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Exact multilocal renormalization of the effective action: Application to the random sine Gordon
model statics and nonequilibrium dynamics
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We extend the exact multilocal renormalization gr¢R&) method to study the flow of the effective action
functional. This important physical quantity satisfies an exact RG equation which is then expanded in multilo-
cal components. Integrating the nonlocal parts yields a closed exact RG equation for the local part, to a given
order in the local part. The method is illustrated on @EN) model by straightforwardly recovering the
exponent and scaling functions. Then it is applied to study the glass phase of the Cardy-Ostlund, random phase
sine Gordon model near the glass transition temperature. The static correlations and equilibrium dynamical
exponentz are recovered and several results are obtained, such as the equilibrium two-point scaling functions.
The nonequilibrium, finite momentum, two-timdg’ response and correlations are computed. They are shown
to exhibit scaling forms, characterized by exponews-\c, as well as universal scaling functions that we
compute. The fluctuation dissipation ratio is found to be nontrivial and of the ¥my(t—t'),t/t’]. Analo-
gies and differences with pure critical models are discussed.
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[. INTRODUCTION been applied to study that problgr,15]. Here, and this is
the second aim of this paper, we will study another instance
Recently a method was devised, the exact multilocabf a glass phase, arising in the random phase sine Gordon
renormalization groudEMRG) [1], to obtain perturbative model excluding vortices, as discovered by Cardy and
renormalization group equations from first principles, in aOstlund[25]. This model has been studied extensively, in its
controlled way to any order, and for an arbitrary smoothstatics[19,26—31 and its dynamic$32,33, as one of the
cutoff function. It starts, as numerous previous exact RGsimplest but nontrivial examples of a topologically ordered
studies[2-12], from the exact Polchinski-Wilson renormal- glass, a continuation to two dimensiof#il,34 of the fixed
ization group equation13,14] for the action functional point describing the Bragg glass phase in three dimensions
S(¢). The next step, however, consists in splitting it onto[19]. We first show that the present method allows to recover
local and higher multilocal components5], and integrating  very simply and in a controlled way previous results for cor-
exactly all multilocal components in terms of the local part.relation functions in the statics and in the equilibrium dy-
This yields an exact and very general RG flow equation fomamics. Next we obtain results, such as the full scaling func-
the local part of the action, i.e., a function, expressed in anions for both equilibrium and nonequilibrium dynamics. We
expansion in powers of the local part. obtain the corresponding exponeitand 6. We also obtain
The aim of this paper is first to develop a similar methodthe full and nontrivial behavior of the fluctuation dissipation
using instead the effective action functiona{¢). This is  ratio in the glass phase.
needed becausE(¢) is a very important physical object, The outline of the paper is as follows. First in Sec. Il we
both as the generating function of proper vertices, and rederive the EMRG method for the effective action, and give
lated to the probability distribution of an arbitrary macro- the explicit general lowest order RG equations. In Sec. lll we
scopic modeg, [16]. A multilocal expansion is also per- apply these RG equations to the p@¢N) model, as a test
formed and yields a RG equation again in terms of the locaPf the method. In Sec. IV we consider the Cardy-Ostlund
part. The major advantage compared to the previous methd§©O) model statics. In Sec. V we study the CO model equi-
[1] is that one actually follows directly physical observableslibrium dynamics. Section VI is devoted to the nonequilib-
and that correlations are immediately obtairfedhile in the rium dynamics of the CO model. All calculational details are
previous method one had to use a second formula to compufé@ntained in the appendixes.
correlations from the flowing actignThe price to pay is a
slightly more involved RG equation, but this inconvenience
arises only at higher orders. As a simple check, #hexpo- Il. METHOD
nent of theO(N) model will be recovered to lowest order.
A motivation to develop such EMRG methods comes
from disordered models. The physics of these being more We want to study interacting bosonic degrees of freedom
complex than standard field theories for pure systems, it islescribed by a set of fields denotéd= ¢, wherex is the
useful to be able to control the RG procedure. This is crucialposition in space anda general label denoting any quantity
for instance, in the functional RGFRG) which describes which will not undergo the coarse grainirig.g., field indi-
pinned elastic manifold§17-19, relevant for, e.g., super- ces, spin, replica indices, and additional coordinpalthe
conductors and density wavg20—-24, and the EMRG has problem is defined by an action functional,

A. Exact RG method
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S(¢)=%¢>:G‘1;¢+V(¢) 1 4 @& -8 + €9 +6 ny

and by the functional integrdl.e., the partition functionZ FIG. 1. Representation of the exact RG equatiB)sand (9).
=[ Dgpe (¥, The action consists of a quadratic The dot is the verte4, the solid line a propagatds,, and the
part (G;j,y: G]yix is a symmetric invertible matrjx and  crossed solid line the on shell propaga#@, . The sum is over all
W(¢) the interaction, a functional of. The notation “” one loop graphs with a factor—(1)P~%/2 for eachp vertex graph
denotes full contractions overx,i [ie., $:G L¢  represented.

=3[ xy®x(G1)Ye}]. We will denote [,=[d"x whered

is the space dimension, arfg=[d%/(2)* for integration 1 , ,

in Fourier. Our aim is to compute the effective actidfe), Gl==[c(q*2A5) —c(q*2A7)], (6)
i.e., the generating function of proper vertices, since once it q

is known, all correlation functions are known being simply

obtained as sums of all tree diagrams drawn ugingror all  where the cutoff functiorc(x) satisfiesc(0)=1 andc(x)
observables to be well defined, one usually requires both as 0. With the choicec(x)=1/(1+2x) one finds the mas-
ultraviolet(UV) cutoff (e.g.,Ag in momentum spageand an  sive, Pauli-Villars-like, propagator,

infrared (IR) cutoff (noted hereA,=e"'A,). For example,

in a single scalar theory one chooses G, with 1 1
Gl'= - 7
! g’+m? g?+M? @

2 2

G.‘*=q2c( 14 2

272272

with m=A?, M=A3, where the IR cutoff massn=m,
in Fourier. Herec(z,s) is a cutoff function which decreases js |owered from m=%« (I=0) to m=0 (I=«) (and
to zero ag—0 ors— and for convenience, see below, we 3 —, —mg,.). Whenever one needs a stronger UV cutoff, one
choosec(z,z) =0. To study finite momentum observables in may use
a massless theory, one is also interested in the zero IR cutoff
limit, A,=0 with G=G,_,, denotingc(z) =c(=,z).

In this paper we will use thdt(¢) satisfies the following Gl 1 c Q_2 )
exact RG functional equation when the quadratic fi&iis m g?+m? | 2A2 '
varied[for a fixed V(¢)]:
1 L[]t 1 . a different choice.
T (p)=5TroG = 5650 t5¢10G . (3 The full exact RG equatiol5) can also be expanded in
series ofl4, as
Derivations and more details are given in Appendix A. This
can be used to express how the effective actlofp) 1 82U ()
=I"|(¢) of model(1) with G=G, depends on the IR cutoff AU(P)= ETr(9|G| :W
A, . Indeed, the following property holds:
1 SU(p) - SU(P)
1 1 — =Tro,Gy: Gy +0oWUyp),
(@)= 5TrING+5¢:G g +U(d), (4 217G 5456 C spee T OUY)
C)

wherez/l,(¢)zu6|(¢) satisfies the exact flow equation,

which admits the graphical representation given in Fig. 1.
To summarize, the philosophy of the method is, in a
sense, the exact opposite of the Wilson one, since it amounts
(5)  to start from the action with no fluctuations,=A,, and
then add modes and their fluctuations until one reaches the
with the initial conditionlf|_o(¢)=W(¢), simply reflecting  desired theoryA,<A,. In that limit one expects that the
that the effective action equals the action when all fluctuaeffective action reaches a fixed point form, given by the
tions are suppressdat | =0 where the running propagator asymptotic solution of Eq(5) at largel.
satisfiesG,_,=0" from the propertyc(z,z) =0]. The above
equation(3) simply expresses hoW(¢) in Eq. (4) depends , )
on the final valueG=G,. The zero IR cutoff limitA;=0 B. Multilocal expansion
can then be studied by integrating the above equation up to To handle the formidably complicated functional equation
| =c0, (5) we follow the method introduced in Rdfl] and expand
For actual calculations, simpler and useful choices readhe interaction functionals in local, bilocal, trilocal, etc.,
in momentum space, components as

82U, )—1

Grl—Grl( 1461558

1
(9|U|(¢) = ETr(?|G| :
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e = O+ + @ +..
U|(¢)=JXU|(¢X)+JXyV|(¢x,cby,X—y)

$ =P8 +dD]
+JXyZWI(¢Xl¢y'¢Z!X'y!Z)+'"' (10)
The_ local part dependg orlly on the f@ctb;(_qb), unlquely ZLCIIZ @ = (1-P) | 8 n @ " C@} ]
defined from the projection operatét;. This operator is .
fully defined in Ref.[1] (see also Appendix B We recall :
here only_its action on a bilocal operatb( ¢y, ¢y ,X—Y),
namely, P1F)(¢)= [ F(¢,¢,y). It can be used to split an gl o = 8

action depending only on two points into

nyF(¢X’¢y’X_y) i [8 +®]
- [ EFrs0 +P (3 @B+ C@ |

FIG. 2. Schematic representation of the splitting of the func-

N _ . tional I/ vertex into local, bilocal, trilocal, etc., parts, respectively
where, by definition, R1F)(¢,¥,2)=8(2) [ F(,4.y), in (top line). Representation of the exact RG equation for the bilocal,

SﬂCh a way that the second part is properly biloda., trilocal, etc., as well as local vertélast several lings Note that by
(P1(1-Py)F)(¢)=0]. A similar construction holds for definition the ERG equation for the bilocal part contains only ex-
higher multilocal operators. actly two feeding terms, trilocal three, etc. The solid lines represent
The idea is then to project the functional equatidnso  a propagatofs; and the crossed solid lines the on shell propagator
that the bilocal, trilocal, etc., can be expressed exactly iwG,. Combinatorial factors are not representedere denotes the
terms of the local part), only. One notices that there is a projection operator on the local pafdenotedP, and P, in the
simplest way to do it so that the bilocal part\is-O(U?), text).
trilocal W~0O(U?3), etc. This determines one possible split-
ting of the higher multilocal components.g., bilocal versus
trilocal) as is represented in Fig. 2, and further explained in
Ref. [1]. This expansion is clearly suited to the situations 1
where the flowing functiondl; becomes “small” and domi- X X
nated by its Iocaglj parte.qg., in the context of a dimensional ZJ'xaG"”a’&kU'(qb)(G' JmdmdiUi(6)
expansiog, but it has a more general validity, since in all

+ fxy[(l—Pl)F]wx@y,X—Y), (11)

1 x=0
0|U|(¢):§3G|,ij di9;U,(¢)

cases it is an exact expansion in series of the local part of the _ }J’ 31'(f?GX—ﬂGO)-aZfldl’(al-ﬁGx - 5?)

full effective action functional. 2 )x ! ! 0 I
We now pursue the analysis exactly to oreHiU |2), suf- «

ficient to a number of one loop applications. Details are X(al'Gw'é’z)

given in Appendix B. The bilocal part is exactly given by

% e~ (112746 at- -6 0 Pt Gl

Vi
1
V|(¢1,¢2,X):E(F|(¢1a¢2yx)—5(X)LF|(¢1:¢2’Y)) XU (¢ (h2)lg,=p,=0- (14

12 We use the following notations?;=d,i, &il (&iz) denotes
with derivation with respect to the first argumefsecond argu-
mend of a function of two vectorsg,, ¢,, 9*-GXV.9?
=3,,G[Y31d7, etc. Also one notes in real spadg*
=G*Y and G)\,=G)\—G['=—[,,0G"dI". Note that the

o o § first line contains two one loop diagram$adpole and
X @~ (WG ot = (UG, 2= 0t Gy, bubble with one “on shell” propagator, and the second line
represents a sum over diagrams with at least two loops.

F|(¢1.¢>z,X)=—Joldl’(al-aGf,.az)(al.GIX,.aZ)

XU (@)U (o) (13
to all orders(by definition, and the resulting exact RG equa- lll. APPLICATION TO THE ~ O(N) MODEL
tion for the local part of the effective actigne., the exac3 We first illustrate the method on th@(N) model defined
function up toO(U?)] is by Eq. (1) with
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Tl(zl), is given in Eq.(C7), where we show that the coefficient
of the term proportional t@il, in Eq. (22) is well defined in

&, being aN-component vectorg2= (412 The propa- the limit| —c. One finds that("=T( is | independent and
X X :

gator is diagonal, and using an infrared cutdff, it reads ~ that "m!ﬂle(l):“l) is universal[independent oft(s)] in
G=G, with dimensiond=4,

no-Z [ o+ (42 a9

q. = q 0
G/lij= 4G (16 T(O):_%f dssd(s)+0(e), (23
with Gf as in Eq.(2). We study this model near the dimen- ™o
sion 4, ind=4- ¢, and compute the effective action to order
O(€?). For some explicit calculations, we will further use Tm:Sdf (2s) "¢’ (s)[c(s)—1]=
the form (6) with the following convenient parametrization s>0
and notation for the cutoff function(z):

5 2-l—O(e),
T

where S, is the unit sphere area divided by £ and we

core [ Casaerne [ S, Frabi a0 e ger it
The conditionc(0)=1 imposesf,=1. 52 _ 4872 e+0(€?) (24)
N+8 '
A. Derivation of the B functions and fixed points B N+2
The chal part o_f the running effective action admits the g5 =— TI (O)gj{ +0(€?). (25)
polynomial expansion:
This fixed point describes the stand@@N) critical system
Ui(é)=go,+ %¢2+%(¢,2)2+ %(¢2)3+ . exactly at the critical temperatufe="T, . The_initial cpndi-
2! 41 6! tions which end up fot=c exactly at the fixed point de-

(18)  scribe the critical manifold.
o . ) Besides, we obtain the correction of the critical exponent
From power counting, it is more convenient to introduce thegharacterizing the divergence of the magnetic susceptibility
dimensionless couplings,, ; defined from near the critical temperature from the positive eigenvalue
(corresponding to the instable directjon

92,|:A|Z‘32,|: - o~ ~ o~
B (92— 93) =Ni(921—03), (26)
O4)=A{0a) (19
N+2
and more generallyg,, =go, A{*" 2" which flows to }":2<1_ 2(N+8) 6)‘ @7

some fixed point valuegs,, as discussed below. Singg
~0(€%) andg3,~O(€") for n=3 (see Appendix C for the
RG equation oﬁeJ and the free energ@w), we drop from 2 N+ 2
now on these hi~gher m~onomials and study only the coupled v= )\—*: 1+m
RG equation forg, andg, easily obtained by inserting Eq.
(18) into Eqgs.(14) as detailed in Appendix C,

which gives correctlyf35] the exponenty to ordere,

e+0(€?). (28)

B. Computation of the two and four point proper vertices

(9@]4" = EE]4,| — NTngfl(l)ail = _,3[54”, (20) We now compute the effective action on the gritical mani-
fold, up to orderO(¢) for the local part, andD(e“) for the
bilocal part(i.e., theq dependent parxtin the limit of largel.

