PHYSICAL REVIEW E 68, 046107 (2003
Criticality versus ¢ in the (2+1)-dimensional Z, clock model
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Using Monte Carlo simulations we have studied the3 Z, clock model in two different representations,
the phase representation and the loop-gas/dumbbell-gas representation. We find tirabfahe critical
exponentsy and v for the specific heat and the correlation length, respectively, take on values corresponding
to the caseg— infinity, the XY model. Hence in terms of critical properties the limiting behavior is reached
already atg=5.
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Matter coupled-gauge field theories in-4 dimensions [7,8]. In d=3 theZ, model does not have an IOP, but there
have come under renewed scrutiny in the context of conare generalizations of the model which [&-10].
densed matter physics in the past decade, as effective theo- A related case is that of a globally(l) symmetric theory
ries of strongly correlated systefl]. Concepts such as which is perturbed by a weak crystal field. Using renormal-
confinement-deconfinement transitions, associated with thization group(RG) theory and duality arguments, it has been
proliferation and recombination of topological defects of shown that forq=5 the crystal field is an irrelevant pertur-
gauge fields, enter for instance in attempts at providing dation, whereas fog<4 the XY fixed point is rendered un-
theoretical foundation for breakdown of Fermi-liquid theory stable[11].
in more than one dimension. A large variety of such gauge- It is important to emphasize that we have focused on the
field theories have been proposed, and one model of particyproperties of theZ, modelat the critical point. ForT<T,,
lar interest is the compact Abelian Higgs mof@ie-6]. This  the discrete nature of the model will always be apparent. An
model consists of a compact gauge field coupled minimallyinteresting RG study of th&; model shows how the cou-
to a bosonic scalar field with thgauge charge gin a par-  plings of the model flow towards a fixed point which is ul-
ticular limit the dual of this model reduces to a loop-gastimately different from the three-dimension@D) XY fixed
representation of the glob@l, model[5,6]. This identifica-  point in theT—0 limit [12,13.
tion has been the motivation for the present work, for a de- Equation(1) is straightforwardly reformulated as a model
tailed account of the dependence of the full theory we refer of interacting ensemble links which either form closed loops
to Refs.[5,6]. or originate and terminate at point charges. We start with the

The spinZ, model is a simple planar-spin model, where partition function
the direction of the spin is parametrized by a phase. This

phase is restricted to the valuesri@2/q with neZ, and is 27
defined by the following action Z(IB-Q):{;} ex ﬁZ > co FAuni - 2
i ®

S= —ﬂz cos{z—w(ni—nj)). (1) In Eq. (2), A, denotes the difference operator defined by
D a ALF(X)=F(x+ ,&) —F(x), andA without indices is the vec-
The state is specified by the integer variables  tor operator analogous 8. The first step is to replace the
€[0,1,...g—1]. Special cases includg=2 which is the ~cosine with a quadratic potential, this is the Villain approxi-
Ising model,q=3 which is the three-state Potts model, andmation[14]. Next, we promote the integers to real-valued
the limit g— o which corresponds to th¥Y model. In ad- phase variable§; , at the expense of introducing an auxiliary
dition, it is easy to see that fay=4 the partition function integer fieldQ, which through the Poisson summation for-
Z(2B,4)=2(B,2)Z(,2). The aim of the present paper is to mula [15] res_tr!cts thed, variables to the d_i;crete vglue_s
determine how the critical properties interpolate between th@llowed by original theory. The resulting partition function is
well-known Ising @=2) andXY (gq—=) limits. We have then given by
done this by measuring the exponent combination (1
+a)/v as a function ofy. _= _
In d=2 the model has a quite peculiar phase structure, 2v(g.a) H['B]J Da{k,EQ} ex;{ EI
with an intermediateincompletely ordered phas€OP),
where the system shows behavior similar to the critical Ko- +iq6Q) } &)
sterlitz Thouless phase. Upon further cooling, the system will
order completely into one of thg completely ordered states
In Eq. (3), {k} is an integetink field living on the links of
the original lattice and{Q} is a scalar field living on thsites
*Electronic address: Joakim.Hove@phys.ntnu.no of the same lattice. The prefact&[ 8] and effective cou-
"Electronic address: Asle.Sudbo@phys.ntnu.no pling By= Bv(B) must be retained to get results which agree
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with Eq. (2) on aquantitativelevel[15], however they dmot  representation of th&XY model. Due to this similarity, the
affect the critical properties and from now on we will assumeremaining analysis follows well-known stefds5], which we
Bv=8, E[B]=1, and omit theV index on the partition briefly include for completeness. A Hubbard-Stratonovich
function. decoupling of the quadratic expression in Eg) is per-

In Eq. (3), the Q field explicitly accounts for the discrete formed by introducing an auxiliary field, thus bringing the
nature of theZ, model. SettingQ=0, we recover the Villain  partition function onto the form

