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Exact multilocal renormalization of the effective action: Application to the random sine Gordon
model statics and nonequilibrium dynamics

Gregory Schehr and Pierre Le Doussal
CNRS—Laboratoire de Physique The´orique de l’Ecole Normale Supe´rieure, 24 rue Lhomond, F-75231 Paris, France

~Received 23 April 2003; published 2 October 2003!

We extend the exact multilocal renormalization group~RG! method to study the flow of the effective action
functional. This important physical quantity satisfies an exact RG equation which is then expanded in multilo-
cal components. Integrating the nonlocal parts yields a closed exact RG equation for the local part, to a given
order in the local part. The method is illustrated on theO(N) model by straightforwardly recovering theh
exponent and scaling functions. Then it is applied to study the glass phase of the Cardy-Ostlund, random phase
sine Gordon model near the glass transition temperature. The static correlations and equilibrium dynamical
exponentz are recovered and several results are obtained, such as the equilibrium two-point scaling functions.
The nonequilibrium, finite momentum, two-timet,t8 response and correlations are computed. They are shown
to exhibit scaling forms, characterized by exponentslRÞlC , as well as universal scaling functions that we
compute. The fluctuation dissipation ratio is found to be nontrivial and of the formX@qz(t2t8),t/t8#. Analo-
gies and differences with pure critical models are discussed.

DOI: 10.1103/PhysRevE.68.046101 PACS number~s!: 05.70.Jk
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I. INTRODUCTION

Recently a method was devised, the exact multilo
renormalization group~EMRG! @1#, to obtain perturbative
renormalization group equations from first principles, in
controlled way to any order, and for an arbitrary smoo
cutoff function. It starts, as numerous previous exact
studies@2–12#, from the exact Polchinski-Wilson renorma
ization group equation@13,14# for the action functional
S(f). The next step, however, consists in splitting it on
local and higher multilocal components@15#, and integrating
exactly all multilocal components in terms of the local pa
This yields an exact and very general RG flow equation
the local part of the action, i.e., a function, expressed in
expansion in powers of the local part.

The aim of this paper is first to develop a similar meth
using instead the effective action functionalG(f). This is
needed becauseG(f) is a very important physical objec
both as the generating function of proper vertices, and
lated to the probability distribution of an arbitrary macr
scopic modefq @16#. A multilocal expansion is also per
formed and yields a RG equation again in terms of the lo
part. The major advantage compared to the previous me
@1# is that one actually follows directly physical observab
and that correlations are immediately obtained~while in the
previous method one had to use a second formula to com
correlations from the flowing action!. The price to pay is a
slightly more involved RG equation, but this inconvenien
arises only at higher orders. As a simple check, theh expo-
nent of theO(N) model will be recovered to lowest order

A motivation to develop such EMRG methods com
from disordered models. The physics of these being m
complex than standard field theories for pure systems,
useful to be able to control the RG procedure. This is cruc
for instance, in the functional RG~FRG! which describes
pinned elastic manifolds@17–19#, relevant for, e.g., super
conductors and density waves@20–24#, and the EMRG has
1063-651X/2003/68~4!/046101~37!/$20.00 68 0461
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been applied to study that problem@1,15#. Here, and this is
the second aim of this paper, we will study another insta
of a glass phase, arising in the random phase sine Go
model excluding vortices, as discovered by Cardy a
Ostlund@25#. This model has been studied extensively, in
statics@19,26–31# and its dynamics@32,33#, as one of the
simplest but nontrivial examples of a topologically order
glass, a continuation to two dimensions@21,34# of the fixed
point describing the Bragg glass phase in three dimens
@19#. We first show that the present method allows to reco
very simply and in a controlled way previous results for co
relation functions in the statics and in the equilibrium d
namics. Next we obtain results, such as the full scaling fu
tions for both equilibrium and nonequilibrium dynamics. W
obtain the corresponding exponentsl andu. We also obtain
the full and nontrivial behavior of the fluctuation dissipatio
ratio in the glass phase.

The outline of the paper is as follows. First in Sec. II w
derive the EMRG method for the effective action, and gi
the explicit general lowest order RG equations. In Sec. III
apply these RG equations to the pureO(N) model, as a test
of the method. In Sec. IV we consider the Cardy-Ostlu
~CO! model statics. In Sec. V we study the CO model eq
librium dynamics. Section VI is devoted to the nonequili
rium dynamics of the CO model. All calculational details a
contained in the appendixes.

II. METHOD

A. Exact RG method

We want to study interacting bosonic degrees of freed
described by a set of fields denotedf[fx

i wherex is the
position in space andi a general label denoting any quanti
which will not undergo the coarse graining~e.g., field indi-
ces, spin, replica indices, and additional coordinate!. The
problem is defined by an action functional,
©2003 The American Physical Society01-1
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S~f!5
1

2
f:G21:f1V~f! ~1!

and by the functional integral~i.e., the partition function! Z
5* Dfe2S(f). The action consists of a quadrat
part (Gi j

xy5Gji
yx is a symmetric invertible matrix! and

V(f) the interaction, a functional off. The notation ‘‘:’’
denotes full contractions overx,i @i.e., f:G21:f
5( i j *xyfx

i (G21) i j
xyfy

j ]. We will denote*x[*ddx whered
is the space dimension, and*q[*ddq/(2p)d for integration
in Fourier. Our aim is to compute the effective actionG(f),
i.e., the generating function of proper vertices, since onc
is known, all correlation functions are known being simp
obtained as sums of all tree diagrams drawn usingG. For all
observables to be well defined, one usually requires both
ultraviolet ~UV! cutoff ~e.g.,L0 in momentum space! and an
infrared ~IR! cutoff ~noted hereL l5e2 lL0). For example,
in a single scalar theory one choosesG[Gl with

Gl
q5q22cS q2

2L l
2

,
q2

2L0
2D ~2!

in Fourier. Herec(z,s) is a cutoff function which decrease
to zero asz→0 or s→` and for convenience, see below, w
choosec(z,z)50. To study finite momentum observables
a massless theory, one is also interested in the zero IR c
limit, L l50 with G[Gl 5` denotingc(z)5c(`,z).

In this paper we will use thatG(f) satisfies the following
exact RG functional equation when the quadratic partG is
varied @for a fixedV(f)]:

]G~f!5
1

2
Tr]G21:Fd2G~f!

dfdf G21

1
1

2
f:]G21:f. ~3!

Derivations and more details are given in Appendix A. Th
can be used to express how the effective actionG(f)
[G l(f) of model ~1! with G[Gl depends on the IR cutof
L l . Indeed, the following property holds:

G l~f!52
1

2
Tr ln Gl1

1

2
f:Gl

21 :f1Ul~f!, ~4!

whereUl(f)[UGl
(f) satisfies the exact flow equation,

] lUl~f!5
1

2
Tr] lGl :FGl

212Gl
21S 11Gl :

d2Ul

dfdf D 21G
~5!

with the initial conditionUl 50(f)5V(f), simply reflecting
that the effective action equals the action when all fluct
tions are suppressed@at l 50 where the running propagato
satisfiesGl 50501 from the propertyc(z,z)50]. The above
equation~3! simply expresses howG(f) in Eq. ~4! depends
on the final valueG[Gl . The zero IR cutoff limitL l50
can then be studied by integrating the above equation u
l 5`.

For actual calculations, simpler and useful choices re
in momentum space,
04610
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Gl
q5

1

q2
@c~q2/2L0

2!2c~q2/2L l
2!#, ~6!

where the cutoff functionc(x) satisfiesc(0)51 andc(`)
50. With the choicec(x)51/(112x) one finds the mas-
sive, Pauli-Villars-like, propagator,

Gl
q5

1

q21m2
2

1

q21M2
~7!

with m5L l
2 , M5L0

2 , where the IR cutoff massm[ml

is lowered from m5` ( l 50) to m50 (l 5`) ~and
] l→2m]m). Whenever one needs a stronger UV cutoff, o
may use

Gm
q 5

1

q21m2
cS q2

2L0
2D , ~8!

a different choice.
The full exact RG equation~5! can also be expanded i

series ofUl as

] lUl~f!5
1

2
Tr] lGl :

d2Ul~f!

dfdf

2
1

2
Tr] lGl :

d2Ul~f!

dfdf
:Gl :

d2Ul~f!

dfdf
1O~U l

3!,

~9!

which admits the graphical representation given in Fig. 1
To summarize, the philosophy of the method is, in

sense, the exact opposite of the Wilson one, since it amo
to start from the action with no fluctuationsL l5L0, and
then add modes and their fluctuations until one reaches
desired theoryL l!L0. In that limit one expects that the
effective action reaches a fixed point form, given by t
asymptotic solution of Eq.~5! at largel.

B. Multilocal expansion

To handle the formidably complicated functional equati
~5! we follow the method introduced in Ref.@1# and expand
the interaction functionalUl in local, bilocal, trilocal, etc.,
components as

FIG. 1. Representation of the exact RG equations~3! and ~9!.
The dot is the vertexUl , the solid line a propagatorGl , and the
crossed solid line the on shell propagator]Gl . The sum is over all
one loop graphs with a factor (21)p21/2 for eachp vertex graph
represented.
1-2
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Ul~f!5E
x
Ul~fx!1E

xy
Vl~fx ,fy ,x2y!

1E
xyz

Wl~fx ,fy ,fz ,x,y,z!1•••. ~10!

The local part depends only on the functionUl(f), uniquely
defined from the projection operatorP̄1. This operator is
fully defined in Ref.@1# ~see also Appendix B!. We recall
here only its action on a bilocal operatorF(fx ,fy ,x2y),
namely, (P̄1F)(f)5*yF(f,f,y). It can be used to split an
action depending only on two points into

E
xy

F~fx ,fy ,x2y!

5E
x
~ P̄1F !~fx!

1E
xy

@~12P1!F#~fx ,fy ,x2y!, ~11!

where, by definition, (P1F)(f,c,z)5d(z)*yF(f,c,y), in
such a way that the second part is properly bilocal@i.e.,
„P̄1(12P1)F…(f)50]. A similar construction holds for
higher multilocal operators.

The idea is then to project the functional equation~5! so
that the bilocal, trilocal, etc., can be expressed exactly
terms of the local partUl only. One notices that there is
simplest way to do it so that the bilocal part isV;O(U2),
trilocal W;O(U3), etc. This determines one possible sp
ting of the higher multilocal components~e.g., bilocal versus
trilocal! as is represented in Fig. 2, and further explained
Ref. @1#. This expansion is clearly suited to the situatio
where the flowing functionalUl becomes ‘‘small’’ and domi-
nated by its local part~e.g., in the context of a dimensiona
expansion!, but it has a more general validity, since in a
cases it is an exact expansion in series of the local part o
full effective action functional.

We now pursue the analysis exactly to orderO(Ul
2), suf-

ficient to a number of one loop applications. Details a
given in Appendix B. The bilocal part is exactly given by

Vl~f1 ,f2 ,x!5
1

2 S Fl~f1 ,f2 ,x!2d~x!E
y
Fl~f1 ,f2 ,y! D

~12!

with

Fl~f1 ,f2 ,x!52E
0

l

dl8~]1
•]Gl 8

x
•]2!~]1

•Gl 8
x
•]2!

3e2(1/2)]1
•G

l 8 l
x50

•]12(1/2)]2
•G

l 8 l
x50

•]22]1
•G

l 8 l
x

•]2

3Ul 8~f1!Ul 8~f2! ~13!

to all orders~by definition!, and the resulting exact RG equ
tion for the local part of the effective action@i.e., the exactb
function up toO(Ul

3)] is
04610
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] lUl~f!5
1

2
]Gl ,i j

x50] i] jUl~f!

2
1

2Ex
]Gl ,i j

x ] j]kUl~f!~Gl
x!km]m] iUl~f!

2
1

2Ex
]1
•~]Gl

x2]Gl
0!•]2E

0

l

dl8~]1
•]Gl 8

x
•]2!

3~]1
•Gl 8

x
•]2!

3e2(1/2)]1
•G

l 8l
x50

•]12(1/2)]2
•G

l 8 l
x50

•]22]1
•G

l 8l
x

•]2

3Ul 8~f1!Ul 8~f2!uf15f25f . ~14!

We use the following notations:] i[]f i, ] i
1 (] i

2) denotes
derivation with respect to the first argument~second argu-
ment! of a function of two vectorsf1 , f2 , ]1

•Gxy
•]2

[( i j Gi j
xy] i

1] j
2 , etc. Also one notes in real spaceGxy

[Gx2y and Gl 8 l
x

5Gl 8
x

2Gl
x52* l 8

l ]Gl 9
x dl9. Note that the

first line contains two one loop diagrams~tadpole and
bubble! with one ‘‘on shell’’ propagator, and the second lin
represents a sum over diagrams with at least two loops.

III. APPLICATION TO THE O„N… MODEL

We first illustrate the method on theO(N) model defined
by Eq. ~1! with

FIG. 2. Schematic representation of the splitting of the fun
tional U vertex into local, bilocal, trilocal, etc., parts, respective
~top line!. Representation of the exact RG equation for the biloc
trilocal, etc., as well as local vertex~last several lines!. Note that by
definition the ERG equation for the bilocal part contains only e
actly two feeding terms, trilocal three, etc. The solid lines repres
a propagatorGl and the crossed solid lines the on shell propaga
]Gl . Combinatorial factors are not represented.P here denotes the

projection operator on the local part~denotedP̄1 and P1 in the
text!.
1-3
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V~f!5
g2

2 E
x
fx

21
g4

4!Ex
~fx

2!2, ~15!

fx being aN-component vector,fx
25( i(fx

i )2. The propa-
gator is diagonal, and using an infrared cutoffL l , it reads
G[Gl with

Gl ,i j
q 5d i j Gl

q ~16!

with Gl
q as in Eq.~2!. We study this model near the dimen

sion 4, ind542e, and compute the effective action to ord
O(e2). For some explicit calculations, we will further us
the form ~6! with the following convenient parametrizatio
and notation for the cutoff functionc(z):

c~z!5E
0

1`

daĉ~a!e2az[E
a
e2ax. ~17!

The conditionc(0)51 imposes*a51.

A. Derivation of the b functions and fixed points

The local part of the running effective action admits t
polynomial expansion:

Ul~f!5g0,l1
g2,l

2!
f21

g4,l

4!
~f2!21

g6,l

6!
~f2!31•••.

~18!

From power counting, it is more convenient to introduce
dimensionless couplingsg̃2n,l defined from

g2,l5L l
2g̃2,l ,

g4,l5L l
eg̃4,l ~19!

and more generallyg̃2n,l5g2n,lL l
(d22)n2d which flows to

some fixed point valuesg̃2n* , as discussed below. Sinceg̃6*

;O(e3) and g̃2n* ;O(en) for n>3 ~see Appendix C for the

RG equation ofg̃6,l and the free energyg̃0,l), we drop from
now on these higher monomials and study only the coup
RG equation forg̃4 and g̃2 easily obtained by inserting Eq
~18! into Eqs.~14! as detailed in Appendix C,

] l g̃4,l5eg̃4,l2
N18

3
Ĩ l

(1)g̃4,l
2 52b@ g̃4,l #, ~20!

] l g̃2l52g̃2l1
N12

6
Ĩ l

(0)g̃4,l2
N12

3
Ĩ l

(1)g̃2,l g̃4,l

2
N12

3 E
0

l

dl8 Ĩ l ,l 8
(2) g̃4,l 8

2 ~21!

with the integrals

Ĩ l
(0)5L l

221eE
q
] lGl

q , Ĩ l
(1)5L l

eE
q
] lGl

qGl
q . ~22!
04610
e

d

Ĩ l ,l 8
(2) is given in Eq.~C7!, where we show that the coefficien

of the term proportional tog̃4,l 8
2 in Eq. ~21! is well defined in

the limit l→`. One finds thatĨ l
(0)5 Ĩ (0) is l independent and

that liml→` Ĩ l
(1)5I (1) is universal@independent ofc(s)] in

dimensiond54,

Ĩ (0)52
1

4p2E0

`

dssc8~s!1O~e!, ~23!

Ĩ (1)5SdE
s.0

~2s!2e/2c8~s!@c~s!21#5
1

16p2
1O~e!,

whereSd is the unit sphere area divided by (2p)d and we
recallc8(s),0. Finally, Eqs.~20! and~21! together with Eq.
~22! lead to the fixed point values

g̃4* 5
48p2

N18
e1O~e2!, ~24!

g̃2* 52
N12

12
Ĩ (0)g̃4* 1O~e2!. ~25!

This fixed point describes the standardO(N) critical system
exactly at the critical temperatureT5Tc . The initial condi-
tions which end up forl 5` exactly at the fixed point de
scribe the critical manifold.

Besides, we obtain the correction of the critical expon
characterizing the divergence of the magnetic susceptib
near the critical temperature from the positive eigenvaluel l
~corresponding to the instable direction!,

] l~ g̃2l2g̃2* !5l l~ g̃2l2g̃2* !, ~26!

l l52S 12
N12

2~N18!
e D , ~27!

which gives correctly@35# the exponentg to ordere,

g5
2

l*
511

N12

2~N18!
e1O~e2!. ~28!

B. Computation of the two and four point proper vertices

We now compute the effective action on the critical ma
fold, up to orderO(e) for the local part, andO(e2) for the
bilocal part~i.e., theq dependent part!, in the limit of largel.
Equation ~12! allows to construct the bilocal term in th
effective action by inserting Eq.~18! in Eq. ~13!. As we
restrict our analysis to ordere2, we do not consider mono
mials higher than (f2)2 in Eq. ~18!, and therefore we expan
the exponential in Eq.~13! to order 1. Using the combinator
ics already explained for the local part in Appendix C, o
gets

Vl~f1 ,f2 ,q!5
1

2Ex
~eiqx21!Fl~f1 ,f2 ,x!, ~29!
1-4
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Fl~f1 ,f2 ,x!5
N12

3
f1f2E

0

l

dl8] l 8Gl 8
x Gl 8

x Gl 8 l
x g̃4l 8

2 L l 8
2e

2S N14

~3! !2
f1

2f2
21

4

~3! !2
~f1•f2!2D

3E
0

l

dl8] l 8Gl 8
x Gl 8

x g̃4l 8
2 L l 8

2e ,

where we have not written terms of the formf (f i ,x) ~i.e.,
which depend only on one field argument! as they cancel ou
from the effective action. To this order ine „O(e2)… there are
no other contributions. The explicit expressions ofGl

x and
] lGl

x using Eq.~17! are given in Appendix C@Eq. ~C10!#.
This bilocal term~29! allows to treat the renormalization o
the wave function and compute the exponenth to ordere2.
A natural way to obtain it, within this method, is to compu
directly the one particle irreducible~1PI! two-point function
and then take the limitl→` ~directly at Tc). Its local part
comes from the quadratic contribution of Eq.~18! and the
bilocal part is the sum ofGl

21(q) ~4! and the quadratic con
tribution of Eq.~29!,

G l ,i j
(2)~q!5

d2G l

dfq
i df2q

j U
f50

5d i j G l
(2)~q!, ~30!

