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Persistence properties of a system of coagulating and annihilating random walkers
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We study ad-dimensional system of diffusing particles that on contact either annihilate with probability
1/(g—1) or coagulate with probability—2)/(g—1). In one dimension, the system models the zero-
temperature Glauber dynamics of domain walls indFstate Potts model. We calculaﬁm,t), the probabil-
ity that a randomly chosen lattice site contains a particle whose ancestors have undergone exatfly (
coagulations. Using perturbative renormalization group analysisifo2, we show that, if the number of
coagulationsm is much less than the typical numb&f(t), then E(m,t)fvmg’dt"’, with §=dQ+Q(Q
—1/2)e+0(€?), {=(2Q—1)e+(2Q—1)(Q—1)(1/2+ AQ) >+ O(€%), whereQ=(q—1)/q, e=2—d and
A=—0.005.... M(t) is shown to scale asl(t)~t¥?>"% wheres=d(1-Q)+(Q—1)(Q—1/2)e+ O(€?).

In two dimensions, we show th&(m, t) ~ In(t)23~2In(m)@-’t~22 for m<t22 1, We also derive an exact
nonperturbative relation between the exponents: nad@d) = 6(1— Q). The one-dimensional results corre-
sponding toe=1 are compared with results from Monte Carlo simulations.
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[. INTRODUCTION temperature Glauber dynamilcs3]. Besides site persistence,
several other persistence properties of the Potts model have
Persistence is understood as a property of an evolvingeen studied. Among these are the probability that a domain
system to “remember” its initial configuration for anoma- wall has never encountered another domain Waj14,19,
lously long times. A particular case of persistence that hagnd the probability that a domain present in the initial con-
received much attention is that of site persiste(ame Ref.  figuration survives up to time[16]. The former problem has
[1] for a review. The site persistence probability is defined peen studied numericallyd,15], by mean-field approxima-
as the probability that the values of a dynamical variable at ggng [3] and perturbatively neag=1 [14]. However, the
given set of sites do not change up to tim&or instance, in  regyits obtained by these techniques do not approximate well
a spin system this could be the probability that a spin at 8ne numerical results in the whole rangecpf
given site does not ﬂ|_p up to tmteor|n_areact|on—d|ffu3|on In dimensions greater than 1, the dynamics of domain
system, the probability that no reaction takes place at thaa|is in the Potts model is difficult to treat analytically. In-
site up to timet. In many cases the site persistence probab”'stead, we note that in one dimension, the zero-temperature
ity decays at large times as a power Ig&Y. _ _ Glauber dynamics of thg-state Potts model is equivalent to
A natural generalization of site persistence is persistencg system of diffusing particles that on contact either annihi-
of a pattern present in the initial configuratig8]. An in-|5te with probability 1/g—1) or coagulate with probability
stance of pattern persistence would be the survival of a te§ly—2)/(q—1) [17—19. We study the persistence properties
particle in a random environment. Examples of the randomys this reaction-diffusion system in an arbitrary number of

environment include diffusing trajjg—7], reaction-diffusion  gimensjons using the renormalization group method and cal-
systems such a8;+A;—A;; with mass dependent diffu- ¢ jate the exponents as arexpansion.

sion rates[8—10,, and predators in predator-prey models  The guestion that we ask is, given this reaction-diffusion
[11,12. The problem of analytical calculation of the survival gysiem what is the fraction of particles that have never en-
probability of the test particle is hard, mainly because in the,oyntered another particle up to tit®More generally, what
rest frame of the test particle, the motion of the other paris the fraction of particles whose ancestors have undergone

ticles is correlated. _ , coagulations up to tim&? A convenient way to keep track of
Experimental studies of site and pattern persistence havgq history of coagulations is to assign a mass to each par-

been done on systems such as soap froths, nematic liquighie a5 follows. At timet=0, let all particles be of mass 1.

crystals, and breath figures. For more examples, see Refgach (ime two particles coagulate, the new particle has a

[3,15], and references within. _mass which is the sum of the masses of the two parent par-
The one-dimensional Potts model has been a testinggjes |t js clear that the particles of masswill be those

ground for various concepts of persistence. The site persi§ihose ancestors have undergone exaatly-(L) coagula-
tence problem mentioned above, has been exactly solved fgf o

the one-dimensionaj-state Potts model evolving via zero- — . .
e one-dimensionaj-state Potts model evolving via zero Let P(m,t) be the probability that a randomly chosen site

at timet contains a particle of mass. Let N(t) and p(t)

*Electronic address: supriya@santafe.edu denote the average particle density and average mass density,
Electronic address: r.ravindran1@physics.ox.ac.uk respectively. Then, the probability distributi&®(m,t) is ex-
*Electronic address: olegz@maths.warwick.ac.uk pected to have the scaling form
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where Q=(g—1)/q. If d=2, the scaling form Eq(1)
, (1)  breaks down due to logarithmic corrections. We calculate
these corrections to be

Im

\t

_ N(t)2 (
P(mt)= ——f
p(t)

T/ )14 ; ;
wherelm—[m/p(t).] is thellength scale_assocllated with B In(t)Q(gsz)ln(m)(zQ’l)z
mass. The large time behavior pft) and P(m,t) is char- P(m,t)~ , (5)
acterized by two exponentd and #. The mass density t2Q

;(t)~t*5. For masses much smaller than the typical mass, .
P(m,t) decays as a power law in time a¥/% ¢, We will  9\Ven thatt—e and m<M(t), where M(t) is mass of a

call 9 the persistence exponent. The expongcharacterizes typica_l partigle at time. The analytical results fof andJ "?
the smallx behavior of the scaling functiof(x) to be f(x) one dimension obtained by putting=1 are compared with

e <1 _ Lo _ the results from numerical simulatio_n_s. _ _
X" for x<<1. Then, - Zd(a,dg. d)./(d 2.5)’ where we In Sec. V we show that the coefficient et in Eq. (4) is
have used the fact tha(t) ~t in dimensions less than 2