Z(8,q)= f DvD 0{%} exp[ — }I‘,

1
ﬁszriv-(Aai—ZTrk)Jrian”. (4)

In Eqg. (4) the {k} summation can be performed, thereby of inserting a closed loop excitation of tHefield and a
restricting the velocity fields to integer values denoted by ~ dumbbell configuration consisting of #Q/—Q pair con-
In the term couplingA ¢ and|l, a partial integration can be nected with an occupied-valued link (the vertical link to
performed, such that only appears in the combination the left in Fig. 1 is an example of an elementary dumbbell

i6(A-1—qQ), and from this we get the constraint excitationsg. For g=2 the (vacuum excitations of a loop or
a +Q/—Q pair have the same energy, while fgr-2 the
(A-1-qQ)=0. (5)  elementary dumbbell excitations are more expensive than the

elementary loop excitations, and their relative importance di-
At this stage the transformation to a loop gas is completeminishes with increasing.
and the partition function is given by The main goal has been to determine how the critical
properties change with. The central quantity we have con-
sidered is the connected third-order moment of the a¢édn

-1
Z(B,q):{%} 5A|’quX%ﬁ Z |2:| (6)
((S=(8N%)=B=Bcl" ", (7)

This is a theory consisting of the field} living on the
links of the lattice, and the fiel{Q} which lives on thesites
The field{Q} is subject to the constrait,Q=0, i.e., over-  hich recently has been demonstrated to yield surprisingly
all charge neutrality, whereas the fielt} must satisfy the good scaling results compared to second mom@itaVhen

local constrainiA-1=qQ on all lattice points. The latter con- approaching the critical point, the correlation lengttdi-
straint means that every Q/—Q pair must be joined by

occupied links, in addition we can ha{#@ excitations which
are not nucleated to any Q/—Q pairs; these must form
closedloops. Figure 1 shows a typical configuration for the
g=2 model.

In the compact Abelian Higgs model considered in Refs.
[6,5], the fields{I} and{Q} representorticesandmonopoles
i.e., they are thdopological excitationsof the matter field
and gauge field, respectively. That interpretation donest
apply in the current case, but the interpretation of {@§
field is that it maintains the discrete properties of the original
theory, Eq.(1). With Q=0 (theq— limit), Eq. (6) reduces 5 5 5
to a loop gas with steric repulsion, this is a well-known - (g)-mee @ + = £ -
model with aninverted X\transition[17]. Note that the spe- : : 5 :
cial caseq=1 effectively represents no constraint. In this : : : :
case, the theoryEq. (6)] is noninteracting, and sustains no ... ® ’ ® & ®
phase transition. For afj=2, Eq.(6) has a phase transition : 5 : :
between a phase filled with link segments & 8. and a : : : :
vacuum phase which does not contain link excitations. . ® o e ® P

We have performed Monte Carlo simulations of thg : : : : : :
model, using both a phase representation,(Eg.as well as
the loop-gas/dumbbell-gad.DG) representation, Eq(6). FIG. 1. Atypical LDG configuration for thg=2 (Ising) model.
The phase representation is simulated as a conventional spifultiply connected links, like the vertical along the left edge have
simulation. In the LDG representation, the fundamentaimuch lower entropy than loop/dumbbell combinations, and hence
Monte Carlo moves are represented by alternating attemptgive a relatively small contribution to the partition function.
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FIG. 2. Schematic figure showing third moment of action, and
how data are extracted for FSS analysis. For further details of this

method see Ref6]. 8 12 16 L 24 32 48
verges afoc|5—lgc|*"_ Therefore, in a finite system of lin- FIG. 4. This figure is similar to Fig. 3, but the results are ob-
ear extent_ we find that the third-order moment in E€f)  tained using representatidf). The q=4 results showZ, scaling
scales withL as with (1+ a)/»=1.70+0.05, and theq=5 results scale with (1
+a)/v=1.47+0.06, i.e., qualitatively similar to the results in

Fig. 3.

((8=(8))3)orLlF e, (8)
=6,8,12,16, and 24, Ref6] shows results ofj=2 simula-

The main advantages of the third-order moment in &y. tions of Eq.(6). We find that the combination (fa)/v
are that(1) good quality scaling is achieved for practical changes abruptly from th&, value of 1.76318] to the XY
system sizes even for models with<0, e.g., the 3DXY  value of 1.46719] when increasing| fromgq=4 togq=>5. A
model, and2) one set of measurements gikesththe com-  further increase of beyondg=5 does not affect the value
binations (& «)/v and — 1/v independently6], although it  of (1+«)/v, as shown in Fig. 5.
is more difficult to achieve high precision on the latter. A That theZ, model is in theXY universality class foq
schematic figure of (S—(S))3) as a function of coupling =5 mustimply thagt the critical pointthe discrete structure
constant is shown in Fig. 2 and Figs. 3 and 4 show finite-sizés rendered irrelevant for thespvalues. To investigate this
scaling(FS9 of the peak to peak value. point further, we have implemented a simple real-space RG