G l
(2)~q!5Gl

21~q!1L l
2g̃2,l2

N12

18
g̃4,l

2 E
x
~eiqx21!~Gl

x!3.

In Appendix C, we show that it has the form, up to terms
order (L l /L0)2,

G l
(2)~q!5Gl

21~q!1L l
2g̃2,l2q2h@ g̃4,l #F ln

L l

L0
1x (2)S q

L l
D G ,

h@ g̃4,l #5
N12

18~4p!4
g̃4,l

2 ~31!

with the following asymptotic behaviors:

x (2)~k!;ak2, k!1,

x (2)~k!; lnk, k@1 ~32!

with a some nonuniversal@i.e., dependent on the cutoff func
tion ~17!# coefficient. The two-point scaling functionx (2)(k)
which is computed here~see Appendix C! for an arbitrary
infrared cutoff functionc(x), is up to an additive constan
independent of the UV cutoff@61#. For the particular choice
~7! one recovers the result of Ref.@36#.

The large argument behavior ofx (2)(k) allows to take the
limit l→`, using the fixed point valueg̃4* ~24!, we have~for
q!L0)

lim
l→`

G l
(2)~q!5S q22q2

N12

2~N18!2
e2 ln

q

L0
D , ~33!
04610
f

which coincides with the expansion of liml→`G l
(2)(q)

;q2(q/L0)2h to ordere2 with the universal value of theh
exponent to this order,

h5h@ g̃4* #5
N12

2~N18!2
e2, ~34!

in agreement with standard results@35#.
Let us focus on the construction of the quartic term

G l(f), obtained from the quartic contribution of Eqs.~18!
and ~29!. After combinatorial manipulations, we obtain

G l
quart5

g̃4lL l
e

4! E
qi

8
~fq1

•fq2
!~fq3

•fq4
!

2g̃4l
2 1

~3! !2Eqi

8 F S N14

4 D ~fq1
•fq2

!~fq3
•fq4

!

1~fq1
•fq3

!~fq2
•fq4

!Gx l
(4)~q31q4! ~35!

with x l
(4)(q) defined by

x l
(4)~q!5E

x
~eiqx21!~Gl

x!21O~L0
22! ~36!

and where we used the notation *qi
8

[*q1 ,q2 ,q3 ,q4
(2p)dd (d)(q11q21q31q4). The local term,

i.e., the first line in Eq.~35!, contains a contribution of orde
e2 which is divergent in the limitl→`. Indeed, expanding it
to second order givesg̃4,lL l

e5g̃4,l(11e ln Ll)1O(e3) and at
first sight this term would lead to a divergent contribution
the limit l→`. However, the analysis ofx l

(4)(q)
5x (4)(q/L l) shows the following asymptotic behaviors:

x (4)~k!;bk2, k!1, ~37!

x (4)~k!;2
1

16p2
ln~k2!, k@1 ~38!

with b a nonuniversal constant. When considering the largl
limit of the effective action, we are interested in the lar
argument behavior ofx (4)(k) ~38!. Using the fixed point
value g̃4* ~24!, one gets that this cancels exactly the div
gence whenl→` due to the local term. Thus, we obtain

lim
l→`

G l
quart5

2p2e

~N18! H L0
eE

qi

8
~fq1

•fq2
!~fq3

•fq4
!

1
4e

~N18!
E

qi

8 F S N14

4 D ~fq1
•fq2

!~fq3
•fq4

!

1~fq1
•fq3

!~fq2
•fq4

!G lnS uq31q4u
L0

D J , ~39!
1-5
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which is independent ofL0 to orderO(e2). Note that in the
largeN limit one recovers correctly the ‘‘screened’’@37# four
point renormalized vertex;eqe ~whereq is the transfer mo-
mentum!.

The result of this analysis is that we have constructed
large scale theory by obtaining directly a fixed point for t
effective action, keeping the UV cutoffL0 finite, which is
the relevant object for statistical physics, and for an arbitr
cutoff function.

C. Relation with field-theoretical methods

It is interesting to make the connection with standa
field-theoretical methods for critical phenomena. There o
is usually interested in the limitL0→`. Note that in this
limit Eq. ~33! diverges. It is, however, possible to define
‘‘renormalized’’ effective actionGR(fR) which is well de-
fined in that limit.

One can first check directly on Eq.~33! the standard
Callan-Symanzik~CS! ‘‘bare’’ RG equation @16# for the
physical correlation function of the massless theory at
fixed point,

S L0

]

]L0
2h D ~ lim

l→`

G l
(2)!~q!501O~e3!. ~40!

One can also connect to the CS equation for the renorm
ized theory. One defines

GR~f!5G l~AZf!, ~41!

where Z[Z(L l /L0 ,g̃4,l) is the so-called ‘‘wave-function
renormalization’’ factor such that

GR
(2)~q!5mR

21q21O~q4!. ~42!

Using Eq. ~30! and noting thatGl
21(q)522L l

2/c8(0)
1Aq21O„(L l /L0)2

… with A5c9(0)/2c8(0)2, one finds the
renormalized massmR

25(1/A)L l
2(2/uc8(0)u1g̃2,l) and Z

5(1/A)@11h(g̃4,l)ln(Ll /L0)#. One can see that up to highe
order terms,L l plays the role of the renormalized mas
From Eq.~31! one finds, to order (eg̃4,l

2 ,g̃4,l
3 ),

mR]mR
uL0

ln ZS L l

L0
,g̃4,l D52] l ln Z5h@ g̃4,l #, ~43!

these derivatives being taken at fixedg̃4,l . This is the stan-
dard definition for theh(g) function. One can go further
define a renormalized couplinggR , e.g., throughGR

(4)(q

50)5mR
e gR , with gR5g̃4,l up to higher order terms, an

derive the CS equations for the renormalized vertices. H
we just mention one such equation@16# for the ‘‘renormal-
ized’’ two-point vertex function in the critical regimeL l
!L0 but finite

~] l1h@ g̃4,l # !G l
R(2)~q!.0, q/L l@1 ~44!
04610
e
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e
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obtained using the largek behavior ofx (2)(k) ~32!. We get
again the universal value of theh exponent form h
5h@ g̃4* # ~34!.

The connection between the EMRG method and the s
dard field theoretical methods in themasslessscheme@i.e.,
imposing GR

(2)(q50)50] is more subtle here~since one
should usel 5` strictly!.

IV. CARDY-OSTLUND MODEL: STATICS

In this section, we show how this EMRG method can
used to study perturbatively the Cardy-Ostlund model@25#
near its glass transition.

A. Model, choice of propagator

This model is a random phase sine Gordon model wh
can represent anXY model in a random magnetic field wher
the vortices are excluded by hand. As mentioned in the
troduction, the statics of this model has been extensiv
studied using various methods@19,26–31#. The system at
equilibrium is described by the partition functionZ
5*Dfe2HCO[f]/T, T being the temperature with the Hami
tonian

HCO@f#5
1

2E d2x~¹fx!
22E d2x~hx

1 cosfx1hx
2 sinfx!

~45!

with fxP] 2`,1`@ as there are no vortices, wherehx

5(hx
1 ,hx

2) is a two dimensional random Gaussian vector
zero average with fluctuations decorrelated from site to s

^hx
i hx8

j &52g0L0
2d i j d

(2)~x2x8!. ~46!

The quenched average over this random variable is
formed by the means of replicas, which is used here a
simple trick to restore translational invariance and to or
nize perturbation theory. After averaging over the disord
one obtains

ln Z5 lim
n→0

Zn̄21

n
, Zn̄5E Dfae2Hrep[fa]/T ,

H rep@fa#

T
5

1

2T (
a,b

E d2x¹fx
a¹fx

bda,b

2
g0L0

2

T2 (
ab

E
x

cos~fx
a2fx

b!, ~47!

where a,b51, . . . ,n are replica indices. We use the sam
propagator as for theO(N) model, the Gaussian part of Eq
~47! being diagonal in replicas, one has

Gl
q

ab5dab

T

q2
@c~q2/2L0

2!2c~q2/2L l
2!# ~48!
1-6
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with the same decomposition of the cutoff functionc(x)
~17!. Notice that the HamiltonianH rep possesses the statist
cal tilt symmetry ~STS! @38#: the last term in Eq.~47! is
invariant under the change of variablefx

a→fx
a1ux which

protects the diagonal~in replica space! quadratic term in the
effective action to all orders in perturbation theory@29,34#.

B. b functions and fixed point

For this model, the Fourier representation in the fie
~B4! is more natural. Although only one harmonic is prese
in the starting Hamiltonian~47!, higher harmonics are gen
erated by perturbation theory and we write the local intera
ing part of the effective action~10! as

Ul~f!52L l
2 (

KÞ0

gl
K

T2
eiK •f, ~49!

where K5(K1 , . . . ,Kn), f5(f1, . . . ,fn) are
n-component vectors, and one definesK•K85(aKaKa8 . The
sum is over allK such thatKa are integers, not all zero with
(aKa50. Ul(f) is real, imposinggl

K5gl
2K , and the sym-

metry under replica indices permutation, which is assum
here, imposesgl

K5gl
s(K) , s(K) being any vector obtained

from K by a permutation of theKa . By inserting Eq.~49! in
Eq. ~14! @see also Eq.~B6! in Appendix B# one obtains the
RG equation for the local part to second order ingK ,

] lgl
K5S 22

TK2

4p Dgl
K1

J̃l
(1)

2T2 (
P,Q,P1Q5K

gl
Pgl

Q~P•Q!2

2
1

2T2 (
P,Q,P1Q5K

~P•Q!3E
0

l

dl8J̃l ,l 8
2 gl 8

P gl 8
Q ~50!

with the integrals

J̃l
15L l

2E
x
]Gl

xGl
x , ~51!

J̃l ,l 8
2

5L l
22E

x
~]Gl

x2]Gl
x50!]Gl 8

x Gl 8
x L l 8

4

3e(P2/21Q2/2)G
l 8l
x50

1P•QG
l 8 l
x

. ~52!

The glass transition temperatureTc below which the charges
of minimal modulus such thatK1,215(0, . . . ,1, . . . ,
21, . . . ,0),K1,21

2 52 become relevant is

Tc5
8p

K1,21
2

54p ~53!

and a small parametert5(Tc2T)/Tc.0 can be defined
which allows to construct perturbatively the effective acti
of this model~47! in its glass phase. Indeed, just belowTc
the higher harmonics are irrelevant@the eigenvalues (2
2TK2/4p) are negative and of order 1#. Such irrelevant
higher harmonics include, for instance three replica term@62#
04610
s
t

t-

d

gl
1,22,1(aÞbÞce

i (fx
a
22fx

b
1fx

c), corresponding toK1,22,1
2 54.

We denotegl5gl
1,21 the coupling constant associated wi

K1,21, and obtain its RG flow from Eq.~50! by taking into
account the 2(n22) possible fusions such thatP1Q
5K1,21 , P,Q being themselves obtained by a permutati
of the components ofK1,21 (gl

P5gl
Q5gl) with PQ521

@25#. After some transformations detailed in Appendix
one obtains

] lgl5S 22
T

2p Dgl2Blgl
2 , ~54!

Bl52]g0~0!E
x̃
g l~ x̃!1

2

Tc
E

x̃
@]g0~ x̃!2]g0~0!#

3~eTcg l ( x̃)21!1O~t!, ~55!

where we used the dimensionless variablex̃5xL l and de-
fined

]Gl 8
x

5T]gm5 l 2 l 8~ x̃!,

Gl 8 l
x

52Tgm5 l 2 l 8~ x̃!, ~56!

where the two functions]gm(x) andgm(x) are given in Eq.
~D8!.

As shown in Appendix D, we can transform the integr
over x̃ in @Eq. ~55!# and express its cutoff dependence in
simple way. One findsB`5(4p/Tc

2)exp@2(gE2*a ln 2a)#
yielding for T,Tc , the stable fixed point of the RG flow i
given by

g* 58p expF S gE2E
a

ln 2aD Gt1O~t2! ~57!

with t5(Tc2T)/Tc andgE50.577 216 the Euler constant

C. Bilocal term and two-point correlation function

Equation~B5! allows to construct the bilocal term in th
effective action to lowest order@i.e., O(t2)] using a Fourier
representation~B4!,

Vl~f,c,x!5(
K,P

V̂l
K,PxeiK •f1 iP•c. ~58!

Just belowTc , only the charges of minimal modulusK1,21
2

52 are relevant, therefore to this order the sums in Eq.~B5!
are restricted to such harmonics. By inserting Eq.~49! into
Eq. ~B5!, one has

V̂l
K,Pq5

1

2Ex
~eiqx21!F̂ l

K,Px ,

F̂ l
K,Px52

~K•P!2

T4 E
0

l

dl8]Gl 8
x Gl 8

x e(K21P2)/2G
l 8 l
x50

3eK•PG
l 8 l
x

L l 8
4 gl 8

K gl 8
P , ~59!
1-7
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where K,P are of the formK1,21, and thusgl
K5gl

P5gl .
Performing the integral overl 8 as explained in Appendix D
we have

F̂ l
K,Px̃52

L l
4

T2
gl

2S 1

T2
~e2TcK•Pg l ( x̃)21!1K•P

g l~ x̃!

T D
~60!

with x̃5L lx. For the chargesK,P we are considering here
there are a priori five different cases ofK•P522,
21,0,1,2 to consider. However, we see immediately in
previous expression~60! that the charges such thatK•P50
do not contribute to the bilocal part of the effectiv
action ~they correspond to four replica term
gl

2(aÞbÞcÞdei (fa2fb)1 i (cc2cd)). We show in Appendix D

that V̂l
K,P,q takes the form, up to terms of order (L l /L0)2,

V̂l
K,P,q52Alq

2FdK,2P ln
L l

L0
1xK,PS q

L l
D G , ~61!

Al5
pgl

2

4Tc
4

expS 22gE12E
a
ln 2aD , ~62!

wherexK,P(k) behaves asymptotically at small argument

xK,P~k!;H aK•P , K•PÞ22

a22k2, K•P522
k!1 ~63!

and at large argument~relevant for the limitl→`) as

xK,P~k!;5
bK•P

1

k2
, K•P51,2

b21

ln k

k2
, K•P521

ln k, K•P522

k@1. ~64!

The large argument behavior ofxK,P(x) allows to take the
limit L l→0 of Eq.~61! as the logarithmic divergence~which
only exists forK52P) is canceled. We notice also that on
such terms withK52P survive in this limit: in particular,
three replica terms such asgl

2(aÞbÞce
i (fa2fb)1 i (cb2cc) do

not exist in the effective action to ordert2 at the fixed point
for L l50. Besides, by inserting the fixed point valueg*
~57! in Al ~62!, we see that the cutoff dependence@encoded
in the factor exp(*a ln 2a)] disappears in liml→` Al leading to

lim
l→`

V̂l
K,Pq52dK,2P

t2

16p
q2 ln

q

L0
. ~65!

Equation~4!, together with Eq.~65!, allows to construct the
bilocal term as
04610
e

s

lim
l→`

G l
bi loc~f!5

1

2T (
a
E

q

q2

cS q2

2L0
2D fq

af2q
a ,

1(
a,b

E
x,x8

E
q

lim
l→`

V̂l
K,2Kq

3eiq(x2x8)ei (fx
a
2fx

b)e2 i (f
x8
a

2f
x8
b

) ~66!

from which we extract the two-point 1PI functio
lim l→`G l ,ab

(2) (q),

G l ,ab
(2) ~q!5

d2G l~f!

dfq
adf2q

b U
f50

, ~67!

lim
l→`

G l ,ab
(2) ~q!5

q2

Tc~q2/2L0
2!

dab1
t2

4p
q2 ln

q

L0
, ~68!

from which we extract the correlation function at the fixe
point ~up to terms of orderL0

22)

^@fx2f0#2&5 lim
l→`

2E
q
~12eiqx!@G l

(2)#aa
21 ~69!

52TcE
q

12eiqx

q2
cS q2

2L0
2D

3F12t2t2 lnS q

L0
D cS q2

2L0
2D G

;2t2 ln2~ uxuL0!14@12t1O~t2!#

3 ln~ uxuL0!, ~70!

which shows that the amplitude of these anomalous fluc
tions in ln2(uxuL0) is universal~Ref. @34#!.

We finally mention that, due to the STS, th
connected correlation function ^@fx2f0#2&
2^@fx2f0#&^@fx2f0#& is the same as in the pure system

V. CARDY-OSTLUND: EQUILIBRIUM DYNAMICS

We now turn to dynamics, which, within the EMRG
framework can be conveniently studied by introducing
infrared cutoff on space only, keeping the full time depe
dence.

A. Model and propagator

Within this EMRG framework we want to study the dy
namics of the model~45! @32,33#, described by a Langevin
type equation,

h
]

]t
uxt52

dHCO

duxt
1z~x,t !, ~71!
1-8
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where^z(x,t)&50 and^z(x,t)z(x8,t8)&52hTd(x2x8)d(t
2t8) is the thermal noise andh the friction coefficient. A
convenient way to study the dynamics is to use the Mar
Siggia-Rose~MSR! @39# generating functional, on which
perturbation theory can be done. Moreover, using the
prescription, it can be readily averaged over the disorder.
disorder averaged generating functional reads

Z@ j , ĵ #5E DuDi ûe2S[u,i û] 1 j :u1 ĵ : i û, ~72!

S@u,i û#5S0@u,i û#1Sint@u,i û#,

S0@u,i û#5E
qt

iû2qt~h] t1cq2!uqt2hTE
xt

i ûxti ûxt ,

Sint@u,i û#52g0L0
2E

xtt8
i ûxti ûxt8cos~uxt2uxt8!,

where* t5* t i
`dt, where in this section the initial timet i is

sent tot i52` before takingL l /L0 large, in order to de-
scribe equilibrium dynamics.

In our formulation ~1!, the field f is now a two-
component vector

fxt5S uxt

iûxt
D ~73!

and fromS0 in Eq. ~72!, we compute the inverse bare prop
gatorGl

21 ,

Gl
21~q!5S 0 d~ t2t8!~2h] t1cq2!

d~ t2t8!~h] t1cq2! 22hTd~ t2t8!
D

3
1

c~q2/2L0
2!2c~q2/2L l

2!
. ~74!

By inverting this matrix we obtain the bare response a
correlation functions

Cl tt8
q

5Cl t8t
q

5^uqtu2qt8&

5
T

q2
e2q2ut2t8u@c~q2/2L0

2!2c~q2/2L l
2!#, ~75!