. a polynomial of degree 12 in the variableQ=(q—1)/q.
g%%eTl?;imllg 'gssé):ndem exponergsand § are known for - s gnservation allows us to calculate the two-loop correc-

, ... . _tions to the exponery to be
Wheng=2, the model reduces to the reaction-diffusion ponent
modelA+A—J. All particles are of mass 1 and it is known

that P(1t)~t~ 92 for d<2 and P(1t)~In(t)/t for d=2 (=(2Q-1)e+(2Q—1)(Q—1)(: +AQ) 2+ O(€d),
[21,20. Hence,6=d/2, #=d/2 and{=0 for q=2. When (6)
g=c, the model is equivalent to the reaction-diffusion sys-

tem Aj+A;—A,; [22-24,18,25,1D Since mass is con- whereA=—0.006.... Theanalytical results forf in one

served,8=0. It has been shown that=d+ /2+O(e?) and  dimension obtained by putting=1 are compared with the
{=€+0(€?) for e=2—d>0 [10]. In two dimensions results from numerical simulations.

P(m,t) ~In(m)In(t)/t [10]. In one dimension, it is known via Finally, we conclude with a summary and discussion in

an exact calculation th&(m,t)~mt %2 [22]. Wheng~1, Sec. V.

0 has been calculated perturbatively to be=(q

—1)3y3/(27)+0((q—1)?) [14]. However for arbitrary Il. MODEL AND FIELD THEORETIC FORMULATION

values ofq, the only known analytical result follows from a

mean-field approximatiof3]. But the numerically obtained

values of @ differ from the corresponding mean-field values

_by up to 50%("’"50’ see F|g.)4_|nt_h|s paper, we address this be occupied by particles that possess a positive integral

issue by using the renormalization group formalism 10 Sysiosq Multiple occupancy of a lattice site is allowed. Given

tematically calculatd>(m,t) for arbitraryq. _ _ a certain configuration of particles on this lattice, the system
We now summarize our main results and give an outlingyolves in time via the following microscopic moves)

of the rest of the paper. In Sec. II, we give a precise defini\yjth rate D, each particle hops to a nearest neighbor lattice

tion of the model and derive the stochastic partial differentiakite_(ji) with rate ., two particles at the same site coagu-

equations obeyed by the mass distribution. In Sec. lll waate together to form a new particle whose mass is the sum of

express the exponeatin terms of the exponertt, though at  the masses of the two parent particlgis) With rate) ., two

a different value of, reducing the number of unknown ex- particles at the same site annihilate each other. To make con-

In this section, we define the model and derive the sto-
chastic partial differential equation obeyed by the mass dis-
tribution. Consider a-dimensional lattice whose sites may

ponents to one. We show that nection with the model discussed in the Introduction, we
have to choosex.,=\(q—2)/(q—1) and A,=N\/(q—1)
S(q)=0 L) @) where\ is a reaction rate. The limit —o corresponds to
g-1/° instantaneous reactions. In dimensiahks2 and in the limit

of large time, the statistical properties of a finite reaction rate
Thus, particle system were shown to be equivalent to those of a
system with infinite reaction ratg40]. However, from the

q field theoretic point of view, it is more convenient to work
Zd[ﬁ(QH g q—_l) —d} with finite reaction rates, and henaewill be taken to be
()= (3) finite in this paper.
d—20<i Starting from the master equation for the time evolution
q-1 of the system, we now derive the effective field theory of the

model. Let{n;} denote the configuration of particles at site
In Sec. IV we use the technique developed in R&0] to  such that; , is the number of particles of massat sitei.

calculate the persistence exponehtas ane expansion, Let P(...{n;},{n;},...;t) be the probability of the con-
wheree=2-d>0. We show that figuration (.. {n;},{n;}, ...) attime t, wherei andj are
nearest neighbors. The master equation describing the time
0=dQ+Q(Q—3)e+0O(€?), (4 evolution of (... {n}.{n;}, .. .it) is
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: .{ngt,{nj}, ) :—D% % (ni,m+nj,m)P({ni}i{nj})_% (N m+ DPEN; m+ 13,405 m—1})

—;<nj,m+1>7><{ni,m—1},{n,-,m+1}) —ACZ > NN PN

m#m’

+ 2 (M= DPAND = 2 (MmN e+ VPN m+ 10+ 105 e — 1)

m=#=m’

=2 (Nim+2)(N m+ DPEN m+ 205 om—1})

—7\32 { 2 ni,mni,m’P({ni})

I m#m’

+ 2 Nin(Nim=DPAND = 2 (Mt DN+ D) PN 10 +1})

m#=m’

=2 (Nim+2)(N m+ DPEN 21 |, @)

where the time dependence Bfhas been dropped for nota-  The stochastic field®(x,m,t) is complex and is different
tional simplicity and{n;q+1} denotes the configuration from the local mass distributioﬁ’(ﬁ,m,t), which denotes

(Nj1,Nj2, ... N+ 1,...) atsitei. The first term in the : ; d
rlght hand S|de of Eq(?) describes the loss and gain termsthe number of particles of mass in the volumed“xdm at
time t. However, the moments & are related to the mo-

arising from particles diffusing to their nearest neighbors
with rate D. The second term describes the loss and gaifnents of P_(for instance, see Ref§28,29). For example,
terrr?s due to ;he coagulation olf a Ealr of part|clers] at a SIthP(x m,t) = P(x m,t), P(x m t)2— P(x m,t)[Am(Ax)9] "1
with rate\ ; to form a new particle whose mass is the sum o 2 :
the constltuents The third term describes the loss and gain P(X m, 1), and so gn wr:jeAre the olv?trbar d(?[n;tesl a?haver
terms due to annihilation of a pair of particles at a site Wlthaglng over noise, andx andAm are lattice cutoffs. In this
rate . paper we only study the first moment &f(x,m,t), and
The field theory corresponding to the problem can be dehence disregard the difference betweﬂ(i,m,t) and
rived from the master equation using Doi's formali$26]. B(x,m,t) in the rest of the paper.
In short, regarding the master equation as a Jfihger We will be studying the behavior of the following three
equation in imaginary time, the functional integral represen- quantmes
tation of the corresponding non-Hermitian evolution operator
is constructed. This allows one to write down a functional
integral expression for any correlation function of the prob-

