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Nonlinear stochastic equations with calculable steady states
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We consider generalizations of the Kardar-Parisi-Zhang equation that accommodate spatial anisotropies and
the coupled evolution of several fields, and focus on their symmetries and nonperturbative properties. In
particular, we derive generalized fluctuation-dissipation conditions on the form of the~nonlinear! equations for
the realization of a Gaussian probability density of the fields in the steady state. For the amorphous growth of
a single height field in one dimension we give a general class of equations with exactly calculable~Gaussian
and more complicated! steady states. In two dimensions, we show that any anisotropic system evolves in long
time and length scales either to the usual isotropic strong coupling regime or to a linearlike fixed point
associated with a hidden symmetry. Similar results are derived for textural growth equations that couple the
height field with additional order parameters which fluctuate on the growing surface. In this context, we
propose phenomenological equations for the growth of a crystalline material, where the height field interacts
with lattice distortions, and identify two special cases that obtain Gaussian steady states. In the first case
compression modes influence growth and are advected by height fluctuations, while in the second case it is the
density of dislocations that couples with the height.

DOI: 10.1103/PhysRevE.68.046108 PACS number~s!: 02.50.2r, 05.40.2a, 68.35.Ct, 68.35.Ja
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I. INTRODUCTION

Nonlinear stochastic partial differential equations app
extensively in problems of equilibrium and nonequilibriu
statistical physics. For systems in thermal equilibrium,
form of these equations is constrained by fluctuatio
dissipation conditions@1# that ensure convergence of th
steady-state probability distribution to the appropriate Bo
mann weight@2#. Nonequilibrium systems are not similarl
constrained, and there is no simple way of finding their
havior in steady state~if any!. However, there are example
in which steady states can be found exactly as solution
the associated Fokker-Planck equations. In this paper we
view some such examples, and introduce several new o
along the way seeking general principles for finding stea
states associated to nonlinear stochastic equations exac

The simplest equation, which serves as the prototype
our investigations, is the Kardar-Parisi-Zhang~KPZ! equa-
tion @3#

] th5n¹2h1 1
2 l~“h!21h, ~1!

describing the nonequilibrium fluctuations of a~height! field
h(x,t). The equation is equivalent to the Burgers equat
~for a field u5“h) for vorticity-free turbulence@4#, and ap-
pears in various guises in the study of domain walls@5# and
directed polymers@6,7# in a random potential, surfac
growth @8#, and even the gene~or protein! sequence align-
ment problem@9,10#. Still more problems can be formulate
as generalizations of the KPZ equation that accommod
spatial anisotropy or the interplay of several fields. Examp
in the literature include the dynamics of a vicinal surfa
@11,12#, the growth of two coupled surfaces@13# or of a
magnetic surface@14–16#, and the transport of a flux line o
polymer @17#.
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The stochastic aspect of Eq.~1! is due to the noiseh(x,t),
which has zero mean and short-range correlations in sp
and time. In the absence of the nonlinear term proportiona
l, it reduces to a standard Langevin equation, with a Gau
ian steady state. In one dimension, the nonlinear term d
not modify this steady state as the associated probability
rent in the Fokker-Planck equation is zero. This observat
motivates our search for other equations with this prope
namely an easily guessed~equilibrium! steady state which is
not affected by the additional~nonequilibrium! nonlineari-
ties.

In Sec. II, we start by constructing the Fokker-Plan
equation for the one-dimensional KPZ equation and exp
itly showing that the probability current due to the nonline
term does not modify the steady state, as it appears in
integral of a complete derivative. This observation is th
used as a basis for constructing other one-dimensional n
linear equations that share this property. Indeed, we find
the class of such equations is quite large, including so
equations already considered in the literature.

Higher-dimensional versions of the KPZ equation m
also obtain a Gaussian steady state in spite of their nonlin
character. We discuss such a case in Sec. III, namely
anisotropic variant of the KPZ equation in two dimensio
with nonlinear terms of opposite signs in the two direction
Using renormalization group methods, Wolf@12# showed
that this model indeed flows under renormalization to a l
ear fixed point. Generalizations of this equation with calc
lable steady states are also constructed; they all share a
den symmetry under reflection, absent in the isotropic K
equation.

