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Nonlinear stochastic equations with calculable steady states
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We consider generalizations of the Kardar-Parisi-Zhang equation that accommodate spatial anisotropies and
the coupled evolution of several fields, and focus on their symmetries and nonperturbative properties. In
particular, we derive generalized fluctuation-dissipation conditions on the form @ficinéineaj equations for
the realization of a Gaussian probability density of the fields in the steady state. For the amorphous growth of
a single height field in one dimension we give a general class of equations with exactly cal¢Glabsian
and more complicatedsteady states. In two dimensions, we show that any anisotropic system evolves in long
time and length scales either to the usual isotropic strong coupling regime or to a linearlike fixed point
associated with a hidden symmetry. Similar results are derived for textural growth equations that couple the
height field with additional order parameters which fluctuate on the growing surface. In this context, we
propose phenomenological equations for the growth of a crystalline material, where the height field interacts
with lattice distortions, and identify two special cases that obtain Gaussian steady states. In the first case
compression modes influence growth and are advected by height fluctuations, while in the second case it is the
density of dislocations that couples with the height.
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[. INTRODUCTION The stochastic aspect of Ed) is due to the noisey(x,t),
which has zero mean and short-range correlations in space
Nonlinear stochastic partial differential equations appeaand time. In the absence of the nonlinear term proportional to
extensively in problems of equilibrium and nonequilibrium ), it reduces to a standard Langevin equation, with a Gauss-
statistical physics. For systems in thermal equilibrium, theian steady state. In one dimension, the nonlinear term does
form of these equations is constrained by fluctuationnot modify this steady state as the associated probability cur-
dissipation conditiong1] that ensure convergence of the rent in the Fokker-Planck equation is zero. This observation
steady-state probability distribution to the appropriate Boltz-motivates our search for other equations with this property,
mann weight{2]. Nonequilibrium systems are not similarly namely an easily guesse¢equilibrium) steady state which is
constrained, and there is no simple way of finding their benot affected by the additionghonequilibrium nonlineari-
havior in steady statéf any). However, there are examples tjes.

in which steady states can be found exactly as solutions of |n Sec. Il, we start by constructing the Fokker-Planck
the associated Fokker-Planck equations. In this paper we requation for the one-dimensional KPZ equation and explic-
view some such examples, and introduce several new oneigly showing that the probability current due to the nonlinear
along the way seeking general principles for finding steadferm does not modify the steady state, as it appears in an
states associated to nonlinear stochastic equations exactlyintegral of a complete derivative. This observation is then
The simplest equation, which serves as the prototype fofised as a basis for constructing other one-dimensional non-

our investigations, is the Kardar-Parisi-Zha®PZ) equa-  Jinear equations that share this property. Indeed, we find that
tion [3] the class of such equations is quite large, including some
equations already considered in the literature.
dth=vV?h+3\(Vh)*+ 7, (1) Higher-dimensional versions of the KPZ equation may
also obtain a Gaussian steady state in spite of their nonlinear
describing the nonequilibrium fluctuations offeeighy field  character. We discuss such a case in Sec. lll, namely, an

h(x,t). The equation is equivalent to the Burgers equatioranisotropic variant of the KPZ equation in two dimensions
(for a fieldu=Vh) for vorticity-free turbulenc¢4], and ap-  with nonlinear terms of opposite signs in the two directions.
pears in various guises in the study of domain welsand  Using renormalization group methods, W4lf2] showed
directed polymers[6,7] in a random potential, surface that this model indeed flows under renormalization to a lin-
growth [8], and even the gengr protein sequence align- ear fixed point. Generalizations of this equation with calcu-
ment problen{9,10]. Still more problems can be formulated lable steady states are also constructed; they all share a hid-
as generalizations of the KPZ equation that accommodatden symmetry under reflection, absent in the isotropic KPZ
spatial anisotropy or the interplay of several fields. Examplegquation.