Rl tt8
q

5
d^uqt&

dh2qt8

5^uqtiû2qt8&

5u~ t2t8!e2q2(t2t8)@c~q2/2L0
2!2c~q2/2L l

2!#,

~76!

where we have set the bareh51. As we consider here th
equilibrium dynamics of the system, the time translation
variance~TTI! and the fluctuation dissipation theorem~FDT!
hold. These properties hold to all orders in perturbat
theory and, as we will see, have strong consequences o
04610
-

o
e

d

-

n
the

structure of the effective actionG l(u,i û). This means for the
dressed~i.e., exact! response and correlation functions:

C l t t8
q

5C l t2t8
q , ~77!

R l t t8
q

5R l t2t8
q , ~78!

R l t2t8
q

52u~ t2t8!
1

T
] tC l t2t8

q . ~79!

B. Response function and dynamical exponent

We will study the dynamics near the transition tempe
ture Tc ~53!, below which the lowest harmonic of the diso
dered potential becomes relevant. NearTc , we showed pre-
viously that the higher harmonics, although generated
perturbation theory, are irrelevant.

As we considered here static disorder, the average o
the disorder generates an effective interactionSint@u,i û# in
Eq. ~72!, which is nonlocal in time, so we expect the frictio
coefficient to be renormalized by the disorder. We theref
construct the effective action to order 1 int5(T2Tc)/Tc ,
and extract the dynamical exponentz from the response
function. In the starting dynamical action~72!, the interact-
ing part is purely local in space, so to order 1 the interact
part of the associated effective actionG l(u,i û) will remain
so. We therefore search a perturbative solution of the eq
tion for G l(u,i û) of the form ~10!,

Ul~u,i û !5E
x
Ul~ux ,i ûx! ~80!

5E
xt

i ûxtFlt~ux!2
1

2Extt8
i ûxtD l t t 8~ux!i ûxt8 ,

~81!

whereFlt(ux) andD l t t 8(ux) are functionals only with respec
to the time dependence, i.e., functions of the ‘‘vector’’ux
[$uxt% at a given pointx in space. In addition, these wil
acquire anexplicit time dependence, indicated by theirt and
t8 indices. One has the initial conditions

D l 50tt8~u!52g0L0
2 cos~ut2ut8!, ~82!

Fl 50t~u!50.

The Flt(u) term is indeed generated by perturbation theo
and is related—in the case of equilibrium dynamics—
D l t t 8(u) by a generalized FDT relation, namely, a Ward ide
tity, which can be written to lowest order,

dFlt~u!

duxt8

52
1

T
] t8D l t t 8~u!, t.t8, ~83!

where] t8 acts only on the explicit time dependence~i.e., not
on ut8). Notice finally that terms containing higher powe
of the field i û, i.e., (i û)p12 are of ordertp11. They corre-
spond to higher cumulant of the disorder~i.e., higher number
1-9
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of replica terms in the statics!. The exact RG equation to
order 1~14! then reads~see Appendix E!

] lD l t t 8~u!5E
t1t18

klt 1t
18

(1)
D l t t 8~u!, ~84!

] lFlt~u!5E
t1t18

klt 1t
18

(1)
Flt~u!2E

t1.t18
klt 1t

18
(2)

D l t t
18
~u!

with

klt 1t
18

(1)
5

1

2

d

duxt1

] lCl t1t
18

x50 d

duxt
18
,

klt 1t
18

(2)
5

d

duxt1

] lRl t1t
18

x50
. ~85!

The solution of this coupled set of equations~84! together
with Eq. ~82! is given by

D l t t 8~u!52L l
2gle

Cl t2t8
x50

cos~uxt2uxt8!, ~86!

dFlt~u!

duxt8

522L l
2gle

Cl t2t8
x50

Rl t2t8
x50cos~uxt2uxt8!, t.t8,

where we can check explicitly the previously mentioned g
eralized FDT relation~83!. Finally, as we consider here stat
disorder, the flow ofgl is given by the previous study, th
fixed point valueg* being given by Eq.~57!.

From G l@u,i û#, we obtain the response function in th
following way:

R l t 2t8
q

5^uqtiû2qt8&5S d2G l

d i ûqt1
du2qt

18
U

u5 i û50

D
q,t,t8

21

.

~87!

We define

Dltt 85D l t t 8~u50!, ~88!

S l t t 85
dFlt~u!

duxt8
U

u50

.

Notice that in the case of equilibrium dynamicsDltt 8
5Dlt 2t8 andS l t t 85S l t 2t8 . One gets

d2G l

d i ûqtdu2qt8
U

u5 i û50

5d~ t2t8!~q21] t!1S l t 2t8 . ~89!

When considering equilibrium dynamics, the use of Four
transform allows to compute this matrix element~87! in a
simple way,

R lv
q 5

1

q22 iv1S lv

, ~90!
04610
-

r

whereR l t
q 5*dv/2pe2 ivtR lv

q andS lv is the Fourier trans-
form, of S l t 2t8 . In Appendix E we show that it has th
following form ~up to terms of orderL l

2/L0
2):

S lv5 ivBlF ln
L l

2

L0
2

1x (dyn)S v

L l
2D G , ~91!

Bl5

gl expS E
a
ln 2aD

2Tc
, ~92!

with the following asymptotic behaviors:

x (dyn)~n!;adyn ln n, n!1, ~93!

x (dyn)~n!; ln n, n@1, ~94!

where adyn is a nonuniversal constant. The large argum
behavior ofx (dyn) ~94! allows to take the largel limit in Eq.
~91! as the logarithmic divergence is canceled, which giv

lim
l→`

R lv
q 5

1

q22 iv1 ivB* ln
v

L0
2

, ~95!

B* 5 lim
l→`

Bl5egEt, ~96!

where we have used Eq.~57! to computeB* which is uni-
versal: the cutoff dependence encoded in exp(2*a ln 2a) has
disappeared. On the other hand, we expect that the sca
function in Fourier should read

lim
l→`

R lv
q 5

1

q22 ivS v

L0
2D 2/z21 ~97!

from scaling. If the initial model possess STS then the co
ficient of q2 is fixed to unity. Theq independence of the
self-energy is expected to hold only to the order int that we
are working at, and it should be corrected by higher loo
Expansion of the denominator of Eq.~95! coincides with the
expansion to ordert of the denominator of Eq.~97! and
yields the universal value of the dynamical exponentz,

z2252B* 52egEt1O~t2! ~98!

in agreement with previous studies.
It is interesting in view of later applications to nonequ

librium dynamics, and a useful check, to compute this
sponse function in the time domain. Indeed, writing simp
the identityG l

(2)G l
(2)215I, whereG l

(2) is the matrix of the
second functional derivatives of the effective action with
spect ot the fieldsuxt andi ûxt , we obtain a system of close
equations for the exact response and correlation funct

R l t t8
xx8 andC l t t8

xx8 to order 1@more generally,Flt(u) andD l t t 8
can be bilocal in space#,
1-10



ic
c-

dy

e

th

a

ng
t

er-
e

he
ith

he

n

o-
act

m-

un-
al-

he

EXACT MULTILOCAL RENORMALIZATION OF THE EFFECTIVE . . . PHYSICAL REVIEW E 68, 046101 ~2003!
] tRl t t8
xx82¹2Rl t t8

xx81E
t i

t

dt1S l t t 1
Rl t1t8

xx8 5d~ t2t8!d~x2x8!,

~99!

] tCl t t8
xx82¹2Cl t t8

xx81E
t i

t

dt1S l t t 1
Cl t1t8

xx8

52hTRl t8t
xx81E

t i

t8
dt1Dltt 1

Rt8t1

xx8 . ~100!

We remind that we have chosen the Ito prescription, wh
fixes the following initial condition for the response fun
tion:

lim
e→0

Rl t ,t2e51,

Rl t ,t50. ~101!

Before using these equations to study nonequilibrium
namics, we show how the equation for the response@Eq.
~99!# function allows to recover the dynamical exponentz.
Using Eq.~88! together with Eq.~86! and TTI ~which holds
for equilibrium dynamics!, the equation for the respons
function reads

~] t1q2!Rl t2t8
q

52glL l
2E

2`

t

dt1Rlt 2t1
x50 eClt 2t1

x50

3~Rl t12t8
q

2Rl t2t8
q

!. ~102!

The limit l→` is taken as explained in Appendix E~E20!,
and a way to solve this equation is simply to say that in
right hand side~rhs!, we may replaceRl t1t8

q , by its bare

value, which is simplyu(t12t8)e2q2(t12t8) as this term is
already of ordert.

One expects that the response function can be written

Rt2t8
q

5 lim
l→`

Rl ,t2t8
q

5q̃z22FR
eq
„q̃z~ t̃ 2 t̃ 8!…, ~103!

where q̃5q/L0 , t̃ 5tL0
2, t̃ 85t8L0

2, with FR
eq a universal

scaling function~up to an overall nonuniversal scale! such
that FR

eq(v);v (22z)/z for v→0. As a function it admits an
expansion in powers oft, obtained as

FR
eq~v !5FR

0~v !1tFR
1eq~v !1O~t2!, ~104!

FR
0~v !5e2v,

FR
1eq~v !5egE@~v21!Ei~v !e2v1e2v21#,

v5q̃z~ t̃ 2 t̃ 8!,

as shown in Appendix E. This is established by identifyi
the direct expansion of Eq.~103! in terms of the argumen

v85q̃2( t̃ 2 t̃ 8),
04610
h

-

e

s

R t̃
q̃
5FR

0~v8!1~z22!ln q̃@FR
0~v8!1v8FR

08~v8!#

1tFR
1eq~v8!1O~t2! ~105!

with the result of solving Eq.~102!. Note that the term pro-
portional to lnq̃ has precisely the expectedv dependence, a
check of the calculation. Since there is an overall nonuniv
sal scaleq̃→lq̃, FR

1eq(v) is defined up to a change in th
constantr defined in Appendix E~E34!.

One can check explicitly that the scaling function in t
time domain obtained by this second method coincides w
the inverse Fourier transform of Eq.~97! to the lowest order
in t. The asymptotic behavior of the scaling function in t
time domain is

FR
1eq~v !'egE ln@1/~egEv !#, v→0, ~106!

FR
1eq~v !'egEv22, v→`, ~107!

the slow time decay 1/t112/z, for z.2, arises from the dis-
order. Notice that a similar power law tail for largeq̃zt̃ has
already been obtained for the diluted Ising model@40#.

Using the FDT we also obtain the equilibrium correlatio
function in the scaling regime as

Ctt8
q

5Tq̃22FC
eq
„q̃z~ t̃ 2 t̃ 8!…, ~108!

FC
eq~v !5E

v

1`

dwFR
eq~w!. ~109!

We conclude this section on equilibrium dynamics by n
ticing a few interesting properties. The first one is an ex
consequence of the scaling form~103! combined with the
STS. Indeed, the STS imposes

lim
t→`

E
t i
˜

t̃
dt8R t̃ t̃ 8

q̃
5

1

q̃2
. ~110!

Using the scaling property we showed previously, this sy
metry ~110! implies

E
0

`

dtq̃z22FR
eq~ q̃zt !5

1

q̃2
⇒E

0

`

duFR
eq~u!51, ~111!

from which it follows that

R tt8
x50

5E
q
q̃z22FR

eq
„q̃z~ t̃ 2 t̃ 8!…5

1

2pz~ t2t8!
, ~112!

C t̃ t̃ 8
x50

5
T

2pz
ln~ t2t8!,

where we have used FDT in the last line. Note that the
rescaled timet appears in these formulas. Although the sc
ing form ~103! is only valid for smallq̃, we believe that the
behaviors~113! may actually be the exact leading ones in t
1-11
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large t2t8 limit, their coefficients being fixed~nonperturba-
tively! by the STS. This would be interesting to check n
merically.

The second property is a comparison with the so-ca
Porod’s law@41#. If the form ~97! were to hold to all orders
the scaling functions would decay at large arguments
FR

eq(v);1/v112/z andFC
eq(v);1/v2/z. That yields

C t̃ t̃ 8
q

;
1

~ t2t8!2/zq4
~113!

as in the Porod’s law withd52 andn52 @41#. Here this
property holds to the order of our calculationO(t).

VI. NONEQUILIBRIUM DYNAMICS OF THE CO MODEL

Applying standard scaling arguments, we expectR tt8
q and

C tt8
q to be functions of the scaling variablesq̃zt̃ and q̃zt̃ 8

whereq̃5q/L0 and t̃ 5L0
2t andz is the dynamical exponent

As is the case for pure systems at a critical point, one
write from RG arguments@42# with little restriction,

R t̃ t̃ 8
q̃

5q̃221z1hS t̃

t̃ 8
D u

FR„q̃
z~ t̃ 2 t̃ 8!, t̃ / t̃ 8…, ~114!

C t̃ t̃ 8
q̃

5Tq̃221hS t̃

t̃ 8
D u

FC„q̃
z~ t̃ 2 t̃ 8!, t̃ / t̃ 8…, ~115!

where the exponentu is defined by imposing the following
behavior of the response scaling functionFR(v,u) when u
→`:

FR~v,u!5FR,`~v !1O~u21!. ~116!

This has been checked for pure systems@42–45# and, par-
tially for one case of a disordered system~only for the re-
sponse function in Ref.@40# and for the Fourier modeq50
for both functions in Ref.@46#!. It was found in all the pure
cases that one also has

FC~v,u!5
FC,`~v !

u
1O~u22!. ~117!

These forms, Eqs.~116! and~117!, yield a nontrivial fluctua-
tion dissipation ratio~FDR! characterizing the violation o
the FDT@47,48#. It has been computed exactly for the sphe
cal model ind.2 @43#, using dynamical RG methods for th
pure O(N) model at criticality up to two loops in ane54
2d expansion@45#, and up to one loop for the critical dilute
Ising model in aAe expansion@46#.

Another standard definition for the autocorrelation exp
nentlC @49–51# and for the autoresponse exponentlR @52#
is

C t̃ t̃ 8
q̃

5 t̃ (d2lC)/zfC~ q̃zt̃ !, ~118!

R t̃ t̃ 8
q̃

5 t̃ (d2lR /z)fR~ q̃zt̃ ! ~119!
04610
-
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-

in the limit t̃→`, q̃→0 with t̃ 8 fixed andq̃zt̃ fixed, with
fR,C(0)5const. Assuming the behaviors~116! and ~117!
one finds the connection

~d2lC!z215u211~22h!z21, ~120!

lR5lC ,

fC~v !5Tv (h22)/zFC,`~v !~ t8!12u,

fR~v !5v (h221z)/zFR,`~v !~ t8!u,

which seems to hold for pure models, together with the
equalityd/2<lC5lR @49,53#.

For the nonequilibrium dynamics of the CO model, w
obtain similar scalings~114!, ~115!, (h50 in this case be-
cause of STS! but with a different asymptotic behaviorat
largeu of the scaling functionFC(v,u). As we will see, this
has strong consequences on the FDR. Note that altho

C t̃ t̃ 8
q̃ is the full correlation function, to this order in thet

expansion it coincides with the connected one~which is the
correct one to consider, e.g., to obey FDT in the equilibriu
regime!, the difference between the two being of orderg2

5O(t2).

A. General framework

We want to study the dynamics of the system describ
by Eq. ~71! which, at the initial timet i50, is in a non equi-
librium configurationuxti

5ux
0 , whose statistical weight is

given by e2H0[u0] ~whereH0@u0#ÞHCO@u0#). The general
framework to incorporate this feature in the MSR formalis
has been developed in Ref.@42#, and it amounts to describ
the system in terms of the generating functionalS@u,i û#

→S@u,i û#1H0@ux
0#. If the system is prepared in a high tem

perature state, with short range correlations^ux
0ux8

0 &
5m0

22dd(x2x8), the correspondingH0@u0# is given by

H0@u0#5
m0

2

2 E
x
~ux

0!2. ~121!

Any addition of anharmonic terms inH0@u0# is irrelevant as
long asm0

2Þ0. Moreover, by power counting one has th
m0

22 is irrelevant@42#, so that to study the leading scalin
behavior it is sufficient to assumem0

2250, i.e.,ux
050. The

effect of this nonequilibrium initial condition is then com
pletely encoded in the lower boundt i50 on the time inte-
grals in the MSR functional~72!. The running bare respons
and correlation functions are given by@42#

Rl tt8
q

5u~ t2t8!e2q2(t2t8)F cS q2

2L0
2D 2cS q2

2L l
2D G ,

~122!

Cl tt8
q

5
T

q2
@e2q2ut2t8u2e2q2(t1t8)!F cS q2

2L0
2D 2cS q2

2L l
2D G .
1-12
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B. Nonequilibrium response function

In order to compute the response function, we solve p
turbatively the equation forR tt8

q ~99! using the trick ex-
plained above, i.e., replacing the exactR tt8

q in the rhs of Eq.
~99! by its bare value. Doing this, we obtain a perturbat
expansion of the exponentsz @already obtained previousl
~98!#, u, and of the scaling functionFR(v,u) in the same
spirit as Eq.~104!. Indeed, as shown in Appendix F, one h
the scaling~114!, in terms of the scaling variablesv5q̃z( t̃

2 t̃ 8) andu5 t̃ / t̃ 8 with

FR~v,u!5FR
0~v !1tFR

1~v,u!, ~123!

FR
1~v,u!5FR

1eq~v !1FR
1noneq~v,u!,

u5egEt1O~t2!,

which is established by comparison with the direct pertur
tive expansion of Eq.~114! in powers oft,

R t̃ t̃ 8
q̃

5FR
0~v8!1~z22!ln q̃@FR

0~v8!1v8FR
08~v8!#

1u ln uFR
0~v8!1tFR

1~v8,u!1O~t2! ~124!

with v85q̃2( t̃ 2 t̃ 8) and FR
1eq(v) is given by Eq.~104! and

FR
1noneq(v,u) given in Eq. ~F16! has a complicated expres

sion left in Appendix F~F18!. However, its asymptotic be
haviors, which we now focus on, have remarkably sim
forms. First, in order to compare with the prediction for pu
critical systems one is interested in the limit of largeu, keep-
ing v fixed. This definesFR,`(v) ~116! which, we find to be

FR,`~v !5e2v1egEtH 2ApverfAv2e2vF ~12v !ln~4vegE!

22vS v2
1

2D 2F2S $1,1%,H 3

2
,2J ,v D G J 1O~t2!,

~125!

where erf(z) is the error function and2F2($1,1%,$ 3
2 ,2%,z) is

a generalized hypergeometric series@54–56#. This shows
that the response function has a scaling behavior as pred
for pure systems at a critical point~116!. The smallv behav-
ior of FR,`(v);12egEt lnv shows thatfR(v) ~120! has a
good limit whenv→0, fR(0)5const, and this gives the
autocorrelation exponentlR ~119!,

lR521O~t2!. ~126!