The examples from one and two dimensions motivate
search for more general principles governing the existenc
simple steady states, taken up in Sec. IV. Specifically,
consider stochastic dynamics of multiple fields coupled
©2003 The American Physical Society08-1
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nonlinear~possibly anisotropic! generalizations of the KPZ
term, and ask whether they admit Gaussian steady state
direct solution of the Fokker-Planck equation becomes c
siderably more difficult and, instead, we derive two sets
general prescriptions on the coefficients for this to occ
These prescriptions may be viewed as generali
fluctuation-dissipation relations@18# and are quite restrictive
In particular, they cannot be satisfied in three and hig
dimensions as we show in Sec. V.

Having obtained general prescriptions, in Sec. VI we
ply them to equations for coupled fields in one and two
mensions. Some of the examples we discuss correspon
equations that have already appeared in the literature, in
ticular, pertaining to the dynamics of a flux line or polym
~Sec. VI A! and to the growth of a magnetic film~Sec. VI B!.
However, in Sec. VI C we propose a set of equations
describe the coupling of the strain field of a growing crys
to its height fluctuations. We find that Gaussian steady st
are indeed permitted for these equations in special case

The Appendix treats a simple example aimed at illustr
ing how the systematic approach may be extended to exa
calculable non-Gaussian steady states.

II. GENERALIZED GROWTH EQUATIONS IN ONE
DIMENSIONS

Consider the probability distributionP@h# for configura-
tions of the fieldh(x). As the surface changes in time a
cording to Eq.~1!, the corresponding probability evolves a
cording to the Fokker-Planck equation

] tP5E ddxH 2Fn¹2h1
1

2
l~“h!2G dP

dh
1D

d2P
dh2J . ~2!

The term in the square brackets is due to the determin
probability current and the remainder comes from the s
chastic noise, assumed Gaussian with^h(x,t)&50 and

^h~x,t !h~x8,t8!&52Ddd~x2x8!d~ t2t8!. ~3!

In equilibrium, D5kBT; more generally,D is a measure of
the magnitude of the noise.

A steady-state solution is one for which] tP50. In the
absence of the nonlinear term, the steady-state solutio
Eq. ~2! is a simple Gaussian,

P5NexpS 2
n

2DE ddx~“h!2D , ~4!

whereN is a normalization constant. In general, this is no
steady state forlÞ0. In one dimension, however, the co
tribution of the nonlinear term to the probability current c
be simplified to

] tP52PE dx
nl

2D
~]xh!2]xxh52PE dx]xF nl

6D
~]xh!3G ,

~5!

a surface integral safely set to zero in the limit of an infin
system. Thus, the steady-state spatial correlations are no
04610
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fluenced by the presence of the KPZ nonlinearity and co
cide with the Gaussian~Edwards-Wilkinson@19#! ones. We
make no statements about the stability of the steady stat
Eq. ~4!; however, here, and in every other example for wh
simulations are available, numerical results indicate that
simple Gaussian steady states we discuss are indeed the
achieved at long time.

The one-dimensional KPZ equation is a particular
stance of a more general class of equations

] th5 f ~]xh!]x]xh1g~]xh!1h, ~6!

with f and g arbitrary functions. These equations obtain
steady state

P5NexpS 2
1

DE dxF~]xh! D , ~7!

where f is the second derivative ofF @i.e., d2F(u)/du2

5 f (u)]. For g(]xh)50, Eq. ~6! is again a standard Lange
vin equation, while the contribution of this function to th
probability current is

] tP52PE dx
1

D
g~]xh! f ~]xh!]x]xh

52PE dx]xF n

D
G~]xh!G50, ~8!

whereG is the primitive ofg f @i.e., dG(u)/du5g(u) f (u)].
The special case of a cubic nonlinearityg(]xh)

5 1
2 l(]xh)21 1

6 l8(]xh)3 ~with f 51) was introduced to de
scribe an interface separating stationary phases of the T
model@20#. The Gaussian steady state corroborates the m
ginal irrelevance@21# of the cubic term, and implies spatia
correlations of the form

^@h~x!2h~x8!#2&1/2;ux2x8u1/2. ~9!

III. ANISOTROPIC EQUATIONS IN TWO DIMENSIONS

To describe the growth of a vicinal~slightly miscut from a
low index facet! surface, Villain introduced@11# an aniso-
tropic version of the KPZ equation, which was subsequen
studied with a renormalization group calculation by Wo
@12#. This generalized equation has the form

] th5nx]x
2h1ny]y

2h1 1
2 lx~]xh!21 1

2 ly~]yh!21h.
~10!