092=29 +NLZT(0§ _E’T(l)’é 3 Equation (12) allows to construct the bilocal term in the
pamegA T g T osal g T 92184 effective action by inserting Eq18) in Eq. (13). As we
restrict our analysis to order?, we do not consider mono-
_ Ejldﬂ(z)az (21)  Mials higher than $?)? in Eq.(18), and therefore we expand
3 Joo hrEar the exponential in Eq13) to order 1. Using the combinator-
ics already explained for the local part in Appendix C, one
with the integrals gets

~ ~ 1 .
IF°’=A.‘2“fa|G.q, If”=Affa.G.qu‘- (22 v|(¢1,¢2,q>=§f<e'°*X—1>F|<¢1,¢z,x>. (29
q q X
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N+2 ! ' X AX ~AX =2 2e
FI(¢11¢2-X):T¢1¢2 Odl 0|1G|,G|,G|,|g4|,A|,

N+4 > 2 4 )
(3?0514’#(3?((1’1'052)

! ’ X ~AX T2 2€
X | dI"an GGl AL,

where we have not written terms of the foritig; ,x) (i.e.,
which depend only on one field argumgas they cancel out
from the effective action. To this order in(O(€?)) there are
no other contributions. The explicit expressions@f and
9,G} using Eq.(17) are given in Appendix GEg. (C10)].
This bilocal term(29) allows to treat the renormalization of
the wave function and compute the expongrto order €2.

A natural way to obtain it, within this method, is to compute

directly the one particle irreducibl@ Pl) two-point function
and then take the limit—oo (directly atT.). Its local part
comes from the quadratic contribution of E{.8) and the
bilocal part is the sum OGfl(q) (4) and the quadratic con-
tribution of Eq.(29),

21’*|

rif@=———
Sbodd

1,i] :6ijr|(2)(q)a

$=0

(30

- N+2_ _
T{2(a) =Gy H(a)+ Afg — —5 704 f (e=1)(G])°.
X

PHYSICAL REVIEW E 68, 046101 (2003

which coincides with the expansion of lim.I'®)(q)
~q?(q/Ao) 7 to ordere? with the universal value of the
exponent to this order,

o N+2 34
77—77[94]——2(N+8)26,

in agreement with standard resul85].

Let us focus on the construction of the quartic term in
I'i(#), obtained from the quartic contribution of Eq4.8)
and(29). After combinatorial manipulations, we obtain

QuAf (7
N fq.(¢ql~¢qz><¢q3-¢q4>

~, 1 "I [N+4
~ i (3!)2fqi[(7)(¢ql-¢q2><¢q3-¢q4>
+ (g, dq,)(bq, bq,) | X1V (st qa) (35)
with x(*(q) defined by
@)= | @ -nEnTongd @
and where we used the notation [ éli

Efquqzyq3,q4(277)d6(d)(ql+q2+q3+q4). The local term,

In Appendix C, we show that it has the form, up to terms ofi-€., the first line in Eq(35), contains a contribution of order

order (A, /Ag)?,

_ ~ A q
{2(a)=Gy H(a)+ Afgs — 9 7[9ay]| I+ x| |,
Ao A,
[94)1= N2 (31
7L94) 18(47r)4g4’|
with the following asymptotic behaviors:
xP(k)~ak?, k<1,
xP(K)~Ink, k>1 (32

with a some nonuniversdl.e., dependent on the cutoff func-
tion (17)] coefficient. The two-point scaling functioff®) (k)
which is computed herésee Appendix € for an arbitrary
infrared cutoff functionc(x), is up to an additive constant,
independent of the UV cutoff61]. For the particular choice
(7) one recovers the result of R¢B6].

The large argument behavior gf?)(k) allows to take the

limit | — o0, using the fixed point valug; (24), we have(for
q<Ag)

2N+2 5, a

lim 0{®(q)=| ¢*>— €
(@=\q q2(N+8)2

| —oo

n Ay (33

€® which is divergent in the limit—o. Indeed, expanding it
to second order giveg, Af=04(1+€In A)+0O(e’) and at
first sight this term would lead to a divergent contribution in
the limit |—%. However, the analysis ofy{*(q)
=x™(qg/A,) shows the following asymptotic behaviors:

X (k) ~bk,

k<1, (37

P (k)~— . In(k?), k>1 (39)
1672 ’

with b a nonuniversal constant. When considering the large
limit of the effective action, we are interested in the large
argument behavior of(*(k) (38). Using the fixed point

valueaj{ (24), one gets that this cancels exactly the diver-
gence when—« due to the local term. Thus, we obtain

) uar 2m%e [
Illnlrﬁ = (NTS{ Aofqi((ﬁql' ¢q2)(¢q3' ¢q4)

—

4e "I [N+4
+(N+8)fqi( 4 >(¢ql'¢q2)(¢q3'¢q4)

_|._
+ (¢, bg;) (g, ¢q4)} In( % Aoq4|) ] . (39
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which is independent of , to orderO(€?). Note that in the  obtained using the largle behavior ofy(?)(k) (32). We get
largeN limit one recovers correctly the “screenefB7] four  again the universal value of the; exponent form %
point renormalized vertex eq€ (whereq is the transfer mo- = 791 (34).

mentun). . o The connection between the EMRG method and the stan-

The result of this analysis is that we have constructed theard field theoretical methods in teasslesschemdi.e.,
large scale theory by obtaining directly a fixed paint for thej;noging Ir'@(q=0)=0] is more subtle herdsince one
effective action, keeping the UV cutof, finite, which is  ghouid usd = strictly).

the relevant object for statistical physics, and for an arbitrary

cutoff function.
IV. CARDY-OSTLUND MODEL: STATICS

C. Relation with field-theoretical methods In this section, we show how this EMRG method can be
dused to study perturbatively the Cardy-Ostlund mdde&]

It is interesting to make the connection with standar . .
Jear its glass transition.

field-theoretical methods for critical phenomena. There on
is usually interested in the limi ;—o. Note that in this

limit Eq. (33) diverges. It is, however, possible to define a A. Model, choice of propagator
‘renormalized” effective actionl'r(¢g) which is well de- This model is a random phase sine Gordon model which
fined in that limit. can represent akY model in a random magnetic field where

One can first check directly on Eq33) the standard  the vortices are excluded by hand. As mentioned in the In-
Callan-Symanzik(CS) “bare” RG equation[16] for the  yoquction, the statics of this model has been extensively

physical correlation function of the massless theory at they,died using various method49,26—31. The system at
fixed point, equilibrium is described by the partition functioZ

P = [Dpe HU4T T being the temperature with the Hamil-
(AO(QT— )(Iim I'{2)(q)=0+0(€). (40)  tonian
0

| -

1
C _ | 42 2 20/l 2
One can also connect to the CS equation for the renormal-" T41= Zf d“x(V éy) J d*x(h cosgy+ hy siny)
ized theory. One defines (45)

Tr(¢)=T(NZe), (41)  with ¢,e]—,+[ as there are no vortices, whelg
=(h;,h?) is a two dimensional random Gaussian vector of
where Z=Z(A,/A,,g4;) is the so-called “wave-function Z€ro average with fluctuations decorrelated from site to site:
renormalization” factor such that o
(hihl,)=2goA58;; 6P(x—x"). (46)
I(q)=ma+g°+0(q*). (42
The quenched average over this random variable is per-
Using Eq. (30) and noting thathl(q)=—2A|2/c’(0) formed by the means of replicas, which is used here as a
+ A+ O((A, /A)?) with A=c"(0)/2c’ (0)2, one finds the simple trick to restore translational invariance and to orga-
renormalized m;SS’n%:(l/A)AE(ZAC'(ON';‘62|) and 7 nize perturbation theory. After averaging over the disorder,

~ ) one obtains
=(1/A)[1+ 5(94;)In(A;/Ag)]. One can see that up to higher
order terms,A; plays the role of the renormalized mass. L Zn_
From Eq.(31) one finds, to orderdgj, ,03,)., InZ=lim , z“:J D e H 1T
n—0
a||z(A'”) anZ=75[04], (43 rery 2
MRImlA, N 4| 5104 | = — 1IN L= 77( G4y |, H 1
e %=52 j XV $3V bea,p
a,b

these derivatives being taken at fix§g| . This is the stan-

2
darpl definition for .then(g) fupction. One can go f(ligther, _ 9020 E f cog 2~ d,)t()), (47)
define a renormalized couplingg, e.g., throughI'y”(q T “ab Jx
=0)=mggg, With gr=04, up to higher order terms, and S
derive the CS equations for the renormalized vertices. Here¥herea,b=1, ... n are replica indices. We use the same

we just mention one such equatiphé] for the “renormal- ~ Propagator as for th@(N) model, the Gaussian part of Eg.
ized” two-point vertex function in the critical regima,  (47) being diagonal in replicas, one has
<A, butfinite

-
- g _s 209A 2\ f 2/ A 2
((9|+77[g4,|])F|R(2)(q)20, alA>1 (44) Gllab 5abq2[c(q 12A5) = c(qQ°12A7) ] (48)
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with the same decomposition of the cutoff functiofx) 9|1'_2’1Ea¢b¢cei(¢:_2¢g+d’i)' corresponding tok? , ,—4.
(17)._Not|ce that the Hamiltoniaki"P possesses the statisti- \ye denoteg, =g*~* the coupling constant associated with
cal tilt symmetry (STS [38]: the last term n Eq(47) is K, _1, and obtain its RG flow from Eq50) by taking into
invariant under the change of variabj— ¢+ u, which  50count the 2§—2) possible fusions such tha®+Q
protects the diagonain replica spacequadratic term in the

) . X , =K;_1, P,Q being themselves obtained by a permutation
effective action to all orders in perturbation the$gg,34. of the components oK, _; (gP=gP=g,) with PQ=—1

[25]. After some transformations detailed in Appendix D,
B. B functions and fixed point one obtains
For this model, the Fourier representation in the fields T
(B4) is more natural. Although only one harmonic is present 49,= ( 2 —>g|—B,g|2, (54)
in the starting Hamiltoniari47), higher harmonics are gen- 2m
erated by perturbation theory and we write the local interact- )
[ f the effecti i B =
ing part of the effective actiofl0) as B|=2t?7’o(0)j~7|(x)+ T_ﬁ [570(%) = 370(0)]
X cJ X
2 glK iK-¢ Ty (X
Ui()=—Af 2> e, (49) X (eTen®—1)+0(7), (55)
K#0 T
where we used the dimensionless variabtexA, and de-

where  K=(Kq, ... K,), o=(o%, ....¢" are o

n-component vectors, and one defileK' ==K, K. The
sum is over alkK §uch tha.\lKa are |ntKege[sk not all zero with 69G|Xr:Tt97M:|—|'(;<)v
2.K,=0. U\(9) is real, imposingg; =g, ~, and the sym-

metry under replica indices permutation, which is assumed

here, imposeg| =g/, ¢(K) being any vector obtained

from K by a permutation of th&, . By inserting Eq(49) in  \yhere the two functiongy,(x) andy,(x) are given in Eq.
Eq. (14) [see also Eq(B6) in Appendix B] one obtains the (D8).

Gl =Ty, (%), (56)

RG equation for the local part to second ordegip, As shown in Appendix D, we can transform the integral
5 5 overXx in [Eq. (55)] and express its cutoff dependence in a

IQIQKZ(Z_K)gK_I_'_ S gPg?(P.0) simple way. One findss, = (4/T2)ext —(yc—JaIn 2a)]

! 47 |5 212 P FTo-Kk T yielding for T<T_, the stable fixed point of the RG flow is
given by
1 ro
-= 3 (P.Q)3f dI'37 9097 (50 ,
2T< P,Q,P+Q=K 0 g*=8mexp| ye— | In2a||7+0(7) (57)
a

with the integrals )
with 7=(T.—T)/T, and yg=0.577 216 the Euler constant.

ql_ A2
Ji=Aj L&GTGX, (51) C. Bilocal term and two-point correlation function
Equation(B5) allows to construct the bilocal term in the

~ _ effective action to lowest ordér.e., O(7%)] using a Fourier
2 A2 =0 4 ’
J=A L(aGf—&Gf‘ )dG[, G/, A, representatioriB4),
Xe(P2/2+Q2/2)G|X,TO+P-QGr,l' (52) Vi, ihx) = S VIPxgiK-6+iP-y (58)
K,P

The glass transition temperatufe below which the charges
9 P € 9 Just belowT, only the charges of minimal modultlt@{_l

of minimal modulus such thatk; ;=(0,...,1,..., i )
~1,...,0), Kiflzz become relevant is =2 are r_elevant, therefore to t_hls orde_r the sums m(_B&)
’ are restricted to such harmonics. By inserting &) into
8 Eg. (B5), one has
ar
Te=—5—=4m (53
Kl,—l

VF*"*:% f (€= 1)F[PX,
and a small parameter=(T.—T)/T,>0 can be defined, g

which allows to construct perturbatively the effective action . (K-P)2 (I P,

of this model(47) in its glass phase. Indeed, just beldy PP = — — j dl’ 3G/, G}, ek P26,

the higher harmonics are irrelevafithe eigenvalues (2 T 0

—TK?%4a) are negative and of order].1Such irrelevant K.PGE A4 K_P

higher harmonics include, for instance three replica &} xe A9 (59
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where K,P are of the formK, ;, and thusgf‘=gl=g;.

Performing the integral ovdr' as explained in Appendix D, Ilm Fb"°°(¢)— >T 2 f dad?
we have
(2/\0
A L1 7(X)
PP = ot (e T POy r kP +2j J lim VK~ Ka
ql—e

(60)
X @0 X )Gl (- a4y~ 4)) (66)
with X=A,x. For the chargeX,P we are considering here,
there area priori five different cases ofK-P=-2, from which we extract the two-point 1Pl function
—1,0,1,2 to consider. However, we see immediately in thehmeFI (),
previous expressio(60) that the charges such thidt P=0

do'not contribute to the bilocal part of the effective 82T ()
action (they correspond to four replica terms T3 = (67)
072 asprcsge (Pa” o) Ti0c=vd) We show in Appendix D Y 5hq09> 4 $=0
that VP9 takes the form, up to terms of ordeh(/A,)?,
A IIml—‘I ab(q): %&ib"‘ 47_—_2(]2 InAiu (68)
\A/F*P'qz—A|q2{5K’PInA—;+ XK'P(A&I” 6D . To(q?203) ™ 4w A

from which we extract the correlation function at the fixed

2 point (up to terms of order\gz)

74|
A|=Hexp( —2yE+2f In2al, (62
a _—_— .
° [ gol=1im 2 | (1-e {7 69
- 0
where x¥'P(k) behaves asymptotically at small argument as
1_eiqx q2
KPk ak.p, K-P#-2 K 63 =2TCJ 5 C W
, ~ <
X ( ) a—2k2| K.P=-2 1 ( ) a q 0
210 9| o[
and at large argumeritelevant for the limit — %) as 1=7=7"Inl ~J¢| =2
o/ \2A;5
( 1 ~272In%(|X|Ag) +4[1— 7+ O(7?)]
b.p—, K-P=1,2
K2 xIn(|x|Ag), (70)
K,P — > . .
x(k) < B K.P=-—1 k>1. (64) which shows that the amplitude of these anomalous fluctua-
e tions in IrX(|x|Ao) is universal(Ref. [34]).
[ Ink, K.P——2 We finally mention that, due to the STS, the

connected correlation function ([ ¢y— ¢ol?)
—([px— Do ){[ px— o)) is the same as in the pure system.

