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Criticality versus q in the „2¿1…-dimensional Zq clock model
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Using Monte Carlo simulations we have studied thed53 Zq clock model in two different representations,
the phase representation and the loop-gas/dumbbell-gas representation. We find that forq>5 the critical
exponentsa andn for the specific heat and the correlation length, respectively, take on values corresponding
to the caseq→ infinity, the XY model. Hence in terms of critical properties the limiting behavior is reached
already atq55.
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Matter coupled-gauge field theories in 211 dimensions
have come under renewed scrutiny in the context of c
densed matter physics in the past decade, as effective t
ries of strongly correlated system@1#. Concepts such a
confinement-deconfinement transitions, associated with
proliferation and recombination of topological defects
gauge fields, enter for instance in attempts at providin
theoretical foundation for breakdown of Fermi-liquid theo
in more than one dimension. A large variety of such gau
field theories have been proposed, and one model of par
lar interest is the compact Abelian Higgs model@1–6#. This
model consists of a compact gauge field coupled minim
to a bosonic scalar field with thegauge charge q. In a par-
ticular limit the dual of this model reduces to a loop-g
representation of the globalZq model @5,6#. This identifica-
tion has been the motivation for the present work, for a
tailed account of theq dependence of the full theory we refe
to Refs.@5,6#.

The spinZq model is a simple planar-spin model, whe
the direction of the spin is parametrized by a phase. T
phase is restricted to the values 2pn/q with nPZ, and is
defined by the following action

S52b(
^ i , j &

cosS 2p

q
~ni2nj ! D . ~1!

The state is specified by the integer variablesni
P@0,1, . . . ,q21#. Special cases includeq52 which is the
Ising model,q53 which is the three-state Potts model, a
the limit q→` which corresponds to theXY model. In ad-
dition, it is easy to see that forq54 the partition function
Z(2b,4)5Z(b,2)Z(b,2). The aim of the present paper is
determine how the critical properties interpolate between
well-known Ising (q52) andXY (q→`) limits. We have
done this by measuring the exponent combination
1a)/n as a function ofq.

In d52 the model has a quite peculiar phase structu
with an intermediateincompletely ordered phase~IOP!,
where the system shows behavior similar to the critical K
sterlitz Thouless phase. Upon further cooling, the system
order completely into one of theq completely ordered state
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@7,8#. In d53 theZq model does not have an IOP, but the
are generalizations of the model which do@8–10#.

A related case is that of a globally U~1! symmetric theory
which is perturbed by a weak crystal field. Using renorm
ization group~RG! theory and duality arguments, it has be
shown that forq>5 the crystal field is an irrelevant pertu
bation, whereas forq<4 theXY fixed point is rendered un
stable@11#.

It is important to emphasize that we have focused on
properties of theZq modelat the critical point. ForT,Tc ,
the discrete nature of the model will always be apparent.
interesting RG study of theZ6 model shows how the cou
plings of the model flow towards a fixed point which is u
timately different from the three-dimensional~3D! XY fixed
point in theT→0 limit @12,13#.

Equation~1! is straightforwardly reformulated as a mod
of interacting ensemble links which either form closed loo
or originate and terminate at point charges. We start with
partition function

Z~b,q!5(
$ni %

expFb(
i

S (
m̂

cosS 2p

q
Dm̂ni D D G . ~2!

In Eq. ~2!, Dm̂ denotes the difference operator defined
Dm̂F(x)5F(x1m̂)2F(x), andD without indices is the vec-
tor operator analogous to“. The first step is to replace th
cosine with a quadratic potential, this is the Villain approx
mation@14#. Next, we promote the integersni to real-valued
phase variablesu i , at the expense of introducing an auxilia
integer fieldQ, which through the Poisson summation fo
mula @15# restricts theu i variables to the discrete value
allowed by original theory. The resulting partition function
then given by

ZV~b,q!5J@b#E Du (
$k,Q%

expF2(
i

S bV

2
~Du i22pk!2

1 iquQD G . ~3!

In Eq. ~3!, $k% is an integerlink field living on the links of
theoriginal lattice and$Q% is a scalar field living on thesites
of the same lattice. The prefactorJ@b# and effective cou-
pling bV5bV(b) must be retained to get results which agr
©2003 The American Physical Society07-1
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with Eq. ~2! on aquantitativelevel @15#, however they donot
affect the critical properties and from now on we will assum
bV5b, J@b#51, and omit theV index on the partition
function.