Under renormalization, the subspace withnx /ny5lx /ly is
fixed and equivalent to the isotropic KPZ equation modulo
rescaling ofx or y. This subspace is locally attractive, so th
the equation flows to a strong-coupling limit iflx and ly
have the same sign~stability requiresnx ,ny>0). The more
surprising behavior arises when the productlxly is negative,
in which case the flows converge to a fixed point with va
ishing nonlinearities.

This vanishing of nonlinearities at long length and tim
scales suggests a Gaussian steady-state probability de
as corroborated by an exact solution of a discrete model
8-2
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NONLINEAR STOCHASTIC EQUATIONS WITH . . . PHYSICAL REVIEW E68, 046108 ~2003!
longing to the same universality class@22# and by a direct
solution of the Fokker-Planck equation@23#. Indeed, the
Ansatz

P5NexpS 2
1

2DE dxdy@nx~]xh!21ny~]yh!2# D , ~11!

with the generalized fluctuation-dissipation conditionnx /ny
52lx /ly , solves for the steady state. To verify this, w
note that the contributions from the nonlinearities take
form

] tP52
P

2DE dxdy@lx~]xh!21ly~]yh!2#~nx]x
2h1ny]y

2h!

52
P

2DE dxdyH ]xFlxnx

3
~]xh!31lynx~]xh!~]yh!2G

1]yFlyny

3
~]yh!31lxny~]xh!2~]yh!G

12]xh]yh]x]yh~lynx1lxny!J . ~12!

If lynx1lxny50, the above contribution is the divergen
of a vector field, and hence vanishes subject to the u
boundary conditions. This nonperturbative derivati
complements the renormalization group analysis@12# which
captures perturbatively the character of this state at la
scales and the dynamics that lead to it. In particular, it de
onstrates that a Gaussian steady state~and the logarithmic
roughness it implies! obtains atany length scale, and no
only in the long wavelength limit.

By suitable rescalings ofx and y, we can makenx5ny
5n, so that the steady state reduces to Eq.~4! with d52.
Trivially, this steady state also holds for any equation rela
to

] th5n¹2h1
l

2
@~]xh!22~]yh!2#1h, ~13!

by a rotation of the plane. This class comprises all the eq
tions of the form

] th5n¹2h1
l1

2
@~]xh!22~]yh!2#1l2]xh]yh1h,

~14!

where arctan(l2 /l1)/2 is the plane rotation angle; in particu
lar, the equation

] th5n¹2h1l]xh]yh1h ~15!

is obtained from Eq.~13! by a 45° rotation.
The surprisingly simple steady state of Eq.~13! results

from a ‘‘ hidden’’ symmetry under the transformation
04610
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h→2h,

x→y, ~16!

y→x.

The symmetryh→2h is precisely the one broken by th
isotropic KPZ nonlinearity. It is restored here, provided t
plane is also inverted about an appropriate axis: the bise
in the case of Eq.~13!, thex or y axis in the case of Eq.~15!,
and a properly rotated axis in the general case of Eq.~14!.
This hidden symmetry sheds light on the renormalizat
group analysis@12#, as any two-dimensional anisotropic KP
term may be written, upon rotation of the plane, as the s
of an isotropic part and the antisymmetric part of Eq.~13!
whose subspace is invariant under renormalization.

By analogy to Eq.~6!, we can generalize Eq.~15! to in-
clude a more complicated Laplacian term as

] th5 f x~]xh!]x
2h1 f y~]yh!]y

2h1l]xh]yh1h. ~17!

Indeed, it is easy to check that the probability density

P5NexpS 2
1

DE dxdy@Fx~]xh!1Fy~]yh!# D , ~18!

where f x(u)5dFx(u)/du and f y(u)5dFy(u)/du, is sta-
tionary.

IV. GENERAL PRESCRIPTIONS FOR GAUSSIAN
STEADY STATES

The solution of Fokker-Planck equations by direct che
of Ansätzesoon becomes laborious beyond simple one- a
two-dimensional examples. Instead, we derive general
scriptions on the structure of the equations of evolution,
the realization of Gaussian steady states. We consider e
tions of the form

] thi~x,t !5Lx
( i )@h#1N x

( i )@h#1h i~x,t !, ~19!

for n coupled fields (i 51, . . . ,n), xPRd, and Gaussian
~thermal! noise with correlator

^h i~x,t !h j~x8,t8!&52Did i j d
d~x2x8!d~ t2t8!. ~20!