lem, includingP(m,t). After taking the continuum limit, one - * -

is left with the problem of solving an interacting field theory. N(x,t)= fo dmP(m,xt), (10)
The application of Hubbard-Stratonovich transformation to

this field theory leaves one with a stochastic partial differen- _ o _

tial equation. We refer to Reff25,27,2§ for reviews of this p(X,t)=f dm mRm,x,t), (11
procedure. Following this procedure, solving the master 0

equation Eg.(7) is equivalent to solving the following

Langevin equation for a stochastic figR{x,m,t):

P(m,x,t) for m<M(t), (9)

whereN(i,t) is the local Barticl_e density;(i,t) is the local
mass density, an®i1(t)~p(t)/N(t) is the typical mass at

(3;—DVAP(x,m,t)=—2(\c+ N, P(x,m,t) time t. The time evolution equations obeyed Wyx,t) and
w0 o o p()Z,t) are easily obtained from E¢). As for P(m,i,t), for
Xj dm’'P(x,m’ t)+AP*P m<M(t), we neglect the convolution term in the right hand
0 side of Eq.(8). This approximation is justified because at
B T Grrene e large times the probability of collision of two light particles
FiN2(ha TR E(X HP(X,m.1), is negligible compared to the probability of collision of a
(8) light and a heavy particle. The resulting equations are
where P*P=[Tdm'P(x,m’,t)P(x,m—m’,t), & is white (39— DV2N(X,t)= — (Ao + 2N 0)N(X, 1)
noise in space and time with unit standard deviation ignd R .
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IIl. SCALING ANALYSIS OF STOCHASTIC

o= R R
— —_ — +
(6;—DV?*)P(x,m,t) 2(Net N P(X,m,t)N(x,t) EVOLUTION EQUATIONS

Fiv2(NeF N ) E(XDP(X,m,t),

(13

In this section, we obtain some exact results for the

model. First, the scaled density of particheéx,t) obeys the

same equation as the particle density in &/t A— A reac-

(3,—DV2)p(X,t) = — 2\ 4p(X,)N(X, ) tion. For this reaction, the density of particles decays for

‘ P b large times as~ %2 in d<2 [21,20. Thus,
qg-11

Note that the dependence®bn mass isgo longer governed N(t=c q td_/z t—eo,

by Eqg.(13). Once the time dependencefis calculated, its

mass dependence can be restored using dimensional analysiferec is a constant depending on dimension only. This is a
In the rest of the paper, for the sake of notational simplicity,generalization of the exact one-dimensional regs(x31).
we omit the dependence Bfon mass, unless there is a cause  Second, there is a relation between the local mass distri-
for confusion. bution of light particlesP and the local mass density.
Equations(12)—(14) can be simplified as follows. Let Under the substitutiorQ—(1—Q), or equivalentlyq/(q
—1)—q, Eq. (19 transforms into Eq(20). Therefore, if

(22

)\C:E)\ (15) Fp(Q,X1,t1,X5,t0, .. .) is acorrelation function oP fields,
q-1" which is independent of initial conditions, theRp(1
—Q,)Zl,tl,iz,tz, ...) is the correlation function of the
\ :L)\ (1  same configuration op fields. In particular, sinceP(t)
3 g-1 ~t=%Q we obtainp(t)~t~?@~Q. Thus, we derive Eq.
(2), namely,
for some parametex. The above parametrization is com-
pletely general. In particular, the parametgs2+ A /\, o(Q)=6(1-Q). (23

has noa priori relationship with the number of states in the ) ) o
Potts model. Rescaling the local particle density, local mas4t present, we do not have a simple physical derivation of

distribution, and average density according to
- - - g—1 - - -
(N(x,1),P(X,1),p(X,1))— a (N(x,1),P(X,t),p(X,1)),
(17)

brings Egqs(12)—(14) into the following form:

(3,—DV2N(X,t) = — ANZ(X,t) +i V2N E(X,HN(X, 1),

(18
(3,—DV2)P(X,t)=—2QXP(X,t)N(X,t)
+iV2NEX D P(X,1), (19
(6= DV?)p(X,H)=—2(1=Q)Ap(X,t)N(X,1)
+iV2NEX D) p(X,1), (20)
where
_9-1
Q= g (21)

It can be shown that Eq4$18) and (19) describe the two
N N
species reactioA+A—A, A+B—, in the limit when the

this exact result. Also, there seems to be no simple way of
deriving this relation directly from the master equatia@.

We now examine Eqg18) and(19) for special values of
the paramete®. WhenQ=0, the nonlinear term in Eq19)
vanishes and the concentration of monomers is conserved on
average. Thereforg)=0 for Q=0. WhenQ=1/2, Eq.(19)
is solved byP~N, whereN is a solution of Eq(18). Then,
from EqQ.(22), we obtaind=d/2 for Q=1/2. WhenQ=1, it
is known thatd=d+ e/2+O(€?), wheree=2—d [10]. If
d=1, thend=3/2, which is a consequence of an exact so-
lution [22], rather than the expansion cited above. Collect-
ing these results together, we have

forQ=0,

N O

forQ=13, 24

€
d+§+0(62) forQ=1.