in the literature include the dynamics of a vicinal surface The examples from one and two dimensions motivate the
[11,17], the growth of two coupled surfacg43] or of a  search for more general principles governing the existence of
magnetic surfacgl4—16, and the transport of a flux line or simple steady states, taken up in Sec. IV. Specifically, we
polymer([17]. consider stochastic dynamics of multiple fields coupled by
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nonlinear(possibly anisotropicgeneralizations of the KPZ fluenced by the presence of the KPZ nonlinearity and coin-
term, and ask whether they admit Gaussian steady states.cide with the GaussiafEdwards-Wilkinson[19]) ones. We
direct solution of the Fokker-Planck equation becomes conmake no statements about the stability of the steady state of
siderably more difficult and, instead, we derive two sets ofEq. (4); however, here, and in every other example for which
general prescriptions on the coefficients for this to occursimulations are available, numerical results indicate that the
These prescriptions may be viewed as generalizedimple Gaussian steady states we discuss are indeed the ones
fluctuation-dissipation relatiorj4 8] and are quite restrictive. achieved at long time.

In particular, they cannot be satisfied in three and higher The one-dimensional KPZ equation is a particular in-

dimensions as we show in Sec. V. stance of a more general class of equations
Having obtained general prescriptions, in Sec. VI we ap-
ply them to equations for coupled fields in one and two di- dh=1f(axh)daxh+g(dh) + 7, (6)

mensions. Some of the examples we discuss correspond ta . . . .
equations that have already appeared in the literature, in pa\f\f'th f and g arbitrary functions. These equations obtain a
ticular, pertaining to the dynamics of a flux line or polymer Steady state

(Sec. VI A) and to the growth of a magnetic filt®ec. VI B). 1

However, in Sec. VIC we propose a set of equations to P= Nexy{ _BJ dxF(aXh)), )
describe the coupling of the strain field of a growing crystal

to its height fluctuations. We find that Gaussian steady stateShere  is the second derivative of i.e., d?F(u)/du?
are indeed permitted for these equations in special cases. =f(u)]. For g(a,h)=0, Eq.(6) is again a standard Lange-

The Appendix treats a simple example aimed at illustraty;in ‘equation, while the contribution of this function to the

ing how the systematic approach may be extended to exaCtE{robability current is
calculable non-Gaussian steady states.

1
Il. GENERALIZED GROWTH EQUATIONS IN ONE P= —PJ dx59(dxh)T(dxh) dxdxh
DIMENSIONS
14
Consider the probability distributio h] for configura- = —Pf dxdy BG(&xh)} =0, (8

tions of the fieldh(x). As the surface changes in time ac-

1
szh—i—E)\(Vh)2

cording to Eq.(1), the corresponding. probability evolves ac- \ynereG is the primitive ofgf [i.e., dG(u)/du=g(u)f(u)].
cording to the Fokker-Planck equation The special case of a cubic nonlinearitg(dsh)

5 =1N(a4h)2+ EN"(9,0)® (with f=1) was introduced to de-
atp:f ddx| _ 5_7)+ D—P . © scribe an interface separating stationary phases of the Toom
Sh Sh? model[20]. The Gaussian steady state corroborates the mar-

ginal irrelevancg 21] of the cubic term, and implies spatial

The term in the square brackets is due to the deterministicorrelations of the form

probability current and the remainder comes from the sto-
chastic noise, assumed Gaussian Wi#fx,t))=0 and ([h(x)—h(x") ]2~ x=x"[*2, 9

(n(x,t) (X' ,t"))=2D &% (x—x") 8(t—t'). ©) IIl. ANISOTROPIC EQUATIONS IN TWO DIMENSIONS

In equilibrium, D=KkgT; more generallyD is a measure of To describe the growth of a vicinélightly miscut from a
the magnitude of the noise. low index facet surface, Villain introduced11] an aniso-

A steady-state solution is one for whieh?=0. In the tropic version of the KPZ equation, which was subsequently
absence of the nonlinear term, the steady-state solution gfudied with a renormalization group calculation by Wolf
Eqg. (2) is a simple Gaussian, [12]. This generalized equation has the form

ah= 1,02+ v,32h+ I\ (9,h) 2+ I\ (d,n)2+ 7.
7>=Ne><p<—%f ddx(Vh)Z), (4 MZHANTHANTIANTE AT

whereN is a normalization constant. In general, this is not aUnder renormalization, the subspace witl/ v, =\, /\, is
steady state fok#0. In one dimension, however, the con- fixed and equivalent to the isotropic KPZ equation modulo a

tribution of the nonlinear term to the probability current caneScaling ofx ory. This subspace is locally attractive, so that
be simplified to the equation flows to a strong-coupling limit Xf, and A,