Lx and Nx denote linear and nonlinear functionals of th
fields, respectively, evaluated at pointx. If h i andh j Þ i are
uncorrelated@24#, the Fokker-Planck equation reads

] tP5E ddx(
i

d

dhi
F2~Lx

( i )1N x
( i )!P1

dP
dhi

G , ~21!

where we have absorbedDi in a rescaling ofhi ~by ADi),
and reduces to

] tP5E ddx(
i

F2~Lx
( i )1N x

( i )!
dP
dhi

1
d2P
dhi

2G , ~22!

if L and N depend upon the derivatives ofh only. We are
looking for a Gaussian probability density
8-3
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P5Ne2Q[h] , ~23!

with Q@h# a quadratic form andN a normalizing factor, that
solves the steady state] tP50, i.e.,

E ddx(
i

F2~Lx
( i )1N x

( i )!S 2
dQ

dhi
D1S dQ

dhi
D 2G50.

~24!

The quadratic terms cancel ifL andQ are related through

Lx
( i )52

dQ

dhi
, ~25!

and it remains to find the form ofL and N for which the
integral

J @h#[E ddx(
i

N x
( i )dQ

dhi
52E ddx(

i
N x

( i )Lx
( i )

~26!

vanishes. This is the case if the integrand either vanis
identically or is the divergence of a vector field. In eith
case, the integrand is unchanged by a variationdh(x) that
vanishes at infinity. Ifdh is localized atx, the condition
J @h1dh#5J@h# translates, to first order indh, into

d

dhj~x!
E ddyN y

( i )Ly
( i )50, ~27!

where the summation overi is understood.
For coupled KPZ-like equations@25# of the form

] thi5n i j ab]a]bh1 1
2 l i jkab]ahj]bhk1h i , ~28!

where latin indicesi , j ,k51, . . . ,n refer to field components
and greek indicesa,b51, . . . ,d refer to spatial compo-
nents, Eq.~27! reduces to

n i j abl iklgd~]a]b]ghk]dhl1]a]ghk]b]dhl !

2n ikabl i j l gd~]a]b]ghk]dhl1]a]bhk]g]dhl !50,

~29!

after some renaming of the indices and using the fact thn
andl can always be chosen to satisfy the equalities

n i j ab5n i j ba and l i jkab5l ik j ba . ~30!

Furthermore, Eq.~25! requires the symmetry

n i j ab5n j i ab , ~31!

and the stationary probability density reads

P5NexpS 2E ddx
n i j ab

2
]ahi]bhj D . ~32!

Since repeated indices are summed over, Eq.~29! represents
n conditions—one for each possible value of the indexj.
Each of these in fact encapsulates more than one constr
Eq. ~29! is composed of terms that come in one of two d
04610
es
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rivative structures and, as the equation must be true for a
trary h, terms of a given derivative structure must canc
independently. This is ensured by the following two sets
generalized fluctuation-dissipation conditionson the tensors
n andl: The first condition~I! comes from grouping terms
in Eq. ~29! which are products of first and third derivative
~such as]a]b]ghk]dhl), and reads

(
P

~n i jP (a)P(b)l iklP(g)d2n ikP(a)P(b)l i j lP (g)d!50,

~33!

where the summation runs over the six permutations of
indicesa, b, g. A second condition~II ! comes from group-
ing terms of the form]a]ghk]b]dhl , and gives

(
R,R8

~2n i jR(a)R8(g)l iklR(b)R8(d)2n ikR(a)R(b)l i j lR 8(g)R8(d)

2n i lR8(g)R8(d)l i jkR(a)R(b)!50, ~34!

where the summation runs over the two permutations of
indicesa, b and the two permutations of the indicesg, d.
Each pair of conditions corresponds to a given choice
numerical values forj, k, l, a, b, g, andd.

Conditions~I! and~II ! arenecessaryfor a Gaussian solu-
tion of the steady-state Fokker-Planck equation. They
alsosufficientconditions, sinceJ @h1dh#5J @h# to first or-
der for any dh implies J @h1dh#5J @h# to all orders, and
J @h#5const[c. But normalization ofP allows only c50
~otherwiseP either increases or decreases uniformly!, and
consequently] tP50.

V. ABSENCE OF GAUSSIAN STEADY STATES IN THREE
AND HIGHER DIMENSIONS

If the matrix of Laplacian coefficientsn i j ab is positive
definite, as required by infrared stability, it can be diagon
ized into

n i j ab5n i j dab , ~35!

by successive rotations and rescalings, and prescription~I!
and~II ! simplify correspondingly. In three and higher dime
sions we may choose the space indices, in applying the
scriptions, such thata5g while aÞbÞdÞa. With this
choice, it is straightforward to check that prescription~II !
forbids a nonvanishing contraction of tensors with differe
space indices, hence enforces the partially diagonal form

n i j l iklab[n i j l iklaadab ~36!

