional 0= _ U |2g" Ad
unitary matrix. Assume that there exist two nonempty sets of ;1 p.ngﬂ [(Unnl - A4

indicesA and B such thatAUB=1:={1,... N} andANB
=. Then,U,,=0 forne A andme B impliesU,,,=0 for ~ Hence U;),,=0 forn=1,...n" andm=n’+1,... N.

neB andmeA. Using the Lemma, we deduce thaU},,=0 for n
Proof of the lemmaWe compute the number of elements =n’+1,... N andm=1,...n’. Thus,U; (i=1,... k)
of the setA: are common block diagonal.
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