have the same sigstability requiresv, ,»,=0). The more

VA 5 VA 5 surprising behavior arises when the produgk is negative,
o P= —Pf dx5p () %dxh= —Pf dxdy| g () } in which case the flows converge to a fixed point with van-
ishing nonlinearities.
(5) This vanishing of nonlinearities at long length and time

a surface integral safely set to zero in the limit of an infinitescales suggests a Gaussian steady-state probability density,
system. Thus, the steady-state spatial correlations are not ias corroborated by an exact solution of a discrete model be-
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longing to the same universality clag22] and by a direct h— —h,
solution of the Fokker-Planck equatidr3]. Indeed, the
Ansatz X—Y, (16)

y—X.
7?=Nexp( - if dxdy vy(deh)?+ vy(ayh)z] , (1D _ _
2D The symmetryh— —h is precisely the one broken by the
isotropic KPZ nonlinearity. It is restored here, provided the
with the generalized fluctuation-dissipation conditiag/ v, plane is also inverted about an appropriate axis: the bisector
=—N«/\y, solves for the steady state. To verify this, we in the case of Eq(13), thex or y axis in the case of Eq15),
note that the contributions from the nonlinearities take theand a properly rotated axis in the general case of (E4).
form This hidden symmetry sheds light on the renormalization
group analysi$12], as any two-dimensional anisotropic KPZ
P , , , , term may be'written, upon rotati_on of the' plane, as the sum
O P=— EJ dxdy[ Ny (d¢h) =+ Ny (dyh)“](vydzh+ vyaih) of an isotropic part _and '_[he antisymmetric part _of EtR)
whose subspace is invariant under renormalization.

P Ay Vy . ) By analogy to Eq_(6), we can generalize Eq15) to in-
=~ 5p | 9Xdy) 5~ (9xh)"+F hyri(dh)(9yh) clude a more complicated Laplacian term as
ATy , , gih="f,(dh)aZh+f (ayh)dsh+Nahash+ 7. (17)
+dy| =5 (dyh) + Ny (dh)“(ayh)
3 Indeed, it is easy to check that the probability density
1
+ zaxhayh‘;x&yh()\yvx'i_ KXVy)] . (12 P= NEXF< _ BJ' dxdy[F,(d.h) + Fy(ayh)] . (18

If Nyvy+ N\, =0, the above contribution is the divergence where f,(u)=dF,(u)/du and f,(u)=dF,(u)/du, is sta-
of a vector field, and hence vanishes subject to the usudlonary.
boundary conditions. This nonperturbative derivation
complements the renormalization group analy&&| which IV. GENERAL PRESCRIPTIONS FOR GAUSSIAN
captures perturbatively the character of this state at large STEADY STATES
scales and the dynamics that lead to it. In particular, it dem-
onstrates that a Gaussian steady statel the logarithmic
roughness it impligsobtains atany length scale, and not
only in the long wavelength limit.

By suitable rescalings of andy, we can makev,= v,
=, so that the steady state reduces to &g.with d=2.
Trivially, this steady state also holds for any equation relate

The solution of Fokker-Planck equations by direct check
of Ansdze soon becomes laborious beyond simple one- and
two-dimensional examples. Instead, we derive general pre-
scriptions on the structure of the equations of evolution, for
the realization of Gaussian steady states. We consider equa-
aions of the form

0 ahi ) =LO+ N O]+ (x,0),  (19)
o N ) 5 for n coupled fields (=1, ... n), xeRY, and Gaussian
dth=vVh+ [ (9:h)"=(9,h)"]+ 7, (13 (therma) noise with correlator

7i(X1) 7(X' 1)) =2D; 5 8%(x—x") 8(t=t").  (20)
by a rotation of the plane. This class comprises all the equa- (m . ) H
tions of the form L, and N, denote linear and nonlinear functionals of the
fields, respectively, evaluated at poitlf » and »;.; are
Ay uncorrelated24], the Fokker-Planck equation reads
dh=vV2h+ ?[(axh)z— (9yh)2]+Npdchayh+ n,