We have considered systems of sizexL XL with L procedure, which attempts to probe for what valueg tfe
=8,10,12,16,20,24,32,40,48, and up t& PO’ sweeps over discrete nature 0L, model is relevant at the critical point.
the lattice. In addition to theg=4 andq=5 presented in We denote the untransformed phases and field8,as he
Figs. 3 and 4, we have also studied tlge values q renormalized phase at leveh-1 is given by theblock spin

construction,
<(S-<S>)3>
| ' ' ' ' (1'IHX)/V - |
10000 1 18 T
o)l -
1.6 | R

1000

100 ) 1 1 1 ) 1 1,3 I E
8 12 16 24 32 48 : ! ' ' . L .
L 4 6 8 10 12 14 16 18
q

FIG. 3. This figure shows the scaling ¢6S—(S))®) for q=4
(M) andq=5 (@); the results are obtained using the phase repre- FIG. 5. The exponent combination {la)/v versusq. Note
sentation, Eq.(2). The g=4 results showZ, scaling with (1  how it changes value abruptly apis increased frong=4 to q
+a)/v=1.76+:0.05, and theg=5 curve showsXY scaling with =5. The dashed lines are the Ising,{ and XY (Z.) values of
(1+a)/v=1.46+0.03. 1.763 and 1.467, respectively.
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FIG. 6. Histograms ob after four rescalings of the critical state.
For g=4, the distribution shows clear signs of a discrete back- 5 . 2'2 e ”
ground, whereas fag=>5 this is not the case. The slow variation in Block size L = 2"
the g=5 histogram isnot commensurable with a wavelength of
27/5, and probably only due to insufficient sampling.

FIG. 7. The flow of the coefficierd,, 4 for g=4 andq=5. For
g=4, we see that there is a fixed point at the critical point, whereas
for =5 we see thaa, 4 flows to zero at the critical pointn the
E sin 6,,(k) figL_Jre anvs_flgws tq zero also folf <T, ;_th_is,_ is a finite_-g,ize effect.

R This coefficient will eventually flow to infinity for sufficiently large
Ohir=arctanl ———— |, (9 systems/lowT.
E cosd, (k)
“ cient shows critical fixed point behavior, whereasdet5 it
flows to zero, even fof well below the critical temperature,
this is shown in Fig. 7.

Also the LDG representation, E(), gives a qualitative
indication that forg=5 the discrete nature of the theory is
irrelevant. In this representation, the discrete nature is repre-
sented solely by th@ excitations, so measurements({(®|)

where the sum ovek in Eq. (9) is over the eight spins in a
2X2X2 cube. Forg=2, this transformation is clearly
trivial, since adding a number of phases 0 anadwill still
give 0 or . However, forg>2 the effectiveq* will in-
crease withn, and forn—o the resulting block spins can

take any direction. hould ai titative indicati fthe the i t f
We next investigate whether the system flows towards aryou'd give a quantitative indication of the € importance o
the discrete structure. Measurementg|@|) at the critical

infinite value ofg* or not under such a RG transformation. *''~ X =, A

This is tantamount to asking whether the discrete structure BOINt give ([Q[)~0.07, 5.9<10"%, and 2.75¢10™° for g
rendered irrelevant or not on long length scales. To this end™=2.4, and 5, respectively, whereas the link dengity)

at each iteration step, we have recordetlistograms h(6) ~ ~0.15 for allg. Hence atq=5 the discreteQ excitations

of the phase distributions on the lattice and monitored thé1ave been completely frozen out, and the tangle is essentially
manner in which this histogram flows under rescaling. Byidentical to thepure-looptangle of the 3DXY model.

purely visual inspection, we find that fay=4 the discrete In summary, we have determined the critical exponent
nature of theZ, model persists, whereas fa=5 it is  combination (-a)/v in the d=3 Z; spin model forq
washed away, this is illustrated in Fig. 6. =4. Using two different representations we have found that

To study this RG flow at ajuantitativelevel, we have for q=5, the combination (+ «a)/v takes a value which is
written the phase distributioR,,(6,,) as a sum of harmonic consistent with the value taken in the 30r model. Along
functions with other more qualitative indicators this means that at the

critical point, a discrete structure finer thar 5 is irrelevant
at the critical point, and the long distance properties of the
K27 theory are determ.ined by the Iarggr symmetry grm(rl)U _
+ bn’ksin(—) } These results are in accordance with RG studies starting with
q a U(1) symmetric theory which is perturbed by a perturba-
10 tion with Z, symmetry.
We acknowledge support from the Norwegian Research
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