~wherei is summed over buta is not!. With this constraint,
prescription~II ! takes the form

(
R,R8

[n i j l jklR(b)R(b)dR(a)R8(g)dR(b)R8(d)2
1
2 ~n ikl i j lR 8(g)R8(g)

1n i l l i jkR(a)R(a)!dR(a)R(b)dR8(g)R8(d)] 50. ~37!
8-4
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This equation expresses a set of different conditions, one
each choice of values of the indices that are not summ
over. Specifically, for a particular choice in whicha5g
Þb5d, Eq. ~37! translates into

n i j l iklaa52n i j l iklbb . ~38!

For the sake of visual ease, let us define the objectwa
[n i j l iklaa ~the dependence ofwa on j, k, l is tacit!, in terms
of which this identity reads

wa52wb ; ~39!

clearly, if it is possible to choose three or more distinct v
ues of the indicesa, b, this condition is frustrated and ad
mits only the trivial solution

wa5n i j l iklaa50, ~40!

for all j, k, l, a. Viewed as a vector identity, this requires th
any vectornj be orthogonal to any vectorlklaa ~with com-
ponents labeled byi 51, . . . ,n). As long as the matrixn i j is
nondegenerate, there aren nonvanishing independent vecto
nj ~for j 51, . . . ,n) and Eq.~40! is satisfied only if the vec-
tors lklaa vanish for allk, l, a. Hence, no Gaussian stead
state is achievable in three and higher dimensions if non
earities are present in the equations of evolution@26#.

VI. COUPLED FIELDS IN ONE AND TWO DIMENSIONS

In the case of a single field fluctuating in two dimension
prescriptions~I! and~II ! immediately enforce the form of Eq
~14! for which a Gaussian steady state may be reached, a
checked explicitly in Sec. III. In what follows, we discus
examples in which the coupling among several fluctuat
fields broadens the class of nonlinear equations with Ga
ian steady states beyond this specific anisotropic form~with
coefficients of opposite signs!.

A. Coupled lines and drifting polymers

An array of fluctuating directed lines@5–7# is param-
etrized by a single variable, consequently the greek ind
in Eq. ~28! all take the same value and may be omitte
Equation~28! then reduces to

] thi5n i j ]x]xhj1
1
2 l i jk]xhj]xhk1h i , ~41!

a generalization of the one-dimensional KPZ equation
several coupled fields. In this simple case, prescriptions~I!
and ~II ! are fulfilled by any tensorsn, l such that

n i j l ikl5n ikl i j l 5n i l l ik j , ~42!

wherel i jk always can be chosen symmetric inj, k, and the
sum overi is understood. It is easy to check that these re
tions ensure a stationary probability density

P5NexpS 2E dx
n i j

2
]xhi]xhj D . ~43!

Indeed, with thisAnsatz
04610
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] tP52E dx
1

2
l ikl]xhk]xhln i j ]x]xhjP

52E dx
1

6
~n i j l ikl]x]xhj]xhk]xhl

1n ikl i j l ]xhj]x]xhk]xhl1n i l l ik j]xhj]xhk]x]xhl !P,

~44!

where we have renamed the mute indices to obtain the
equality. But Eq.~42! implies that all three coefficients ar
identical, and

] tP52E dx
1

6
n i j l ikl]x~]xhj]xhk]xhl !50. ~45!

A special case of Eq.~41!,

] thi5n i]x]xhi1
1

2
l i~]xhi!

21
1

2
l'~]xh'!21h i ,

~46!
] th'5n']x]xh'1l3]xhi]xh'1h'

was introduced in Refs.@17# to describe a directed polyme
drifting perpendicularly to itself. Herehi and h' are inter-
preted not as height fields associated with two different lin
embedded in two dimensions, but rather as dynamic
coupled longitudinal and transverse~to the average velocity
of the polymer! fluctuations of a single line embedded
three dimensions. The conditions of Eq.~42! for a Gaussian
steady state simplify to

n il'5n'l3 , ~47!

in agreement with a direct check@17,27#.
In the simplest case with identical longitudinal and tran

verse coefficients, a stationary Gaussian distribution follo
trivially from the steady-state properties of the on
dimensional KPZ equation~discussed in Sec. II!, since the
equations

] thi5n]x]xhi1
1

2
l@~]xhi!