é . , oP
_ | 4 il B O NIV O) o
(14) aP fd xZ m[ (LOHNOPE 5, @Y
where arctan\,/\,)/2 is the plane rotation angle; in particu- \yhere we have absorbddl in a rescaling of; (by D),
lar, the equation and reduces to
dh=vV2h+Ndhah+ 7 (15 2

. 8P &P
_ | qd O I V2O N
&P fd in (LW + N )6hi + e

. (22

is obtained from Eq(13) by a 45° rotation.
The surprisingly simple steady state of Ed43) results if £ and NV depend upon the derivatives bfonly. We are
from a “ hidden” symmetry under the transformation looking for a Gaussian probability density
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P=Ne QN (23 rivative structures and, as the equation must be true for arbi-
trary h, terms of a given derivative structure must cancel
with Q[h] a quadratic form an®l a normalizing factor, that independently. This is ensured by the following two sets of

solves the steady statgP=0, i.e., generalized fluctuation-dissipation conditioos the tensors
) v and\: The first condition(l) comes from grouping terms
f dix> _(E(i)+N(i))( _ @) +(§) }:0 in Eq. (29) which are products of first and third derivatives
i x x oh; oh; ' (such asd,dgzd,hydshy), and reads
(24)
The quadratic terms cancel &f and Q are related through ; (Vijp(a)P(g)NikIP(7)8~ VikP(a)P(B)NijIP (y)8) = 0,
. S5 (33

L£H=— Q (25)

oh where the summation runs over the six permutations of the

and it remains to find the form of and A/ for which the indicesa, B, y. A second conditiorill) comes from group-

integral ing terms of the forny,d,hdgdsh;, and gives
d 9% d () o) > (2 A - A
Jhl= | d XZ N Sho d XZ N L =, (2VijRr(a)R" () NIKIR(B)R! (8) ~ VikR(a)R(B)NijIR ' ()R’ (8)
1 )
(26)
— ViR (9)R (9)NijkR(2)R(8)) = O, (34

vanishes. This is the case if the integrand either vanishes
identically or is the divergence of a vector field. In either where the summation runs over the two permutations of the
case, the integrand is unchanged by a variasb(x) that indicesa, g and the two permutations of the indicgs &.
vanishes at infinity. Ifsh is localized atx, the condition Each pair of conditions corresponds to a given choice of
J[h+ sh]=J[h] translates, to first order iéh, into numerical values foy, k, |, @, B, v, andé.

Conditions(l) and(ll) arenecessaryor a Gaussian solu-

1) f oy 20—, 27 tion of the steady-state I_:okker—PIancIi equation. The}/ are
sh;(x) y Y alsosufficientconditions, sincg/[h+ éh]= J[h] to first or
der for any sh implies 7[h+ éh]=7[h] to all orders, and
where the summation overis understood. J[h]=const=c. But normalization ofP allows onlyc=0
For coupled KPZ-like equatiori5] of the form (otherwiseP either increases or decreases uniformind
ﬁthizvijaﬁaaaﬁh+%)\ijkaﬁﬁahj&ﬁhk—'_ i (28) ConsequentIWIP 0.

where latin indices$,j,k=1, ... n refer to field components V. ABSENCE OF GAUSSIAN STEADY STATES IN THREE
and greek indicesy,8=1, ... d refer to spatial compo- AND HIGHER DIMENSIONS

nents, £q(27) reduces to If the matrix of Laplacian coefficients;;,z is positive

Vij apNikl ys( a0 000 s + 340 Nd gd shy) :1Zeef(ijn:$6as required by infrared stability, it can be diagonal-
— VikapNiji yo( 90 gd N d sy + 3,0 ghid 3 shy) =0,
(29) Vijap= VijOap (35
after some renaming of the indices and using the factithat by successive rotations and rescalings, and prescriptions
and\ can always be chosen to satisfy the equalities and(ll) simplify correspondingly. In three and higher dimen-
sions we may choose the space indices, in applying the pre-
Vijap™ Vijpa ANA  Njjkap= Nikjga - (30 scriptions, such thatv=7y while a# B+ 5# a. With this

choice, it is straightforward to check that prescriptidh
forbids a nonvanishing contraction of tensors with different
space indices, hence enforces the partially diagonal form

Furthermore, Eq(25) requires the symmetry

Vijap™ Vijiag (31
and the stationary probability density reads VijNikiap= VijNiklaaOap (36)
4. Vijap (wherei is summed over but is noY. With this constraint,
P=Nexp — [ d°x—=dahidgh; . (32 prescription(ll) takes the form