The large argument behavior gf¢:P(x) allows to take the
limit A,—0 of Eq.(61) as the logarithmic divergendwhich
only exists fork = — P) is canceled. We notice also thatonly V- CARDY-OSTLUND: EQUILIBRIUM DYNAMICS

such terms withK=—P survive in thi's limit: in particular, We now turn to dynamics, which, within the EMRG
three replica terms such @§=,.p.c€' (% "% do  framework can be conveniently studied by introducing an

not exist in the effective action to ordef at the fixed point infrared cutoff on space only, keeping the full time depen-
for A;=0. Besides, by inserting the fixed point valgé dence.
(57 in A, (62), we see that the cutoff dependeriemcoded

in the factor expf,In 2a)] disappears in lin.., A, leading to A. Model and propagator

2 Within this EMRG framework we want to study the dy-

lim VPa= — 5K',P7—q2 I~ (65  namics of the mode(45) [32,33, described by a Langevin
o 167~ Ao type equation,
Equation(4), together with Eq(65), allows to construct the J SHO
q ’ g q ’ n_uxt:_5—+§(xit)! (71)
bilocal term as at Uyt
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where({(x,t))=0 and({(x,){(x",t"))=27To(x=x")(t  structure of the effective actidin (u,iu). This means for the

—t') is the thermal noise ang the friction coefficient. A dressedi.e., exact response and correlation functions:
convenient way to study the dynamics is to use the Martin-

Siggia-Rose(MSR) [39] generating functional, on which Cig=Cii .y, (77
perturbation theory can be done. Moreover, using the Ito
prescription, it can be readily averaged over the disorder. The ng, :Rl'?—t’ , (79
disorder averaged generating functional reads
; . Rf =—0(t—t’)£&Cq (79
Z[j,j]:f DuDite Sluiul+jutjiu (72) lt—t T It=t -
Su iﬂ]—SO[u iﬁ]+Si [u ia] B. Response function and dynamical exponent
) - ) ntl ) )

We will study the dynamics near the transition tempera-
I (N ) A ture T (53), below which the lowest harmonic of the disor-
Solu,iu]= fqt'“—qt( 79+ Cq7)Ugi— ”fot'uxt'uxt' dered potential becomes relevant. N@ar we showed pre-
viously that the higher harmonics, although generated by
. o perturbation theory, are irrelevant.
&nt[u,iu]=—goA§J ,iuxtiuxt/cos(uxt—uxt/), As we considered here static disorder, the average over
Xt the disorder generates an effective interac®yfu,iu] in
where [,= [7dt, where in this section the initial timg is ~ Ed.(72), which is nonlocal in time, so we expect the friction
: coefficient to be renormalized by the disorder. We therefore
construct the effective action to order 1 4+ (T—T.)/T,,
and extract the dynamical exponentfrom the response
function. In the starting dynamical actidi@2), the interact-
ing part is purely local in space, so to order 1 the interacting

uxt) part of the associated effective actibp(u,iu) will remain

sent tot;= —o before takingA,/Aq large, in order to de-
scribe equilibrium dynamics.

In our formulation (1), the field ¢ is now a two-
component vector

(73 so. We therefore search a perturbative solution of the equa-

¢xt:(
tion for I',(u,iu) of the form(10),

iUy

and fromS, in Eqg. (72), we compute the inverse bare propa-

gatorG; *, u,(u,ia):fu,(ux,iax) (80)
X

& Ya) ( 0 S(t=t') (= 7+ cq?) .

O sty ke —2gTat-) - [ w05 | i it
X X
1 (81)
X— PV (74
c(q°/2A5) —c(q=/2AT) whereF(u,) andA(u,) are functionals only with respect

_ ) ) _ _ to the time dependence, i.e., functions of the “vectar’
By inverting th|§ matrix we obtain the bare response and={y  at a given pointx in space. In addition, these will
correlation functions acquire arexplicit time dependence, indicated by theand

a ——— t’ indices. One has the initial conditions
Cltt'zclt't:<uqtu—qt'>

. A —otrr(U) = 2goA § COLU— Uy), (82)
N2l 4!
ra “Ue(a?2A8) —c(q?2AP)],  (75) Fi_o(1)=0.
The F;(u) term is indeed generated by perturbation theory
_5<uqt>__A— and is related—in the case of equilibrium dynamics—to
Rig: = =(UgdU —qv) Ay (u) by a generalized FDT relation, namely, a Ward iden-

tity, which can be written to lowest order,
= 6(t—t")e T [c(qP2A8) ~ c(a?2A7)], w1
u
(76) O ZauAp(u), t>t, (83)
SUyyr T

where we have set the bare=1. As we consider here the o .
equilibrium dynamics of the system, the time translation in-whered;, acts only on the explicit ime dependence., not
variance(TTI) and the fluctuation dissipation theorg¢fDT) ~ On Uy/). Notice finally that terms containing higher powers
hold. These properties hold to all orders in perturbationof the fieldiu, i.e., (u)P*? are of order**1. They corre-
theory and, as we will see, have strong consequences on tlspond to higher cumulant of the disordee., higher number
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of replica terms in the statitsThe exact RG equation to whereR = [dw/2me 'R and3,, is the Fourier trans-

order 1(14) then read$see Appendix E

1
A= [ KD AW, (84)
tgt; 11
(1) @)
JF(u)= ki Fr(u)— k.~ Ay (u
1Fre(u) ftlti ityt] it(U) ft1>ti ityt] it (U)
with
(W22 2 sox0 0
2 Suy, Y sy
(2) _ x=0
Kicas —5uthalth1ti. (85)

The solution of this coupled set of equatiof8) together
with Eq. (82) is given by

x=0
A (U)=2A7g,€%1-'COF Uy — Uyyr), (86)

6F(u)

x=0 _
” =—2A%ge-vR " Jcod Uy —Uy), t>t,
xt’

where we can check explicitly the previously mentioned gen-
eralized FDT relatiori83). Finally, as we consider here static
disorder, the flow ofg, is given by the previous study, the

fixed point valueg* being given by Eq(57).

From I'j[u,it], we obtain the response function in the

following way:

Ry ={Uqil_qu) il ’
,={UgU_qgpr)=| ——— .
It qt qt 5|th 5U,qtr N
1 1 u=iu=0 q,t,t/
(87)
We define
Dty = Ay (u=0), (88)
oF i (u)
Eltt’_ .
OUyr U0

Notice that in the case of equilibrium dynamid3.

:Dlt*t’ and2|tt/:2|t,t/ . One getS
621_" ’ 2
— =0(t=t")(q°+d) +Z—r . (89
OiUqedU_qu | ey

form, of %;;,_y/. In Appendix E we show that it has the
following form (up to terms of ordeA?/A2):
3= 0B, |nA—'2+X(dy“> ﬂ) , (91)
’ A AF
o exp(fln 2a
L (92
with the following asymptotic behaviors:
XY (v)~ag,iny, v<i, (93
YY) ~Inv, v>1, (94)

where agy, is a nonuniversal constant. The large argument
behavior ofy(™™ (94) allows to take the largklimit in Eq.
(92) as the logarithmic divergence is canceled, which gives

1
limR{ = , (95
| -0 2 i i * w
q°—iw+tioB* In—
0
*=|im B,=er, (96)

| —o

where we have used E(7) to computeB* which is uni-
versal: the cutoff dependence encoded in efplf22a) has
disappeared. On the other hand, we expect that the scaling
function in Fourier should read

1

o 2z—-1
Ag

from scaling. If the initial model possess STS then the coef-
ficient of g is fixed to unity. Theq independence of the
self-energy is expected to hold only to the order-ithat we
are working at, and it should be corrected by higher loops.
Expansion of the denominator of E@5) coincides with the
expansion to order of the denominator of Eq(97) and
yields the universal value of the dynamical exponent

imR{ =

| —o0

(97)

z—2=2B*=2e”E7r+0(7?) (99
in agreement with previous studies.

It is interesting in view of later applications to nonequi-
librium dynamics, and a useful check, to compute this re-
sponse function in the time domain. Indeed, writing simply

When considering equilibrium dynamics, the use of Fourierthe identity (?T'(?~1=1, whereI'(?) is the matrix of the

transform allows to compute this matrix elemdB®) in a
simple way,

1

quwzz.—!
q _|w+2|w

(90

second functional derivatives of the effective action with re-
spect ot the fieldsi,; andiu,,, we obtain a system of closed
equations for the exact response and correlation functions
Rﬁf andC@‘t’f' to order 1[more generallyF;(u) and A

can be bilocal in spadge
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’ ’ t ’ _ =0 ’ i 0 ’ =0’ ’
iRy —V* Ry + ft_dtlzmlR.?}:6<t—t'>5<x—x’>, Ri=Frv)) +(z=2)Inq[Fr(v’) Tv Fg (v)]
| (99) T FLY0 )+ O( ) (105

o oo [ o with the result of solving Eq(102). Note that the term pro-
ICir =V Cyp + ﬁ_dtlzlttlcltlv portional to Inq has precisely the expecteddependence, a

' check of the calculation. Since there is an overall nonuniver-
sal scaleq—\q, Fr*{v) is defined up to a change in the
constantp defined in Appendix EE34).

One can check explicitly that the scaling function in the
We remind that we have chosen the Ito prescription, whicime domain obtained by this second method coincides with
fixes the following initial condition for the response func- the inverse Fourier transform of E(7) to the lowest order
tion: in 7. The asymptotic behavior of the scaling function in the

time domain is

! ’[’ ’
=29TRy, + ft | dtlelRf,th. (100

lim RH,t*E: 1,
€0 Fredv)~eEIn[1/(e’v)], v—0, (106)

Ryt +=0. (101 Frdv)~e"®v 2, v—x, (107

Before using these equations to study nonequilibrium dythe slow time decay 17"27 for z>2, arises from the dis-
namics, we show how the equation for the respofs@.  order. Notice that a similar power law tail for largét has
(99)] function allows to recover the dynamical exponent already been obtained for the diluted Ising mol)].

Using Eq.(88) together with Eq(86) and TTI (which holds Using the FDT we also obtain the equilibrium correlation
for equilibrium dynamicy the equation for the response fnction in the scaling regime as
function reads

t o Ch =Ta FEQ(T-1)), (108
(O + )R = 29|A|2f dthlxti?leClt—tl

Felv)= JMdWFg"(w). (109
X(R|?1—t’_R|?—t’)' (102) v

- _ _ ) ) We conclude this section on equilibrium dynamics by no-
The limit | — is taken as explained in Appendix E20), icing a few interesting properties. The first one is an exact
and a way to solve this equation is simply to say that in theconsequence of the scaling fortt03) combined with the
right hand side(rhs), we may replace]€|?1t,, by its bare  STS. Indeed, the STS imposes

value, which is simplyd(t;—t')e" 9=t as this term is
already of orderr.

One expects that the response function can be written as o

< -1

lim fj dt R, =—. (110

t—oweY i q2

Ry =ImR] =9 ?FE{g*(t-1")), (1039  Using the scaling property we showed previously, this sym-
= metry (110 implies

where q=q/Ag, T=tA3, T'=t'A2, with F§! a universal . _ 1 [
scaling function(up to an overall nonuniversal scalsuch f dtquzFﬁo(th)=~—2=>f duFg{u)=1, (111
that F{v)~v (22 for y—0. As a function it admits an 0 q 0

expansion in powers of, obtained as from which it follows that

FRlo)=FRv)+7Fgtv)+0(%), (104 1
Ry o= | # 2FR@(i-1)=——, (112
Fg(v)zeiv, tt qu Ro(q ( )) 27Tz(t—t’) ( )
le — E _ H -0 —v__ T
Frdv)=e"[(v—1)Ei(v)e ' +e 1], C%f(’:EIn(t—t’),
v
v=0%t-1"),

where we have used FDT in the last line. Note that the un-
as shown in Appendix E. This is established by identifyingrescaled time appears in these formulas. Although the scal-

the direct expansion of Eq103) in terms of the argument ing form (103 is only valid for smalig, we believe that the
v'=0%(t-1"), behaviorg113) may actually be the exact leading ones in the
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larget—t" limit, their coefficients being fixednonperturba- in the limit t—, g—0 with t’ fixed andg?t fixed, with
tively) by the STS. This would be interesting to check NU- ¢ (0)=const. Assuming the behaviofd16) and (117

merically. _ _ _ one finds the connection
The second property is a comparison with the so-called

Porod's law[41]. If the form (97) were to hold to all orders,
the scaling functions would decay at large arguments as

(d=rp)z t=0-1+(2—p)z 1, (120

FeXv)~ 11?2 and FE(v) ~ 1?2 That yields

1
(t_tr)2/2q4

q

et~ (113

as in the Porod’s law witd=2 andn=2 [41]. Here this
property holds to the order of our calculati@{ 7).

VI. NONEQUILIBRIUM DYNAMICS OF THE CO MODEL

Applying standard scaling arguments, we exﬂétﬁt, and
g, to be functions of the scaling variablegt and q%t’

whereq=gq/A, andt = A3t andzis the dynamical exponent.
As is the case for pure systems at a critical point, one ca
write from RG argumentf42] with little restriction,

2+z+ 77( t

T

ﬁ__q

tr

0
R ) Fr@?(t—1"),t/t), (114

ol

tt’

(4

~ t —~ e~ e

=Tq2+”<?) Fe(@(t—t'),t/t’), (119

where the exponent is defined by imposing the following
behavior of the response scaling functiba(v,u) whenu

Fr(v,u)=Fg.(v)+O(u™1). (116
This has been checked for pure systd@2—45 and, par-
tially for one case of a disordered systéomly for the re-
sponse function in Ref40] and for the Fourier modg=0
for both functions in Ref[46]). It was found in all the pure
cases that one also has

FC,OC(U)

Fc(v,u)= +0(u?).

(117

These forms, Eqg116) and(117), yield a nontrivial fluctua-
tion dissipation ratioFDR) characterizing the violation of
the FDT[47,48. It has been computed exactly for the spheri-
cal model ind>2 [43], using dynamical RG methods for the
pure O(N) model at criticality up to two loops in aa=4
—d expansiori45], and up to one loop for the critical diluted
Ising model in a\/e expansior46].

Another standard definition for the autocorrelation expo-

nent\ ¢ [49-51] and for the autoresponse expon&pt[52]
is

cL, =1 2 (gH), (118

RE, =10 2 po(gh) (119

Aszc,
po(v)=To 7" 2F ¢ (v)(t)' 7",
Pr(v) =072 A Fe L (u)(t)",

which seems to hold for pure models, together with the in-
equalityd/2<\-=\g [49,53.

For the nonequilibrium dynamics of the CO model, we
obtain similar scaling$114), (115, (=0 in this case be-
cause of STHbut with a different asymptotic behavioat
largeu of the scaling functiorF(v,u). As we will see, this
has strong consequences on the FDR. Note that although

g% is the full correlation function, to this order in the
expansion it coincides with the connected gnaich is the
correct one to consider, e.g., to obey FDT in the equilibrium
regim?, the difference between the two being of ordgr
=0(71).

A. General framework

We want to study the dynamics of the system described
by Eq.(71) which, at the initial timet;=0, is in a non equi-
librium configurationuxti=u2, whose statistical weight is
given by e Holt”l (where Ho[ug]#Hced Uol). The general
framework to incorporate this feature in the MSR formalism
has been developed in R¢fi2], and it amounts to describe
the system in terms of the generating functiol,iu]
—>S[u,il]]+ Ho[ug]. If the system is prepared in a high tem-
perature state, with short range correlation(\sﬂuf,}
zmgzéd(x—x’), the correspondingi [u°] is given by

2
Ho[u®]= @J (ud)2. (122
2 Jx

Any addition of anharmonic terms id[u®] is irrelevant as
long asmﬁaﬁo. Moreover, by power counting one has that
m, 2 is irrelevant[42], so that to study the leading scaling
behavior it is sufficient to assumme, >=0, i.e.,ul=0. The
effect of this nonequilibrium initial condition is then com-
pletely encoded in the lower bourig=0 on the time inte-
grals in the MSR functional72). The running bare response
and correlation functions are given b§2]

2

NS g
R, =o(t—t")e 9t ¢l — | —¢| — ||,
o= 202] | 242
(122
2 2
C =L e-ait-tl_g-atrt))| o 4| o[ O} |
Yg? 272 2A?
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B. Nonequilibrium response function

.