21~]xh'!2#1h i ,

~48!
] th'5n]x]xh'1l]xhi]xh'1h'

are equivalent to

] th15n]x]xh11
1

2
l~]xh1!21h1 ,

~49!

] th25n]x]xh21
1

2
l~]xh2!21h2 ,

with h65hi6h' andh65h i6h' . Clearly, the remark ex-
tends to higher spatial dimensions, where
8-5
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] thi5n¹2hi1
1

2
l@~“hi!

21~“h'!2#1h i ,

~50!
] th'5n¹2h'1l“hi•“h'1h'

transform into

] th15n¹2h1
1

2
l~“h1!21h1 ,

~51!

] th15n¹2h21
1

2
l~“h2!21h2 .

Therefore, the ‘‘ roughness’’ exponentz' of a passive scala
h' advected@28,29# by a Burgers flowu5“hi , defined
through

^@h'~x!2h'~y!#2&1/2;ux2yuz', ~52!

is none other than the KPZ roughness exponent@3#.

B. Magnetic growth

In a growing magnetic material, the spins may be
sumed frozen in the bulk while still fluctuating on the su
face, which itself fluctuates in height@14,15#. For the case of
XY spins, described by a single angular fieldu(x,y,t), Ref.
@16# notes that a two-dimensional version of Eqs.~46! gov-
erns these nonequilibrium coupled fluctuations. In the mo
fied notation, these equations of evolution read

] th5nh¹2h1
1

2
lhh~“h!21

1

2
luu~“u!21hh ,

~53!
] tu5nu¹2u1lhu“h•“u1hu .

~Obviously, Eqs.~53! fail to capture the periodic nature ofu,
and with it the potentially relevant presence of topologi
defects.!

Using prescriptions~I! and~II !, it is easy to show that no
Gaussian steady state exists for such isotropic equation
long ash andu are decoupled at the linear level. Howev
the stationary Gaussian distribution

P5NexpS 2E dxdyFnh

2
~“h!21

nu

2
~“u!2G D , ~54!

is achieved by a natural extension of the anisotropic Eq.~13!,

] th5nh¹2h1
1

2
lhh@~]xh!22~]yh!2#1

1

2
luu@~]xu!2

2~]yu!2#1hh , ~55!

] tu5nu¹2u1lhu~]xh]xu2]yh]yu!1hu ,

providednhluu5nulhu @in direct analogy to Eq.~47!#. We
note also that these equations again satisfy the symmet
Eq. ~16!.
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C. Crystalline growth

The height fluctuations of a material characterized by
ternal order parameters, as in the above case of a grow
XY magnet, are subjected to the fluctuations of these o
parameters. Conversely, the evolution of the internal or
parameters depends on the height fluctuations. In contra
amorphous growth, we may say that the fluctuations of
ordered material results from atextural growth, as the addi-
tional fields invest the interface with a texture that constra
its fluctuations. The prime example is that of the growth o
crystal in which surface phonons interact with height flu
tuations. In analogy with Eqs.~53!, we propose the following
equations for isotropic crystalline growth:

] th5nh¹2h1
1

2
lhh~“h!21

1

2
luu

(1)~“•u!2

1
1

2
luu

(2)
“ui•“ui1

1

2
luu

(3)] iu•“ui1hh ,

~56!
] tui5nu

(1)¹2ui1nu
(2)] i“•u1lhu

(1)] ih“•u1lhu
(2)
“h•“ui

1lhu
(3)
“h•] iu1h i ,

whereu(x,y,t) is the surface displacement vector field, a
nu

(1) , nu
(2) are related to the usual Lame´ coefficients through

nu
(1)5mLamé,

~57!
nu

(2)5mLamé1lLamé.

One would like to know, given the richness of Eqs.~56!,
what phases they describe beyond the usual KPZ~amor-
phous! phase. As a first step towards a complete answer,
discuss crystalline growth equations that admit an ex
Gaussian steady state.

Equations~56! tacitly assume a triangular lattice at th
microscopic level, since other lattices would be reflected
an anisotropic continuum limit that reproduces the appro
ate crystal symmetries. In the context of anisotropic eq
tions, trivial extensions of Eqs.~55! support a Gaussian
steady state.