It is also interesting to analyze the asymptotic behavior in
limit of large v ~and, in particular.v@u), keepingu fixed.
This limit is relevant, e.g., to study the behavior at fixedq,
larget,t8 with u5 t̃ / t̃ 8 fixed. It is obtained from Eq.~F16! as
explained in Appendix F. The behavior of the response fu
tion in this limit is then given by
04610
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lim
v→`,ufixed

FR~v,u!;e2v1
t

v2
PR~u!1O~tv23,t2!,

~127!

PR~u!5egE
u11

2Au
.

Notice that in the limitu→1 we recover the result of the
equilibrium dynamics~107!. This is more general as one ca
check from Eq.~F18! that FR

noneq(v,u)5O„(u21)2
… as u

→1. Finally, one must keep in mind that the limitsv→`
andu→` do not commute, indeed one expects that a sca
function of v/u;qzt8 interpolates between these limits, le
for future investigation.

Another interesting behavior is the limit of vanishing m
mentumq̃50, the so called diffusion mode. Although we
defined, this limit is a bit peculiar due to the prefactorq̃z22

in the scaling function~114!. However, the functionFR(v,u)
behaves whenv→0 in such a way to cancel this divergenc
as in Eq.~106! and leads to a well defined response functi

R t̃ t̃ 8
q̃50 which has the scaling form

R t̃ t̃ 8
q̃50

5
1

~ t̃ 2 t̃ 8!(z22)/z S t̃

t̃ 8
D u

FR
diffS t̃

t̃ 8
D , ~128!

FR
diff~u!5FR

diff0~u!1tFR
diff1~u!,

FR
diff0~u!51,

FR
diff1~u!52egE lnS 11Au

2Au
D ,

which is identified with the perturbative expansion ofR t̃ t̃ 8
q̃50

straighforwardly obtained from the general expression~F18!.

C. Nonequilibrium correlation function

To compute the correlation function, instead of solvi
the equation forC l t t 8

q ~100!, we obtain it using the following

formal solution for t̃ . t̃ 8:

C t̃ t̃ 8
q̃

5 lim
l→`

C l t̃ t̃ 8
q̃

52TE
0

t̃ 8
dt1R t̃ t1

q̃ R t̃ 8t1

q̃
1E

0

t̃
dt1E

0

t̃ 8
dt2R t̃ t1

q̃
Dt1t2

R t̃ 8t2

q̃ ,

~129!

whereDt1t2
5 lim l→` Dlt 1t2

is defined in Eq.~88! and explic-
itly given in Eq.~F4!, which we expand perturbatively usin

the expression we obtained forR t̃ t̃ 8
q̃

~124!. In Appendix F,

we show thatC t̃ t̃ 8
q̃ has the following scaling form~115! with
1-13
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FC~v,u!5FC
0 ~v,u!1tFC

1 ~v,u!,

FC
0 ~v,u!5e2v2e2v(11u)/(u21), ~130!

andFC
1 (v,u) given in Appendix F. Again, this is establishe

by identifying the direct perturbative expansion of Eq.~115!:

C t̃ t̃ 8
q̃

5
T

q̃2 FFC
0 ~v8,u!1~z22!ln~ q̃!v8

]FC
0 ~v8,u!

]v8

1u ln uFC
0 ~v8,u!1tFC

1 ~v8,u!G ~131!

with v85q̃2( t̃ 2 t̃ 8), which is similar to the scaling form
expected for pure systems at a critical point~115!. However,
the largeu behavior isdifferent, indeed one has in the largeu
limit, keepingv fixed

lim
u→`

FC~v,u!;
2e2vv

u
1t

FC,`
1 ~v !

Au
1O~u22,tu21,t2!,

~132!

FC,`
1 ~v !5egEe2vApv erfiAv,

which decays more slowly than the predicted scaling for p
system at a critical point~117!. Besides, using Eq.~F23!
FC,`

1 (v);v1O(v2), fC(0)5const ~120!, this defines the
autocorrelation exponentlC ,

lC5d2
z

2
1O~t2!512egEt1O~t2!, ~133!

where we have used the explicit expressions of the expon
z ~98!, u ~123!, and the relation (d2lc)z

215u21/21(2
2h)z21 arising from 1/Au decay ofFC

1 (v,u) ~132!. Note
first thatlC is different from its trivial valuelCÞd. Besides,
we note thatlCÞlR and finally that it violates the boun
lC,d/2 predicted for pure systems.

For the correlation function it is also instructive to look
the asymptotic behaviorv@1, u fixed. As detailed in Appen-
dix F, one has

lim
v→`

FC~v,u!;FC
0 ~v,u!1

t

v
PC~u!1O~tv22,t2!,

~134!

PC~u!5PR~u!.

Finally, we also study the correlation function in the lim
of vanishing momentumq̃50. As mentioned previously fo
the response function, this limit is a bit peculiar due to t
q22 prefactor in Eq.~115!. The smallv behavior ofFC(v,u)
leads to the scaling form~up to a nonuniversal scale!
04610
e

ts

e

C t̃ t̃ 8
q̃50

52 t̃ 8T
1

~ t̃ 2 t̃ 8!(z22)/z S t̃

t̃ 8
D u

FC
diff~u!, ~135!

FC
diff~u!5FC

diff0~u!1tFC
diff1~u!,

FC
diff0~u!51,

FC
diff1~u!5

1

2
egE@4Au1~u11!ln~u21!

22~u21!ln~11Au!22 lnu1628 ln 4#,

with the asymptotic behaviors

FC
diff~u!;11tegE ln~u21!, u→11, ~136!

FC
diff~u!;11tegEAu, u@1.

These behaviors are such that the singularity ast̃ 2 t̃ 8→0
cancels and one finds that the diffusion of the zero mo
become anomalous at large time,

C t̃ t̃ 8
q̃50

;A t̃82/z, ~137!

A52Tc1O~t!,

this formula being valid fort̃ 2 t̃ 8! t̃ 8, the random walk
result being recovered whenz52.

D. Fluctuation dissipation ratio

We now give the results for the FDRXtt8
q defined by@47#

T

Xtt8
q 5

] t8C tt8
q

R tt8
q . ~138!

Starting from the scaling laws that we established above,

can compute the FDRXtt8
q [Xt̃ t̃ 8

q̃ as a function of the scaling

variablesq̃z( t̃ 2 t̃ 8) and t̃ / t̃ 8. As we saw previously, both the
exponentz and the scaling function associated with the FD
will have an expansion in powers oft, i.e.,

T

Xt̃ t̃ 8
q̃

5FXS q̃z~ t̃ 2 t̃ 8!,
t̃

t̃ 8
D , ~139!

FX~v,u!5FX
0~v,u!1tFX

1~v,u!1O~t2!,

the expansion ofz to order t being given by Eq.~98!.
FX

0(v,u) corresponds to the Gaussian model and from

perturbative expansions that we obtained forR t̃ t̃ 8
q̃

~124! and

C t̃ t̃ 8
q̃

~131! one can identify~perturbatively! this scaling form,
with
1-14
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FX
0~v,u!511e22v/(u21), ~140!

FX
1~v,u!52

u

t

u21

v
~12e22v/(u21)!

2evFR
1~11e22v/(u21)!

2evS ]FC
1 ~v,u!

]v
1

u~u21!

v

]FC
1 ~v,u!

]u D .

Inserting the formulas forFR
1 andFC

1 obtained in Appendix F
yields the general result forFX as a nontrivial function of the
two variablesu,v. Here we only give the behaviors of th
scaling function in the different asymptotic limits studie
previously. First, we note that this formula gives back t
FDT resultFX51 for u51.

Second, focusing on the limitu@1, keepingv fixed, one
has

FX~v,u!511e22v/(u21)1
Ap

2
egEtAu

v
erfiAv

1O~tu0,t2!. ~141!

Thus in this regimeX decreases below its FDT valueXFDT
51. Looking at this result, one is tempted to conclude t
Xtt8

q vanishes ast/t8→` when qz(t2t8) is kept fixed. In
particular, forq50 ~see below the direct calculation in th
case! one finds the analogous quantityX`

q50 computed in
Refs.@45,46# for several models. However, one must keep
mind that Eq.~141! is perturbative int and the divergence o
the coefficient oft could also be a sign of a nonanalyticity
t of the u5` result. Elucidation of this point is left for
future study.

In the other limit that we studied previously, correspon
ing to v@1, keepingu fixed, we obtain straightforwardly the
following behavior:

FX~v,u!511e22v/(u21)2
egEtev

2v2

~u21!2

2Au

1O~tevv23,t2!. ~142!

This limit is relevant to study fixedq. It shows that there is
still aging behavior in a given nonzero mode, and appear
contradict some claims@45# that only the zero mode~diffu-
sion! exhibits interesting aging behavior. Note also that
this regime one hasX.XFDT , a feature found in other dis
ordered models@57#.

Finally, in the limit of vanishing momentumq̃50, the
FDR is a function of the scaling variablet̃ / t̃ 8 whose pertur-
bative expansion is given by

T

Xt̃ t̃ 8
q̃50

5FX
diffS t̃

t̃ 8
D , ~143!
04610
t
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to

FX
diff~u!5FX

diff0~u!1tFX
diff1~u!1O~t2!, ~144!

FX
diff0~u!52,

FX
diff1~u!52FC

diff1~u!22u
dFC

diff1~u!

du
22FR

diff1~u!

1
2~z22!

zt~u21!
22

u

t
.

Using the results of previous sections, we find

T

Xt̃ t̃ 8
q̃50

521tegEFAu1 lnS Au21

Au11
D 1sG , ~145!

wheres is a numerical constant. This constant depends
additive constants to, respectively,FR

1 andFC
1 , each of them

being nonuniversal as discussed above~see Appendix!. How-
ever, a distinct possibility is thatFX

diff(u) is universal~i.e.,
that the nonuniversal parts cancel!. Checking this can be
done with the present method, and is left for future stu
The value obtained here,s55212 ln 2, may only be indica-
tive since we did not keep track of all additive constants.
particular, in the scaling regimet̃ @ t̃ 8@1, one obtains

T

Xt̃ t̃ 8
q̃50

;21tegEAu1O~tu0,t2!. ~146!

Notice that taking the limitv→0 @using Eq.~F23!# on the
asymptotic expression~141! where we have taken the limi
u@1 beforev small, one recovers the same result~146!.

One way to understand the result~145!, i.e., the diver-

gence ofXtt8
q̃50 when t8→t is to note that the same diver

gence occurs for a simple diffusion process with the sa
close times asymptotic behaviors:

C tt8
q̃50;t82/z, ~147!

R tt8
q̃50;~ t2t8!(22z)/z, ~148!

which yields straightforwardlyXtt8
q̃50;A(u21)(22z)/z as u

→1. Note, however, that to obtain the correctamplitude A

one needs to take into account further corrections toC tt8
q̃50 ,

specifically we note that one can rewrite Eq.~135! as

C tt8
q̃50

5t82/zA~u! ~149!

and that the detailed asymptotics ofA(u) nearu51 deter-
mines the amplitude of the divergence.

VII. CONCLUSION

In this paper we have developed an EMRG method
perform first principle perturbative calculations based on
act RG. Contrarily to previous works, it is based on a m
tilocal expansion of the effective action functional. It allow
1-15
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us to conveniently perform calculations with an arbitrary c
off function in a fully controlled way and to check explicitl
the universality of the observables.

We have tested the method on the standardO(N) model.
We have shown that the exponenth to orderO(e2) can be
simply recovered within the exact RG multilocal expansio
This is interesting since previous approaches relied on
proximations such as polynomial and derivative expansio
which are not needed here. We have also obtained sev
two-point scaling functions and explicitly checked univers
ity. Finally, we explained how the method compares w
more standard field theoretical approaches. In a sense
present method directly yields the renormalized theory.

We have applied the EMRG method to study the gl
phase of the two dimensional random sine Gordon mo
~Cardy-Ostlund! near the glass transition temperature. W
have first recovered known results for the statics and for
equilibrium dynamical exponentz which we showed to be
universal. The method of derivation, however, is quite diff
ent from previous ones, since it yields directly the se
energyS l(v) as a scaling function ofv/L l , whereL l is the
infrared cutoff. We have given the scaling functions asso
ated with finite momentum equilibrium response and cor
lation.

Next we studied the out of equilibrium dynamics of th
Cardy-Ostlund model. We obtained the two time respo
and correlations at finite momentum. These were found
take a scaling form and we computed analytically the co
sponding scaling functions which depend on two argume
v5q̃z( t̃ 2 t̃ 8) andu5 t̃ / t̃ 8. We showed that they exhibit ag
ing behavior characterized by a nontrivial fluctuation dis
pation ratio X, itself a universal function ofu,v that we
obtained. We also obtained the off equilibrium exponentu
and l. Interestingly we found that, at variance with pu
systems, one must introduce two distinct exponentslR and
lC for response and correlation, respectively. Our stu
raises the question of whether this could be a more gen
property of glassy dynamics in disordered systems.

Our method is promising for further RG studies of diso
dered systems, as it allows to attack the problem with f
assumptions. Other situations where it can be applied
elastic manifolds in random media, where it can be used
put the so-called functional RG on a more solid ba
@58,59#. Concerning the results of the present paper, a
merical simulation of the Cardy-Ostlund glass phase can
performed@60# and should provide an interesting test of t
predictions of our RG calculation. In particular, some poi
require further examination, e.g., the asymptotic valueX` of
the FDR. This would be interesting especially in the light
the present activity on FDR in mean field models, and in
pretations in terms of effective temperatures. Indeed, de
oping real space, RG type methods beyond mean field
mains a challenge in the theory of glasses.

ACKNOWLEDGMENTS

We thank Pascal Chauve for useful discussions on
ERG method at the earliest stage of this work. We tha
Leticia Cugliandolo, Daniel Dominguez, Antoine George
and Alejandro Kolton for discussions and pointing out ref
ences.
04610
-

.
p-
s,
ral
-

the

s
el

e

-
-

i-
-

e
to
-
ts

-

y
ral

w
re
to
s
-
e

s

f
r-
l-
e-

e
k
,
-

APPENDIX A: EXACT RG EQUATION FOR THE
EFFECTIVE ACTION

Here we present a simple derivation of the exact R
equation satisfied by the effective action, denoted h
GG(f) @andG(f) in the text#, for the theory of action given
in Eq. ~1!, when the propagatorG is varied, for a fixed in-
teracting functionalV(f). One first introduces the genera
ing functional

ZG~ j !5E Df e21/2f:G21:f2V(f)1 j :f, ~A1!

i.e., the partition function in presence of a set of sourc
denoted j [ j x

i . For any variation]G of G, its variation
]ZG( j ) satisfies

]ZG~ j !52
1

2
Tr]G21E Dfffe21/2f:G21:f1V(f)1 j :f

52
1

2
Tr]G21

d2ZG~ j !

d j d j
, ~A2!

where]G2152G21]GG21 and Tr denotes a trace over a
spatial coordinates and indicesx,i . Next, one introduces the
generating functionalWG( j )5 ln ZG(j) of connected correla-
tions, which varies as

]WG~ j !52
1

2
Tr]G21S d2WG~ j !

d j d j
1

dWG~ j !

d j

dWG~ j !

d j D ,

~A3!

an exact RG equation for this quantity. From there it
simple to obtain the RG equation obeyed by its Legen
transformGG(f)5minj@f: j 2WG( j )#. We will assume that
no problem arises from the convexity condition and th
GG(f) can be obtained using only the saddle point con
tions,

dWG

d j
@ j G~f!#5f, ~A4!

dGG~f!

df
5 j G~f!. ~A5!

For the variation ofGG(f)5f: j G(f)2WG„j G(f)…, this
yields

]GG~f!52]WG@ j G~f!#

5
1

2
Tr]G21S d2WG

d j d j
@ j G~f!#

1
dWG

d j
@ j G~f!#

dWG

d j
@ j G~f!# D ~A6!

since the term proportional to]Gj G cancels as usual from th
saddle point conditions~A5!. Using Eq.~A5! once more, as
well as the standard relation dWG /d j d j @ j G(f)#
5@dGG /dfdf#21, gives Eq.~5! of the text.

Writing then

GG~f!5
1

2
f:G21:f1UG~f!2

1

2
Tr ln G, ~A7!
1-16
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this is equivalent to the equation forUG ,

]UG~f!5
1

2
Tr]G:FG212G21S 11G:

d2UG

dfdf D 21G
~A8!

or its equivalent form given in the text.
Now that we have an exact equation forGG(f), we can

relate the effective action in theories with the sameV(f) but
different G. All we need to fully determine the effective ac
tion is an initial condition. It is provided by the action itse
Indeed, one has the following perturbative loop expansio

G~f!52
1

2
Tr ln G1S~f!1 (

k>1
Gk~f!, ~A9!

whereGk(f) is the sum of allk loop 1PI graphs usingV(f)
as interaction andG as propagator. Thus, if the initial cond
tion for the propagatorGl 50 is such that allGk(f) graphs
vanish when computed withGl 50, then one can choose th
initial condition asUl 50(f)5V(f). This is the case for the
choice~6!, ~8! made in the text@similarly the initial condition
for WG( j ) in Eq. ~A3! is the Legendre transform of the in
tial actionS(f)].

Finally, let us note that the RG equation can also be w
ten as

dUG~f!

dG
5

]

]G

1

2
Tr lnS 11G:

d2UG~f!

dfdf D ~A10!

5
1

2

d2UG~f!

dfdf
:S 11G:

d2UG~f!

dfdf D 21

, ~A11!

where the derivative]/]G in the rhs of the first equation i
restricted to theexplicit G dependence@i.e., not the one im-
plicit in UG(f)].

APPENDIX B: MULTILOCAL EXPANSION TO O„U2
…

To O(U2) one needs onlyU andV;O(U2) in the expan-
sion ~10! of Ũ. The functional derivative reads

dŨ

dfx
i dfy

j
5dxyF] i] jU~fx!1E

z
] i

1] j
1V~fx ,fz ,x2z!

1] i
2] j

2V~fz ,fx ,z2x!G12] i
1] j

2V~fx ,fy ,x2y!

1O~W!, ~B1!

using parityV(f,c,2x)5V(f,c,x). Inserting in Eq.~9!
and keeping only terms up to orderO(U2), one finds the
resulting RG equation:
04610
:

t-

] lUl~f!5
1

2
]Gi j

x50] i] jUl~f!1E
x
]Gi j

x ] i
1] j

2Vl~f,f,x!

2
1

2Ex
]Gi j

x ] j]kUl~f!~Gl
x!km]m] iUl~f!,

~B2!