. i _a Ui -3 2

In order to compute the response function, we solve per- I|mf_ dFR(UaU) €t Pr(U)+O(7v 7,79,
q v—,ufixe

turbatively the equation fofR ;, (99) using the trick ex- (127)

plained above, i.e., replacing the ex&ﬂ, in the rhs of Eq.

(99) by its bare value. Doing this, we obtain a perturbative u
expansion of the exponenis[already obtained previously Pr(u)=eE
(99)], 6, and of the scaling functiofrg(v,u) in the same 2yu
spirit as Eq.(104). Indeed, as shown in Appendix F, one has

the scaling(114), in terms of the scaling variables=q%(t Notice that in the limitu—1 we recover the result of the
—T’) andu=T/T” with equilibrium dynamicg107). This is more general as one can

check from Eq.(F18 that FR"*{v,u)=0((u—1)?) asu
Fr(v,u)=F3(v)+ 7FL(v,u), (123  —1. Finally, one must keep in mind that the limits—
andu—c< do not commute, indeed one expects that a scaling
function ofv/u~q?’ interpolates between these limits, left
for future investigation.

Another interesting behavior is the limit of vanishing mo-

mentumq=0, the so called diffusion mode. Although well

defined, this limit is a bit peculiar due to the prefactpr 2
in the scaling functiori114). However, the functioffr g(v,u)
behaves when—0 in such a way to cancel this divergence
as in Eq.(106) and leads to a well defined response function

El _ O ’ = 0 ’ =0’ ’ _
R =Fr(")+(z=2)Inq[Fr(v’) +v'Fg (v')] RE° which has the scaling form

Fa(v,u)=F§v)+FR""%0,u),
f=e"er+0(7?),

which is established by comparison with the direct perturba
tive expansion of Eq(114) in powers ofr,

+0INUFS(v')+ 7F&(v’,u)+0O(7?) (124

~ 0 ~
. e o R~q~=,°=% L A L (128

with v’ =0%(t—1') andF£*{v) is given by Eq.(104 and N (R AN t/
F1"°"*¢y,u) given in Eq.(F16) has a complicated expres-
sion left in Appendix F(F18). However, its asymptotic be- FAf(u)=FdM(y) + £ (),
haviors, which we now focus on, have remarkably simple
forms. First, in order to compare with the prediction for pure FAf0() = 1

R ]

critical systems one is interested in the limit of large&keep-
ing v fixed. This define$r ..(v) (116 which, we find to be

. 1+u
Fg'f”(u)=2eVE|n< J—),
2\u

FR,OG(U)=6”+GVET[ —Jmverfyu —e ! (1—v)In(4ve’e)

v— %) 25({1,1},1;,2] v

which is identified with the perturbative expansionﬁ)f];:,O

—2v straighforwardly obtained from the general expressEis).

+0(7),

(125

C. Nonequilibrium correlation function

where erf) is the error function angF,({1,1},{2,2},2) is To compute the correlation function, instead of solving
a generalized hypergeometric serig—56. This shows the equation focy,, (100), we obtain it using the following
that the response function has a scaling behavior as predictgermal solution fort >1t':

for pure systems at a critical poifit16). The smallv behav- - -

ior of Fg.(v)~1—e”erlnv shows thatpr(v) (120 has a c%,: lim C|qt“t/

good limit whenv—0, ¢r(0)=const, and this gives the |-

autocorrelation exponentg (119),

o1 [Vanrd 7Y+ [‘at, [ RS D, R
- P SRl " P PR i P U U P

Ag=2+0(7?). (126)
(129
It is also interesting to analyze the asymptotic behavior in the
limit of large v (and, in particularv>u), keepingu fixed.  \hereD, , =lim, ... Dy... is defined in Eq(88) and explic-
This limit is relevant, e.g., to study the behavior at fix@d itly givenlizn Eq.(F4), wrl1i2ch we expand perturbatively using

larget,t’ with u=1t/t’ fixed. It is obtained from Eq(F16) as . . 3 .
explained in Appendix F. The behavior of the response funcEhe expression we obtained f6I;, (124). In Appendix F,

tion in this limit is then given by we show tha’C%, has the following scaling formi115 with
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Fe(v,u)=F(v,u)+ 7F¢(v,u), pico_gr L
ttr T _T\(z-2)z
(-1 )( )

~\ 0

Tt

?) FE'(uw), (139
FQ(v,u)=e v—e vruilu=1) (130

FAf ()= F9f0 () + 7ML (y),

andFZ(v,u) given in Appendix F. Again, this is established ¢ ¢ ¢

by identifying the direct perturbative expansion of Effl5): Ao (1) =1
C ]

i T IFe(v’,u)

q _ Felv’, 1

i q (v U+ (z— 2)In(q) T dlffl(u) —eVE[4\/G+(u+1)In(u—1)

—2(u—1)In(1+Ju)—2Inu+6—81In4],

+60INuFd(v’,u)+7FL(v’,u) (131 ( )in(1+u) 1
with the asymptotic behaviors

with v'=g*(t—1"), which is similar to the scaling form F8f(u)~1+ reeIn(u—1),

expected for pure systems at a critical pditit5. However,

the largeu behavior isdifferent indeed one has in the large

u—1*, (139

diff
limit, keepingv fixed F&(u)~1+re"eu, u>1.
2 FL_(v) These behaviors are such that the singularityt ad’—0
lim Fe(v,u)~ 4o O(u~?,7u 1,79, cancels and one finds that the diffusion of the zero mode
u—o0 u Ju become anomalous at large time,
(132
Cq 0_ trZ/Z (137)

Fe.(v)=e"e "/ erfiyu,

which decays more slowly than the predicted scaling for pure
system at a critical poinf117). Besides, using Eq(F23
F&..(v)~v+0(v?), ¢c(0)=const(120), this defines the
autocorrelation exponentc,

A=2T.+0(7),

this formula being valid fort —t’<t’, the random walk
result being recovered wher+2.

D. Fluctuation dissipation ratio

z
=d— — =1 — 2
Ae=d 2 +O(*)=1-e%r+0(%), (133 We now give the results for the FDR}, defined by[47]

where we have used the explicit expressions of the exponents T &t/cgt’
z (98), 0 (123, and the relation d—\ )z 1= 6—1/2+(2 x4 RY
— )z * arising from 14/u decay of F&(v,u) (132. Note “ !
first that\ ¢ is different from its trivial value\-# d. Besides,
\)/\v:<n§/t§ ;T:;T(;zd)\%rag&gns?ls){e%zt 't violates the bound can compute the FDItht,—X?t, as a function of the scaling

For the correlation function it is also instructive to look at variablesg?(t—t’) andt/t’. As we saw previously, both the
the asymptotic behaviars> 1, ufixed. As detailed in Appen- exponeniz and the scaling function associated with the FDR
dix F, one has will have an expansion in powers of i.e.,

(138

Starting from the scaling laws that we established above, we

T — 1
lim Fc(U,U)NF(C)(U,U)-F;TPc(U)+O(Tv72,TZ), —E—ZFX<qZ(t—t'),,.f—/ , (139

v—®

Tt

(134

Fx(v,u)=F3(v,u)+ 7F3(v,u) +0(7?),
Pc(u)=Pg(u).
the expansion ofz to order 7 being given by EQq.(998).
F|na”y, we also Study the correlation function in the limit F (U u) Corresponds to the Gaussian mode' and from the

of vanishing momentur = 0. As mentioned previously for perturbatlve expansions that we obtamed?ﬂa%, (124) and
the response function, this limit is a bit peculiar due to the

q 2 prefactor in Eq(115. The smallv behavior ofF c(v,u) “, (131) one can identify{perturbatively this scaling form,
leads to the scaling forrtup to a nonuniversal scale with
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Fo(v,u)=1+e 2/u=1) (140 FIMu)=F3™u)+ F3M™ (u)+0(?), (144)
1 FR(w)=2,

0 u
F>l<(v,U)=—;T(l—e’zvl(ufl)) gFam )
Fc  (u

diffl /|y _ odiffl _ opdiffl
—e”Fé(l-l—e_zv/(“_l)) FX (u)_ZFC (u)—2u du 2FR (u)
o[ FFe)  u(u-1) dFe(v.w 2(z-2) 8
dv v Ju ' zr(u—1) 7’

Inserting the formulas foF % andF¢ obtained in Appendix F Using the results of previous sections, we find

yields the general result féty as a nontrivial function of the T \/a_ 1
two variablesu,v. Here we only give the behaviors of this ~— =2+ 7eE \/G+In( +ol, (145
scaling function in the different asymptotic limits studied X%_,O Ju+
previously. First, we note that this formula gives back the
FDT resultFy=1 foru=1. where o is a numerical constant. This constant depends on
Second, focusing on the limit=>1, keepingv fixed, one  additive constants to, respectivelys andF ¢, each of them
has being nonuniversal as discussed ab@eae Appendix How-
ever, a distinct possibility is thzﬁi‘ﬁ(u) is universal(i.e.,
Jr u that the nonuniversal parts canceChecking this can be
Fy(v,u)y=1+e /(=14 7eVET\ﬁerfi\/; done with the present method, and is left for future study.
v The value obtained here,=5—121n 2, may only be indica-
+0(7u°, 7). (141  tive since we did not keep track of all additive constants. In

particular, in the scaling regime>t'>1, one obtains
Thus in this regimeX decreases below its FDT valogpt
=1. Looking at this result, one is tempted to conclude that
X?t, vanishes ag/t’—«~ when g*(t—t’) is kept fixed. In
particular, forq=0 (see below the direct calculation in this
cas¢ one finds the analogous quanti!—° computed in  Notice that taking the limiv—0 [using Eq.(F23)] on the
Refs.[45,44 for several models. However, one must keep inasymptotic expressiofl41) where we have taken the limit
mind that Eq(141) is perturbative inr and the divergence of u>1 beforev small, one recovers the same reai6).
the coefficient ofr could also be a sign of a nonanalyticity in ~ One way to understand the resit45), i.e., the diver-

:utzfr;hs?uljj;m result. Elucidation of this point is left for gence ofX?:O whent’ —t is to note that the same diver-
L . . n rs for imple diffusion pr with th m
In the other limit that we studied previously, correspond—ge ce occurs for a simple diffusion process with the same

ing tov>1, keepingu fixed, we obtain straightforwardly the close times asymptotic behaviors:

-
—— 2+ e fu+o(ru’, 7). (146)

Tt

following behavior: Cﬂ,:0~t’2’z, (147
Y v _1)\2 ~
F (o= 14e-2viu-n_ e (U7 D) RO (t—t)@ 22, (148
202 2\/6 _
+O(re's 3, 7) (14  Which yields straightforwardiy<’; °~ A(u—1)?~2/Z as u

—1. Note, however, that to obtain the correchplitude A

, - —0
This limit is relevant to study fixed. It shows that there is One needs to take into account further corrections §o°,
still aging behavior in a given nonzero mode, and appears tgpecifically we note that one can rewrite Efj35) as
contradict some claimg45] that only the zero modéiffu-

sion) exhibits interesting aging behavior. Note also that in C?tTO:t’Z/ZA(u) (149
this regime one haX>Xrp7, a feature found in other dis-
ordered model$57]. and that the detailed asymptotics dfu) nearu=1 deter-

Finally, in the limit of vanishing momenturq=0, the Mines the amplitude of the divergence.
FDR is a function of the scaling variabtét’ whose pertur-

bative expansion is given by ViI. CONCLUSION
In this paper we have developed an EMRG method to
T it T perform first principle perturbative calculations based on ex-
—aTo:Fx "f_’ ) (143 act RG. Contrarily to previous works, it is based on a mul-

tilocal expansion of the effective action functional. It allows

046101-15



G. SCHEHR AND P. LE DOUSSAL PHYSICAL REVIEW B8, 046101 (2003

us to conveniently perform calculations with an arbitrary cut- APPENDIX A: EXACT RG EQUATION FOR THE
off function in a fully controlled way and to check explicitly EFFECTIVE ACTION
the universality of the observables.

We have tested the method on the standatl) model.
We have shown that the exponentto orderO(e?) can be
simply recovered within the exact RG multilocal expansion.. : . X !
Thispiys interesting since previous approaches religd on ag” Eq. (1), when the propagatcﬂ_s IS _vaned, for a fixed in-
proximations such as polynomial and derivative expansionseracung.funCt'onaW(¢)' One first introduces the generat-
which are not needed here. We have also obtained seveljgg functional

Here we present a simple derivation of the exact RG
equation satisfied by the effective action, denoted here
I'c(¢) [andI'(¢) in the texi, for the theory of action given

two-point scaling functions and explicitly checked universal- —y N

ity. Finally, we explained how the method compares with ZG(J')=J’ D¢ e VG NI Hid (AL)
more standard field theoretical approaches. In a sense, the

present method directly yields the renormalized theory. i.e., the partition function in presence of a set of sources

We have applied the EMRG method to study the glassienotedj=j,. For any variationdG of G, its variation
phase of the two dimensional random sine Gordon modebz(j) satisfies
(Cardy-Ostlungl near the glass transition temperature. We
have first recovered known results for the statics and for the
equilibrium dynamical exponers which we showed to be
universal. The method of derivation, however, is quite differ- o
ent from previous ones, since it yields directly the self- 1 _,0°Zg())
energy2,(w) as a scaling function ab/A;, whereA, is the T ETMG 5j8j
infrared cutoff. We have given the scaling functions associ-
ated with finite momentum equilibrium response and correWheredG~'= -G~ '9GG™* and Tr denotes a trace over all
lation. spatial coordinates and indicgg. Next, one introduces the

Next we studied the out of equilibrium dynamics of the generating functionaWg(j) =In Zs(j) of connected correla-
Cardy-Ostlund model. We obtained the two time respons&ons, which varies as
and correlations at finite momentum. These were found to 2 . . .
take a scaling form and we computed analytically the corre- g\ (j)=— ETmel 0 V\_/Gw + &N(?(J) 5W9(J) ,
sponding scaling functions which depend on two arguments 2 0] 9] J] d]
v=g%t—1") andu=1/t’". We showed that they exhibit ag- (A3)
ing behavior characterized by a nontrivial fluctuation dissi-an exact RG equation for this quantity. From there it is
pation ratio X, itself a universal function ofu,» that we simp|e to obtain the RG equation obeyed by its Legendre
obtained. We also obtained the off equilibrium exponehts transformI" () = min[ ¢:j —Wg(j)]. We will assume that
and \. Interestingly we found that, at variance with pure no problem arises from the convexity condition and that
systems, one must introduce two distinct exponamtsand  I'(¢) can be obtained using only the saddle point condi-
Ac for response and correlation, respectively. Our studyions,
raises the question of whether this could be a more general

1 - .
t?Ze(i):—ETraG‘lf D e L2616 LT +iid

(A2)

property of glassy dynamics in disordered systems. 5WG[J- ($)]=¢ (A4)
Our method is promising for further RG studies of disor- 5 ¢ '

dered systems, as it allows to attack the problem with few

assumptions. Other situations where it can be applied are Ms(¢) =ia(®) (A5)

elastic manifolds in random media, where it can be used to o¢ e

put the so-called functional RG on a more solid basis

[58,59. Concerning the results of the present paper, a nuc 0" the variation ofl'g(¢)=¢:ja(4) =We(is(4)). this

merical simulation of the Cardy-Ostlund glass phase can bglelds

performed[60] and should provide an interesting test of the 'g(p)=—IWg[jc(¢)]

predictions of our RG calculation. In particular, some points ’

require further examination, e.g., the asymptotic vafueof _ lTraG—l S WG[J- ()]

the FDR. This would be interesting especially in the light of 2 5j6) ©¢

the present activity on FDR in mean field models, and inter-

pretations in terms of effective temperatures. Indeed, devel- +%[je(¢)]%[je(¢)] (AB)
oping real space, RG type methods beyond mean field re- d] J]

mains a challenge in the theory of glasses. since the term proportional ] ¢ cancels as usual from the

ACKNOWLEDGMENTS saddle point conditionéA5). Using Eq.(A5) once more, as
well as the standard relation SWg/3j8j[jg(®)]
We thank Pascal Chauve for useful discussions on the=[sT'g/8¢6¢] 1, gives Eq.(5) of the text.
ERG method at the earliest stage of this work. We thank Writing then
Leticia Cugliandolo, Daniel Dominguez, Antoine Georges, 1 1
2ﬂgeél.ejandro Kolton for discussions and pointing out refer Ta(d)= §¢:G’1:¢+UG(¢)— ETrIn G, (A7)
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this is equivalent to the equation fofs,

2 Z/{G

5¢5¢) }
(A8)

()= ETmG[G -G~ (1+G

or its equivalent form given in the text.