It is not clear whethe® for Q<<1/2 or equivalentlyg<2 has

any physical meaning. We note that for the site persistence
problem in one dimension, the site persistence probability of
the g-state Potts model maps on to an Ising system with an
initial magnetization given by &~ 1, evolving via zero-
temperature Kawasaki dynami€$8,19,33. The latter sys-
tem is defined at any value a@f>1. The correspondence
between these two models also holds for the persistence

concentration ofA particles is much greater than the concen-probability of a single domain in the Potts modél]. It

tration of B particles.

would be interesting to understand what quantity, if any, in
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——

N N -2
(@ X = X +

e m - 2x - 4x~

P P
*
Y . _2nq.e
L, (h) mm == = - ><+<---\
- - -
________ ;’e -2 -2:Q
FIG. 1. Propagators and vertices of the theory. ©) - = - + —2h
the Ising model corresponds to the survival probability of
domain walls in the Potts model. 220
(d) @ ===- = w------- + - --
L J
-
IV. PERTURBATIVE COMPUTATION OF PERSISTENCE *
EXPONENT NEAR d=2 FIG. 2. Diagrammatic form of mean-field equations f@
In this section, we calculate the large time behavior ofmea“ particle dens"M (b) mean density of mass 1 particles (c)

P(t) using the formalism of perturbative renormalization Gni', and(d) Grf

group. We closely follow the solution of th&+A;— A, _ _
model presented in Reff10]. GN(t)=—AN*(1), (26)
The solution toP(t) as a perturbative expansion in pow-
ers of A can be constructed from Egl8) and (19) using
Feynman diagrami$33]. The Feynman rules for constructing
terms of the expansmn are summarized in Fig. 1. Diagram-

matically, P andN are the sums of all Feynman diagrams

with one outgoingP andN line, respectively. Clearly, there - N

are an infinite number of diagrams contrlbutlngFtcnndN Nmi(t) = W(;\lt' (27)

These diagrams can be grouped together according to the 0

number of loops that they contain, thus giving rise to the

loop expansion. Lee=2—d. The contribution from each = Po

diagram is a function of the dimensionless terni$,t and Pmi(t)= _(1+)\N £)2Q"
g(t)=\t?2 and an overall factor that gives the correct physi- 0

cal dimensior[ (\t) ! for N and (\t) 2 for P]. A simple  From Eq.(28), we obtain
combinatorial argument shows that the contribution from a
diagram withn loops is proportional ta(t)" [29]. Whene 0i=2Q, (29
<0, the main contribution t® andN comes from properly
renormalized tree level diagranidiagrams without loops where 6, is the mean-field answer fdt.
[34]. When >0, the loop expansion fails since for large  In calculating loop corrections to any given order, we are
times g(t) is no longer a small perturbation parameter. Wefaced with the problem of summing over infinitely many
therefore conclude that 2 is the upper critical dimension. Fodiagrams containing a given number of loops. This problem
d<2 we will use the formalism of perturbative renormaliza- can be simplified by introducing mean-field propagators
tion group to convert the loop expansion into@expansion ~ Which are sums of all tree diagrams with one incoming line
and calculate scaling exponents as a series in and one outgoing line. Expressed in terms of these mean-
field propagators, there are only finitely many diagrams with
a fixed number of Ioops

Let Gm“ andG P be mean-field propagators. The integral

Let N, andP,; be mean-field densities given by the sum equations sat|sf|ed by them are presented in diagrammatic
of contributions coming from tree diagrams with a singleform in Figs. Zc) and 2d). The solutions to these equations

in which one can easily recognize the Smoluchowski rate

equations of the model, obtained from E¢L3) and(19) by

neglecting the noise terms in the right hand side.
Equations(25) and (26) are easily solved yielding

(28)

A. Tree level diagrams

outgoingN line andP line, respectively. We denote,; and are
P by thick solid lines and thick_dashed_lines, respectively. t)
The integral equations satisfied By, andP; are presented 2|1) mf( 2 ) Go(2|1), (30)
in diagrammatic form in Figs. (@) and Zb). After differen- mf(t1
tiating with respect to time, they can be written in analytic
form as mf( )\
_ _ Gm(2|1)= o(2|1), (31
P (t)=—2QNP(t)N(1), (25 mi(t1)
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ing that Eq.(35) is nonsingular in the limie— 0 if expressed
in terms of renormalized relevant couplings.
Letty be a reference time argd= MS’Z be the dimension-
~ less reaction rate. We choosgin such a way thag,<1.
s The mechanism of renormalization of the reaction rate in the
. theory is identical to that of the reactidht+A— A. Physi-
cally, the renormalization of reaction rate is explained by the
-= recurrent property of random walks. The probability of a
A reaction between particles at tihis proportional to the bare
2N reaction rate, multiplied by the probability that the reaction
~ has not occurred before tinteln d<2, the latter probability
explicitly depends on timé& The law of renormalization of
FIG. 3. One-loop corrections to the mean-field resultRor the reaction rate has been worked out in R26]. If gg is
the renormalized reaction rate, then it is relatedddy the
relation

where 1=(xy,t;), 2=(X,,t,), andGy is the Green function
of the linear diffusion equation.

g
Or 2 (36)

B. One-loop diagrams 1+9o/g*
Using the mean-field propagators and derEities, it is eaS\X/hereg* =2me+0(€?) is the nontrivial fixed point of the
to classify all one-loop diagrams contributingR¢t). These  renormalization group flow in the space of effective coupling

are shown In Fig. 3 The_ computation of the C.Orre.Sponde:onstants. The mass distributi%to) can now be expressed
Feynman integrals is straightforward. The contributions fromin terms of the renormalized reaction ragg to be

one-loop diagrams in the limily— o are

el2 — P
()= PPt @ Plo=—— 2|1 2Q2Q-1)+0(gR) |.
(87T)d/2(N0)\t)2Q62(6+ 2) (NOgRtO ) g

(37)

2 €2
(b)= ~64QAPot , (33 The ordergg term in Eq.(37) is singular ate=0. To cancel
(87)Y(NoAt)2Re(e+2)(e+4) this divergence, we have to introduce a renormalized initial
mass distributiorPg:

— 256Q\ Pyt

(c) (34) Pr=2Z(9r.to,€)Po, (38)

 (8m)YYNA)Re(e+2)2(e+4)
where @), (b), and(c) refer to the contributions from dia- whereZ(gr.to.€) is chosen such that
grams in Figs. @), 3(b), and 3c) respectively. Adding these _ _
one-loop contributions to the mean-field answer @), we P(t,0r,Pr,to) =Z(gr,to,€)P(t,\,Pg,€) (39

obtain in the limitNy— o, ) ) o )
is nonsingular ak=0. Substituting Eq(39) into Eqg. (37),

Bly= A, 3A|er6-2Q(ex 2) we obtain
t2Q (87T)d/26t2Q—6/2 (6+2)2(€+4) g
—14+ 2R _ 2
+ (two- and higher-loop correctiops (35) Z=1+ - Q(2Q—-1)+0(gp)- (40)

= 2Q
whereA=Po/(Noh) ™. The Callan-Symanzik equation is obtained by noting that

C. Renormalization group analysis of the model P(t,A,Po,€) does not depend on the reference tifge

- Therefore,
The large-time asymptotic behavior &{t) can be ob-
tained by solving the Callan-Symanzik equation with initial J =
conditions given by Eq.35) (see Ref[27] for a review. The tOIO[Z P(Pr)]=0. (41)

coefficients of Callan-Symanzik equation are determined by

the law of renormalization of all the relevant couplings of thet follows from the dimensional analysis that the most gen-
theory Egs(18) and(19). Power counting analogous to that eral form of the average mass distribution is
carried out in[10], shows that there are only two relevant

couplings of the theory inl<2: the reaction ratd and the o 1 Pg t
initial mass distributionP,. We will derive the one-loop P(t)=d—QTQ<D<t—,9R>, (42
renormalization law of the initial mass distribution by requir- to~ N 0
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where® is a dimensionless function. Using the scaling func
tion Eqg. (42) in Eg. (41), we obtain the Callan-Symanzik

equation forP(t):

a Blogr) @ Y(9r) | = _
G2 g 99T T2 P(LOrPRt0)=0
(43
where
9 _AN*
Blom—— 2, 0F _Or(Gr=GDe

a_to g*
~2ty 92 —2Q(2Q-1)

2

Y(9r) =

are the beta and gamma functions of the theory.

At large times, the solutions of E¢43) are governed by
the nontrivial fixed pointg* of the g function. It then fol-
lows from the Callan-Symanzik Eq43) that P(t)~t~ ¢,
where

¥(g*)

0=Qd— >

(46)

The renormalized mean-field or equivalently the Smolu
chowski approximation result corresponds to settrg0 in
Eq. (46). This leads to an incorrect result a6g*) (anoma-
lous dimensiohis not identically zero. From Eq$45) and
(46), we obtain

6=dQ+Q(Q—3)e+0(e€?), (47)

The knowledge off to the first order ine combined with
Egs.(2) and(3) allows one to calculate the exponedtsnd
{ with the same precision:

§=d(1-Q)+(Q—3)(Q—1)e+0O(e?),

(=(2Q—1)e+0O(€?).

e>0.

(48)

(49

The exponent is proportional to the sum of the anomalous
dimensions of andp. As a result, the mass dependence of =

P(m,t) can be captured neither by mean-field theory nor b
Smoluchowski approximatiofsee Ref[10] for a more de-
tailed discussion of this point

The results of this section can be summarized as follow

The mean mass distributidﬁ(m,t) varies as

(mlld)(zo—1)5+0(52)

P(m,t)~

tdQ+Q(Q—1/2)e+0(52)’ (50

for m<M(t), whereM(t) is the typical mass at timg or
equivalently the typical number of coagulations undergon

by all ancestors of survived particleB(m,t) decays alge-
braically with time with an exponent independentrmaf The
coefficient multiplying this time dependent term does how
ever grow algebraically wittm.

PHYSICAL REVIEW E 68, 046103 (2003

D. Two dimensions

The upper critical dimension of our model is 2. The non-
trivial fixed point of the 8-function Eg.(44) vanishes at
—2. We therefore expect the mean-field answers E2j8.
and (28) to give the correct large time—small mass of aver-
age densities in two dimension, modulo logarithmic correc-
tions. In this section we calculate these corrections.

When Q=1 it was shown that in two dimensions,
P(m,t) ~In(t)iIn(m)t~2 for t—o,m<M(t) [10]. To calculate
these corrections for arbitray we need to solve the Callan-
Symanzik equation43) with coefficients calculated ad
=2. In two dimensions,

2

_9
BQla-2=5—. (51
~—2Q(2Q-1)g ,
NOlg-o=—————+0(g"). (52
Then Eq.(43) reduces to
2
) Gk Q(2Q—1)gg|— -
= E@+2Q+T P(t,gr,t0) =0,
(53
_which has to be solved with the initial condition
E(t ) const (54
()
(grto)*?

provided by the mean-field theory. The solution to E2R)
with this initial condition is
i

(55

When Q=1, we recover the result of Refl0]. When Q
=0, P(t) ceases to depend on time, as it should. Wien
1/2, P~In(t)/t, which coincides with the decay law of the
foncentration of particles iA+A—J reaction[20].

The dimensional arguments that led to E2).cannot cap-
ture the mass dependent logarithmic corrections that are
Joresent in two dimensions. Hence, we need to generalize
these dimensional arguments. This is provided by the Callan-
Symanzik equation obeyed B(m,t) when considered as a
function of bothm andt.