Rather than dwelling on these examples, we turn to a n
possibility, namely, isotropic equations of the form of Eq
~56! that admit a stationary Gaussian probability density,
allowed by the presence of linear couplings betweenux and
uy . A somewhat tedious but straightforward application
prescriptions~I! and ~II ! to Eqs.~56! yields two ~and only
two! nontrivial solutions, characterized by a vanishing sh
modulusnu

(1)50 and a vanishing bulk modulusnu
(1)1nu

(2)

50.
With a vanishing shear modulusnu

(1)50, prescriptions~I!
and ~II ! imply

lhh5luu
(2)5luu

(3)5lhu
(2)5lhu

(3)50 ~58!

and

nhluu
(1)5nu

(2)lhu
(1) , ~59!
8-6
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resulting in the equations of motion

] th5nh¹2h1
1

2
luu~“•u!21hh ,

~60!
] tu5nu“~“•u!1lhu“h~“•u!1h ,

where the coefficients have been renamed (nu[nu
(2) , luu

[luu
(1) , lhu[lhu

(1)). The probability density

P5NexpS 2E dxdyFnu

2
~“h!21

nu

2
~“•u!2G D ~61!

is stationary, as the direct check

] tP5E dxdyF1

2
luu~“•u!nh¹2h

1
nh

nu
luu“h•~“•u!nu“~“•u!G ~62!

52E dxdy
nhluu

2
“•@“h~“•u!2# ~63!

50, ~64!

confirms. In terms of the density fluctuations

r[“•u ~65!

and the vorticity

V[]xuy2]yux , ~66!

we may interpret Eqs.~60! as describing a liquid that is
flowing on a fluctuating surfaceh(x,y,t) via the partially
decoupled set of equations

] th5nh¹2h1
1

2
luur

21hh ,

] tr5nu¹2r1lhu“•~r“h!1“•h, ~67!

] tV5]xhy2]yhx .

This is again reminiscent of the advection of a scalar@28,29#
~density fluctuations are advected along height gradie!
which is not quite passive, asr influences the evolution ofh.
Equations~67! describe also a special case of the coup
growth of a binary film or, equivalently, of a scalar~Ising!
magnet@15#.

With a vanishing bulk modulusnu
(1)1nu

(2)50, prescrip-
tions ~I! and ~II ! imply

lhh5luu
(1)5lhu

(1)5luu
(2)1luu

(3)5lhu
(2)1lhu

(3)50 ~68!

and

nhluu
(2)5nu

(1)lhu
(2) , ~69!

resulting in the equations of motion
04610
s
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] th5nh¹2h1
1

2
luu] iuj~] iuj2] jui !1hh ,

~70!
] tui5nu] j~] jui2] iuj !1lhu] jh~] jui2] iuj !1h,

where nu[nu
(1) , luu[luu

(2) , and lhu[lhu
(2) . Introducing a

fictitious direction z according to the natural definition
“3u5(]xuy2]yux) ẑ with “5(]x ,]y,0) and u
5(ux ,uy,0), we can rewrite Eqs.~70! in the more compact
form

] th5nh¹2h1
1

2
luu~“3u!21hh ,

~71!
] tu52nu“3~“3u!2lhu“h3~“3u!1h.

With this form at hand, the stationarity of the probabili
density

P5N expS 2E dxdyFnh

2
~“h!21

nu

2
~“3u!2G D ~72!

is obtained in direct analogy with the case of vanishing sh
modulus. In terms ofr andV, Eqs.~71! become

] th5nh¹2h1
1

2
luuV

21hh ,

] tV5nu¹2V1lhu“•~V“h!1h' , ~73!

] tr5h i ,

none other than Eqs.~67! with r and V interchanged, but
still a transverse noiseh'5]xhy2]yhx driving the fluctua-
tions of V and a longitudinal noiseh i5]xhx1]yhy driving
r. Here we can interpretV as the density of dislocation
whose presence locally affects growth.

Experiments on surface growth do not point to a uniq
characterization@30# and, in particular, most measure
roughness exponents differ from those expected on the b
of the KPZ equation@8,31,32#. This may result from conser
vation laws, incorporated in some molecular beam epita
models@33–36#, but it also may be the consequence of t
dynamic coupling of the height fluctuations with the fluctu
tions of the intrinsic order parameter of the material, as
magnetic or crystalline growth. Thus, having established t
the special Eqs.~60! and ~71! admit Gaussian steady state
one would like to know whether the full Eqs.~56! may flow
to them under renormalization. If Eqs.~60! or ~71! indeed
have a basin of attraction, we are left with the surprisi
conclusion that the coupling to crystal vibration tethers
fluctuating surface, in an appropriately prepared sample
logarithmic roughness, in marked contrast to the KPZ rou
ness associated with amorphous growth.