] lVl~f,c,x!52
1

2
]Gi j

x ] j]kUl~f!~Gl
x!km]m] iUl~c!

1
1

2
]Gi j

x50~] i
1] j

11] i
2] j

2!Vl~f,c,x!

1] i
1] j

2S ]Gi j
x Vl~f,c,x!

2d~x!E
y
]Gi j

y Vl~f,c,y! D
1

1

2
d~x!E

y
]Gi j

y ] j]kUl~f!

3~Gl
y!km]m] iUl~c!, ~B3!

where the local projectionP̄1 operator has been applied t
obtain the first equation, and the operator 12P1 to obtain the
second. This is illustrated in Fig. 2@dropping all terms of
order O(U3) and higher#. Note that*xV(f,c,x)50. The
differential equation for the bilocal partVl is linear, a general
property that allows to solve all higher multilocal comp
nents~hereVl) as a function of the local partUl only. The
equation forVl can be integrated in the forms~12!, ~13!
given in the text. The method is similar to Ref.@1# to which
we refer for further details. Inserting this solution in th
equation forUl , one obtains Eq.~14! in the text. We have
assumed that no bilocal term exists in the original acti
Near the fixed point form at largel these assumptions are n
strictly necessary, a statement that can be checked using
present method.

It can be useful, in particular for the Cardy-Ostlun
model, that we study in the text, to introduce a Fourier re
resentation in the fields,

Ul
K5E dfe2 iK •fUl~f!,

Vl
K,Px5E dfdce2 iK •f2 iP•cVl~f,c,x!. ~B4!

Using this representation, we obtain the RG equations~12!–
~14! in Fourier space,

Vl
K,Px5

1

2 S Fl
K,Px2d~x!E

y
Fl

K,PyD , ~B5!
1-17
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Fl
K,Px52E

0

l

dl8~K•]Gl 8
x
•P!~K•Gl 8

x
•P!

3e1/2K.G
l 8 l
x50

•K1
1
2 P•G

l 8 l
x50

•P1K•G
l 8 l
x

•PUl 8
K Ul 8

P

] lUl
K5

21

2
K•]Gx50

•KUl
K2

1

2EP,Q,P1Q5K
E

x
~P•]Gx

•Q!

3~P•Gl
x
•Q!Ul

PUl
Q1

1

2EP,Q,P1Q5K
E

x
P•~]Gl

x

2]Gl
0!•QE

0

l

dl8~P•]Gl 8
x
•Q!~P•Gl 8

x
•Q!

3e1/2P•G
l 8 l
x50

•P1
1
2 Q•G

l 8 l
x50

Q1P•G
l 8l
x

•QUl 8
P Ul 8

Q , ~B6!

where *P,Q,P1Q5K[*@dNPdNQ/(2p)N#d(K2P2Q)
whereN is the number of components off. In the text we
have usedV̂l

K,Px to distinguish the Fourier series coefficien
from the Fourier transform.

APPENDIX C: DETAILED CALCULATIONS FOR THE
O„N… MODEL

1. b function

Let us insert Eq.~18! into the ERG equation~14!, keeping
only g0 , g2, andg4 for now, and first focus on the first line
in Eq. ~14!, which reads

] lFg0,l1
g̃2,l

2!
L l

2f21
g̃4,l

4!
L l

e~f2!2G
5

1

2Eq
]Gl

q] i] iUl~f!2
1

2Eq
]Gl

qGl
q@] i] jUl~f!#2

~C1!

with implicit sums on repeated indices. Using that

] i] jUl~f!5g2,ld i j 1
g4,l

3!
~d i j f

212f if j !, ~C2!

which yields

] i] iUl5Ng2,l1
N12

3!
g4,lf

2, ~C3!

] i
1] j

1Ul~f1!] i
2] j

2Ul~f2!5Ng2,l
2 1

N12

3!
g2,lg4,l~f1

21f2
2!

1
1

~3! !2
g4,l

2 @~N14!f1
2f2

2

14~f1•f2!2#.
04610
Settingf15f2 in Eq. ~C3! and identifying the coefficients
of f2 and (f2)2, one then easily obtains all terms in Eq
~21! and ~20! apart from the last one, with the scaled int
grals defined in Eq.~22!.

Inserting now Eq.~18! into the second line of the ERG
equation~14!, one obtains only a correction tog2 from the
term with the lowest number of derivatives~six!. Noting that

] i] j]kUl~f!5
g4,l

3
~d i j f

k1d ikf j1d jkf i !, ~C4!

one finds

S (
i

] i
1] i

2D 3

Ul~f1!Ul~f2!5
g4,l

2

3
~N12!f1•f2 ~C5!

yielding the last term in Eq.~21!,

2
N12

3 E
0

l

dl8 Ĩ l ,l 8
(2) g̃4,l 8

2 ~C6!

with

Ĩ l ,l 8
(2)

5L l
22E

x
~] lGl

x2] lGl
x50!] l 8Gl 8

x Gl 8
x L l 8

2e . ~C7!

This term does not modify the fixed point valueg̃2* to order
e, provided it remains finite in the limitl→`. A way to
compute it is to make an integration by part to treat t
integral overl 8,

E
0

l

dl8] l 8Gl 8
x Gl 8

x g̃4,l 8
2 L l 8

2e

5
1

2
~Gl

x!2g̃4,l
2 L l

2e2E
0

l

dl8~Gl 8
x

!2g̃4,l 8L l 8
e ] l 8~ g̃4,l 8L l 8

e
!

5
1

2
~Gl

x!2g̃4,l
2 1O~eg̃4,l

2 ,g̃4,l
3 ! ~C8!

as from Eq.~20! ] l 8(g̃4,l 8L l 8
e ) is of orderg̃4,l 8

2 and where we
have usedGl 50

x 501. The terms we dropped are of ordere3

in the limit l→`. Finally, in the largel limit we are left with

E
0

l

dl8 Ĩ l ,l 8
(2) g̃4,l 8

2
5

g̃4,l
2

2
L l

22E
x
~] lGl

x2] lGl
x50!~Gl

x!21O~e3!,

~C9!

which is already of ordere2, so that the integral overx can
be performed ind54 exactly. Using the decomposition o
the cutoff~17!, we compute the following integrals exactly i
d54:

Gl
x5

1

4p2Ea

1

x2
~e2x2L l

2/2a2e2x2L0
2/2a!,

L l
22] lGl

x5
1

4p2Ea

1

a
e2x2L l

2/2a. ~C10!
1-18
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Equation~C6! can finally be written as an integral over th
rescaled variablex̃5L lx,

N12

3 E
0

l

dl8 Ĩ l ,l 8
(2) g̃4,l 8

2 }g̃4,l
2 E

x̃
E

a
~e2 x̃2/2a21!

1

ax̃4

3S E
a
e2(L0 /L l )

2x̃2/(2a)2e2 x̃2/2aD 2

.

~C11!

In the limit l→`, this integral is well defined. Indeed, the
is no UV divergence@due to the term (e2 x̃2/2a21) which
behaves asx̃2] nor IR divergence due to the terme2 x̃2/a.

By the same calculation one obtains the flow of the f
energy,

] lg0,l5
N

2
L l

d~ Ĩ l
(0)g̃2,l2 Ĩ l

(1)g̃2,l
2 !1

N12

3
L l

dE
0

l

Ĩ l ,l 8
(3) g4,l 8

2

~C12!

with

Ĩ l ,l 8
(3)

5L l
2dE

x
~] lGl

x2] lGl
x50!] l 8Gl 8

x Gl 8
x Gl 8 l

x L l 8
2e .

We finally obtain the flow forg̃6,l in Eq. ~18! with the
same kind of manipulations, and using, furthermore,

] i] j„~f2!3
…56d i j ~f2!2124f if jf2,

] i] j]k„~f2!3
…524f2~d i j f

k1d ikf j1d jkf i !148f if jfk,
~C13!

one gets

] l g̃6,l5~2e22!g̃6,l2~N114! Ĩ l
(1)g̃4,l g̃6,l

2
8

5
~3N116!E

0

l

dl8 Ĩ l ,l 8
(2) g̃6,l 8

2
1O~ g̃4,l

3 !,

~C14!

which shows thatg̃6* ;e3. Similarly, there is a term propor

tional to Ĩ (0)g̃6,l in the flow equation ofg̃4,l which affects the
fixed point valueg̃4* only to next order ine.

2. Computation of the exponenth

The quadratic term in Eq.~29! is obtained by inserting Eq
~18! in Eq. ~13! and expanding the exponential in Eq.~13! to
order 1. One gets, using Eq.~C5!,
04610
e

Fl~f1 ,f2 ,x!5E
0

l

dl8]Gl 8
x Gl 8

x Gl 8 l
x

3S (
i

] i
1] i

2D 3

Ul~f1!Ul~f2!

5
N12

3
f1•f2E

0

l

dl8] l 8Gl 8
x Gl 8

x Gl 8 l
x g̃4l 8

2 L l 8
2e ,

~C15!

which is the second line of Eq.~29!. We have dropped term
of the form f (f i ,x) such asg̃2,l g̃4,lf1

2, g̃2,l g̃4,lf2
2 @resulting

from the expansion of the exponential in Eq.~13! to order 0#,
or g̃4,l

2 f1
2 , g̃4,l

2 f2
2 @resulting from the expansion of the expo

nential in Eq.~13! to order 1 but acting, respectively, wit
]2
•Gl 8 l

x50
•]2 or ]1

•Gl 8 l
x50

•]1] because they do not give an
contribution to the effective action. Indeed, the contributi
of such terms to the interaction functionalUl(f) ~10!, will be

Vl~fx ,fy ,x2y!5 f ~fx ,x2y!2d~x2y!E
z
f ~fx ,z!,

Ul~f!;E
x,y

S f ~fx ,x2y!2d~x2y!E
z
f ~fx ,z! D

5E
x,y

f ~fx ,x2y!2E
x,z

f ~fx ,z!50,

where we assumed parityf (f i ,x)5 f (f i ,2x) ~which is the
case here! and translational invariance. To treat the integ
over l 8 in Eq. ~C15!, we use an integration by part as in E
~C8!, one gets

N12

3
f1•f2E

0

l

dl8] l 8Gl 8
x Gl 8

x Gl 8 l
x g̃4l 8

2 L l 8
2e

52
N12

18
g̃4,l

2 f1•f2~Gl
x!31O~eg̃4,l

2 ,g̃4,l
3 !,

which leads to Eq.~30!. Using Eq.~C10!, the last term in Eq.
~30! reads~forgetting for the discussion the numerical pre
actor!

H~q,L0 ,L l !5E
x
~eiqx21!~Gl

x!3

5
1

~4p2!3Ex
~eiqx21!

1

x6

3S E
a
e2x2L l

2/2a2e2x2L0
2/2aD 3

, ~C16!

where the integral overx is evaluated ind54 ~as this term is
already of orderg̃4,l

2 ). For anyL0 , L l , this integral is well
defined but in the limitL0→`, the integrand is not anymor
regularized at smallx and there is a logarithmic divergenc
We are interested in the limitq,L l!L0. A simple way to
1-19
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isolate this divergence is to rewrite it as

H~q,L0 ,L l !5
1

~4p2!3 H 2
1

2Ex
~qx!2

3
1

x6 S E
a
e2x2L l

2/2a2e2x2L0
2/2aD 3

1E
x
S eiqx211

1

2
~qx!2D

3
1

x6 S E
a
e2x2L l

2/2a2e2x2L0
2/2aD 3J .

~C17!

The limit L0→` can be taken safely in the second term, t
UV divergence coming only from the first one which can
written

2
1

2Ex
~qx!2

1

x6 S E
a
e2x2L l

2/2a2e2x2L0
2/2aD 3

5hS L0
2

L l
2D ,

h~l!52
S̃4

8
q2E

0

`dx

x S E
a
e2x2/2a2e2lx2/2aD 3

,

where in the second line we performed the change of v
able x→L lx and denotedS̃452p2 the unit sphere area in
dimensiond54. Interestingly, we have~using the variable
u5lx2), up to terms of orderl22,

h8~l!52
3S̃4q2

16l E
0

`

duE 1

2a
e2u/2aS E

a
12e2u/2aD 2

52
S̃4q2

16l F S E
a
12e2u/2aD 3G

u50

u5`

1O~l22!52
S̃4q2

16l
,

where we have usedc(0)5*a51, which leads toh(l);
2(p2q2/8)lnl1O(l21). Finally, one obtains

H~q,L0 ,L l !5
q2

~4p!4 S ln
L l

L0
1x (2)~q/L l ! D1OS L l

2

L0
2D ,

x (2)~ q̃!5
4

p2q̃2Ex
S eiq̃x211

1

2
~ q̃x!2D 1

x6 S E
a
e2x2/2aD 3

,

which gives@up to the factor2g̃4,l
2 (N12)/18], the last term

in Eq. ~30!. Using 1/x651/2*0
`dtt2e2tx2

, one can compute

the integral overx in x (2)(q̃),

x (2)~ q̃!5
2

q̃2Ea,b,c
E

0

`

dt
t2

~ t1a3!2

3S e2q̃2/4(t1a3)211
q̃2

4~ t1a3!
D

04610
e

i-

with a351/2a11/2b11/2c from which we easily obtain the
asymptotic behavior

x (2)~ q̃!;q̃2E
a,b,c

1

48a3
, q̃!1,

x (2)~ q̃!; ln q̃, q̃@1,

as announced in the text~32!. This yields a universal resul
for the h exponent. In addition,x (2)(q̃) gives the scaling
function of the two-point correlatorx (2)(q̃)52q̃2Q(q̃2)
whereQ(y) was computed in Ref.@36# in the particular case
of a IR ’’massive’’ cutoff function of the form~7!. Although
our expression is more general, we have checked thro
series expansion that it coincides with the expression gi
in Ref. @36# for that choice of the cutoff.

Performing two integrations by part one can rewrite,

x (2)~ q̃!5E
a,b,c.0

Ĉ~a!Ĉ~b!

a2b2
ĉ~c!

4

q2

3S 4

q2
~12e2q2/(4a3)!2

1

a3
1

q2

8a3
2D ~C18!

with Ĉ(a)5*a
`da8ĉ(a8).

3. Quartic contribution to G l„f…

The quartic term in Eq.~29! is obtained by inserting Eq
~18! in Eq. ~13! and expanding the exponential in Eq.~13! to
order zero. One gets, using Eq.~C3!,

Fl~f1 ,f2 ,x!52E
0

l

dl8]Gl 8
x Gl 8

x S (
i

] i
1] i

2D 2

Ul~f1!Ul~f2!

52S N14

~3! !2
f1

2f2
21

4

~3! !2
~f1f2!2D

3E
0

l

dl8] l 8Gl 8
x Gl 8

x g̃4l 8
2 L l 8

2e , ~C19!

which is the last line in Eq.~29! @here again we have droppe
terms of the formf (f i ,x) coming from Eq.~C3!#. The inte-
gral overl 8 in Eq. ~C19! is then treated as previously~C8!.
Then, when computing the Fourier transform, one obta
Eq. ~35!, with, using Eq.~C10!,

x l
(4)~q!5E

x
~eiqx21!~Gl

x!2

5
1

16p4Ex
~eiqx21!

1

x4 S E
a
e2x2L l

2/2a2e2x2L0
2/2aD 2

.

For anyL l ,L0 finite, this function is well defined, and w
see that the limitL0→` is also well defined, thus
1-20
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x l
(4)~q!5x (4)~q/L l !,

x (4)~ q̃!5
1

16p4Ex
~eiq̃x21!

1

x4 S E
a
e2x2/2aD 2

1OS L l
2

L0
2D

the integral over x can be computed using 1/x4

5*0
`dtte2tx2

, one obtains

x (4)~ q̃!5
1

16p2Eab
E

0

`

dt
t

~ t1a2!2
~e2q̃2/4(t1a2)21!

with a251/2a11/2b, from which we extract the following
asymptotic behaviors:

x (4)~ q̃!;2q̃2E
a,b,c

1

128a2
, q̃!1,

x (4)~ q̃!;2
1

16p2
ln q̃2, q̃@1,

as announced in the text~37!, ~38!.

APPENDIX D: DETAILED CALCULATIONS FOR THE CO
MODEL—STATICS

1. bgl
function

The b function for the coupling constantgl
K is obtained

by inserting Eq.~49! in Eq. ~B6!. This gives straightfor-
wardly Eq. ~50! using ] lGl

x5052T/2p*0
`duc8(u)5T/2p.

One has alsoGl 8 l
x50

5T/2p( l 82 l ). Considering specifically
gl

1,215gl , we first consider the possible fusion rules su
that P1Q5K21,1:
is

04610
P1Q5K1,21 , ~D1!

1
.

.

1

.

.

.

21

.

2 11
.

.

21

.

1

.

.

.

2 51
.

.

.

.

1

.

21

.

2 , ~D2!

where•[0, and there are 2(n22) different ways to choose
P,Q like that, noticeP•Q521. Other possible fusion rule
involve charges of higher modulus, for instance, we co
consider

P1Q5K1,21 , ~D3!

1
.

.

1

.

22

.

1

.

2 11
21

.

21

.

2

.

.

.

2 51
21

.

.

.

.

.

1

.

2 ~D4!

with P25Q256.
It is then useful to write the integralsJ̃l

(1) and J̃l ,l 8
(2) in Eq.

~50! in terms of the variablesx̃5L lx and m5 l 2 l 8. Using
Eq. ~56!, and specifying togl , one has

J̃l
(1)

2T2 (
P,Q

8 gl
Pgl

Q~P•Q!25~n22!gl
2E

x̃
]g0~ x̃!g l~ x̃!

~D5!
and

21

2T2 (
P,Q

8 ~P.Q!3E
0

l

dl8J̃l ,l 8
2 gl 8

P gl 8
Q

5~n22!TE
x̃

@]g0~ x̃!2]g0~0!#E
0

l

dm]gm~ x̃!@g l~ x̃!2gm~ x̃!#e(42T/p)meTgm( x̃)gl 2m
2

~D6!
a-

with (P,Q8 [(P,Q,P1Q5K . We study the flow nearTc54p,
and as Eq.~D6! is already of ordergl 2m

2 , we can evaluate
the integral overm exactly atTc : in particular,e(42T/p)m

511O(t). Moreover, as the integral is convergent, it
dominated by the vicinity of the fixed pointm50. We can
then substitute in Eq.~D6! gl 2m by gl . The remaining inte-
gral overm is then straightforwardly computed by integr
tion by parts. Equation~D5! together with Eq.~D6!, inte-
grated overm and using Eq.~D9!, then lead in the limitn
→0 to Eq.~55!,
1-21
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] lgl5S 22
T

2p Dgl22gl
2]g0~0!E

x̃
g l~ x̃!