The full distributionP(m,t) cannot depend on the choice
of reference time,, which we introduced to regularize the

perturbative expansion G_f(t). Therefore,

[In(t/ty) ]G 29
gQQ-1i2Q

P(t)=constx In(t/ty)

e

IP(m,t) o

T (56)

0

From dimensional analysis, it follows that
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ﬁ(t )2 mﬁ(t )t TABLE |. The numerically obtained values df for different
E(m,t)z 0 El — 0 —, R) . (57) values ofq are compared witl#; [Eq. (63)] and 6, [Eq. (68)]. For
p(tg) p(ty) to g<2, the numerical values are obtained by measuring the decay of

) o ) mean density and then using E@) . For g>2, the numerical
The form in Eq.(57) is different from the scaling form used results are from Ref§3] and[15].

in Eq. (42) becausePy has to be now expressed in terms of

m. Substituting Eq(57) into Eq. (56), we obtain q Numerical 0, 0,
B(gr) @ 1.11 0.08:0.01 0.06 0.08
(dp—dN)m%—tﬁ— — £+(dp—2dN) F=0, 1.25 0.18-0.01 0.14 0.17
) (58 150 0.32-0.01 0.28 0.30
1.77 0.4x0.01 0.41 0.42
where  d,=2(1-Q)—(1-Q)(1+2Q)gr/(4m)+O(g)  2.00 0.50 0.50 0.50
and dy= 1—gR/(4w)+O(g§) are scaling dimensions of 3.00 0.73-0.01 0.78 0.75
fields N andp, which can be obtained from the correspond-4.00 0.87:0.01 0.94 0.91
ing loop expansions. 5.00 0.96:0.01 1.04 1.01
We look for solutions of Eq(58) of the form 6.00 1.04-0.01 1.11 1.08
_ 8.00 1.12:0.01 1.20 1.17
t mN(to) 16.00 1.280.01 1.35 1.33
F_Fl(g'gR't‘)) FZ( (o) 'gR'tO)' 9 2500 1.350.01 1.40 1.39
32.00 1.3&0.01 1.42 1.41
The time dependent functidh; obeys the Callan-Symanzik 50.00 1.42:0.01 1.45 1.44
equation(43). Using this fact and substituting E¢G9) into 1.50 1.50 1.50

Eq. (58), we obtain

are occupied by a particle, the system is evolved fot 10
Monte Carlo steps. The results are averaged over 100 inde-
pendent runs. Also, infinite reaction rates were used.

where F(gR)=(2Q—1)gR/(2wd)+O(g§). As expected, Let 0, denote the value of obtained by truncating the
whend<2, Q>1, andt—x, the solution of Eq(60) is  expansion at ordet and settinge=1. Then,

given by Eq.(50). Letd=2. Solving Eq.(60) for Q=3 with

the initial conditionF,(mg)=const, provided by mean-field Q

d 1+0(gRr) J
m-o+ mﬁ(gR)@_r(gR)

F,=0, (60

= 2
theory, we find that 01=7 +Q% (63
m])| Q-1 In Table I, we compare this analytic expression with results
Fo(m)~| Inj — [1+O/In(m/mo))], (61)  from numerical simulationésee columns 2 and 3). There is

good agreement.

wheremy=N(to)/p(to) is a reference point in mass space. 10 go beyond the expression in E§3) and to make an

Combining Eqs(55) and (61), we conclude that im=2  €stimate of the error arising by neglecting terms of orefer
and higher, we proceed as follows. Let the corrections from

In(t)Q(3‘2Q)In(m)(2Q‘1)2 ordere® and higher orders be denoted Bye,Q), such that
2 . (62

P(m,t)~

0=dQ+Q(Q—3%)e+€?R(€,Q). (64)

for my<m<M(t) andt—oc. For Q=1 we recover the an-
swer for the average mass distribution in ther A;— A 4 |
model obtained in Ref.10]. This result has also been veri-

fied numerically[10]. WhenQ=1/2, P(m,t) no longer de-

pends on mass, as expected. R(eQ)=QQ-DI1-QM(eQ (=Dl Q))

R(e,Q) must vanish alQ=0 and Q=1/2 [see Eq.(24)].
Moreover,R(1,1)=0, sinced=3/2 whenQ=1 ande=1
[22]. Therefore,

E. Comparison with results from Monte Carlo simulations

In this section, we compare the results obtained for thévhereh, andh; are unknown functions. Setting=1, we
exponentsd and & with numerical results in one dimension. ©Ptain
The numerical values of for Q>1/2 are taken from Refs.
[15,3. ForQ<1/2, we obtain the values fa@r by performing P Q +0Q%+0Q

Monte Carlo simulations fo@>1/2 and using the relation 2
EqQ. (23). The simulations were done on a one-dimensional

lattice containing 5 10° sites with periodic boundary con- The value of functiorh;(1,Q) atQ=0 can be determined. It
ditions. Starting from the initial condition in which all sites was shown in Ref[14] that

1
Q- 5)(Q—1)h1(1,Q), (66)
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TABLE II. The numerically obtained values &f for different

values ofq are compared witl#; [Eq. (69)] and 8, [Eq. (70)].

q Numerical b1 85

2 0.50 0.50 0.50
3 0.31+0.01 0.28 0.30
4 0.22+0.01 0.19 0.22
5 0.18+0.01 0.14 0.17
8 0.11+0.01 0.08 0.10
16 0.05:0.01 0.04 0.05
o 0.00 0.00 0.00

Q

FIG. 4. The numerically obtained values éffor different val-
ues ofQ are compared with the two-loop answgy, Eq. (68) (solid
line), one-loop answemw,, Eq. (63) (dashed ling renormalized
mean-field answer, E¢46) with y=0 (dot-dashed lineand mean-
field answer, Eq(29) (dotted line.

J3

_ 33 2
9—ZQ+O(Q ). (67)

Therefore h,(1,0)=33/7—1. A two-loop calculation car-
ried out in Sec. V shows that the functibp(1,Q) is slowly
varying in the intervalQ € [0,1]. Therefore, we replace the
functionh(1,Q) by its value atQ=0 and denote the result-
ing expression a#,. Thus, we obtain

1 3v3
92:§+Q2+Q(Q—5)(@—1)(i—1)- (68)

o

In Table I, we compar&, with 6, and results from Monte

In Table Il, we compare the resul® and &, with results
from numerical simulations. Very good agreement is seen.