In Eq. ~3!, theQ field explicitly accounts for the discret
nature of theZq model. SettingQ[0, we recover the Villain
by
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representation of theXY model. Due to this similarity, the
remaining analysis follows well-known steps@16#, which we
briefly include for completeness. A Hubbard-Stratonovi
decoupling of the quadratic expression in Eq.~3! is per-
formed by introducing an auxiliary fieldv, thus bringing the
partition function onto the form
Z~b,q!5E DvDu (
$k,Q%

expF2(
i

S 1

2b
v21 iv•~Du i22pk!1 iquQD G . ~4!
ell
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In Eq. ~4! the $k% summation can be performed, there
restricting the velocity fieldv to integer values denoted byl.
In the term couplingDu and l, a partial integration can be
performed, such thatu only appears in the combinatio
iu(D• l2qQ), and from this we get the constraint

~D• l2qQ!50. ~5!

At this stage the transformation to a loop gas is comple
and the partition function is given by

Z~b,q!5 (
$ l,Q%

dDl,qQexpF21

2b (
i

l2G . ~6!

This is a theory consisting of the field$ l% living on the
links of the lattice, and the field$Q% which lives on thesites.
The field$Q% is subject to the constraint(xQ50, i.e., over-
all charge neutrality, whereas the field$ l% must satisfy the
local constraintD• l5qQ on all lattice points. The latter con
straint means that every1Q/2Q pair must be joined byq
occupied links, in addition we can have$ l% excitations which
are not nucleated to any1Q/2Q pairs; these must form
closedloops. Figure 1 shows a typical configuration for t
q52 model.

In the compact Abelian Higgs model considered in Re
@6,5#, the fields$ l% and$Q% representvorticesandmonopoles,
i.e., they are thetopological excitationsof the matter field
and gauge field, respectively. That interpretation doesnot
apply in the current case, but the interpretation of the$Q%
field is that it maintains the discrete properties of the origi
theory, Eq.~1!. With Q[0 ~theq→` limit !, Eq. ~6! reduces
to a loop gas with steric repulsion, this is a well-know
model with aninverted XYtransition@17#. Note that the spe-
cial caseq51 effectively represents no constraint. In th
case, the theory@Eq. ~6!# is noninteracting, and sustains n
phase transition. For allq>2, Eq.~6! has a phase transitio
between a phase filled with link segments forb.bc and a
vacuum phase which does not contain link excitations.

We have performed Monte Carlo simulations of theZq
model, using both a phase representation, Eq.~1!, as well as
the loop-gas/dumbbell-gas~LDG! representation, Eq.~6!.
The phase representation is simulated as a conventional
simulation. In the LDG representation, the fundamen
Monte Carlo moves are represented by alternating attem
e,

.

l

pin
l
ts

of inserting a closed loop excitation of thel field and a
dumbbell configuration consisting of a1Q/2Q pair con-
nected with an occupiedq-valued link ~the vertical link to
the left in Fig. 1 is an example of an elementary dumbb
excitations!. For q52 the ~vacuum! excitations of a loop or
a 1Q/2Q pair have the same energy, while forq.2 the
elementary dumbbell excitations are more expensive than
elementary loop excitations, and their relative importance
minishes with increasingq.

The main goal has been to determine how the criti
properties change withq. The central quantity we have con
sidered is the connected third-order moment of the action@6#

^~S2^S&!3&}ub2bcu11a, ~7!

which recently has been demonstrated to yield surprisin
good scaling results compared to second moments@6#. When
approaching the critical point, the correlation lengthj di-

FIG. 1. A typical LDG configuration for theq52 ~Ising! model.
Multiply connected links, like the vertical along the left edge ha
much lower entropy than loop/dumbbell combinations, and he
give a relatively small contribution to the partition function.
7-2



-

al

A

iz
RG

.

re

nd
th

b-

n

CRITICALITY VERSUS q IN THE (211)- . . . PHYSICAL REVIEW E 68, 046107 ~2003!
verges asj}ub2bcu2n. Therefore, in a finite system of lin
ear extentL we find that the third-order moment in Eq.~7!
scales withL as

^~S2^S&!3&}L (11a)/n. ~8!

The main advantages of the third-order moment in Eq.~7!
are that~1! good quality scaling is achieved for practic
system sizes even for models witha,0, e.g., the 3DXY
model, and~2! one set of measurements givesboth the com-
binations (11a)/n and21/n independently@6#, although it
is more difficult to achieve high precision on the latter.
schematic figure of̂ (S2^S&)3& as a function of coupling
constant is shown in Fig. 2 and Figs. 3 and 4 show finite-s
scaling~FSS! of the peak to peak value.

We have considered systems of sizeL3L3L with L
58,10,12,16,20,24,32,40,48, and up to 23107 sweeps over
the lattice. In addition to theq54 and q55 presented in
Figs. 3 and 4, we have also studied theq values q

FIG. 3. This figure shows the scaling of^(S2^S&)3& for q54
~j! andq55 ~d!; the results are obtained using the phase rep
sentation, Eq.~2!. The q54 results showZ2 scaling with (1
1a)/n51.7660.05, and theq55 curve showsXY scaling with
(11a)/n51.4660.03.