Now that we have an exact equation 10g(¢), we can
relate the effective action in theories with the sa¥iie) but
different G. All we need to fully determine the effective ac-
tion is an initial condition. It is provided by the action itself.

Indeed, one has the following perturbative loop expansion:

I'(¢) (A9)

—ETrInG+S(¢)+E ),
2 k=1

whereT'¥(¢) is the sum of alk loop 1PI graphs usind(¢)

as interaction an€ as propagator. Thus, if the initial condi-
tion for the propagato,_, is such that all'*(¢) graphs
vanish when computed wit®,_,, then one can choose the
initial condition asif|—q(¢)=W(¢). This is the case for the
choice(6), (8) made in the texitsimilarly the initial condition
for Wg(j) in Eqg. (A3) is the Legendre transform of the ini-
tial actionS(¢)].

PHYSICAL REVIEW E 68, 046101 (2003

1
u|<¢>):Eﬁeﬁ=°aia,-u|<¢>)+fxaeﬁa%afv|<¢,¢,x>

1
ZJ IG5 U1() (G kmdmdiUi( &),

(B2)

1
V(i X)=— ZaGXaak (D) (G kmIm@ U ()

1
+ 539G+ FRIV (b, X)

2

+ai1aj2< IGHV (,,X)
- 5(X)j (?Gyv ¢vlp7y)>

+ 55( )fyaG”a akUI(QS)

X(Gly)kmfym(?iul(‘//)r (83)

Finally, let us note that the RG equation can also be writwhere the local projectiof, operator has been applied to

ten as
dids(p) 0 1 6°Us(¢)
aG —£§Trln 1+G.W> (A10)
1 8Us() SU($))
—2 5¢5¢ (1+G.W) , (A11)

where the derivativéd/ JG in the rhs of the first equation is
restricted to theexplicit G dependencéi.e., not the one im-

plicit in Ug(P)].

APPENDIX B: MULTILOCAL EXPANSION TO  O(U?)

To O(U?) one needs only andV~0O(U?) in the expan-
sion (10) of U. The functional derivative reads

5U
S, 5,

=5xy{aiajuwx>+ Jza%a}V<¢x,¢z,x—z)

+ PN (b e, 2= X) [+20; 7V (dy by X—Y)

+O(W), (B1)

using parityV(¢, ¥, —x)=V(¢,¥,X). Inserting in Eq.(9)
and keeping only terms up to ord&(U?), one finds the
resulting RG equation:

obtain the first equation, and the operater B, to obtain the
second. This is illustrated in Fig. Riropping all terms of
order O(U®) and highel. Note that[,V(¢,#,x)=0. The
differential equation for the bilocal pat is linear, a general
property that allows to solve all higher multilocal compo-
nents(hereV,) as a function of the local paki, only. The
equation forV, can be integrated in the formd2), (13
given in the text. The method is similar to Rgf] to which
we refer for further details. Inserting this solution in the
equation forU,, one obtains Eq(14) in the text. We have
assumed that no bilocal term exists in the original action.
Near the fixed point form at largehese assumptions are not

strictly necessary, a statement that can be checked using the

present method.

It can be useful, in particular for the Cardy-Ostlund
model, that we study in the text, to introduce a Fourier rep-
resentation in the fields,

:f dge ™ ?U,(4),

VioPX= quﬁdt//e K-E=1P-0n (b, h,%).  (BA)

Using this representation, we obtain the RG equatid2s—
(14) in Fourier space,

VK Px__ 1<FK Px__ 5(X)f F:(’Py> , (BS)
y

' 2
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. o . . Setting ¢1= ¢, in Eq. (C3) and identifying the coefficients
Firi=-— Ld| (K-3Gy,-P)(K-Gy,-P) of ¢? and (¢?)?, one then easily obtains all terms in Egs.
(21) and (20) apart from the last one, with the scaled inte-
XellZK'GI)(’TO'K+ %P'GT'TO'”K'GTW'PUIK,Uﬁ grals defined in Eq(22).

Inserting now Eq.18) into the second line of the ERG
equation(14), one obtains only a correction g, from the
term with the lowest number of derivativésix). Noting that

k__1 =0 k1
AU =—-K-9G*="-KU*~ = (P-9G*- Q)
2 2)p.QP+o=kJx Oa)
1 %0y d) = (8 '+ Sl + dd),  (CH
X(P-GF-Q)UFUPJr—f fP-(aGlx
2)p,Q,P+Q=KJx

one finds
|
—_ O . 4 . X . . X .
9G) Qfod' (P3G Q(P-G-Q) (2 g a2> ¢1>U.<¢2>——(N+2>¢>1 $, (CH)
x=0 1 x=
x -Gy, P+ 3.6 "0+ PG, Quiug, (B6) yielding the last term in Eq21),
— (raND AN N N+2 ~(2)~2
where Jpopro=k=/[[d"Pd™Q/(2m)"]6(K—P—-Q) —3, dI 1179, (C6)

whereN is the number of components df. In the text we

have used/{""* to distinguish the Fourier series coefficients with
from the Fourier transform.

T2 - = 2
13 =4, 2f(aler—a,elx 9a,G\\G/\A;. (CT)
APPENDIX C: DETAILED CALCULATIONS FOR THE X

O(N) MODEL . . . . ~
This term does not modify the fixed point valgg to order

1. B function €, provided it remains finite in the limit—. A way to
Let us insert Eq(18) into the ERG equatiofil4), keeping compute it is to make an integration by part to treat the
only gy, 95, andg, for now, and first focus on the first line integral overl’,
in Eq. (14), which reads

f dl’ &|/G|,G|X,gj|,A /E

EJZI 94|
9| ot Sy Af¢?+ T Af(¢?) }
1
1 1 :E(G ) 94|AZE fd| (G))%Qay NSy (Qap AT
:Efqaelqaiaiumﬁ)_ EL&GFGﬁ[aiajU|(¢)]2
1 ~ ~
(1) =5 (G794, +O(€0Z; .03)) (Cy
with implicit sums on repeated indices. Using that as from Eq.(20) a,,(§4v,,Af,) is of orderﬁi’,, and where we
have useds/_,=0". The terms we dropped are of order
Oa o in the limit| — . Finally, in the largd limit we are left with
aiajU|(¢)=92,|5ij+3—[(5ij¢2+2¢'¢'), (€2
' ! 95 | -
| a1, =220 [ aer-aer e oe),
. . X
which yields (c9)
5 which is already of ordee?, so that the integral over can
di0iUi=Ngy+ 94, 9%, (€3 be performed ind=4 exactly. Using the decomposition of
the cutoff(17), we compute the following integrals exactly in
d=4:
1,1 2 42 2 N+2 2 2
397U (1) J; f7jU|(¢2):N92,|+ng,|94,|(¢1+¢z) 1 1 , .
: Gi(= - _(e—szI /2a__ e—szOIZa),
472 )a x?
+——g3 [(N+4)$7 ¢
(31 . 11 oo
) A, ale,xz—f —e XA, (C10
4( b1 b2)°] 472 )ad
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Equation(C6) can finally be written as an integral over the
rescaled variablg= A x, FI(¢11¢2'X)_f dl' oG\ GJ. Gy,
1)
N+2J dI'Tg;, Mg‘”JJ ~x?l2a_ 1) X EI aiai) Ui(¢1) U (2)
! 4 ’ ~
N+2 I
2 _ . ’ X AX ~AX T2 2¢
% fe—(AOIA|)2;<2/(2a)_e—;2/2a _ 3 #1 ¢2J’0d| GGGy Gy Ajr
a

(C19
which is the second line of E¢29). We have dropped terms

In the limit | -, this integral is well defined. Indeed, there Of the formf(¢;,x) such 95,04y b7, 9210465 [resulting
is no UV divergencddue to the term & X22a_ 1) which from the expansion of the exponential in E#3) to order Q,

(C1D)

behaves a%?] nor IR divergence due to the teray X/a. or 94|¢1, g4|¢2 [resulting from the expansion of the expo-
By the same calculation one obtains the flow of the freenentlal in Eq. (13 to order 1 but acting, respectively, with
energy, 9?- G}, - 3% or 9*- G|, "+ '] because they do not give any

contribution to the effective action. Indeed, the contribution
of such terms to the interaction functiodd( ¢) (10), will be

N ~or ~ N+2 l
<9|go,|=§/\|d(||(o)92,|_||(l)’§l§|)+TAdf |(3|)1912”,
(C12) V'(¢X*¢y*x_y):f(¢wx—>’)—5(X—y)fzf(¢x,Z),

with u,(¢)~f (f(q&x,x—y)—&(x—y)Jf(c{)x,z))
X,y z

Tl(,sl)':Al_de(alGr—f%Gf(:O)@l'G GGl ALY =Lyf(¢x.X—Y)—sz(d)x,Z)ZO,

where we assumed parify ¢; ,x) = f(¢; ,—x) (which is the
case hereand translational invariance. To treat the integral
overl’ in Eqg. (C15, we use an integration by part as in Eq.
(C9), one gets

We finally obtain the flow for@ey, in Eq. (18) with the
same kind of manipulations, and using, furthermore,

310;((69)%) =68 (p?)?+24¢' ¢! ¢?, N+2

_ _ o —a 91 ¢2f dl’ ﬁ|,G|,G|,G|,|g4|, |2'E

31950 ($2)%)=24¢%( 8 p*+ S + 5 p') + 48 B B,
(C13 N+2., 3 ~2 ~3

=_Fg4,|¢1'¢2(6|) +O(€9s;.9a)),

one gets
which leads to Eq(30). Using Eq.(C10), the last term in Eq.
- _ e~ (30) reads(forgetting for the discussion the numerical pref-
0961 =(2€—2)gs)— (N+14T{Vg,,0s, acton
8 ' 1T@T2 L o3 . ‘s
~ 5 (3NF16) | dI"l{igg, +0(gs)), H(q,AO,A|)=L(e'QX—l)(G,)
(C19

— 1 igx 1
- (4772)3L(e b

3
f e x2A|2/2a_ e XZAS/ZB) ’ (C16)
a

which shows thaﬁ’g~63. Similarly, there is a term propor-
tional toT(®)gg, in the flow equation o8, which affects the

- X
fixed point valueg only to next order ine.

where the integral ovetis evaluated ird=4 (as this term is

already of ordel,). For anyAg, A, this integral is well
The quadratic term in Eq29) is obtained by inserting Eq. defined but in the limitA ;— o, the integrand is not anymore

(18) in Eq. (13) and expanding the exponential in E43) to  regularized at smal and there is a logarithmic divergence.

order 1. One gets, using E(C5), We are interested in the limi,A;<A,. A simple way to

2. Computation of the exponentyn
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isolate this divergence is to rewrite it as with az=1/2a+ 1/2b+ 1/2c from which we easily obtain the
asymptotic behavior
H(d, Ao, Ay) S - J (9x)?
q, Ao, )= 5 ax
(4m?)3 | 2)x @5 ~~2J 1 T<1
x“(a@)~q \bcA8ay I=D

3
Xi feszEIZa_eszSIZa)
6 ~ ~ ~
xoae xP@~InT, g1,
) 1
+f e'u*—1+ E(qx)z) as announced in the tex82). This yields a universal result
* for the » exponent. In additiony(®?(q) gives the scaling
1 2n%oa 22l function of the two-point correlatory®(q)=2q?Q(q?)
XE fae AT —e o a) . whereQ(y) was computed in Ref36] in the particular case

of a IR "massive” cutoff function of the fornm(7). Although
(C17) our expression is more general, we have checked through
o ) series expansion that it coincides with the expression given
The limit Ag—c> can be taken safely in the second term, thejn Ref. [36] for that choice of the cutoff.

U\_/ divergence coming only from the first one which can be Performing two integrations by part one can rewrite,
written
3 - C@C(b). 4
~ 5| oy [ etmentim| | ), D= o O
2)x x61 Ja D, q

A§
AF

2
S, , [=dx 2 20\ 2 X i(1—e*0'2’<4a3>)— S (C18
h(\)=— §q2fo ?( jae—x 2a_ a=\x /2a> ' q2 aj 861’%

where in the second line we performed the change of variwith C(a)=fZda’'c(a’).

able x—A,x and denotedS,=27? the unit sphere area in
dimensiond=4. Interestingly, we haveusing the variable 3. Quartic contribution to I',(¢)

— 2 -2
U=AX), up to terms of ordek "%, The quartic term in Eq(29) is obtained by inserting Eq.

38 g2 (= 1 2 (18) in Eqg. (13) and expanding the exponential in Ef3) to
h'(\)=— 44 J duf g ul2a fl_e—u/Za order zero. One gets, using EEJ),

16N Jo 2a a

[ 2
T = — ' X ~X 1 2
16N || Ja B 16\’
he _ [Nta4 4 ,

where we have used(0)=[,=1, which leads tch(\)~ - (3!)2¢1¢2+(3!)2(¢1¢2)

— (7%g%/8)In\+O(\ 1), Finally, one obtains

I ~
q* ( Ao % fod"ﬂvGT/G.Xrgi./Aﬁ‘, (C19
H(q,Ap,A))=——|In—+ A
(9,A0,A)) EvibUw P (alA)

+0

j
AZ
which is the last line in Eg(29) [here again we have dropped
5 4 ~ 1 _ 1 ,\3 terms of the formf(¢; ,x) coming from Eq.C3)]. The inte-
X ()= WJ (e‘qx—1+§(qx)2 —6< f e X ’23) , gral overl’ in Eq. (C19) is then treated as previousi€8).
mTqT /X X Then, when computing the Fourier transform, one obtains
Eq. (35), with, using Eq.(C10),

which gives[up to the factor—g3,(N+2)/18], the last term

: : 6_ w4442 —tx2

in E.q. (30). Usmg.lk ) l~/2fodtt e ', one can compute X(4)(Q)= (69 1)(GN?

the integral ovex in x((q), ' < l

- 2 ® t? 1 : 1 2 2,2
(2) ):"’_f f dt — f eiax_1)— fefszl /2a_efx2Ao/2a
X~ q2 ab,.cJo (t+a3)2 1674 x( )X4 a
52
« | @~ @PAttaz) 1 4 _a For any A, ,A, finite, this function is well defined, and we
4(t+ as) see that the limitA ;—« is also well defined, thus
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x((@)=x"(alA,), P+Q=K, ,, -
~ 1 ~ 1 5. \2 A?
4)(q) = glax_1)— fefx/2a +o| 2L
A 16W4fx( )x4< a : 1 -1
the integral over x can be computed using Xt/ 11 |= 1 | (D2)
— fzdtte”™, one obtains
4 () = dt e 0P/Attag) _q
X (q) 16772 abJo (t+a'2)2( )

where- =0, and there are &(-2) different ways to choose
P,Q like that, noticeP- Q= —1. Other possible fusion rules
with a,=1/2a+ 1/2b, from which we extract the following involve charges of higher modulus, for instance, we could
asymptotic behaviors: consider

P+Q=Kjy 1, (D3)
x(q)~—0? 128y g<1, -1 -1
1 -1
a1 |+ 2 A (D4)
as announced in the tex87), (39). 1 . 1
APPENDIX D: DETAILED CALCULATIONS FOR THE CO with P2= Qz

MODEL—STATICS It is then useful to write the integrall®) andJ,( [ in Eq.