V. THE ANALYSIS OF TWO- AND HIGHER-LOOP
CORRECTIONS

A. General structure of the loop expansion

In this section, we examine the contributions from dia-
grams with two and more loops. It will be shown that the
coefficient ofe" in the e expansion off is a polynomial of
degree 2 in Q. It is easier to derive the result, not by using
the formalism of renormalization group, but by identifying
the principal set of diagrams contributing to the large time
limit of P(t) and deriving a simple integral equation satisfied
by the sum of these diagrams.

The polarization operatdi (t,,t;) is defined as the sum
of all one-particle irreducible diagrams with one outgoing
and one incomind line, with the external propagator lines
stripped off. Using the polarization operator, we can write

Carlo simulations in 1 dimension. The error decreases adown the Schwinger-Dyson equation obeyed%@t). Let
compared tof;. In Fig. 4, we also compare the analytical p(t) andII(t,,t,) be denoted by a thick dashed-dotted line

results for & with the mean-field and renormalized mean-
field results. Unlike the mean-field answers, the one- an
two-loop answers agree with numerical results both qualit

tively and quantitatively.

The error due to dropping terms of ordet and higher
can be estimated. The functidn(1,Q) in Eq. (66) is of
order 1. The functiodQ(Q—1/2)(Q—1)| takes on a maxi-
mum value of 0.6 . . . in theintervalQ €[ 0.5,1]. Hence the

absolute error is of order 0.05, which is in agreement with

the results presented in Table |.

We do a similar analysis foé. Let §; be the value o5
obtained by truncating the series E48) at ordere and then
settinge=1. Then

3 5
51=§—7Q+Q2. (69)

To obtaind,, we substitut€)— (1—Q) in Eg. (68) to obtain

3 5 1 3v3
5z=§—7Q+Q2—Q(Q—§>(Q—1)<T—l>-
(70)

(ind by a gray circle, respectively. Theﬁ(t) satisfies the
q

uation shown diagrammatically in Fig(ah In equation

aform, it is

@) mwmmm === ==+ = -‘--------x
t t

4
+ 3 (-t

+ 2-loop + ...

FIG. 5. (a) Schwinger-Dyson equation f@&(t). (b) Perturbative
expansion of the polarization operafdr.
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— — 1 [t to —
PO =P+ 55 | aty 3] at i, t)P(Ly).
t2QJo 0
7D

In two dimensions,P(t)~t~22. Let 5(t)=t2°P(t). In
terms of », Eq. (71) reduces to

t t2 2 2
n(t)=no+ fodtz fo dt;[t5°01(t,,t1)t; 2] (ty),
(72)

where 7, is a constant independent biDifferentiating with
respect ta, we obtain

dn(t)

T (73

= f At POTI (L )t 2] (ty).
0

The expansion ofI(t,t;) in terms of Feynman diagrams is
shown in Fig. Bb). From the Feynman diagrams in Fig. 1, it

PHYSICAL REVIEW E68, 046103 (2003

FIG. 6. The two-loop diagrams contributing to the constai
Eq. (79).

(76)

whereC, ;'s are some unknown constants.

Given Eq.(76), it is easy to rederive the one-loop correc-
tion to 0 [Eq. (47)] obtained by the renormalization group
formalism. The three unknowns in the coefficienteah Eq.
(76) are obtained from the exact results in E&4) giving
C1'0=0, C111: _3/2, andC1'2= 1

follows that the number of dotted lines in any given diagram
is conserved as one moves from right to left. Any diagram
contributing to the polarization operator has a single dotted As the mean-field answer for the exponénis 0, it is
line threading through it from right to left. Also, the only desirable to evaluate ordef correction to Eq.(49). This
vertex that contributes a fact@ is the PPN vertex. There- requires the knowledge of ordef term in 6.

fore, theQ-dependent part of a given diagram has the form From Sec. V A, we know that the term &t is a polyno-

B. Two-loop formula for £(Q)

QNo- of PPN verticep] (. /¢, . 1)2Q, where the product is over all
vertices involving theP line. For ak-loop diagram, we can
have at most R vertices of the type PPN. Also, it was shown
in Ref. [10] that n-loop diagrams contribute at the ordet

mial of degree 4 i, i.e.,

6=dQ+Q e+ e2+0(ed). (77

4
> C, Q"
=0

1
Q3

only. Hence, after coupling constant renormalization, one

finds that the expression in square brackets of(£8§) is of
the formt™237_, €"P,,(Q), whereP,,(Q) is a polynomial
of degree 2 in Q, and where the factdr 2 has been pulled
out to give the right dimension.

We can now solve Eq.73) perturbatively, order by order
in €. Simple dimension counting shows
t2QI1(t,t,)t; 22=t"2F(t,/t), whereF(r) is a dimension-
less function. The previous argument shows tigtr)
=3"_1€"P,,(Q). Assume a power law solution foy, i.e.,
p=ct™ % whered,=X_,a,€" andc is a constant. Then Eq.
(73) simplifies to

1
6D:_f drE(7) 7 %. (74
0
ExpandingF(7) and 6, as series ire, we obtain
- R = [—6,in(7)]™
S, ane=— [[4r3 poen s LTI
n=1 0 ni=1 1 n,=0 n2!
(75

Solving Eq.(75) order by order fora,, it is easy to verify
that the coefficient ot" is a polynomial of degreer2in Q,
ie.,

Out of the five unknowrC,’s, two are fixed by the condi-
tions thatd=0 for Q=0 and #=d/2 for Q=1/2 [see Eq.
(24)]. For Q=1, it is known thatd=d+ e/2+ O(€?) [10].
We assume that the ordef term is absent whe®=1 (see
the Appendix for a heuristic validation of this assumption

that Thjs fixes the third constant and we are left with

6=dQ+Q(Q—3)e+Q(Q—2)(Q—1)(AQ+B)€

+0(€%), (79
whereA andB are constants.