Since repeated indices are summed over,(E§). represents 1

n conditions—one for each possible value of the index E [7ij N jkir(a)r(8) Fr(@)R! () FR(AIR (8) ~ 2 (VikNijIR" (1R ()
Each of these in fact encapsulates more than one constraint:

Eqg. (29) is composed of terms that come in one of two de- + Vit Nijkr(@)R(a)) OR(@)R(B) OR! (y)R (8)] = O- (37
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This equation expresses a set of different conditions, one for 1
each choice of values of the indices that are not summedﬁtPZ—f dX5 Ni dxduhyvij dxdyhi P
over. Specifically, for a particular choice in whicla=y
# B= 6, Eq.(37) translates into 1
:—J dxg(Vij)\iklaxaxhj‘?xhkaxhl
VijNiklaa™ ~ VijNikigg - (39
For the sake of visual ease, let us define the objegt ik OO vin ki xhy O dxdxh) P,
=vijNikiaa (the dependence af, onj, k, | is tacit, in terms (44)
of which this identity reads

where we have renamed the mute indices to obtain the last

Pa™ —Pps (39 equality. But Eq.(42) implies that all three coefficients are

s . L identical, and
clearly, if it is possible to choose three or more distinct val-

ues of the indices, B, this condition is frustrated and ad- 1
mits only the trivial solution o P= —f de vij Nikidx(dxhjdhidgh) =0. (45

®a= VijAikiaa= 0, (40) _
A special case of Eq41),

forall j, k, I, @. Viewed as a vector identity, this requires that
any vectory; be orthogonal to any vectay,, (with com- , 1 )
ponents labeled biy=1, ... n). As long as the matrix;; is dthy=vdxddy+ 5 M (h) "+ Sh (axh )"+ 7,
nondegenerate, there ar@onvanishing independent vectors
v; (for j=1, ... n) and Eq.(40) is satisfied only if the vec-
tors Ay, Vanish for allk, I, «. Hence, no Gaussian steady

state is achievable in three and higher dimensions if nonlin- _ . . :
earities are present in the equations of evolufi2él. was introduced in Refg17] to describe a directed polymer
drifting perpendicularly to itself. Heré andh, are inter-

preted not as height fields associated with two different lines
embedded in two dimensions, but rather as dynamically
In the case of a single field fluctuating in two dimensions,coupled longitudinal and transveré®e the average velocity
prescriptiongl) and(ll) immediately enforce the form of Eq. of the polymey fluctuations of a single line embedded in
(14) for which a Gaussian steady state may be reached, as weree dimensions. The conditions of H42) for a Gaussian

(46)
&thl = Viﬁ)(&)(hi +)\><ﬁtho"th + un

VI. COUPLED FIELDS IN ONE AND TWO DIMENSIONS

checked explicitly in Sec. Ill. In what follows, we discuss steady state simplify to
examples in which the coupling among several fluctuating
fields broadens the class of nonlinear equations with Gauss- YN =V Ay, (47)
ian steady states beyond this specific anisotropic fwith
coefficients of opposite sighs in agreement with a direct che¢k7,27).
In the simplest case with identical longitudinal and trans-
A. Coupled lines and drifting polymers verse coefficients, a stationary Gaussian distribution follows

trivially from the steady-state properties of the one-
dimensional KPZ equatioidiscussed in Sec.)ll since the
8quations

An array of fluctuating directed linef5—7] is param-
etrized by a single variable, consequently the greek indice
in Eqg. (28) all take the same value and may be omitted.
Equation(28) then reduces to

1
— - 2 2
athi = Vij‘?x‘?xhj + %)\ijkﬁxhj&xhk+ i (41) &thH_ Vﬁxﬁxh”-f— 2 h[(ﬁxhu) +(axhi) ]+ KK

N . . . 48
a generalization of the one-dimensional KPZ equation for “8)
several coupled fields. In this simple case, prescriptibns
and(Il) are fulfilled by any tensorg, A such that

dth, =vdo4h, + Kﬁxhué’xhl +7n

are equivalent to
VijNiki = VikNiji = Vit Nikj (42
_ 2
where) ;. always can be chosen symmetricjirk, and the dth=vdxdxh + 5N (0xh )"+ 74,

sum overi is understood. It is easy to check that these rela- (49)
tions ensure a stationary probability density