2
2gl

2

Tc
E

x̃
@]g0~ x̃!2]g0~0!#~eTcg l ( x̃)21!. ~D7!

To compute the integrals overx̃ in Eq. ~D7! in the limit l
→` at T5Tc we first quote some useful relations. Using t
decomposition of the cutoff function~17!, we have

]gm~x!5
1

2pEa
e2x2e2m/(2a),

gm~x!5
1

4pEa
E

x2/2a

x2e2m/(2a)dy

y
e2y ~D8!

and the following identities:

]mgm~x!5]gm~x!,

2x2]x2gm~x!5]gm~x!2]gm50~x!. ~D9!

We first compute these integrals in the semibounded dom
uxu.e and then take the limite→0, in order to avoid prob-
lems of convergence~the limit l→` does not introduce any
problem!. Let us decompose the integrals overx̃ in the fol-
lowing way, writingB`/2 as

]g0~0!E
x

8
g l~x!1

1

Tc
E

x

8
„]g0~x!2]g0~0!…~eTcg`(x)21!

5
1

Tc
E

x

8
]g0~x!eTcg`(x)2

1

Tc
E

x

8
]g0~0!~eTcg`(x)21!

1E
x

8
]g0~0!g`~x!2

]g0~x!

Tc
~D10!

with *x8[* uxu.e . Using the previous formula~D9! for l
→`, 2x2]x2g`(x)52]gm50(x),x.0 since ]g`(x)50,x
.0, together with]g0(0)52/Tc we are left with~perform-
ing the change of variableu5x2), and denotingg`(x)
5g̃`(x2),

]g0~0!E
x

8
g l~x!1

1

Tc
E

x

8
„]g0~x!2]g0~0!…~eTcg`(x)21!

5
22p

Tc
2 E

e

`

du@uTc]ug̃`~u!eTcg̃`(u)1~eTcg̃`(u)21!#

1
2p

Tc
E

e

`

du@ g̃`~u!1u]ug̃`~u!#

5
22p

Tc
2 $u@eTcg̃`(u)212Tcg̃`~u!#%e

` , ~D11!

as one recognizes total derivatives in the integrands. U
explicitly Eq. ~D8!,
04610
in

g

g̃`~u!5
1

4pEa
E1„u/~2a!…, ~D12!

whereE1(z)52Ei(2z)5*z
1`e2z/z, with Ei(x) the expo-

nential integral function, behaves asymptotically as

E1~z!;2gE2 ln z1O~z!, z!1, ~D13!

E1~z!;
e2z

z
@11O~1/z!#, z@1, ~D14!

wheregE is the Euler constant, the limite→0 in Eq. ~D11!
can be taken safely to obtain

B`5
4p

Tc
2

expF2S gE2E
a
ln 2aD G , ~D15!

which leads, together with Eq.~55!, to the fixed point value
g* ~57!.

2. Bilocal term for CO model

We compute in this section the bilocal part in the effecti
action given by Eq.~59!. Performing in Eq.~59! the change
of variable l 8→m5 l 2 l 8 and using the notations~56! and
Gl 8

x
52T„gm( x̃)2g l( x̃)…, one gets

V̂l
K,Pq5

1

2Ex
~eiqx21!F̂ l

K,Px ,

F̂ l
K,Px5

L l
4

T2
~KP!2E

0

l

dm]gm~L lx!@gm~L lx!

2g l~L lx!#e2TK.Pgm(L l x)e(42T/p)mgl 2m
2 .

~D16!

As previously, this integral is already of ordergl 2m
2 , so it

can be evaluated atTc , in particular,e(42T/p)m511O(e).
Besides, the integral overm is convergent and dominated b
m50, so that we substitutegl 2m

2 by gl
2 . The remaining in-

tegral overm is then straightforwardly computed to obtain

F̂ l
K,Px52

L l
4

T2
gl

2S 1

T2
~e2TcK•Pg l (L l x)21!1K•P

g l~L lx!

T D ,

~D17!

where Eq.~D8! can be written as

g l~L lx!5
1

4pEa
E1~x2L l

2/2a!2E1~x2L0
2/2a! ~D18!

with the asymptotic behaviors ofE1(z) given in Eqs.~D13!
and ~D14!. For anyL l , L0 the integral overx in Eq. ~D16!
is well defined, but we see that in the limitL0→` ~i.e.,
L l ,q!L0), there is a logarithmic divergence~for small x)
and only for charges such thatK•P522. Indeed, at smallx,
using Eq. ~D13!, 2TcK•Pg l(L lx);K•P@gE1 ln(Ll

2x2)#,
leading toe2TcK•Pg l (L l x);x2K•P. This implies that the limit
1-22
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L0→` only diverges forK•P522 ~there is no problem
with the largex behavior as the integrand decay expone
tially for any couple of charges we consider here!.

a. The case of charges K"PÄ1 or 2

For these charges, the limitL0→` can be taken directly
on Eq.~D16!. This leads to, performing the change of va
able x→L lx and the integral over the angular variable
Eq. ~D16!,

V̂l
K,Pq52q2gl

2 p

Tc
4E0

`

dr
r

q̃2
@J0~ uq̃ur !21#

3FexpS 2K•PE
a
E1~r 2/2a! D 21

1K•PE
a
E1~r 2/2a!G , ~D19!

where q̃5q/L l and J0(z) is a Bessel function of the firs
kind. This defines the functionxK,P(k) in that case,

xK,P~k!54expF2S gE2E
a

ln 2aD G E
0

`

dr
r

k2
@J0~ ukur !21#

3FexpS 2K•PE
a
E1~r 2/2a! D 21

1K•PE
a
E1~r 2/2a!G . ~D20!

The smallk behavior@the first line of Eq.~63!# is straight-
forwardly obtained as

xK,P~k!;aK•P1O~k2!,

aK•P52

expF2S gE2E
a
ln 2aD G

2

3E
u.0

uFexpS 2K•PE
a
E1~u/2a! D

211K•PE
a
E1~u/2a!G , ~D21!

where we performed the change of variableu5r 2.
For K•P51 or 2, r exp@2K•P*aE1(r

2/2a)#;r 2K•P11

when r !1 is analytic in 0 and usingJ0(k);k21/2cos(k
2p/4) one finds fork@1,

E
0

`

dr
r

k2
J0~ ukur !FexpS 2K•PE

a
E1~r 2/2a! D 21G

;OS 1

k5/2D . ~D22!
04610
-
We have, moreover,

E
0

`

dr
r

k2
@J0~ ukur !21#E

a
E1~r 2/2a!

5E
a

222e2ak2/22ak2

k4
. ~D23!

Using Eq. ~D23! together with Eq.~D22!, one obtains the
leading behavior ofxK,P(k) ~D20! in the largek limit, i.e.,
the first line of Eq.~64!,

xK,P~k!;bK•P

1

k2
,

bK•P522 expF2S gE2E
a

ln 2aD G
3S E

u.0
H expF2K•PE

a
E1S u

2aD G21J
22K•Pc8~0! D , ~D24!

where we made the change of variableu5r 2 and used
c8(0)52*aa.

b. The case of charges K"PÄÀ1

In that case,xK,P(k) is formally obtained as previously
~D20!, the smallk behavior being still given by Eq.~D21!.
However, the largek behavior is dominated by the sma
r region and as noticed previously forr !1,
r @exp(2K•P*aE1(r

2/2a))21#;r 2K•P115r 21, which leads
to a logarithmic divergence in the largek limit. It can be
obtained by computing

E
0

`

drr @J0~kr !21#FexpS E
a
E1~r 2/2a! D 21G

;expS 2gE1E
a

ln 2aD E
0

`dr

r
@J0~kr !21#

;2expS 2gE1E
a

ln 2aD ln k, k@1. ~D25!

The last term in Eq.~D20! has the same behavior~D23!
independently ofK•P and Eq. ~D25!, together with Eq.
~D20!, for K•P521 leads to the second line of Eq.~64!,

xK,P~k!;b21

ln k

k2
,

b21524 expS gE2E
a

ln 2aD . ~D26!
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c. The case of charges K"PÄÀ2

As pointed out previously, there is in that case a logar
mic divergence whenL0@1. We isolate this divergence b
writing

V̂l
K•Pq5

21

4 E
x
~qx!2F̂ l

K•Px1
1

2Ex
S eiqx211

1

2
~qx!2D F̂ l

K•Px ,

~D27!

the second term being well defined in the limitL0→`. We
focus now on the first part, using the explicit expression
g l(L lx) ~D8!,

2
1

4Ex
~qx!2F̂ l

K2Kx

5
1

8Tc
4

gl
2q2E

x
x2H expF2E

a
E1S x2

2aD2E1S x2L0
2

2aL l
2D G

2122F E
a
E1S x2

2aD2E1S x2L0
2

2aL l
2D G J 5HS L0

2

L l
2D ,

~D28!

where we made the change of variablex→L lx. To analyze
the large argument behavior ofH(l), we take the derivative
with respect tol

H8~l!5
p

4Tc
4

gl
2q2E

0

`

dxx3E
a

2

l
e2lx2/2a

3S expH 2F E
a
E1S x2

2aD2E1S lx2

2a D G J 21D ,

~D29!

where we have usedE18(z)52e2z/z. Making the change of
variableu5lx2 in H8(l) one obtains

H8~l!5
p

8Tc
4

gl
2q2E

0

` du

l3
uE

a
2e2u/2aS expH 2F E

a
E1S u

2al D
2E1S u

2aD G J 21D ,

using the largel behaviorE1„u/(2al)…;2gE1*a ln(2a)
2ln(u/l)1O(1/l) one gets
04610
-

f

H8~l!5
p

8Tc
4

gl
2q2 expS 2E

a
~2gE1 ln 2a! D 1

l
,

E
0

`

duE
a

2

u
e2u/2aexpF22E

a
E1S u

2aD G1O~l22!

5
p

8Tc
4

gl
2q2 expS 2E

a
~2gE1 ln 2a! D

3
1

l H expF22E
a
E1S u

2aD G J
0

`

1O~l22!

5
p

8Tc
4

gl
2q2 expS 2E

a
~2gE1 ln 2a! D 1

l
1O~l22!,

~D30!

where we have used the asymptotic behaviors~D13!, ~D14!.
This leads finally to

2
1

4Ex
~qx!2F̂ l

K,Px52dK,2PAlq
2 lnS L l

L0
D ,

1O~L l
2/L0

2!Al5
p

4Tc
4

gl
2 expS 2E

a
~2gE1 ln 2a! D ,

~D31!

which is the first term in Eq.~61! with the amplitudeAl
given in Eq.~62!.

In the second line of Eq.~D27!, we perform the change o
variablex→L lx and the integral over the angular variable
get

1

2Ex
S eiqx211

1

2
~qx!2D F̂ l

K,Px

52q2gl
2 p

Tc
4E0

`

dr
r

q̃2 S J0~ uq̃ur !211
1

4
q̃2r 2D

3FexpS 2E
a
E1~r 2/2a! D 2122E

a
E1~r 2/2a!G ,

~D32!

where J0(z) is a Bessel function of the first kind, from
which we get the functionxK,P(k) defined in the text for
K•P522,

xK,P~k!54 expF2S gE2E
a
ln 2aD G E

0

`

dr
r

k2

3S J0~ ukur !211
1

4
k2r 2D FexpS 2E

a
E1~r 2/2a! D

2122E
a
E1~r 2/2a!G . ~D33!
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The smallk behavior@i.e., the second line of Eq.~63! in the
text# is easily obtained

xK,P~k!;a22k2, k!1,

a225

expF2S gE2E
a
ln 2aD G

32 E
0

`

duu2

3FexpS 2E
a
E1~u/2a! D 2122E

a
E1~u/2a!G ,

~D34!

where we made the change of variableu5r 2. The largek
behavior is governed by the smallr region in the integral
~D33!, where r „exp@2*aE1(r

2/2a)#2122*aE1(r 2/2a)…
;exp(22gE1*a ln 2a)r23, which implies fork@1,

xK,P~k!;
4

k2E0

`dr

r 3 S J0~ ukur !211
1

4
k2r 2D1O~1!

; ln k1O~1!, ~D35!

which is the last line of Eq.~64! in the text.

APPENDIX E: DETAILED CALCULATIONS FOR THE CO
MODEL—EQUILIBRIUM DYNAMICS

1. Derivation of the RG flow

We restrict our analysis to order 1O(Ul), and at this
order the RG flow reads~14!

] lUl~u,i û !5
1

2
]Gl ,i j

x50] i] jUl~u,i û !, ~E1!

where Ul(u,i û) is given by Eq.~80! and the indicesi , j
formally refer to the components of the vectorf ~73! and the
time dependence, i.e.,] i[d/dut ,d/d i û t . From Eq.~74!, the
matrix Gl ,tt8

q has the following expression:

Gl
q5S Cl

q Rl
q

Rl
q† 0

D . ~E2!

With these notations, we have

1

2
]Gl ,i j

x50] i] j5
1

2

d

du
]Cl

x50 d

du
1

d

du
]Rl

x50 d

d i û
, ~E3!

where we will often use the matrix notation for time, i.e
uv5* tutv t . Acting with this operator onUl(u,i û), one gets
04610
1

2
]Gl ,i j

x50] i] j S E
t
i ûxtFlt~u!2

1

2Ett8
i ûxti ûxt8D l t t 8~u! D

52
1

4Ett8
i û ti û t8E

t1t18

d

dut1

]Clt 1t
18

x50 d

dut
18
D l t t 8~u!

1
1

2Et
i û tE

t1t18

d

dut1

]Clt 1t
18

x50 d

dut
18
Flt~u!

2E
t
i û tE

t1.t18
]Rlt 1t

18
x50 d

dut1

D l t t
18

1E
t1.t

]Rlt 1t
x50 d

dut1

Ft~u!. ~E4!

The last term vanishes by causality sinceFt(u) depends on
ut1

with t1,t only. Identifying in Eq.~E1! the coefficient of

the powers in the fieldi û one gets Eq.~84! in the text.
The first equation of Eq.~84! is easily solved, and it gives

D l t t 8~u!5expS 1

2Et1t18

d

dut1

Clt 1t
18

x50 d

dut
18
D D l 50tt8~u!

52e2Cl0
x50

1C
lt 2t8
x50

L0
2g0 cos~uxt2uxt8!, ~E5!

where we have usedCl 500
x50 50. From the previous study o

the statics, one has that

e2Cl0
x50

L0
2g05L l

2gl1O~gl
2!, ~E6!

which leads together with Eq.~E5! to the first line in Eq.
~86!. By taking the functional derivative with respect touxt8
in the second line of Eq.~84! and using the same manipula
tions one gets the second line in Eq.~86!.

2. Computation of the dynamical exponentz

Here we compute the self-energyS lv ~89! given by

S lv5E
0

`

dteivtS l t ,

S l t522L l
2gl S Rlt

x50eClt
x50

2d~ t !E
0

`

dt8Rlt 8
x50eC

lt 8
x50D .

~E7!

Notice the terms proportional tod(t) in S l t @not given in the
text ~86! for clarity# which guarantees thatS lv5050, and
with the explicit expressions for the bare correlation and
sponse functions~75! computed with the cutoff decompos
tion ~17!,
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Clt
x505

T

4pEa
lnS utu1

a

2L l
2

utu1
a

2L0
2

D , ~E8!

Rlt
x505

u~ t !

4p E
a

1

t1
a

2L0
2

2
1

t1
a

2L l
2

. ~E9!

After an integration by part in Eq.~E7! and using those ex
plicit expressions one gets to ordert,

S lv52
2L l

2gl

Tc
ivE

0

`

dteivt

35 expF E
a

lnS t1
a

2L l
2

t1
a

2L0
2

D G216 . ~E10!

This expression is logarithmically divergent forL0→` ~the
integrand behaves as 1/t at smallt in this limit!, and a way to
isolate this divergence is to decompose this integral in
following way ~and performing the change of variablet
→t/L l

2):

S lv52
2gl

Tc
ivE

1

`

dtei ṽtH expF E
a

lnS t1
a

2

t1
la

2

D G21J
2

2gl

Tc
ivE

0

1

dt~ei ṽt21!

3H expF E
a

lnS t1
a

2

t1
la

2

D G21J
2

2gl

Tc
ivE

0

1

dtH expF E
a

lnS t1
a

2

t1
la

2

D G21J ,

~E11!

where ṽ5v/L l
2 and l5L l

2/L0
2 . In the first two lines we

can take safely the limitl→0 and we focus now on the
divergent part of the last term,
04610
e

H~l!52
2gl

Tc
ivE

0

1

dt expF E
a

lnS t1
a

2

t1
la

2

D G .

~E12!

Taking the derivative with respect tol, one has

H8~l!52
2gl

Tc
ivE

0

1

dtE
a

2a

2

1

t1
la

2

3expF E
a

lnS t1
a

2

t1
la

2

D G
52

H~l!

l
2

2gl

Tc

iv

l E
0

1

dttE
a

1

t1
a

2

3expF E
a

lnS t1
a

2

t1
la

2

D G
2

2gl

Tc

iv

l E
0

1

dttE
aS 1

t1
la

2

2
1

t1
a

2
D

3expF E
a

lnS t1
a

2

t1
la

2

D G . ~E13!

In the integral of the second line, we can take the limitl
→0, it gives

2
2gl

Tc

iv

l E
0

1

dttE
a

1

t1
a

2

expF E
a

lnS t1
a

2

t1
la

2

D G
;2

2gl

Tc

iv

l E
0

1E
a

1

t1
a

2

expF E
a

ln t1
a

2G1O~1!

;2
2gl

Tc

iv

l H expF E
a

lnS 11
a

2D G2expF E
a

lnS a

2D G J
1O~1!.

The last term in Eq.~E13! can be integrated by parts, to g
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2
2gl

Tc

iv

l E
0

1

dttE
a

1

t1
la

2

2
1

t1
a

2

expF E
a

lnS t1
a

2

t1
la

2

D G
5

H~l!

l
1

2gl

Tc

iv

l
expF E

a
lnS 11

a

2D G1O~1!.

~E14!

Finally, H8(l) in Eq. ~E13! can be written as

H8~l!; ivF gl

2Tc
expS E

a
ln 2aD 1

l
1O~1!G ,

H~l!; ivF gl

2Tc
expS E

a
ln 2aD lnl1O~1!G , ~E15!

which gives together with the last line of Eq.~E11! the
first term in Eq. ~91! with the amplitude Bl
5gl /2Tc exp(*a ln 2a). The first two lines of Eq.~E11!,
where we take the limitl→0 define the functionx (dyn)(n)
of Eq. ~91!,

x (dyn)~n!524 expS 2E
a

ln 2aD S E
1

`

dteint

3H 1

t
expF E

a
lnS t1

a

2D G21J 1E
0

1

dt~eint21!