The constanA is not difficult to calculate. The contribu-
tion to @ of order €2Q* comes from the square of one-loop
polarization operator and from two-loop diagrams with four
PPN vertices. There are only two such diagrams, which are
shown in Fig. 6. The numerical computation of correspond-
ing Feynman integrals gives

w2
A=(?—3> —0.2%...~—0.006, (79

where the first term on the right hand side comes from the
order<? term in the one-loop polarization operator.

The calculation of constarf seems an almost impossible
task, as there are over 20 two-loop diagrams contributing to
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TABLE Ill. Comparison of one-loodEq. (49)] and two-loop  This model corresponds to ti@=1 limit of the model dis-
[Eg. (80)] results for with numerical simulations in one dimen- cyssed in the paper. For th@i+Aj—>Ai+J— model, it is

sion. known[22,1Q that for m<t%?,
q Numerical one-loop two-loop
— ind=1,
2 0.00 0.00 0.00 32
o omom o om o o
. : ) . ———— inl=sd<2
5 0.44+0.08 0.60 0.54 o td+e2+0(e%) ’
8 0.59+0.07 0.75 0.70 P(m,t)~ (A1)
16 0.73+0.06 0.88 0.85 In(m)in(t) . 4—»
% 1.00 1.00 1.00 t2 '
1 .
. . — ind>2.
it. However, the terms proportional ® drop out of the the t2
two-loop expression fof. Substituting Eq(78) into Eq. (3)
one finds that In this appendix, we give a heuristic argument as to why the
terms of ordere? and higher could be absent, as a result of
(=(2Q0—-1)e+(2Q0-1)(Q—1)(3 +AQ) €+ O(€%). which the expansion up to ordergives the exact answer.
(80 Putting\,=0 in Eqg.(8), we obtain that the mass distri-

bution P(m,x,t) evolves according to
In Table Ill, we compare the one-loop expression §diEq.
(49)] and the two-loop expression fd@r[Eqg. (80)] with nu- ( d

" . . . _ 2
merical results in one dimension. 9t DV

P=NP*P—2\NP+iy2\:£P, (A2)

VI. SUMMARY AND CONCLUSIONS whereN= [{dmP(m) is the density of particles anB* P

—rm ! ! _ ! H 1 .
In summary, we develop a systematic method to c:aIcuIate_fOdm P(m’)P(m—m’). The density obeys the equation:

the persistence exponeftfor a system of coagulating and
annihilating random walkers, in arbitrary dimensions. In one (
dimension, this corresponds to persistence probabilities of
domain walls in the Potts model evolving via zero-
temperature Glauber dynamics. We establish an exponent re&t
lation by which the number of unknown exponents in the B
problem is reduced from two to one. The unknown persis- F(S,t)=f dmP(m,t)e™s (A4)
tence exponend is determined perturbatively using the for- 0
malism of renormalization group.

The persistence problem studied in this paper can be core the Laplace transform &f(m,t). Then,
sidered as a special case of a more general problem of the
survival probability of a test particle with diffusion constant B(s,t)=N(t) —F(s,t) (A5)
k times the diffusion constant of the other particles. In this _
case it is known that the persistence exportiit) depends obeys the equation
on « [14,3]. While simple limiting cases have been studied P
[14,35—-37 via numerics, mean-field or perturbative tech- g pv2lro 2
niques, a general understanding is still lacking. It would be (ﬁt DV )B AB +|\/2_)\°§B' (A6)
interesting to extend the formalism of perturbative renormal-

J
E—DVZ)Nz)\CNZJri\/Z)\CgN. (A3)

ization group to calculat®,(q). The functionB(s,t) obeys the same equation as the density
N [25]. However, the initial conditions dt=0 are different.
ACKNOWLEDGMENTS If the initial density of particlesN(0)=N,, then B(s,0)

=Ny(1—e 3). Therefore, if the average particle density is
The work at Oxford was supported by EPSRC, UK. WeN(Nj, 1), then
would like to thank Satya Majumdar, Alan Bray, and John

Cardy for useful discussions. E(s,t)zﬁ(No,t)—W(No(l—e’s),t). (A7)

APPENDIX: MASS DISTRIBUTION The functionF(s,t) will have the scaling form
IN THE A;+A;—A;,; MODEL

In this appendix, we present a heuristic derivation of the F(s,t)~ ig(std/z), (A8)
distribution of small masses in th&;+A;—A;,; model. td/2
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where the scaling functiog(x)~x" % for x>1. On per-
forming the inverse Laplace transform, we obtain

-1

(A9)

_ m¢®
P(m,t)~ {d2(1+ 9) "

Thus, if  were equal to 2, the expression in EGAL) to is
exact ordefe.

To calculate¢, we look at the behavior of the particle

densityﬁ. It is expected to have the scaling form

N=Noh(Nt%?), (A10)

where the scaling functioh(x) behaves for large as

1 1
hoo~—| 1+ |, x=1, (A11)
X

where ¢ is some exponent greater than zero.
Substituting Egs(A10) and (Al1l) into Eq. (A7), it is
straightforward to verify that

PHYSICAL REVIEW E68, 046103 (2003

b= (A12)

In one and two dimensions, it is easy enough to verify that
=2 and =1, respectively, consistent with the exact re-
sults in Eq.(A1). In other dimensions, we argue as follows.
The density of particles in thé;+A;—A;,; model is in-
versely proportional to the area swept out by a random
walker in timet. This area varies as\Jf+c)9, wherec is

some constant. Then, the particle density decaysNas
~t~92(1—constt), such that

2
Substituting into Eq(A9), we obtain
o m2-dyd
P(m,t)~ td/T (Al14)

which is the one-loop answer in EGAL).
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