1
dh_=vaah_+ Ex(axh,)2+ n_,
-

7>=Nexp( —f dx%axhiaxhj). (43)
with h.=h;=h, and#.=» =5, . Clearly, the remark ex-
Indeed, with thisAnsatz tends to higher spatial dimensions, where
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C. Crystalline growth

1
_ow2n - 2 2
A= vV + SV T+ (Vh)TT+ o, The height fluctuations of a material characterized by in-

(500  ternal order parameters, as in the above case of a growing

oth, = vVZhLH\VhH-VhDL 7L XY magnet, are subjected to the fluctuations of these order
parameters. Conversely, the evolution of the internal order
transform into parameters depends on the height fluctuations. In contrast to

amorphous growth, we may say that the fluctuations of an
ordered material results fromtaxtural growth as the addi-
tional fields invest the interface with a texture that constrains
(51) its fluctuations. The prime example is that of the growth of a
1 crystal in which surface phonons interact with height fluc-
oh,=vVeh_+ Ex(Vh,)er n_. tuations. In analogy with Eq$53), we propose the following
equations for isotropic crystalline growth:

1
gt = vVt SN(Vh.) 2+,

Therefore, the “ roughness” exponetit of a passive scalar

1 1
th ad\r/]ected[28,29] by a Burgers flowu=Vh;, defined ah=v,V2h+ E>\hh(Vh)2+Exfﬁ(v-u)z
throug
1 1
([hL(X)_hi(y)]2>1/2~|x_y|§Lr (52) +E)\ﬁzu)VurVui-i-E)\ﬁ)ﬁiu-Vui—l—nh,

is none other than the KPZ roughness expomant 5
J Potieh AU = yf,1>v2ui+y<uz>aiv.u+>\<hlu>aihv-u+x<h%,>Vh-vEJi
B. Magnetic growth +)\§ﬁ,)Vh~<9iu+ 7
In a growing magnetic material, the spins may be as-
sumed frozen in the bulk while still fluctuating on the sur- whereu(x,y,t) is the surface displacement vector field, and
face, which itself fluctuates in heigft4,15. For the case of S, v are related to the usual Langeefficients through
XY spins, described by a single angular fiedk,y,t), Ref. "
[16] notes that a two-dimensional version of E¢86) gov- vy = MLame
erns these nonequilibrium coupled fluctuations. In the modi- (57)
fied notation, these equations of evolution read P = 4 ot Name
One would like to know, given the richness of Eq56),
what phases they describe beyond the usual K&Zior-
(53 phous phase. As a first step towards a complete answer, we

1 1
&th: VhV2h+ E)\hh(Vh)2+ E)\gg(v 9)2+ h

3,0=v,V20+ N\, Vh-V O+ 7,. discuss crystalline growth equations that admit an exact
Gaussian steady state.
(Obviously, Eqs(53) fail to capture the periodic nature 6f Equations(56) tacitly assume a triangular lattice at the
and with it the potentially relevant presence of topologicalmicroscopic level, since other lattices would be reflected in
defects) an anisotropic continuum limit that reproduces the appropri-

Using prescriptiongl) and(ll), it is easy to show that no ate crystal symmetries. In the context of anisotropic equa-
Gaussian steady state exists for such isotropic equations #8ns, trivial extensions of Eqs(55 support a Gaussian

long ash and # are decoupled at the linear level. However, Steady state. .
the stationary Gaussian distribution Rather than dwelling on these examples, we turn to a new

possibility, namely, isotropic equations of the form of Egs.
vh vy (56) that admit a stationary Gaussian probability density, as

P= Nex% —f dXdY{?(Vh)” 5 (V G)ZD. (54 allowed by the presence of linear couplings betwegmnd
uy. A somewhat tedious but straightforward application of

is achieved by a natural extension of the anisotropic(Eg), ~ Prescriptions(l) and (Il) to Egs.(56) yields two (and only
two) nontrivial solutions, characterized by a vanishing shear