1. By, function (50) in terms of the variableg=Ax and u=1-1". Using
The g function for the coupling consta® is obtained ~ Ed- (56), and specifying ta@, , one has
by inserting Eq.(49) in Eq. (B6). This gives straightfor-
wardly Eq.(50) using 4,G[~ %= —T/27[5duc (u)=T/27. 0 ’ f ~ o~
_ P- =(n—2 d

One has als@; °=T/2m(l' ). Considering specifically o2 £ E 91 9R(P-Q)*=(n=2)g7 [ 7%o(X)n(X)
g t=g,, we first consider the possible fusion rules such (D5)
thatP+Q=K_1’1:

J(l)

and

~ I - - - -
EE (P.Q)° f dI'F,.ghgl=(n-2)T f [376(X) — 370(0)] foduayﬂ<x>[y.<x>—mx)]e<4*T’”>“eWX>g.€,L
(D6)

with =p o=Zp, Q,P+Q=K " We study the flow neaf =4, then substitute in EqD6) g, , by g;. The remaining inte-
and as Eq(D6) is already of ordeg, , we can evaluate gral over u is then straightforwardly computed by integra-
the integral overu exactly atT.: in partlcular e~ Tmu  tion by parts. EquationD5) together with Eq.(D6), inte-
=1+0(7). Moreover, as the integral is convergent, it is grated overu and using Eq(D9), then lead in the limin
dominated by the vicinity of the fixed point=0. We can —0 to Eq.(55),

046101-21



G. SCHEHR AND P. LE DOUSSAL
T 2 -
Ngi= 2_5 91— 29; 0770(0)L)’|(X)

292 _ -
- %f [970(X) = d¥0(0)](eTen™—1). (D7)

To compute the integrals overin Eq. (D7) in the limit |

—oo atT=T,. we first quote some useful relations. Using the

decomposition of the cutoff functiof17), we have
1 2,21
X) = —x“e“H/(2a)
IYu(X) =5 f e :

1 x2e2#(2a)dy
Eep— a7y
yﬂ(X) 477'Ja x2/2a y © (DB)

and the following identities:
a,u, '}/M(X) = ﬁYM(X)!

2X20,27,(X) = 37, (X) = 9y u=0(X). (D9)

PHYSICAL REVIEW 68, 046101 (2003

- 1
Yee(U) = ELEl(u/(Za)). (D12

whereE,(z)= —Ei(—2)=f, “e %z, with Ei(x) the expo-
nential integral function, behaves asymptotically as

Ei(2)~—vg—Inz+0(z), z<1, (D13

—Z

El(z)~e7[1+ 0O(1/iz2)], z>1, (D14

where yg is the Euler constant, the limi&—0 in Eq.(D11)
can be taken safely to obtain

B.=— - —J In2
% ex Y a
T2 E a

C

, (D15

which leads, together with E@55), to the fixed point value
g* (57).

2. Bilocal term for CO model

We compute in this section the bilocal part in the effective

We first compute these integrals in the semibounded domaigction given by Eq(59). Performing in Eq(59) the change

|x|> € and then take the limi&é—0, in order to avoid prob-
lems of convergencéhe limit | - does not introduce any

problen). Let us decompose the integrals owein the fol-
lowing way, writing B../2 as

’ 1 ’
970(0) JX y(X)+ T_Jx (970(x) = d0(0))(eTe7~ —1)

1 1
== dyo(x)efer)— — f Iyo(0) (e~ 1)
TC X Tc X

! J
+ [ (70— T2

(D10)

with f)l(Ef\x\>5' Using the previous formulaD9) for |
—0, 2X20x2Yx(X)= = 3y,-0(X),X>0 since dy.(x)=0x
>0, together withdyy(0)=2/T. we are left with(perform-
ing the change of variablei=x?), and denotingy..(x)

=7.(x?),

' 1 [
970(0) JX )+ T_Jx (970(X) = dy0(0))(eTe7=¥)—1)

2m (= - - -
T2 J' du[uTCo'?u’yw(u)eTc%o(U)_F(eTcyw(u)_1)]
c €

20 (= ~ ~
4 T_CL AUl Yeo(U) + Udy ya(U) ]

2T eTee) o o
= {ufe e W =1-Tey.(w]},

C

(D11)

of variablel’— u=1—1" and using the notation&k6) and
GT(! = _T(’Y,u(x) - Y|(X))1 one gets

. 1 : -
VF,PQZEJX(equ_ 1)F:(,PX’

ke AT :
FlK’PX:T_IZ(Kp)zfodﬂayﬂ(AIX)[7M(A|X)

- 7’|(A|X)]97TK'PVM(A'X)e(“*T’W)#gﬁM.
(D16)

As previously, this integral is already of ordgf,#, SO it
can be evaluated &k, in particular,e*~T™“=1+O(e).
Besides, the integral ovex is convergent and dominated by
©=0, so that we substitutg{_, by g7 . The remaining in-
tegral overu is then straightforwardly computed to obtain

Y1(Ax)
T ,
(D17)

. A [ 1
FloP*=— FQE(F(ETCK'PV'(A'X)_ 1)+K-P

where Eq.(D8) can be written as
1 272 242
Yi(AX)= ype aEl(x A{/2a)—E(x“Aj/2a) (D18)

with the asymptotic behaviors &;(z) given in Egs.(D13)
and(D14). For anyA,, A, the integral ovex in Eq. (D16)
is well defined, but we see that in the limkyg— (i.e.,
A, q<<Ay), there is a logarithmic divergendéor small x)
and only for charges such thiét P=—2. Indeed, at smak,

as one recognizes total derivatives in the integrands. Usingsing Eq. (D13), —T.K:Py(Ax)~K- P[yE+In(A|2x2)],

explicitly Eq. (D8),

leading toe™ TeK Pn(AX) ~ x2K-P This implies that the limit
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Ay— only diverges forK-P=—2 (there is no problem We have, moreover,
with the largex behavior as the integrand decay exponen-
tially for any couple of charges we consider here © oy
f dr—z[J0(|k|r)—1]f Ei(r?/2a)
a. The case of charges #=1 or 2 o k a

For these charges, the limit,—o can be taken directly f 2—2e K2 g2 023
= D23
a

on Eq.(D16). This leads to, performing the change of vari- K
able x— A x and the integral over the angular variable on

Eq. (D16), Using Eq.(D23) together with Eq.(D22), one obtains the
B leading behavior of*:P(k) (D20) in the largek limit, i.e.,
\"/:<,Pq: _ngflf drNL[Jo(ﬁlr)—l] the first line of Eq.(64),
Té¢Jo g2
KP(K) by p
X exp(—K-Pf Ey(r?2a) | -1 X “Pre
a
+K~Pf Ei(r?/2a)|, (D19 bx.p=-2 ex{z(yE—f In2a
a a
whereq=q/A; and Jo(z) is a Bessel function of the first X f [eXF{—K'PJ El(i”—l]
kind. This defines the functiog’:P(k) in that case, u>0 a \2a

—2K-Pc’(0)), (D24)

o
XK*P(k)=4ex;{2(yE— LInZa) fo drE[J0(|k|r)—1]

where we made the change of variahle=r? and used
X ex;{—K-PJ Ei(r?/2a)|—1 c'(0)=—/,a.
a
b. The case of charges #P=—1
2
K- PfaEl(r 128) . (D20) In that casex*'P(k) is formally obtained as previously

(D20), the smallk behavior being still given by EqD21).
The smallk behavior[the first line of Eq.(63)] is straight- However, the largek behavior is dominated by the small

forwardly obtained as r region and as noticed previously forr<l1,
rlexp—K-PfE (r¥2a)) —1]~r2XP+*1=r~1 which leads
XP(k)~ax. p+0(k?), to a logarithmic divergence in the lardelimit. It can be

obtained by computing

exp{Z( YE— f In2a
a

ak.p= 2 J:drr[ao(kr)—l]

<[
u>0

—14+K- Pf E,(u/2a)
a

ex;{ J E,(r?/2a)
a
~exp( - yE-l-f In2a
a

, D21
(b2Y) ~—ex;1(—yE+f In2a
a

where we performed the change of variabler?. , )
For K-P=1 or 2, r exg—K-Pf,E,(r¥2a)]~r2<'P+1  The last term in Eq(D20) has the same behavigD23)

independently ofK-P and Eg.(D25), together with Eq.

g

=dr
| SFroekn -1

0

ex;{ -K- Pf E,(u/2a)

Ink, k>1. (D25

when r<1 is analytic in 0 and usingly(k)~k ?cosk

—7/4) one finds fork>1, (D20), for K- P=—1 leads to the second line of E@{4),
o K P Ink
dr—Jo(|k|r)|exp —K-P | Ej(r?/2a)|—1 X" (K)~b_oy—-,
o k? a k
1
~O\ 2/ (D22) b_;=—4ex yE—famza : (D26)
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c. The case of charges #=—2

As pointed out previously, there is in that case a logarith-
mic divergence whem\ ;> 1. We isolate this divergence by

writing

- -1 N 1 . 1 A
VlK'PqZTL(qX)ZFf('PXJr EL( eliX— 1+ E(qx)z) FeP,
(D27)

the second term being well defined in the limig—«~. We

focus now on the first part, using the explicit expression of

¥ (Ax) (D8),

1 ~
ot 2EK—Kx
4L(qx) F

1 f f x2 x2A}
202 | 2
= x“1exg 2| E

8T‘C‘g|q § { F{ 125 F1 2a?
x? X2A3 Ag

~-1-2 fEl = [ =H =]
2al M 2aA A

(D28)

where we made the change of variakle> A|x. To analyze
the large argument behavior ®f(\), we take the derivative
with respect tan

o o 2 2
Hl \)= 2 ZJ‘ dXX:’:f _e—)\X /2a
™) 499, ak

2
exp{z f =

where we have usefil;(z) = —e ™ ?/z. Making the change of
variableu=\x? in H'(\) one obtains

AX?
2a

X

X
2a

-

o

(D29

H’(A)=igzq2fo %ufze—“’2a expl 2 fE -
gT¢7' " Jo a3 Ja !\ 2an
£yl 5 1
1 5 )

using the largen behaviorE (u/(2a\))~ — yg+ [.In(2a)
—In(uW/\)+O(1/\) one gets

PHYSICAL REVIEW 68, 046101 (2003

H' (N)= T 32q%ex 2f(— +In2a) !
_8T§g|q . YE X

Jyauf oo 2 54
_ sng‘g'zqz exp(zfa(—yEJrln 2a)

1 u
Xx[ex;{—zfaa(ﬁ

= T g?q?ex Zj(—y +1In2a)
gT4™! a 'C

+0(N"?)

} +0O(N7?)
0

Lo
y FOM™),

(D30)

where we have used the asymptotic behavidy3), (D14).
This leads finally to

A
- —f (@) 2F [ P*= = 8¢ pA|q2|n(—'),
, AO

+0(A|2/A§)A|=149|2exp( 2f (—ye+In2a) |,
47 a
(D31)

which is the first term in Eq(61) with the amplitudeA,
given in Eq.(62).

In the second line of EqD27), we perform the change of
variablex— A x and the integral over the angular variable to
get

ot

T ([ r - 1.
=—ng|2§fo dfa—z(Jo(|Q|f)— +Zq2f2)
C

X ex;{Zf E(r?/2a)
a

where Jy(z) is a Bessel function of the first kind, from
which we get the function®'P(k) defined in the text for

K-P=-2,
r_
0o K2

ex;{ZJ E.(r?/2a)

(D33)

—1—2f E,(r?/2a)|,
a

(D32

X<P(k)=4 exr{z( Ye— f In2a

1
ol [klr)—1+ Zkzr2

—1—2f E,(r?/2a)|.
a
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The smallk behavior{i.e., the second line of Eq63) in the . 10 . .
text] is easily obtained G| i ( ftluxtFn(U)— Eftt,luxtluxvﬁlw(u))
K,P 2
x“r(k)~a_ks, k<1, B 1j - n f ) w0 O
=—3 t,IUtIUtr e &Cltltlﬁu Ajer(u)

a_2:

exr{Z(yE—fana
a oo
f dut? flutftlt suy, Itt Su, Fie(u)
1

32 0
f'utj; >t &thltlﬁ A|tt’

X exp(zj E,(u/2a) —1—2J E,(u/2a) |,
1)
+ftl ath i 5 t(u). (E4)

(D34)

where we made the change of variable r?. The largek
behavior is governed by the smaillregion in the integral
(D33), where r(exg2[.E,(r¥2a)]—1—2f,E,(r?/2a))  The last term vanishes by causality sirfeg¢u) depends on
~exp(—2ye+[,In 2a)r 3, which implies fork>1, U, with t;<t only. Identifying in Eq.(E1) the coefficient of
the powers in the fieldu one gets Eq(84) in the text.
4 (=dr 1 The first equation of Eq84) is easily solved, and it gives
X<Pk)~— —(J0(|k|r)—1+ —k?r2|+0(1)
k?Jo r3 4

Ink+0(1) (D35) Ay (U) 1f S SR PN (u)
~I1n y (u)y=exp = ’ = (U
Itt 2 tltiﬁu’[l Itltlguti | =0tt
; ; . . X= x=0
which is the last line of Eq(64) in the text. —2e-C% O+C|t—1'Aégo CO Uy~ Uyy) (E5)

APPENDIX E: DETAILED CALCULATIONS FOR THE CO

where we have use@=;,=0. From the previous study of
MODEL—EQUILIBRIUM DYNAMICS o0~ P y

the statics, one has that
1. Derivation of the RG flow

We restrict our analysis to order @(U,), and at this e Clo A2 go=A2g,+0(g?), (E6)
order the RG flow read&l4) 0 I

which leads together with EqE5) to the first line in Eq.
(86). By taking the functional derivative with respectug

in the second line of Eq84) and using the same manipula-
tions one gets the second line in E§6).

|(U |U) G| i &i&jU|(u,iﬂ), (El)

where U;(u,iu) is given by Eq.(80) and the indices,j
formally refer to the components of the vectp(73) and the

time dependence, i.e%,= &/ 8u,, 8/ Sill,. From Eq.(74), the 2. Computation of the dynamical exponentz

matrix G,qtt, has the following expression: Here we compute the self-enerdy,, (89) given by
Cc! Rf Em:f dte 'S,
q_ 0
Gi= ( R 0 ) (E2)
. . x=0C} c°
With these notations, we have S=—2A] gI(R v —5(t)f dt'RY %Cu )
(E7)
G Lo cr° 0,2 R ° ® (3
07 i 25’ sutauR sia’ E Notice the terms proportional t(t) in 3, [not given in the

text (86) for clarity] which guarantees th&,,-,=0, and
with the explicit expressions for the bare correlation and re-
where we will often use the matrix notation for t|me |e » sponse funct|0n$75) Computed with the cutoff decompos|_