3H 1

t
expF E

a
lnS t1

a

2D G21J D . ~E16!

The small argument behavior ofx (dyn)(n) is dominated by
the larget region of the integrand@i.e., the first line of Eq.
~E16!#. Using that (1/t exp@*a ln(t1a/2)#21);*aa/2t for t
@1, one gets

x (dyn)~n!;24 expS 2E
a

ln 2aD E
a

a

2E1

`

eint
1

t
,

n!1;4 expS 2E
a

ln 2aD E
a

a

2
ln n, n!1, ~E17!

which is the asymptotic behavior announced in t
text ~93! with the nonuniversal amplitude adyn
54 exp(2*a ln 2a)*aa/2. The largen behavior ofx (dyn)(n) is
governed by the smallt region of the integrand, i.e., th
second line of Eq.~E16!:
04610
x (dyn)~n!;24 expS 2E
a

ln 2aD expS E
a

ln
a

2D
3E

0

1

dt~eint21!
1

t

; ln n n@1, ~E18!

which is the asymptotic behavior announced in the text~94!.
We show here how to take directly, in a cruder way, t

limit l→` in S l t ~E7!. Indeed, using the explicit expressio
of Clt

x50 andRlt
x50 ~E8!, one has

Clt
x50;2

T

4pEa
@ ln~4L0

2t12a!2 ln~2a!22l #1O~e22l !,

Rlt
x50;

1

4pEa

1

t1
a

2L0
2

1O~e22l !. ~E19!

This allows to take the largel limit in S l t at Tc ~as it is
already of ordert)

lim
l→`

S l t52
L0

2

2p
g* expS E

a
ln~2a! D E

a

1

t1
a

2L0
2

3expS 2E
a

ln~4L0
2t12a! D ~E20!

for t.0. We then obtain directlyS lv in the limit l→` as

lim
l→`

S lv52

g* L0
2 expS E

a
ln~2a! D

2p
ivE

0

`

dteivt

3expS 2E
a

ln 4L0
2t12aD

52

g* expS E
a

ln~2a! D
2p

ivE
0

`

dtei (v/L0
2t)

3expS 2E
a

ln 4t12aD . ~E21!

The smallv/L0
2 behavior is governed by the larget region of

the integrand, which gives
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lim
l→`

S lv;2

g* expS E
a

ln~2a! D
2p

ivE
1

`

expi ~v/L0
2!t

1

4t

;B* iv lnS v

L0
2D 1OS iv

L0
2D ,

iv

L0
2

!1, ~E22!

which gives the same result obtained by the previous an
sis ~95!.

3. Scaling function at equilibrium

In this section, we show how to solve the equation for
response function~102!. First, it is natural to search for
solution under the formR t

q5e2q2tG t
q . Then, performing the

change of variableu5t2t1 and using the explicit expressio
~E20!, one gets the following equation forG t

q :

] t̃G t̃
q̃
54B* E

0

t̃
duE

a

1

u1
a

2

expS 2E
a

ln~4u12a! D eq̃2u

24B* E
0

`

duE
a

1

u1
a

2

expS 2E
a

ln~4u12a! D ,

~E23!

whereq̃5q/L0 and t̃ 5L0
2t, with the initial conditions:

G 01
q̃

51, ~E24!

G 0
q̃50. ~E25!

The second term in the left-hand side is a total derivative
can be integrated. Performing an integration by part on
first term, one gets

G t̃
q̃
5114B* F q̃2E

0

t̃
dvE

0

v
du expS 2E

a
ln~4u12a! D eq2u

2E
0

t̃
dveq2v expS 2E

a
ln~4v12a! D G . ~E26!

Performing an integration by part in the integral overv on
the first integral and performing the change of variableu8
5q2u in the remaining integrals, one gets
04610
y-

e

d
e

G t̃
q̃
5114B* H ~ q̃2 t̃ 21!

1

q̃2E0

q̃2 t̃
du expF2E

a
lnS 4u

q̃2
12aD G

3~eu21!2
1

q̃2E0

q̃2 t̃
duueu expF2E

a
lnS 4u

q̃2
12aD G

~E27!

1~ q̃2 t̃ 21!
1

q̃2E0

q̃2 t̃
du expF2E

a
lnS 4u

q̃2
12aD G .

~E28!

We now want to find the scaling function, i.e., th
asymptotic behavior whenq̃→0 (L0→`), keepingq̃2 t̃ 5y
fixed. In the two first lines of the above expression, the lim
q̃→0 can be taken safely, although the last term is diverg
in this limit. Thus, one has

G t̃
q̃
5114B* H ~ q̃2 t̃ 21!E

0

q̃2 t̃
du

eu21

4u
2

1

4E0

q̃2 t̃
dueu

1~ q̃2 t̃ 21!
1

q̃2E0

q̃2 t̃
du expF2E

a
lnS 4u

q̃2
12aD G J

1O~ q̃2!. ~E29!

To find the asymptotic behavior of the last term we write

1

q̃2E0

y

du expF2E
a

lnS 4u

q̃2
12aD G ~E30!

5
1

q̃2E0

y

duH expF2E
a

lnS 4u

q̃2
12aD G2E

a

1

4u

q̃2
12aJ

~E31!

1
1

q̃2E0

y

duE
a

1

4u

q̃2
12a

. ~E32!

In the integral on the second line, we can take the limiq̃

→0 by making the change of variablel5u/q̃2, and the
second can be done exactly. We thus have

1

q̃2E0

q̃2 t̃
du expF2E

a
lnS 4u

q̃2
12aD G

5
1

4
ln

y

q̃2
2E

a
ln

a

2
1E

0

`

dl expS 2E
a

ln~4l12a! D
2E

a

1

4l12a
1O~ q̃2!.
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Finally, using

E
0

y

du
eu21

4u
5

1

4
@2gE1Ei~y!2 ln y# ~E33!

one has, up to terms of orderq̃2,

G t̃
q̃
511B* @~y21!Ei~y!112ey1~12y!~ ln q̃21r!#,

r5gE1E
a

ln
a

2
24E

0

`

dl expS 2E
a

ln~4l12a! D
14E

a

1

4l12a
, ~E34!

which yields the scaling function given in the text.

APPENDIX F: NONEQUILIBRIUM DYNAMICS OF THE
CO MODEL

1. Some useful expressions

To begin with, we give the explicit expression ofD l t t 8 and
S l t t 8 and their limiting expression whenl→` in the case of
nonequilibrium dynamics. The general expression
D l t t 8(u), i.e., the first line of Eq.~E5! is still valid for non-
equilibrium dynamics. To evaluate it, we only need the e
pression ofCltt 8

x50 that we compute from Eq.~122! using the
same cutoff functionc(z) as previously~17!,

Cltt 8
x50

5
T

4pEa
F lnS t1t81

a

2L0
2D 2 lnS ut2t8u1

a

2L0
2D

2
T

4p
lnS t1t81

a

2L l
2D 1 lnS ut2t8u1

a

2L l
2D G .

~F1!
04610
f

-

Notice that the response functionRtt8
x50 has its equilibrium

expression. From Eqs.~E5! and ~F1!, one obtains

D l t t 8~u!5e21/2Cltt
x50

21/2C
lt 8t8
x50

1C
ltt 8
x50

D l 50tt8~u!. ~F2!

Using Eq.~F1! one has, usingT5Tc54p to this order,

lim
l→`

2
1

2
Cltt

x502
1

2
Clt 8t8

x50
1Cltt 8

x50

5E
a
2 lnS L0

2ut2t8u1
a

2D1 lnS L0
2~ t1t8!1

a

2D
2

1

2
lnS L0

2t1
a

4D2
1

2
lnS L0

2t81
a

4D1 ln
a

4
~F3!

and using the definition~88!, one obtains finally

Dtt85 lim
l→`

Dltt 85
L0

2TcB*

2
expH E

a
2 lnS L0

2ut2t8u1
a

2D
1 lnFL0

2~ t1t8!1
a

2G J expF E
a
2

1

2
lnS L0

2t1
a

4D
2

1

2
lnS L0

2t81
a

4D G , ~F4!

where we have used the expression ofB* given in Eq.~95!.
The expression forS l t t 8 can be obtained in a very simila
way,
S tt85 lim
l→`

S l t t 85
2L0

4B*

2 E
aH u~ t2t8!

L0
2~ t2t8!1

a

2

expF E
a
2 lnS L0

2ut2t8u1
a

2D GexpH E
a

lnFL0
2~ t1t8!1

a

2G2
1

2
lnS L0

2t1
a

4D

2
1

2
lnS L0

2t81
a

4D J 2d~ t2t8!E
0

t

dt1
1

L0
2~ t2t1!1

a

2

expF E
a
2 lnS L0

2ut2t1u1
a

2D G

3expF E
a

ln@L0
2~ t1t1!1a/2#2

1

2
lnS L0

2t1
a

4D2
1

2
lnS L0

2t11
a

4D G J . ~F5!
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These expressions~F4!,~F5! will be very useful to determine
explicit expressions for R tt8

q
5 lim l→`R l t t 8

q and C tt8
q

5 lim l→`C l t t 8
q by solving perturbatively Eqs.~99! and~100!.

2. Nonequilibrium response function: detailed calculations

The starting point of our analysis is Eq.~99! that we solve
perturbatively by replacing, in the right hand side~rhs! of
this equation,R l t t 8

q by its bare value. One obtains, in th
limit l→`, using Eq. ~F5!, and in terms of the rescale
variablest̃ 5L0

2t, q̃5q/L0,

] t̃R t̃ t̃ 8
q̃

1q̃2R t̃ t̃ 8
q̃

5
B*

2 E
0

t̃
dt1

1

~ t̃ 2t1!1
a

2

expF E
a
2 lnS t̃ 2t11

a

2D G
3expH E

a
lnF ~ t̃ 1t1!1

a

2G2
1

2
lnS t̃ 1

a

4D
2

1

2
lnS t11

a

4D J @u~ t12 t̃ 8!

3e2q̃2(t12 t̃ 8)2e2q̃2( t̃ 2 t̃ 8)#. ~F6!

Let us first focus on the last term in the rhs of Eq.~F6!,
where we make the change of variablet15u t̃ and analyzing
the limit t̃ @1,

2
B*

2
e2q̃2( t̃ 2 t̃ 8)E

0

1

duE
a

1

12u1
a

2 t̃

3expF E
a
2 lnS 12u1

a

2 t̃
D GexpF E

a
lnS 11u1

a

2 t̃
D

2
1

2
lnS u1

a

4 t̃
D 2

1

2
lnS t̃ 1

a

4D2
1

2
ln~ t̃ !G

;2
B*

2
e2q̃2( t̃ 2 t̃ 8)E

0

1du

t̃
E

a

1

12u1
a

2 t̃

3expF E
a
2 lnS 12u1

a

2 t̃
D G

3expF E
a

lnS 11u1
a

2 t̃
D 2

1

2
lnS u1

a

4 t̃
D G5Q. ~F7!

In the integrand one cannot directly take the limitt̃→` be-
cause it generates a divergence of the integral whenu→1.
Therefore we subtract the divergent term in the followi
way:
04610
Q52
B*

2
e2q̃2( t̃ 2 t̃ 8)E

0

1 du

t̃
E

a

2

12u1
a

2 t̃

3expF E
a
2 lnS 12u1

a

2 t̃
D G2

B*

2
e2q̃2( t̃ 2 t̃ 8)

3E
0

1 du

t̃
E

a

1

12u1
a

2 t̃

expF E
a
2 lnS 12u1

a

2 t̃
D G

3H expF E
a

lnS 11u1
a

2 t̃
D 2

1

2
lnS u1

a

4 t̃
D G22J .

~F8!

Interestingly, except in the first line, one can take directly
limit t̃→` in the integrand of the two last lines using

lim
t̃→`

1

12u1
a

2 t̃

expF E
a
2 lnS 12u1

a

2 t̃
D G

3H expF E
a

lnS 11u1
a

2 t̃
D 2

1

2
lnS u1

a

4 t̃
D G22J

5
1

~12u!2 S 11u

Au
22D 5

1

Au~11Au!2
~F9!

and the divergence foru→1 is cured. Then all the remainin
integrals can be performed exactly, giving finally

Q5B* e2q̃2( t̃ 2 t̃ 8)F2expS 2E
a
ln

a

2D 1
1

2 t̃
1O~ t̃ 22!G .

~F10!

We now perform exactly the same manipulations on the fi
term in the rhs of Eq.~F6!. Performing the change of vari
able t15u t̃ and considering the limitt̃ @1 ~keeping q̃2 t̃ ,
q̃2 t̃ 8 and t̃ / t̃ 8 fixed!, one obtains

B*

2 E
t̃ 8/ t̃

1 du

t̃
E

a

e2q̃2(u t̃2 t̃ 8)

12u1
a

2 t̃

expF E
a
2 lnS 12u1

a

2 t̃
D

1 lnS 11u1
a

2 t̃
D 2

1

2
lnS u1

a

4 t̃
D G

5B* E
t̃ 8/ t̃

1 du

t̃
E

a

e2q̃2(u t̃2 t̃ 8)

12u1
a

2 t̃

expF E
a
2 lnS 12u1

a

2 t̃
D G

1
B*

2 E
t̃ 8/ t̃

1 du

t̃

e2q̃2(u t̃2 t̃ 8)

Au~11Au!2
1O~ t̃ 22!, ~F11!
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where we have used the same trick~F9! as previously. Using
Eq. ~F11! together with Eq.~F10!, one can write Eq.~F6! in
a rather simple way

] t̃R t̃ t̃ 8
q̃

1q̃2R t̃ t̃ 8
q̃

54B* E
t̃ 8

t̃
dt1E

a

1

t2t11
a

2

expS 2E
a

ln@4~ t̃ 2t1!12a# D

3e2q̃2(t12 t̃ 8)2B* e2q̃2( t̃ 2 t̃ 8) expF2E
a

lnS a

2
D G

1
B*

2 S Et̃ 8

t̃ dt1

A t̃ t1

e2q̃2(t12 t̃ 8)

~A t̃ 1At1!2
1

e2q̃2( t̃ 2 t̃ 8)

t̃
D . ~F12!

The two first lines correspond to equilibrium fluctuatio
~E23! and their contribution to the response function h
already been computed~105!. The last term does not depen
anymore on the cutoff function and characterizes the con
butions coming from nonequilibrium fluctuations. The linea
ity of this equation suggests then to look for a solution un

the form R t̃ t̃ 8
q̃

5R t̃ t̃ 8
q̃ eq

1R t̃ t̃ 8
q̃ noneq, where R t̃ t̃ 8

q̃ eq

5q̃z22FR
eq@ q̃z( t̃ 2 t̃ 8)# ~103! and R t̃ t̃ 8

q̃ noneq
5e2q̃2( t̃ 2 t̃ 8)Ht̃ t̃ 8

q

with Ht̃ t̃ 8
q̃ determined by Eq.~F6!,

] t̃H t̃ t̃ 8
q̃

5
B*

2 S Et̃ 8

t̃ dt1

A t̃ t1

e2q̃2(t12 t̃ )

~A t̃ 1At1!2
1

1

t̃
D ,

Ht̃ t̃
q̃

5Ht̃ t̃ 2

q̃
50. ~F13!

This allows to write a close expression for the perturbat

expansion ofR t̃ t̃ 8
q̃ noneq in terms of the scaling variablesv8

5q̃2( t̃ 2 t̃ 8), u5 t̃ / t̃ 8,
04610
s

i-
-
r

e

R t̃ t̃ 8
q̃ noneq

5
B* e2v8

2 S E
v8/(u21)

uv8/(u21) dt2

At2
E

v8/(u21)

t2 dt1

At1

3
et22t1

~At11At2!2
1 ln uD . ~F14!

Unfortunately, it is quite difficult to extract directly the
asymptotic behaviors from this double integral. Howev
one can perform straightforward~although tedious! manipu-

lations to obtain a quasiexplicit expression forR t̃ t̃ 8
q̃ noneq. Per-

forming the natural change of variablesa5At22At1, b
5At21At1 one is left with integrals over one variable,

B*

2
e2vE

v/(u21)

uv/(u21)dt2

At2
E

v/(u21)

t2 dt1

At1

et22t1

~At11At2!2

5B* e2vFu21

8vu
2

u21

8v
1QS v

u21
,uD1QS 2vu

u21
,
1

uD G ,
Q~x,y!5

1

xE1

Ay
db

ex(b221)

~b11!3
. ~F15!

Performing further manipulations we find that one can wr

R t̃ t̃ 8
q̃ noneq

5u ln ue2v1tFR
1 noneq~v8,u!1O~t2!, ~F16!

u5B* 1O~t2!, ~F17!

where the logarithmic behavior determiningu has been ex-
tracted such that the functionFR

1noneq(v,u) has a good limit
for u→`, as will be shown below. A useful expression f
this function is found as
FR
1noneq~v,u!5egEH 12e2v2ApA vu

u21
ev/(u21)S erfA vu

u21
2erfA v

u21D 2ApA v
u21

e2vu/(u21)S erfiA vu

u21

2erfiA v
u21D 1e2v~12v !@Ei~v !2 ln v2gE#12e2v

vu

u21 F1

u S v
u21

1
1

2D 2F2S $1,1%,H 3

2
,2J ,2

v
u21D

2S 2
vu

u21
1

1

2D
2

F2S $1,1%,H 3

2
,2J ,

vu

u21D G1e2vpS 1

2
2

vu

u21DerfA v
u21

erfiA vu

u21

22Ap~12v !
e2v

Au
E

0

Avu/(u21)
dse2s2/uerfi~s!12~12v !e2vln

11
1

Au

2
1

ve2v

u21
ln uJ , ~F18!
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where erfz is the error function, erfiz is the imaginary error
function:

erfz5
2

Ap
E

0

z

dse2s2
, ~F19!

erfi z5
2

Ap
E

0

z

dses2
~F20!

with erfiz52 i erfi z. One has the following asymptotic be
haviors:

erfz;2z/Ap, z!1, ~F21!

erfz;12e2z2
/~Apz!, z@1 ~F22!

and

erfi z;2z/Ap, z!1, ~F23!

erfi z;ez2
/~Apz!, z@1, ~F24!

and 2F2($1,1%,$ 3
2 ,2%,z) is a generalized hypergeometric s

ries which has the following asymptotic behaviors:

2F2S $1,1%,H 3

2
,2J ,zD;11O~z!, ~F25!

2F2S $1,1%,H 3

2
,2J ,zD;z→1`

Ap

2

ez

z3/2
@11O~z21!#,

2F2S $1,1%,H 3

2
,2J ,zD;z→2`2

ln~2z!

2z
. ~F26!