, 1 , o1 , modulus ¥{'=0 and a vanishing bulk modulug"+ v{?
dth=vpVh+ S Aail (9xh) = (9yh) ]+ 5N el (9x0) =0.
With a vanishing shear modulus? =0, prescriptiongl)
—(3y0)%1+ (55  and(ll) imply
310=v,V20+ \g( hdy 68— ,hd, 0) + 7y, A=A =AF=\2)=\(F)=0 (58)

provided v\ 49= g\, [in direct analogy to Eq(47)]. We  and
note also that these equations again satisfy the symmetry of
Eq. (16). vk G =N, (59)
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resulting in the equations of motion

1
dh=v,V?h+ Exuu(v U+ g,

(60)
du=v V(V-u)+ A, ,Vh(V-u)+ 7,
where the coefficients have been renameg=(v{?), A\,
=AY Ap=2Y). The probability density
_ Yu 2, Yu 2
P=Nexpg — [ dxd ?(Vh) +7(V~u) (61
is stationary, as the direct check
1
atP=f dxdy{z)\uu(v-u)vhvzh
Vh
+V—7\uth-(V-u)vuV(V-u) (62
u
VhAyy 2
=-— dxdyTV~[Vh(V~u) ] (63
=0, (64)
confirms. In terms of the density fluctuations
p=V-u (65)
and the vorticity
Q=d,u,—dyuy, (66)

we may interpret Eqs(60) as describing a liquid that is
flowing on a fluctuating surfac@(x,y,t) via the partially
decoupled set of equations

2 1 2
dh=v,V°h+ E)\uup + 7,

dp=v,V2p+ Ay V- (pVh)+ V.7, (67)

= dymy—=dymy .

This is again reminiscent of the advection of a scp2&;29
(density fluctuations are advected along height gradient
which is not quite passive, asinfluences the evolution df.
Equations(67) describe also a special case of the couple
growth of a binary film or, equivalently, of a scalésing)
magnet{15].

With a vanishing bulk modulus{"+ »{?=0, prescrip-
tions (1) and(ll) imply

n=Aid =M= MDA =MD+ =0 (68)

and
A 2= I\E) (69)

resulting in the equations of motion

S
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1
ﬁth: VhV2h+ E)\uuﬁin(ain_ﬁjUi)‘l‘ Mh»

(70
U= Vuﬁj(&jui_ﬁin)+)\huajh(&jUi_&in)+ n,

(b, 2 and A =13 . Introducing a
fictitious direction z according to the natural definition
VXu=(duUy—adu)z with V=(dy,3,0) and u
=(uy,uy,0), we can rewrite Eqg70) in the more compact
form

where v, = p() A= A2

1
dh=v,V?h+ E)\UU(VXU)Z+ Mhs

(71)
du=—v,VX(VXU)= N\, ,VhX(VXu)+ 5
With this form at hand, the stationarity of the probability
density

7>=Nexp(—f dxdy{%(Vh)an %(qu)2 ) (72

is obtained in direct analogy with the case of vanishing shear
modulus. In terms op and (), Eqgs.(71) become

1
dh=v,V?h+ §>\uu92+ Mhs

HQ=w,V2Q+ N V- (QAVh) + 7, (73)

Hp=1|,

none other than Eq$67) with p and Q) interchanged, but
still a transverse noisg, = dy 7y — dy 7y driving the fluctua-
tions of () and a longitudinal noisey = dy 7+ dyn, driving
p. Here we can interpref) as the density of dislocations
whose presence locally affects growth.

Experiments on surface growth do not point to a unique
characterization[30] and, in particular, most measured
roughness exponents differ from those expected on the basis
of the KPZ equatio8,31,34. This may result from conser-
vation laws, incorporated in some molecular beam epitaxy
models[33-36, but it also may be the consequence of the
dynamic coupling of the height fluctuations with the fluctua-

(ﬂ]ons of the intrinsic order parameter of the material, as in

agnetic or crystalline growth. Thus, having established that
the special Eqs(60) and (71) admit Gaussian steady states,
one would like to know whether the full Eq&6) may flow
to them under renormalization. If Eq&0) or (71) indeed
have a basin of attraction, we are left with the surprising
conclusion that the coupling to crystal vibration tethers the
fluctuating surface, in an appropriately prepared sample, to
logarithmic roughness, in marked contrast to the KPZ rough-
ness associated with amorphous growth.