= [;uwy . Acting with this operator otJ,(u, i), one gets  tion (17),
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a a
|t|+—2AI2 o) 29, fldt f | t+3
= =——i ex n
c °=4— aln | (E8) T. “%Jo a |, Aa
|t| + P 2
2A2 (E12
0 Taking the derivative with respect to, one has
x=0_ (t)J 1 B 1 (E9
It A a a a
t+—— t
AZ 2A? H()\)———wa dtJ’ a
T2
After an integration by part in EE7) and using those ex-
plicit expressions one gets to order t+§
2
X ex J In Na
2Azg o : a t+ —
o= : Iin' dte't 2
Tc 0
_ H(N) o 2g, iwfl f
i a A T_cT 0 a a
2A¢ 2
X< ex f In -1 (E10
a i a a
X
ex L In - a
This expression is logarithmically divergent fa—co (the 2
integrand behaves ast Ht smallt in this limit), and a way to 2 L 1
isolate this divergence is to decompose this integral in the <9 '_“’f f _
following way (and performing the change of variabte Te NMJo a t+E t+§
—t/AD): 2 2
a
o 2
Se="— @icojmdtei:"t ex f In 2 e Lln Aa (E19
lw TC 1 a o )\_a t+ 7
2
. In the integral of the second line, we can take the limit
——lwf dt(e'“'—1) —0, it gives
t+= a
2 t+-
X1{ ex fln -1 29"“’ In 2
t+—= t+ —
2 2
20 iw
29/ (1 t+3 g' ;“ Int+ +0(1)
——IwJ dty ex Jln -1
TC 0 a Aa
t+ =

where o= w/AZ and\=A%A3. In the first two lines we

(E1D

1+a
2

T_CT ex an

~ouf [ 3]

can take safely the limih—0 and we focus now on the

divergent part of the last term,

The last term in Eq(E13) can be integrated by parts, to get
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o, f

Aa
?
+a
1 f' 3
- . 2 & ] n ~a
2 2
_H(N) 291w a
== +_|_ )\e J'aln l+§ +0(1).
(E14
Finally, H'(\) in Eq. (E13 can be written as
H' (M) ~iw iex f In2a EJrO(l)
2T, a A ’

HO)~iw

—exp( f In2a

which gives together with the last line of EGE1]D the
first term in Eqg. (91) with the amplitude B,
=Qq,/2T.exp(f,In2a). The first two lines of Eq.(E11),
where we take the limih—0 define the function((®™(»)

of Eq. (91),
J’ dteivt
1

Laof [ i3+ v
Lot

The small argument behavior gf®"(v) is dominated by
the larget region of the integrandi.e., the first line of Eq.
(E16)]. Using that (1exd [,In(t+a/2)]—1)~ [.a/2t for t

>1, one gets
féfxeiutl
a2)1 t’

a
f—mv, v<1, (E17
a2

|m\+0(1)} (E15

XY (v)=—4 ex;{ - j In2a
a

X t+

a
t+-

5 (E16)

X (v)~—4 ex;< - f In2a
a

r<l~4 ex;( —f In2a
a

which is the asymptotic behavior announced
text (93) with the nonuniversal amplitude agy,
=4 exp([,In 2a)[,a/2. The largev behavior ofy(™(v) is

in the
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Ay )~ — _ a
X YV(v) 4 ex In2a|ex In
a a 2

1 . 1

xf dt(e'"t—1)—

0 t

r>1,

~Inv (E18

which is the asymptotic behavior announced in the (84j.

We show here how to take directly, in a cruder way, the
limit | - in 3, (E7). Indeed, using the explicit expression

of CX=% andRX~° (E8), one has

Ci o~ - %Ja[ln(zmétﬂa)—ln(Za)—Z'HO(e_Z')*

x=0 1 1 =2l
RO~ — O(e 2. (E19
47T a a
t 2

This allows to take the largé limit in X, at T, (as it is
already of orderr)

f 1
a a

t+ —
2A3

AG
lim3,,=—=—g* ex fInZa
oo It 27Tg % a ( )

xexp(— f In(4AZt+2a) (E20

for t>0. We then obtain directl,,, in the limit| -~ as

Oex%f In(2a)
lim%,,=— fdte“”t

| —o0 0

xexp( - f In4A3t+2a
a

g* ex;{f In(2a)

- iwf“’dtei(wmgt)
2 0

xexp{—f In4t+2a].
a

(E21)

governed by the small region of the integrand, i.e., the The smallw/AS behavior is governed by the larjeegion of

second line of Eq(E16):

the integrand, which gives
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e - 1 (9% 4u
Q—?:1+4B*{(qu—l)~—2fq tduex;{—f In 7+2a
g-Jo a

) N . 2, 1 q
lim2,,~— ) exp|(w/AO)tE
oo 1
! 1 (% 4u
. . x(e”—l)—,.—f duué'ex —f In| == +2a
. w lw lw q2 0 a q2
~B*iwln - +0 ik —2<1, (EZZ)

which gives the same result obtained by the previous analy-

sis (95).

~ 1 (9% 4u
+(qu—1)~—2fq tduex;{—f In q+2a”.
g-Jo a

q
(E28

3. Scaling function at equilibrium We now want to find the scaling function, i.e., the
In this section, we show how to solve the equation for the?Symptotic behavior wheq—0 (Ao—x), keepingg“t=y
response functiorf102). First, it is natural to search for a fixed. In the two first lines of the above expression, the limit
solution under the form?:e—qztg?. Then, performing the q—0 can be taken safely, although the last term is divergent
change of variable=t—t, and using the explicit expression " this limit. Thus, one has

(E20), one gets the following equation for; :

~ - @oe'—1 1(&
) i . ) g}.=1+4B*[(q2‘f—1)fq ‘du———7 | " due!
a;g?=4B*J duf ex;(—f In(4u+2a) | % 0 0
0 au+2 a 1 oz au
~ t
2 +(q2T—1)~—2fq duex;{—f In<q+2a) }
1 q-Jo a \(q
_ * — ~
4B fo dufa a exp( faln(4u+2a) , +0(3?). (E29
u+ 5
2
(E23)  To find the asymptotic behavior of the last term we write
! fyd f I au +2 E30
whereq=q/A, andt=A3t, with the initial conditions: 72Jo uex A GG a (B30
1y 4u 1
- =~—2J0du ex —f In| =5 +2a —J4
a aqu
G3:=1, (€24 O ‘ M 2
q2
(E3D
q_ 1 (v 1
Go=0 €23 +~2f duf (E32
g-Jo adu
q‘f'za
The second term in the left-hand side is a total derivative and q

can be integrated. Performing an integration by part on the

first term, one gets

gd’u

gi:“:1+4B* [azftdvadu exp( —f In(4u+2a)
0 0 a

t 2
—f dved ”ex;{—f In(4v +2a)
0 a

Performing an integration by part in the integral oweon

. (E26)

the first integral and performing the change of variable

=q?u in the remaining integrals, one gets

In the integral on the second line, we can take the lignit

—0 by making the change of variable=u/g? and the
second can be done exactly. We thus have

1 (3% 4u
~—2f duex —f In
g-Jo a

——+2a
q2

LnL - [ 02+ [overd - [ mar+2a)
=—IMNz=z— n- exp — n a
4 q2 a 2 0 a

1

_ - =2
fa4>\+2a+o(q )-
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Finally, using Notice that the response functid®j;, ° has its equilibrium
expression. From Eq$E5) and (F1), one obtains

fyd e-1.1 Ei(y)—| E33
. U= _Z[ Yet+Ei(y)—Iny] (E33
X= x=0 x=0
A (U)=e VI~V CUIA (). (F2)

one has, up to terms of ordg?,

- B Using Eq.(F1) one has, using =T.=4 to this order,
G{=1+B*[(y—DEi(y)+1—-&'+(1-y)(Ing*+p)],

1 1
a ” : =0 x=0__ ~x=0
p=yE+f In§—4f dx exp(—f In(4\ +2a) I|m—§C|Xn —5Cp+C
a 0 a

2 It’'t’ Itt’

| -

L =f —In A2|t—t’|+E +In /\2(t+t’)+E
+4L4)\+2a’ (B34 . 0 2 0 2
which yields the scaling function given in the text. —%In(ASH; —%In A§I’+Z +In; (F3)

APPENDIX F: NONEQUILIBRIUM DYNAMICS OF THE
CO MODEL

1. Some useful expressions and using the definitioi88), one obtains finally

To begin with, we give the explicit expressionsf; and
S+ and their limiting expression whdnr-« in the case of
nonequilibrium dynamics. The general expression of ) ASTCB* ’ ,ooa
Ay (U), i.e., the first line of Eq(E5) is still valid for non- Dy = lim Dnv=TeXP[ fa—'n(/\olt—t I+3
equilibrium dynamics. To evaluate it, we only need the ex- 1=

pression ofClxtt:,O that we compute from Eq122) using the

a 1 a
2 ’ 2
same cutoff functiorc(z) as previously(17), +inf Ag(t+t) + 5 ]ex;{ Ja—zln Agt+ o
w—o T , a . a 1 s, @
C|tt' :E R In{ t+t +2—/\S —In |t—t |+2_/\3 —§|n Aot +Z , (F4)
T . a L.oa
BPLUE S A2 +In{ [t—t |+W : where we have used the expressiorBsfgiven in Eq.(95).
! ! The expression foB,,; can be obtained in a very similar
(F)  way,
|
. — AgB* 6(t—t’) .. ., A .., al 1 ,  a
Sp=1lim X = > f 5 X f—ln Aglt—t |+§ ex J In| Ag(t+t )+§ —Eln A0t+Z
1= AL t-t)+ = 2 2
0
2
1 5., @ N 1 2 a
—5In| Ajt+5 | - sttt )fodtl—aex L—ln Aflt—ty] + 5
Ad(t—ty)+ =
2
5 1 ., a1 ) a
X ex IN[Ag(t+ty)+al2]—sIn| Agt+ | — 5In| Agty+ — (F5)
a 2 4 2 4
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These expression(&4),(F5) will be very useful to determine

. : q q P (e O I e
explicit expressmns for Rn, lim_.R ., and Cy, Q= > e fo =
=lim,_...C|l,, by solving perturbatively Eqg99) and(100). 1—u+ —

2. Nonequilibrium response function: detailed calculations [{ ( a )
< [ [ 1-

The starting point of our analysis is E@9) that we solve
perturbatively by replacing, in the right hand sittls) of

this equation,Rﬂt, by its bare value. One obtains, in the 1du 1 a
limit | —o, using Eq.(F5), and in terms of the rescaled f Tf— L"n 1-u+—

variablest=A2t, g=q/A,, 1—u+§

&Rq

=2 q

tt’ tht’
X { ex fln
_B* ?d 1 f nl +a a
=5 ) AR ittty

F8
(t-t)+3 (F8)
Interestingly, except in the first line, one can take directly the
- a - . . ~ . . . .
< ex f In| T4ty + |- L2 limit t—< in the integrand of the two last lines using
a 2 4
. 1 a
a lim —exp{f —In(l—u+z
—5In|t +z) [6(t—t") R BT )
2t
x g~ @At~ ) _ g=a*(t-1), (F6) A\ 1 .
x[ex;{f In| 1+u+ — —Eln u+— —2]
Let us first focus on the last term in the rhs of E&6H), a 2t
where we make the change of variabje=ut and analyzing 1 1+u 1
the limit t>1, =\ Z2|=—F=" (F9)
(1-w?\ Vu Ju(L+u)?
geaz(‘mjlduj 1 and the divergence far— 1 is cured. Then all the remaining
a a integrals can be performed exactly, giving finally
1—u+ E a 1
27 T ~
=B*e ("1 —ex —fln— +—=+0(t 9.
a a Q a 2] 2t ( )
X ex f—ln 1-u+—=||ex J In| 1+u+—= (F10
a 2t a 2t . . .
We now perform exactly the same manipulations on the first
a\ 1 /- a\ 1 _ term in the rhs of Eq(F6). Performing the change of vari-
Tt 7'“(”1)‘5'“0 able t,;=ut and considering the limit>1 (keepingG%

g%t’ andt/t’ fixed), one obtains

B* du
—qz(tt)f f e~ a(ut-t") a
a f f —eX f—ln 1-u+—
E Uit a a 2t

1-u+—=
2t
a
Xex;{f—ln(l—u+—~ ] a 1 a
a 2t +In| 1+u+—= ——In u+-—
2t 4t
X ex jln 1+u+ — 2 —Eln u+ =Q. (F7) du [ e @Mi-1) a
a 21 4 =B* J - J —eX J’ In(l u+ —
It a a 2t
1-u+—

In the integrand one cannot directly take the limit- be- 2t

cause it generates a divergence of the integral whert.
Therefore we subtract the divergent term in the following +

— — ——————+0(1
way: 2 Jiii T Ju(l+u)?
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where we have useq the same tri€#) as preyiously. Us_ing “ noneq_ B v’ w1y diy [t dt,
Eq. (F11) together with Eq(F10), one can write Eq(F6) in R Q—T J’ —_< —=
a rather simple way oiu-1) it deiu-1) Wty
r?'Rq ,+ zRq , gla—t1
W X—————+Inu (F14)
. 1 (i)
—4B*f dtlf ex;( —f InN[4(t—ty)+2a]
‘ at—t 1 a Unfortunately, it is quite difficult to extract directly the
1o asymptotic behaviors from this double integral. However,

one can perform straightforwardlthough tedigu)smanipu-
w e~ @t —1') _ g* o= a2(i-1) ex;{ _ f In( E) lations to obtain a quasiexplicit expression fof°"* Per-
a 12 forming the natural change of variables=\t,—t;, B
( f dt, e L) eaz(NtNt’)) = t,+ \t; one is left with integrals over one variable,
(F12

Vit (\/:+\/_)2 t B* juv/(ul)dtz t, dt, ezt

_e [ e —
The two first lines correspond to equilibrium fluctuations 2 v/(u—-1) \/E v/(u—l)\/a(\/aﬂL \/E)2
(E23 and their contribution to the response function has

already been computdd05). The last term does not depend —B*e u-1 U= 1 +0 v +9| — —vd 1)
anymore on the cutoff function and characterizes the contri- 8vu  8v u—1'" u-1'u
butions coming from nonequilibrium fluctuations. The linear-
ity of this equation suggests then to look for a solution under 10y oX(B2-1)
q g eq q noneq q eq —
the form REL=RILHRE Wherze R a(x,y) XL d'B(,8+1)3' (F15
=47 2FE{aA(f-1')] (1039 and RE™Le TIHE,
with H?t, determined by Eq(F6), Performing further manipulations we find that one can write
dt; e 9(t-H 1
o‘rH?t, ( f - - R?tTf’”e‘L flnue '+ 7FR""%v’,u)+0(7?), (F16
Vi, (Ve
- . 9=B*+0(7), (F17)
HE=HZL =0. (F13

This allows to write a close expression for the perturbatlve where the logarithmic behavior determinifghas been ex-

G noneq . tracted such that the functidhz"*"*%v,u) has a good limit
expansion ofRy;,”""in terms of the scaling variables’ o y .00, as will be shown below. A useful expression for

=9%(t-1"), u=1/t’, this function is found as

Fimomeq, uy=e’e| 1-e v~ =

" [ v
erfi )