Under this form, asymptotic behaviors are more easily
tained. Note that we have also performed numerical che
that Eq.~F18! and the starting integral~F14! do indeed co-
incide.

Note some simple formulas for the same point respon

R t̃ t̃ 8
x50

5
1

2pz~ t2t8!
h~ t/t8!, ~F27!

h~u!5uuE
0

`

dvFR~v,u!. ~F28!

a. Expansion at large u,v fixed

The asymptotic behavior ofFR
1(v,u) is easily obtained in

this limit. From Eq. ~123!, one has limu→` FR
1(v,u)

5FR
1eq(v)1 limu→` FR

1noneq(v,u), whereFR
1eq(v) is given in

Eq. ~104!. On the expressions~F16!, ~F18! together with the
asymptotic behaviors~F21!, ~F23!, ~F25! we see that all
terms vanish in this limit except the following ones:
04610
-
ks

:

lim
u→`,vfixed

FR
1noneq~v,u!

52FR
1eq~v !1egEH 2Apv erfAv2e2v

3F ~12v !ln~4vegE!22vS v2
1

2D
3 2F2S $1,1%,H 3

2
,2J ,v D G J ,

which leads to Eq.~125! in the text.

b. Expansion at largev, u fixed

Although one can extract more rigorously the largev be-
havior atu fixed from the complete expression~F16!, it is
easier to compute it from the starting integral in Eq.~F14!.
Indeed, in the largev limit, the integral will be dominated by
the regiont22t1;v, i.e., one can replace in the integran
~except of course in the termet22t1) t2 by vu/(u21) andt1
by v/(u21),

B* e2v

2 E
v/(u21)

uv/(u21) dt2

At2
E

v/(u21)

t2 dt1

At1

et22t1

~At11At2!2

;
B*

2

1

v2

~Au21!2

Au
e2v

3E
v/(u21)

vu/(u21)

dt2et2E
(v/(u21)

vu/(u21)

dt1e2t1, ~F29!

which leads finally to

FR
1noneq~v,u!;

B*

2t

1

v2

~Au21!2

Au
1O~v23!. ~F30!

We have checked that we obtain the same result by perfo
ing this expansion on Eq.~F16!. Finally, using the largev
behavior ofFR

1eq ~107! and the value ofB* ~95!, one obtains

FR
1~v,u!;egE

1

2v2

u11

Au
1O~v23!, ~F31!

which gives Eq.~127! in the text.

c. The limit of vanishing momentum

The limit q̃→0 is easily obtained by looking for the lead
ing term in FR(v,u) when v5q̃2( t̃ 2 t̃ 8)→0. Using Eq.
~F18! together with Eqs~123!, and~104!, one has

FR
1~v !;2egES ln v1gE22ln

11
1

Au

2
D . ~F32!
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This logarithmic behavior together with Eq.~98! cancels the
log q̃ divergence in Eq.~124! and allows to take the limit of
vanishing momentum. We also give here the expression
FR

1noneq(0,u), obtained from Eq.~F16!,

FR
1noneq~0,u!52egE ln

11
1

Au

2
. ~F33!

This will be useful for further applications.

3. Nonequilibrium correlation function: Detailed calculations

The starting point of our analysis is the following expre
sion given in the text~129!, for t̃ . t̃ 8:

C t̃ t̃ 8
q̃

5 lim
l→`

C l t̃ t̃ 8
q̃

~F34!

52TE
0

t̃ 8
dt1R t̃ t1

q̃ R t̃ 8t1

q̃
1E

0

t̃
dt1E

0

t̃ 8
dt2R t̃ t1

q̃
Dt1t2

R t̃ 8t2

q̃ ,

~F35!
04610
of

-

whereDt1t2
5 lim l→` Dlt 1t2

is given in Eq.~F4!, that we ex-

pand perturbatively using the expression we obtained
R tt8

q ~124!. As we did previously for the response functio
we could keep the complete cutoff dependence in Eq.~F4!.
However, given the complexity of these manipulations a
the experience we acquired before, we know that the o
cutoff dependence is contained in an overall nonunive

scaleq̃→lq̃. For these reasons we will perform the comp

tation using a simplified cutoffĉ(a)5d(a2a0) and we will
choosea052 for simplicity.Dt1t2

can then be written as~F4!

Dt1t2
5

1

2
egETct

t11t2

~ ut12t2u11!At1t2

1O~t2!, ~F36!

where we have dropped thea0 dependence where it turns ou
to be unimportant.

Performing the integrals that do not involveFR
1(v,u), one

has
C tt8
q

5
T

q2
FC

0 ~v,u!1
T

q2
u ln uFC

0 ~v,u!1
T

q2
~z22!ln qS v

]FC
0 ~v,u!

]v
1FC

0 ~v,u! D 1
2Tu

q2
e2v(11u)/(u21)

3FEiS 2v
u21D2 lnS 2v

u21D2gEG1
2Tt

q2

v
u21E0

1

dsFR
0 S u2s

u21
v DFR

1 S 12s

u21
v,

1

sD1FR
0 S 12s

u21
v DFR

1 S u2s

u21
v,

u

sD
1

egETct

q2
e2v(11u)/(u21)E

0

uv/(u21)

dt1E
0

v/(u21)

dt2e(t11t2)S 1

ut12t2u1q2
1

1

2

At12At2

At1t2~At11At2!
D , ~F37!
where we have used the trick~F9!, and dropped the prime in
v85q̃2( t̃ 2 t̃ 8) for simplicity. A natural way to perform this
computation is to use forFR

1(v,u) the decomposition in an
equilibrium and a nonequilibrium contributions~123!. Parts
of Eq. ~F37! can then be computed analytically,

2Tt

q2

v
u21E0

1

dsFR
0 S u2s

u21
v DFR

1eqS 12s

u21
v D

1FR
0 S 12s

u21
v DFR

1eqS u2s

u21
v D

1
egETct

q2
e2v(11u)/(u21)E

0

uv/(u21)

dt1E
0

v/(u21)

dt2

3
e(t11t2)

ut12t2u1q2

52
egEt

q2
ln~q2egE!TFC

0 ~v,u!
1
1

2
egEtTH e2[v(u11)]/(u21)

q2 F2422
uv

u21
EiS uv

u21D
22

v
u21

EiS v
u21D G1

2

q2
~e2vu/(u21)1e2v/(u21)!

1
2

q2
@e2v211ve2vEi~v !#J . ~F38!

The expressions~F37! together with Eq.~F38! allow one to
identify the following perturbative scaling behavior~115!:

C tt8
q

5
T

q2 S FC
0 ~v,u!1~z22!v ln q

]FC
0 ~v,u!

]v

1u ln uFC
0 ~v,u!1tFC

1 ~v,u! D 1O~t2!, ~F39!
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FC
1 ~v,u!52egEe2v(11u)/(u21)FEiS 2v

u21D2 lnS 2v
u21D2gEG1

1

2
egEH e2v(u11)/(u21)

3F2422
uv

u21
EiS uv

u21D22
v

u21
EiS v

u21D G12~e2vu/(u21)1e2v/(u21)!12@e2v211ve2vEi~v !#J
12

v
u21E0

1

dsH FR
0 S u2s

u21
v DFR

1noneqS 12s

u21
v,

1

sD1FR
0 S 12s

u21
v DFR

1noneqS u2s

u21
v,

u

sD J
1

1

2
egEe2v(11u)/(u21)E

0

vu/(u21)

dt1E
0

v/(u21)

dt2
~At12At2!et11t2

At1t2~At11At2!
a
b-
d
um

or
.

with the exponentsz andu given in Eqs.~98! and~123!. The
scaling functions are universal up to a cutoff dependent
ditive constant. It was explicitly computed for the equili
rium response in Eq.~E34!. Here, we do not determine it an
thus we can drop some multiplicative factors of moment
in the lnq̃ term.

a. Expansion at large u,v fixed

First, one has

FC
0 ~v,u!5e2v2e2v(u11)/(u21);

2e2vv
u

1O~u22!.

~F40!

We now focus on the asymptotic behavior ofFC
1 (v,u) for

largeu, keepingv fixed. Using the small argument behavi
of Ei(z); ln z1gE1O(z), one has for the first line of Eq
~F39! in this limit

2egEe2v(11u)/(u21)FEiS 2v
u21D2 lnS 2v

u21D2gEG;O~u21!.

~F41!

Again using the small argument behavior of Ei(z), one has

1
1

2
egEH e2[v(u11)]/(u21)F2422

uv
u21

EiS uv
u21D

22
v

u21
EiS v

u21D G12~e2vu/(u21)1e2v/(u21)!

12@e2v211ve2vEi~v !#J ;egEe2vv
ln u

u
1O~u21!.

~F42!

One then analyzes the integrals involvingFR
1noneq(v,u),

2Tt

q2

v
u21E0

1

dsH FR
0 S u2s

u21
v DFR

1noneqS 12s

u21
v,

1

sD
1FR

0 S 12s

u21
v DFR

1noneqS u2s

u21
v,

u

sD J ~F43!
04610
d- ;
2Tt

q2

1

u H vFR
0~v !E

0

1

dsFR
1noneqS 0,

1

sD
1vFR

0~0!FR
1noneq~v,`!1O~u21!J ~F44!

and the remaining integral in Eq.~F39! where we perform
the natural change of variablea5At1, b5At2,

egETct

2q2
e2v(11u)/(u21)

3E
0

vu/(u21)

dt1E
0

v/(u21)

dt2
~At12At2!et11t2

At1t2~At11At2!

5
2egETct

q2
e2v(11u)/(u21)E

Av/(u21)

Avu/(u21)
da

3E
0

Av/(u21)
dbea21b2

2
4egETct

q2
e2v(11u)/(12u)

3E
Av/(u21)

Avu/(u21)
daE

0

A
v/(u21)dbea21b2 b

a1b
.

The first double integral can be performed exactly,

2egETct

q2
e2v(11u)/(12u)E

Av/(u21)

Avu/(u21)
daE

0

Av/(u21)
dbea21b2

5
pegETct

2q2
e2v(11u)/(u21)

3S erfiA uv
u21

2erfiA v
u21D erfiA v

u21

;
ApegETct

q2
e2vAv

u
erfiAv1O~u21!. ~F45!

And we expand the second one in the following way:
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2
4egETct

q2
e2v(11u)/(u21)E

Av/(u21)

Avu/(u21)
da

3E
0

Av/(u21)
dbea21b2 b

a1b

522
2egETct

q2
e2v(11u)/(u21)E

Av/(u21)

Avu/(u21)
daea2

3F 1

2a

v
u

1 (
n.2

S v
uD n/2 an

an21
@11O~a!#G

;2
2egETct

q2
e2v

v
uEAv/u

Av da

a
ea2

1O~u21!

;2
egETct

q2
e2v

v
u

ln u1O~u21!. ~F46!

Finally, Eqs.~F40!, ~F42!, ~F45!, and ~F46! lead to the
asymptotic following form forFC(v,u) in the limit u→`, v
fixed,

lim
v→`

FC~v,u!5
2ve2v

u
1t

FC,`
1 ~v !

Au
1O~u22,tu21,t2!,

FC,`
1 ~v !5egEe2vApverfiAv, ~F47!

notice that the subdominant terms in lnu/u cancel between
Eqs. ~F42! and ~F46! so that the leading corrections are
order u21. Equation ~F47! gives the asymptotic behavio
given in the text~132!.

b. Expansion at largev, u fixed

In this limit, the terms in the four first lines of Eq.~F39!
decay exponentially in this limit. The fifth line, howeve
~which corresponds to the equilibrium contribution!, decays
like a power law. Indeed, using the largev behavior of
Ei(v);ev@1/v11/v210(v23)# one has

egE@e2v211ve2vEi~v !#;
egE

v
1O~v22!. ~F48!

We now analyze the behavior of the terms involvingFR
1noneq

in Eq. ~F39!. Using the largev behavior of FR
1noneq(v,u)

~F30!, one has
04610
2
v

u21E0

1

dsH FR
0 S u2s

u21
v DFR

1noneqS 12s

u21
v,

1

sD
1FR

0 S 12s

u21
v DFR

1noneqS u2s

u21
v,

u

sD J
;

v
u21E0

1

dsH e2[(u2s)/(u21)v]
~u21!2

v2~12s!2

~A1/s21!2

A1/s

1e2[(12s)/(u21)v]
~u21!2

v2~u2s!2

~Au/s21!2

Au/s
J . ~F49!

Notice first on this expression that we are left with conv
gent integrals overs. Moreover, in the largev limit, due to
the exponential prefactors the first term decays also expo
tially ~for u.1), and the second one is dominated bys
51, which leads to a power law decay

;
1

v~u21!

~Au21!2

Au
E

0

1

dse2[(12s)/(u21)v];O~v22!.

We are now left with the double integral in Eq.~F39!, which
is dominated—also due to the exponential prefactor—byt1
;vu/(u21) andt2;v/(u21). Therefore to get the leadin
behavior, we substitutet1 and t2 by these values in the inte
grand ~except, of course, in the exponentialet11t2). This
yields

1

2
egEe2v(11u)/(u21)E

0

vu/(u21)

dt1

3E
0

v/(u21)

dt2
At12At2et11t2

At1t2~At11At2!

5
1

2
egE

~Au21!2

Au

1

v
e2v(u11)/(u21)

3E
0

vu/(u21)

dt1et1E
0

v/(u21)

dt2et21OS 1

v2D
5

1

2
egE

~Au21!2

Au

1

v
1OS 1

v2D , ~F50!

which together with the other term inv21 ~F48! yields Eq.
~134! in the text.

c. The limit of vanishing momentum

To obtain the limit of vanishing momentumq̃→0 of the
correlation function, we look at the behavior ofFC(v,u)
whenv→0, up to orderO(v) terms@due to theq22 prefac-
tor in Eq. ~F39!#. This is done in the following way:
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2egEe2v(11u)/(u21)FEiS 2v
u21D2 lnS 2v

u21D2gEG
1

1

2
egEH e2v(u11)/u21F2422

uv
u21

EiS uv
u21D

22
v

u21
EiS v

u21D G12~e2vu/(u21)1e2v/(u21)!

12@e2v211ve2vEi~v !#J
5

egEv
u21

622 lnvegE2u ln u1~u11!ln~u21!1O~v2!.

~F51!

Then using the expression ofFR
1noneq(0,u) ~F33!, one has

2
v

u21E0

1

dsH FR
0 S u2s

u21
v DFR

1noneqS 12s

u21
v,

1

sD
1FR

0 S 12s

u21
v DFR

1noneqS u2s

u21
v,

u

sD J
5

2v
u21E0

1

dsH FR
1noneqS 0,

1

sD1FR
1noneqS 0,

u

sD J 1O~v2!

54egE
v

u21E0

1

ln
11As

2
1 ln

11As

u

2
1O~v2!

5
4egEv
u21 FAu2~u21!lnS 11

1

Au
D 22 ln 4G1O~v2!.

~F52!

To treat the double integral in the last line of Eq.~F39!, we

come back to the variablest̃ , t̃ 8,q̃,
04610
1

2

T

q̃2
tegEe2v(11u)/(u21)E

0

vu/(u21)

dt1

3E
0

v/(u21)

dt2
~At12At2!et11t2

At1t2~At11At2!

5
1

2
TtegEe2q̃2( t̃ 1 t̃ 8)E

0

t̃
dt1E

0

t̃ 8
dt2

~At12At2!eq2(t11t2)

At1t2~At11At2!
.

~F53!

Under this form, the limitq̃→ is very simply obtained,

lim
q̃→0

1

2

T

q̃2
tegEe2v(11u)/(u21)E

0

vu/(u21)

dt1

3E
0

v/(u21)

dt2
~At12At2!et11t2

At1t2~At11At2!

5
1

2
TtegEE

0

t̃
dt1E

0

t̃ 8
dt2

At12At2

At1t2~At11At2!

52TtegEt̃ 8S ~u21!ln~11Au!2
u

2
ln uD .

~F54!

Finally, Eqs.~F51!, ~F52!, and~F54!, together with Eq.~F39!

and the complete expression of the correlation functionC t̃ t̃ 8
q̃

~131!, lead to

C t̃ t̃ 8
q̃50

52Tct̃ 8F11t2
z22

2
@ ln~ t̃ 2 t̃ 8!1gE#

1u ln
t̃

t̃ 8
1tFC

diff1S t̃

t̃ 8
D G ,

FC
diff1~u!5

1

2
egE@4Au1~u11!ln~u21!

22~u21!ln~11Au!22 lnu1628 ln 4#,

~F55!

where we have used FC
0 (v,u)5v/(u21)1O(v2),

]vFC
0 (v,u)51/(u21)1O(v) and v/(u21)5q̃2 t̃ 8: this

gives the scaling form~135! given in the text.
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@43# C. Godrèche and J.M. Luck, J. Phys. A33, 9141~2000!.
@44# M. Henkelet al., Phys. Rev. Lett.87, 265701~2001!.
@45# P. Calabrese and A. Gambassi, Phys. Rev. E65, 066120

~2002!; 66, 066101~2002!.
@46# P. Calabrese and A. Gambassi, Phys. Rev. B66, 212407

~2002!.
@47# L.F. Cugliandolo and J. Kurchan, Phys. Rev. Lett.71, 173

~1993!; J. Phys. A27, 5749~1994!.
@48# For a recent review see L.F. Cugliandolo, e-pri

cond-mat/0210312.
@49# D.S. Fisher and D. Huse, Phys. Rev. B38, 373 ~1988!.
@50# T.J. Newman and A.J. Bray, J. Phys. A23, 4491~1990!.
@51# D. Huse, Phys. Rev. B40, 304 ~1989!.
@52# A. Picone and M. Henkel, J. Phys. A35, 5575~2002!.
@53# C. Yeunget al., Phys. Rev. E53, 3073~1996!.
@54# I.S. Gradshteyn and I.M. Ryzhik,Table of Integrals, Series and

Products~Academic Press, New York, 1980!.
@55# See http://www.functions.wolfram.com
@56# H. Bateman,Higher Transcendental Functions~McGraw-Hill,

New York, 1953!, Vol. 1.
@57# Daniel S. Fisher, Pierre Le Doussal, and Cecile Month

Phys. Rev. E64, 066107~2001!.
@58# P. Le Doussal~unpublished!.
@59# L. Balents and P. Le Doussal, e-print cond-mat/0205358.
@60# G. Schehr, A. Kolton, and D. Dominguez~unpublihed!.
@61# Note that in the particular choice used here the same func

c(x) appears both as an IR and UV cutoff.
@62# The higher replica operators used here are defined in term

excluded replica sums. They thus form a different basis th
the one used in, e.g., FRG studies of zero temperature fi
point in higher dimension@17–19#. These are defined in term
of unrestricted sums directly related to the cumulant of
disorder, which is not the case here.
1-37