Rather than renormalizing the full set of Eq56), one
may, as a first attempt, consider the renormalization of Egs.
(67) or (73) with an added KPZ termx(,,# 0),

046108-7
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2y L 2, 1 2
A=V + - Xn(VR)2+ 5 N+ 7,
dp=v,V2p+N\n,V-(pVh)+ 7, (74)

ﬂtQ:nJ_ .

The subspace of Eq$74) is closed under renormalization
since they are invariant under the transformation

u—u+ VXA, (75)

with A(x,y) an arbitrary smooth functionSimilarly, Egs.
(73) are invariant under

u—u+Ve, (76)

with ¢ arbitrary) Also, Eqs.(74) are interesting in their own
right: the fieldp may be interpreted as density fluctuations,
e.g., of surfactants, sliding on the surface. Similarlyhif
describes the height of a material surfgsach as a liquid
film), p may play the role of material surface density fluc-
tuations(proportional to the thickness of the film in the case
of an incompressible liquid These density fluctuations are
conserved as the particles, or liquid elements, slide alon
gradients in the surface height, according to E@d). How-
ever, the implicito— — p symmetry of Eqs(74) is difficult
to justify physically for surfactants or liquid films.

As a final nonperturbative observation on E@4), we
note that they are invariant under the infinitesimal tilt

X— X+ N\ et,
(77

h—h+e-x

in the subspace,=\p, =\, S0 that\,, and \y, are not
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APPENDIX A: NON-GAUSSIAN STEADY STATES

In this appendix, we show through a simple example how
the method used in the bulk of the paper may be extended to
search for non-Gaussian steady states. We focus on equations
of the form of Eq.(17) in Sec. Ill, where the usual Laplacian
smoothing term is promoted to a more general object.

In parallel, we promot& [see Eq(23)] to include higher
order terms, as

Q= f ddX( Vij Q,Baa,hiﬁﬁhj + mikaﬁy&ahiéﬁhjayhk
+ Pijkiapysdaidghjd hidshy+ - - -), (A1)
while still imposing the relation of Eq25) betweenl and
Q. Following the procedure of Sec. IV in the special case of

a single field and in two dimensiorifor the sake of simplic-
ity), we obtain the additional prescriptions

g
TyxalNyy ™ 2TxyalxyT Tyyahxx=0 (A2)
for any a, and

meﬁ)\yy_ pryaﬁ)\xy+ Pyya,B}\xx: 0 (A3)

for any «, B. Heren andp have been symmetrized, and
B denotex or y.

modified by coarse graining. Their renormalization flows are Let us focus on the quartic term with coefficigmt For

then given by

rotationally symmetric tensors

1~ (@t Ehm2)hnn, Nap=N0,p (A4)
(78)
Iy,
l uz(zp+§h_2))\hu1 and
wherez, andz, are the dynamical exponents associated to Papys=P(Oupdyst Saydpst 84503,), (A5)

the fieldsh and p, respectively, and,, is the height rough-
ness exponent. If a fixed point occursat,=\p,#0, the
relation

Zy+{h=2,+{p=2 (79

holds exactly, while stability of a fixed point witk,,= A\,
=0 requires

Zh+§hs2 and Zp+§hs2' (80)

Eqg. (A3) has only the trivial solutiorn=0. By contrast, an
antisymmetric nonlinear term with

AMx=—Ayy =N and \,=0, (A6)

allows the nontrivial solution
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Pxxxx= Pxxyy— Pyyyy— P1»
(A7)
Pxxxy= Pyyyx=P2/2,
with arbitrary p; andp,. Thus, the equation of evolution
dth=vV2h+p4[(Vh)2V2h+d,hayhdca h]
+pol dxhdyhV2h+(Vh)2a,9,h]+ 3 N[ (d¢h)?

—(9yh)?]+ 7, (A8)

PHYSICAL REVIEW B8, 046108 (2003
v P1
Pquartic= Nexl{ - J dXdY{E(Vh)Z‘l‘ 1_2[((9xh)4
P2
+6(d,h)2(dyh)2+ (ayh)*]+ E[(axh)%yh

+ (ayh)3axh]) ) . (A9)

We note that this equation of evolution, too, satisfies the

obtains the non-Gaussian steady-state distribution hidden symmetry of Eq(16).
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