( enc\/uv—ul_ erf\/ui 1) N\

+e ’(1-v)[Ei(v)—Inv—yg]+2e™" Uvul{l(

f [ vu
el ﬁ

el

vu +1 e 32 vu g 1 ou ; v " vu
u-1"2/, 2 e AP vy I Pavey LU Vs Ve
1
e v (\oul(u=T1) > 1+E ve !
—2Jm(1 v)—f dse S7Verfi(s)+2(1—v)e 'In + Inu|, (F18
\/a 0 2 u—1
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where erfz is the error function, erfi is the imaginary error lim Fé”"”e‘fv,u)
function: u—oe,fixed
2 (* = —Fgv)+eX —Javerfyv—e™
erfz= —f dse %, (F19 R ) m ety
Valo )
X (1—v)|n(4veyE)—20(v - —)
2 (2 2 2
erfiz= —j ds F20
o (F20 .
><2F2 {1,1}, 5,2 ,U y
with erfiz= —i erfiz. One has the following asymptotic be-
haviors: which leads to Eq(125) in the text.
erfz~2z/\m, z<1, (F21 b. Expansion at largev, u fixed
2 Although one can extract more rigorously the largbe-
erfz~1-e */(\m2), z>1 (F22) havior atu fixed from the complete expressidR16), it is
easier to compute it from the starting integral in Eg14).
and Indeed, in the large limit, the integral will be dominated by
) the regiont,—t,~v, i.e., one can replace in the integrand
erfiz~2z/\m, z<1, (F23  (except of course in the terefz 1) t, by vu/(u—1) andt,
, by v/(u—1),
erfiz~e%[(\Jmz), z>1, (F24)
B* e‘UJuv/(u—l) dt, [tz dt; ezl
and ,F,({1,1},{3,2},2) is a generalized hypergeometric se- 2 Juu-n \/TZ ol(u—1) \/Tl (Vi + t,)2

ries which has the following asymptotic behaviors:
B* 1 (Vu-1)2 _
—_ e v

3 ~—
2F2<{1,1},[§,2),Z ~1+0(2), (F25 22 u
J‘vu/(u—l) ) vu/(u—1) ‘
X dt e2f dte ', F29
3 Jm €e? B vl(u—1) 2 (vi(u-1) ! (F29
Fol {11,152,z ~, iw—m- —5[1+0(z7 Y],
2 2 2302
which leads finally to
3 In(—2)
Fol {1, 520, ~ 5 —o— : F26 B* 1 (Yu—1)3?
2 2({ }[2 ] ) z 2z (F29 F;"O”e‘{v,u%— —(\/— ) +0(v 3. (F30

27 E Ju
Under this form, asymptotic behaviors are more easily ob-
tained. Note that we have also performed numerical checkg/e have checked that we obtain the same result by perform-
that Eq.(F18) and the starting integrdF14) do indeed co- ing this expansion on EqF16). Finally, using the large

incide. behavior ofF £2(107) and the value oB* (95), one obtains
Note some simple formulas for the same point response:

1 Fi(v,u)~e’e L urd +0(v %) (F31)
_ v,u)~ T U y
R%ﬁ":mh(t/t'), (F27) ® 2v% \u
a7t —
which gives Eq.(127) in the text.

h(u)= "fwd Fr(v,u). F28
(W=u 0 vFr(v.W) (F28 c. The limit of vanishing momentum

The Iimitaﬂo is easily obtained by looking for the lead-
ing term in Fg(v,u) whenv=q%(t—t')—0. Using Eq.
The asymptotic behavior cﬁé(v,u) is easily obtained in  (F18 together with Eq€123), and(104), one has
this limit. From Egq. (123, one has lig_ . F&(v,u)
=F&v) +lim,_.. FE°"%v,u), whereF3*{(v) is given in 1
Eq. (104). On the expression$-16), (F18) together with the 1+ —

asymptotic behaviorgF21), (F23), (F25 we see that all 10N v Loy
terms vanish in this limit except the following ones: Fr(v) © no+ye=2in

a. Expansion at large up fixed

5 (F32
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This logarithmic behavior together with E(@8) cancels the whereDy ,=lim,_.. Dy ¢, is given in Eq.(F4), that we ex-
logq divergence in Eq(124) and allows to take the limit of pand perturbatively using the expression we obtained for
vanishing momentum. We also give here the expression ok %, (124). As we did previously for the response function,

1 .
Fr'"{0.), obtained from Eq(F16), we could keep the complete cutoff dependence in (E4).
However, given the complexity of these manipulations and
1+ 1 the experience we acquired before, we know that the only

cutoff dependence is contained in an overall nonuniversal
scaleq—\q. For these reasons we will perform the compu-
tation using a simplified cutoff(a) = 8(a—a,) and we will
chooseay=2 for simplicity. Dy ., can then be written a§4)

(F33

FE°"90,u)=2eEIn
This will be useful for further applications.

3. Nonequilibrium correlation function: Detailed calculations

The starting point of our analysis is the following expres- 1 —
~_ ~ 1 2
sion given in the text129), for t>1’: Dy, = 5€7ETer +0(7%), (F36
2 (Jta—tao[ + Dtaty
4 _jm d
tht,—lllm Cirr (F34)

where we have dropped tlag dependence where it turns out
o [V gt o8 0 Tt G 3 to be unimportant.
—ZTL dth“lRt’tlJr fodtljo dtthtlDtltZRI’tz’ Performing the integrals that do not involig(v,u), one
(F35  has

+ Eefv(lJr u)/(u—1)
2

2v | 2v -Ss 1 u—s u
u—1, Mu—1) —1Y) Rl g=1Ys
wi=1) fv/(ufl)dt (tl+t2)( L S (Sl )
1 2€ Py )

0 lti—ta]+9% 2 Jtit(Vt + )

T T T JFe(v,u)
Cl=—F2(v,u)+— 0INUF(v,u)+ —(z—2)ln q(vz——kFg(v,u)
q q q v

ttr
2T v 1 u-—s 1-s 1
+—— —— v |Fi —v, =
2 u—ljodSF(F)*(u—lv)FR(u—lv’s

1
L EO

X | Ei

e"ET. 7T

92 (F37

e—v(l-%—u)/(u—l)f
0

where we have used the tri¢k9), and dropped the prime in 1 e~ [v(u+1)/(u-1) up uv

v'=q?(t—t") for simplicity. A natural way to perform this +5e%erT —2{ —4-2— Ei( — )
L 1 . q u—1 \u—-1

computation is to use fof z(v,u) the decomposition in an

equilibrium and a nonequilibrium contributiori$23). Parts

of Eq. (F37) can then be computed analytically, _2uilEi<ui1 +£2(e—vu/(u—l)+e—v/(u—1))
2Tt v 1 £ u—s 1ed 175 g
PR PR T L L I 2 o
+=[e'—1+ve “Ei(v)]|. (F38)
O 1-s Fle u—s q
Rlu—1") R \u-1"
eVET 7 wi(u-1) ol(u=1) The 9xpression(sF$7) together yvith Eq_(F38) allov_v one to
5 e‘”(“”)’(“‘l)f dtlf dt, identify the following perturbative scaling behavidrl5):
q 0 0
(t1+1t2)
e
X—— L IF2(v,u)
[ti—ts]+q Ctt,Z? Fa(v,u)+(z—2)v Ian
e’E

Tln(qzeyE)TFg(v,u)

= o +0InuF(v,u)+ 7F&(v,u) | +O(72), (F39
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2v 2v
1 _ Yea—v(1+u)/(u—1)| i _ _
Fe(v,u)=2eee [El(u—l) In(u—l) ve|+

%675[ e—v(u+ 1)/(u—-1)

X

a2 | ) o Y g ||+ 2(e Ui D g vl D) L ofe v~ 14 pePEi()]
u—1 \u—-1 u—1 \u—-1

1 u—s 1-s 1 1-s u—s u
0 1none - 0 1none _
_ _ ti+t
+ le}’Ee—v(l+u)/(u—1)fUu/(u l)dtljvl(u l)d (\/— \/—)e1 2
2 0 “ V(i )
|
with the exponentg and 6 given in Eqs.(98) and(123). The 2Tr 1 1 1
scaling functions are universal up to a cutoff dependent ad- ~— —[vFg(v)f dsF%{”O”e(( 0,—)
ditive constant. It was explicitly computed for the equilib- gq- u 0 S
rium response in EQE34). Here, we do not determine it and
thus we can drop some multiplicative factors of momentum +UF%(0)F§”°“E‘(U,OC)+Q(U1)} (FA4)
in the Ing term.
a. Expansion at large up fixed and the remaining integral in EGF39 where we perform
First, one has the natural change of variabte= \'t;, 8=/,
2e Y eYET, T
F(():(U’u):efu_e*v(qul)/(ufl)N +O(U72). Zqzc efv(l+u)/(u71)
(F40

We now focus on the asymptotic behaviorl-'cﬂt(v,u) for
largeu, keepingv fixed. Using the small argument behavior
of Ei(z)~Inz+y+0O(2), one has for the first line of Eq.

vu/(u—1) vi(u—1) \/_ \/—)etlﬂz
<o ey e (Vi + )

0

: L 2e7ET, Joulu—1)
(F39) in this limit —T —v(@+u)/(u- 1’[ i da
q2 VU U 1
2evee (T W/(U=1) Fj 2v —In v ) ~0(u™h) TU=1) 4e"ET 1
u—1 u—1, 7E ) XJ dﬁea2+ﬂz_—ce—v(l+u)/(1—u)
(F41) q?
Again using the small argument behavior of Hi( one has J‘”“;(“‘ jda v/(u 1)dBe” 2,2 P B
Wi(u=1) +B
+1eyE[e [o(u+1))/(u- 1)[ 4o Y Ei( v )
2 u—1 lu-1 The first double integral can be performed exactly,
— 2 il ——| [+ 2(e vulu- D4 gmvitu-1) 26T e
u—1 u— e CTeiv(lJru)/(liu)jvvu/(ufl)daf\ev/(ufl)dlBea2+B2
Inu @’ W=D °
+2[e‘”—1+ve‘”Ei(v)]}~e7Ee‘”v—+O(u‘1).
u _ meET, 7 - v(1+u)/(u-1)
(F42
B B = Anone v
One then analyzes the integrals mvonﬁé Tv,u), erfi / erﬁ\/ )erﬂ\/ —
2Tt v 1 u—s 1-s 1
— ds| F& — F1“°“E<— ,—) me¥ET 1 v
e u—1Jo [ R(u—l" R lu=1"s ~\/——2°e‘” Serfivo o). (F45
q
1-s u—-s u
+ 0 1none _ . .
Fr 1Y )FR {u—lv' s)] (F43 And we expand the second one in the following way:
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Y
_4e ET. T (L uyl(u— l)f\uuﬁu 1) N
q2 Wlu=1)
«mdﬂeazwz B
0 atp
YE
_ 2e T T —u(l+u)/(u— l)f\UU;IU l;daeaz
q2 2% U 1
1o v\"? a,
X|=——+ —
2a U nzg (u) a1t
207ET,7 _ v (W 1
~— € ”— e +O(u )
q VoTu @
ereler 1y
~—— e ’—Inu+0(u?). (F46)
q u

Finally, Egs.(F40), (F42), (F45, and (F46) lead to the
asymptotic following form foF (v ,u) in the limitu—oo, v
fixed,

2ve™?

Fi (v
C*J_( )+0(u*2,ru*1,rz),
u

limFc(v,u)=

v—®

T

Fe..(v)=e"e " \Jmverfi\u, (F47)

notice that the subdominant terms inu cancel between
Egs. (F42 and (F46) so that the leading corrections are of
order u~!. Equation(F47) gives the asymptotic behavior
given in the text(132).

b. Expansion at largev, u fixed

In this limit, the terms in the four first lines of E¢F39
decay exponentially in this limit. The fifth line, however
(which corresponds to the equilibrium contributipdecays
like a power law. Indeed, using the large behavior of
Ei(v)~e’[1+ 1?2+ 0(v %) ] one has

YE

eyE[e_”—1+ve_”Ei(v)]~eT+O(v_2). (FA8)

We now analyze the behavior of the terms involviRg'"®
in Eq. (F39. Using the largev behavior of F{""*{v,u)
(F30), one has
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4

1-s

S —
v ) F énone{ v

-1 u—1
u)]

U, —

S

u—
2— ds[FO(

+FQ 2v
Rlu—1

u—s
u—1

1none
Fre

- ds e~ [(u=9)/(u-1)] (u—1)% (J1/s—1)2

U 1 02(1_3)2 \/1—/5

+ e [(A=9)/(u=1)v] (u—1)2 (Ju/s—1)2 a9
v3(u—-s)?  uls |

Notice first on this expression that we are left with conver-
gent integrals oves. Moreover, in the large limit, due to

the exponential prefactors the first term decays also exponen-
tially (for u>1), and the second one is dominated oy
=1, which leads to a power law decay

1
Nv(u—l)

Y
(Vu—1) j1dsef[(1fs)/(u71)u]No(vfz)_
0

We are now left with the double integral in E@:39), which
is dominated—also due to the exponential prefactor-tby
~vpu/(u—1) andt,~v/(u—1). Therefore to get the leading
behavior, we substitut andt, by these values in the inte-
grand (except, of course, in the exponentigt™'2). This
yields

vu/(u—1)

1
— aYEa—v(1+u)/(u—1)
2e e JO dt;
fv/(u 1) \/— \/—etfrtz
X
o (f 1)
(‘/— 1)? e v(ut1)/(u-1)
2 u 1%
vu/(u—1) v/(u—1) 1
Xf dtletlf dte2+ 0| —
0 0 v

1 (Wu-1)21
— _eyE— —
2 Ju

(F50

rol ).

which together with the other term in~ ! (F48) yields Eq.
(134 in the text.

v

c¢. The limit of vanishing momentum

To obtain the limit of vanishing momentum—0 of the
correlation function, we look at the behavior Bf:(v,u)
whenv—0, up to ordeO(v) terms[due to theq 2 prefac-
tor in Eq. (F39]. This is done in the following way:
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2v | 2v
u—1) Mu=1) e

1 uv uv
T aYE! @ v(Ut)u—1] _ 4 ;
+2e [e [ 4 Zu—lEl(u—l)

ZeyEe—u(1+ u)/(u—1)[ Ei(

el

— +2(e—vu/(u—1)+e—v/(u—l))

+2[e"'—1+ve YEi(v)]

e’y

T 6—2Inve”—ulnu+(u+1)In(u—1)+0O(v?).

(F51)

Then using the expression B&™"{0,u) (F33), one has

-S 1-s 1
1none -
ol

1-s u—-s u
1none —
u—lv)FR <u—1v’s”

— 2v jldS Flnonea{()l Flnone OE +O(v2)
u—1Jo S 's
v 1 1+\/_
= YE n L 2
4e _1f In 5 5 O(v?)
4e7Ev 1
Ju—(u=1)In| 1+ —=|—-21In4|+0(v?).
=
(F52

To treat the double integral in the last line of E§39), we
come back to the variabldst’,q,
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vu/(u—1)

17T
E'"’_ eyEe*v(lJru)/(ufl)f dtl
q 0

Xfu/(u 1)d (Vi — \ty)elitt
0 ()

2
1 o [T [T (Nt —tpy)ed (att)
= E-I—Te‘yEeiqz(tth )f dtlf dtz ! 2 .
0 0

Vit (Vi +4ty)
(F53

Under this form, the limitg— is very simply obtained,

vu/(u—1)
—v(1+u)/(u—1)f dtl

1T
lim= — re’ee
2 0

a~>02 q

><fv/(u—l) (\/— \/—)etfrtz
0 b+ )
1 T[T Vit — At
=—Tree| d S S
ey, (i)

~ u
=2T7e7Et’<(u—1)In(1+ Ju)— Shnul.

(F54
Finally, Egs.(F51), (F52), and(F54), together with Eq(F39

and the complete expression of the correlation funoﬂétn
(131), lead to

=2T.t’

z-2 -
tt’ 1+7— T[In(t—t )+ vel

1 [
+ 0|n,i,—’+7'|:dclﬁl(,i,—,> },

FAL ()= Eeve[4\/a+(u+ 1)In(u—1)

—2(u—1)In(1+Ju)—2 Inu+6—81In4],
(F55

where we have usedF(v,u)=v/(u—1)+0(v?),

9,FQ(v,u)=1/(u—1)+0O(v) and v/(u—1)=q%t’": this
gives the scaling forni135) given in the text.
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