Rather than renormalizing the full set of Eqs.~56!, one
may, as a first attempt, consider the renormalization of E
~67! or ~73! with an added KPZ term (lhhÞ0),
8-7
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] th5nh¹2h1
1

2
lhh~“h!21

1

2
luur

21hh ,

] tr5nu¹2r1lhu“•~r“h!1h i , ~74!

] tV5h' .

The subspace of Eqs.~74! is closed under renormalizatio
since they are invariant under the transformation

u→u1“3A, ~75!

with A(x,y) an arbitrary smooth function.~Similarly, Eqs.
~73! are invariant under

u→u1“f, ~76!

with f arbitrary.! Also, Eqs.~74! are interesting in their own
right: the fieldr may be interpreted as density fluctuation
e.g., of surfactants, sliding on the surface. Similarly, ifh
describes the height of a material surface~such as a liquid
film!, r may play the role of material surface density flu
tuations~proportional to the thickness of the film in the ca
of an incompressible liquid!. These density fluctuations ar
conserved as the particles, or liquid elements, slide al
gradients in the surface height, according to Eqs.~74!. How-
ever, the implicitr→2r symmetry of Eqs.~74! is difficult
to justify physically for surfactants or liquid films.

As a final nonperturbative observation on Eq.~74!, we
note that they are invariant under the infinitesimal tilt

x→x1let,
~77!

h→h1e•x

in the subspacelhh5lhu[l, so thatlhh and lhu are not
modified by coarse graining. Their renormalization flows a
then given by

]lhh

] l
5~zh1zh22!lhh ,

~78!
]lhu

] l
5~zr1zh22!lhu ,

wherezh and zr are the dynamical exponents associated
the fieldsh andr, respectively, andzh is the height rough-
ness exponent. If a fixed point occurs atlhh5lhuÞ0, the
relation

zh1zh5zr1zh52 ~79!

holds exactly, while stability of a fixed point withlhh5lhu
50 requires

zh1zh<2 and zr1zh<2. ~80!
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APPENDIX A: NON-GAUSSIAN STEADY STATES

In this appendix, we show through a simple example h
the method used in the bulk of the paper may be extende
search for non-Gaussian steady states. We focus on equa
of the form of Eq.~17! in Sec. III, where the usual Laplacia
smoothing term is promoted to a more general object.

In parallel, we promoteQ @see Eq.~23!# to include higher
order terms, as

Q5E ddx~n i j ab]ahi]bhj1p i jkabg]ahi]bhj]ghk

1r i jkl abgd]ahi]bhj]ghk]dhl1••• !, ~A1!

while still imposing the relation of Eq.~25! betweenL and
Q. Following the procedure of Sec. IV in the special case
a single field and in two dimensions~for the sake of simplic-
ity!, we obtain the additional prescriptions

pxxalyy22pxyalxy1pyyalxx50 ~A2!

for any a, and

rxxablyy22rxyablxy1ryyablxx50 ~A3!

for anya, b. Herep andr have been symmetrized, anda,
b denotex or y.

Let us focus on the quartic term with coefficientr. For
rotationally symmetric tensors

lab5ldab ~A4!

and

rabgd5r~dabdgd1dagdbd1daddbg!, ~A5!

Eq. ~A3! has only the trivial solutionl50. By contrast, an
antisymmetric nonlinear term with

lxx52lyy[l and lxy50, ~A6!

allows the nontrivial solution
8-8
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rxxxx5rxxyy5ryyyy[r1 ,
~A7!

rxxxy5ryyyx[r2/2,

with arbitraryr1 andr2. Thus, the equation of evolution

] th5n¹2h1r1@~“h!2¹2h1]xh]yh]x]yh#

1r2@]xh]yh¹2h1~“h!2]x]yh#1 1
2 l@~]xh!2

2~]yh!2#1h, ~A8!

obtains the non-Gaussian steady-state distribution
ep

,

e
a
a

e

ys

ys

04610
Pquartic5NexpS 2E dxdyH n

2
~“h!21

r1

12
@~]xh!4

16~]xh!2~]yh!21~]yh!4#1
r2

6
@~]xh!3]yh

1~]yh!3]xh#J D . ~A9!

We note that this equation of evolution, too, satisfies
hidden symmetry of Eq.~16!.
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