FIG. 2. Schematic figure showing third moment of action, a
how data are extracted for FSS analysis. For further details of
method see Ref.@6#.
04610
e

56,8,12,16, and 24, Ref.@6# shows results ofq52 simula-
tions of Eq. ~6!. We find that the combination (11a)/n
changes abruptly from theZ2 value of 1.763@18# to theXY
value of 1.467@19# when increasingq from q54 to q55. A
further increase ofq beyondq55 does not affect the value
of (11a)/n, as shown in Fig. 5.

That theZq model is in theXY universality class forq
>5 must imply thatat the critical pointthe discrete structure
is rendered irrelevant for theseq values. To investigate this
point further, we have implemented a simple real-space
procedure, which attempts to probe for what values ofq the
discrete nature ofZq model is relevant at the critical point
We denote the untransformed phases and fields asu0. The
renormalized phase at leveln11 is given by theblock spin
construction,

- FIG. 5. The exponent combination (11a)/n versusq. Note
how it changes value abruptly asq is increased fromq54 to q
55. The dashed lines are the Ising (Z2) and XY (Z`) values of
1.763 and 1.467, respectively.

is

FIG. 4. This figure is similar to Fig. 3, but the results are o
tained using representation~6!. The q54 results showZ2 scaling
with (11a)/n51.7060.05, and theq55 results scale with (1
1a)/n51.4760.06, i.e., qualitatively similar to the results i
Fig. 3.
7-3
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un115arctanS (
k

sinun~k!

(
k

cosun~k!
D , ~9!

where the sum overk in Eq. ~9! is over the eight spins in a
23232 cube. For q52, this transformation is clearly
trivial, since adding a number of phases 0 andp will still
give 0 or p. However, forq.2 the effectiveq* will in-
crease withn, and for n→` the resulting block spins ca
takeany direction.

We next investigate whether the system flows towards
infinite value ofq* or not under such a RG transformatio
This is tantamount to asking whether the discrete structur
rendered irrelevant or not on long length scales. To this e
at each iteration stepn, we have recordedhistograms hn(u)
of the phase distributions on the lattice and monitored
manner in which this histogram flows under rescaling.
purely visual inspection, we find that forq54 the discrete
nature of theZq model persists, whereas forq55 it is
washed away, this is illustrated in Fig. 6.

To study this RG flow at aquantitative level, we have
written the phase distributionPn(un) as a sum of harmonic
functions

Pn~un!5an,01(
k

Fan,kcosS k2p

q D1bn,ksinS k2p

q D G .
~10!

Here, the coefficientan,k in Eq. ~10! denotes thekth Fourier-
cosine component at RG leveln. Clearly, the coefficientan,q
is the interesting component, we have studied how this c
ficient flows under repeated rescaling. Forq54 this coeffi-

FIG. 6. Histograms ofu after four rescalings of the critical state
For q54, the distribution shows clear signs of a discrete ba
ground, whereas forq55 this is not the case. The slow variation
the q55 histogram isnot commensurable with a wavelength o
2p/5, and probably only due to insufficient sampling.
04610
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cient shows critical fixed point behavior, whereas forq55 it
flows to zero, even forT well below the critical temperature
this is shown in Fig. 7.

Also the LDG representation, Eq.~6!, gives a qualitative
indication that forq>5 the discrete nature of the theory
irrelevant. In this representation, the discrete nature is re
sented solely by theQ excitations, so measurements of^uQu&
should give a quantitative indication of the the importance
the discrete structure. Measurements of^uQu& at the critical
point give ^uQu&'0.07, 5.931024, and 2.7531026 for q
52,4, and 5, respectively, whereas the link density^u lu&
'0.15 for all q. Hence atq55 the discreteQ excitations
have been completely frozen out, and the tangle is essent
identical to thepure-looptangle of the 3DXY model.

In summary, we have determined the critical expon
combination (11a)/n in the d53 Zq spin model forq
>4. Using two different representations we have found t
for q>5, the combination (11a)/n takes a value which is
consistent with the value taken in the 3DXY model. Along
with other more qualitative indicators this means that at
critical point, a discrete structure finer thanq55 is irrelevant
at the critical point, and the long distance properties of
theory are determined by the larger symmetry group U(1).
These results are in accordance with RG studies starting
a U~1! symmetric theory which is perturbed by a perturb
tion with Zq symmetry.

We acknowledge support from the Norwegian Resea
Council through the Norwegian High Performance Comp
ing Center~NOTUR!. All computations were carried out o
an Origin SGI3800. Martin Hasenbusch is acknowledged
valuable comments on an earlier version of the manuscr
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FIG. 7. The flow of the coefficientan,q for q54 andq55. For
q54, we see that there is a fixed point at the critical point, wher
for q55 we see thatan,q flows to zero at the critical point. In the
figure an,5 flows to zero also forT,Tc ; this is a finite-size effect.
This coefficient will eventually flow to infinity for sufficiently large
systems/lowT.
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