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Analytical results for coupled-map lattices with long-range interactions
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We obtain exact analytical results for lattices of maps with couplings that decay with distance asr 2a. We
analyze the effect of the coupling range on the system dynamics through the Lyapunov spectrum. For lattices
whose elements are piecewise linear maps, we get an algebraic expression for the Lyapunov spectrum. When
the local dynamics is given by a nonlinear map, the Lyapunov spectrum for a completely synchronized state is
analytically obtained. The critical line characterizing the synchronization transition is determined from the
expression for the largest transversal Lyapunov exponent. In particular, it is shown that in the thermodynamical
limit, such transition is only possible for sufficiently long-range interactions, namely, fora,ac5d, whered
is the lattice dimension.
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Synchronization between coupled chaotic systems is
of the most intriguing nonlinear phenomena@1#. It has been
attracting much interest since the past two decades@2#, as it
appears in a wide range of real systems such as in array
Josephson junctions@3#, oscillating chemical reactions@4#,
physiological processes@5#, and has applications as in com
munications@6# and control theory@7#. There are many type
of synchronized behavior@8#, but we are particularly inter-
ested in the completely synchronized states~CSSs! of
coupled-map lattices~CMLs!, where all maps present th
same amplitude at all times. Complete synchronization is
example of nonequilibrium phase transition@9#, which may
be related to actual critical phenomena such as
superconducting-normal transition in Josephson juncti
@10#.

CMLs, which are dynamical systems with discrete spa
and time, and a continuous state variable, have been inv
gated as theoretical models of spatiotemporal phenomen
a variety of problems in condensed matter physics, neu
science, and chemical physics@11#. The spatiotemporal be
havior is governed by two simultaneous mechanisms:
intrinsic nonlinear dynamics of each map, and diffusion d
to the spatial coupling between maps; the dynamical pat
being the outcome of the competition between them. T
applies, in particular, to the problem of synchronization
chaotic maps@12#. The effective coupling range is a cruci
factor to determine whether or not chaotic maps mutua
synchronize. Nearest-neighbor couplings~short range! do not
favor synchronization, since the coupling effect is typica
too weak to overcome the intrinsic randomness of map
namics@13#. On the other hand, long-range couplings tend
facilitate synchronization, as exemplified by the limiting ca
of global ~mean-field! coupling @14#. Lattices of nonlocally
coupled maps appear in neural networks with local prod
tion of information @15#, models of physicochemical reac
tions @16#, assemblies of biological cells with oscillatory a
tivity @17#, and diffusion coupling in nucleation kinetics@18#.
Beyond CMLs, systems with many degrees of freedom w
long-range couplings are an interesting object of study
cause of their anomalies~appearing at the level of the mac
roscopic thermodynamical description as well as in the
1063-651X/2003/68~4!/045202~4!/$20.00 68 0452
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derlying microscopic dynamics!, which still require deeper
understanding@19#. Simple dynamical models, such a
CMLs, may add new knowledge on nonequilibrium lon
range systems. However, there is a lack of analytical res
for CMLs with arbitrary range couplings. Exact analytic
results are particularly crucial because the occurrence of p
nomena such as shadowing breakdown@20# or spurious syn-
chronization@21# set difficulties in numerical approaches du
to the unavoidable finite precision of numerical simulation

Here we examine a form of coupling whose intensity d
cays with the distancer between sites as 1/r a, with a>0
@22#. It has also been considered in biological networks@23#,
in ferromagnetic spin models@24#, many-particle conserva
tive ~Hamiltonian time evolution! classical systems@25,26#,
large populations of limit cycle oscillators@27#, and a gener-
alization of the Kuramoto model@28#, among other ex-
amples. Explicitly, we consider a chain ofN coupled one-
dimensional chaotic mapsx° f (x) such that the coupling
prescription is

xn11
( i ) 5~12«! f ~xn

( i )!1
«

h~a! (
r 51

N’ f ~xn
( i 2r )!1 f ~xn

( i 1r )!

r a
,

~1!

where xn
( i ) represents the state variable for the sitei ( i

51,2, . . . ,N) at time n, «>0 and a>0 are the coupling
strength and effective range, respectively, andh(a)

52( r 51
N8 r 2a is the normalization factor, withN85(N

21)/2 for oddN. In conservative systems@25,26#, scaling by
h plays an important role in making the systems pseudo
tensive. Here periodic boundary conditionsxn

( i )5xn
( i 6N) and

random initial conditions are assumed. The coupling term
a weighted average of discretized spatial second derivati
the normalization factors being the sum of the correspond
statistical weights. It is straightforward to prove that in t
limits a50 anda→`, Eq. ~1! reduces to the global mean
field and the local Laplacian-type couplings, respectively

We characterize the spatiotemporal synchronization
namics by means of the Lyapunov spectrum~LS! of the lat-
tice, which enables one to estimate, for instance,
Kolmogorov-Sinai~KS! entropy through the Pesin formul
©2003 The American Physical Society02-1



e
d
-
it

rn
os
a

, o
fu

or

to
ul

B
th
d
-

x

an
gi
n

,

e

e

tr

c

o-

ults

-
the

his
za-
all

one

-

ere
un-

ob-

y a

tice
s

zed

RAPID COMMUNICATIONS

ANTENEODO et al. PHYSICAL REVIEW E 68, 045202~R! ~2003!
@29# and the Lyapunov dimension, which gives an upp
bound on the effective number of degrees of freedom nee
to characterize the system dynamics@30#. Besides character
izing a CSS, when it exists at all, we must investigate
stability with respect to small perturbations. If the CSS tu
out to be dynamically unstable, we are faced with two p
sibilities: either the CSS presents the so-called bubbling
tractor, and in this case the CSS only lasts for a finite time
the CSS loses transversal stability through a blowout bi
cation @8#.

In this work we will present exact analytical results f
the CML ~1!. We will show that for a one-dimensional~1D!
lattice of N coupled piecewise linear maps it is possible
obtain an exact analytical expression for the LS, the res
shown in Refs.@14,29# being recovered in the limitsa50
anda→`. When the mapsx° f (x) are nonlinear, we will
show that analytical results are still possible for CSSs.
means of the algebraic formulas for the LS, one can find
synchronization regions in the«3a space, since the secon
largest Lyapunov exponent@belonging to the direction trans
versal to the synchronization manifold~SM!# equal to zero
indicates a transition to the synchronized state@16,31#. Fi-
nally, the results obtained for a chain of maps will be e
tended tod-dimensional hypercubic lattices.

In order to calculate the LS one has to consider the t
gent dynamics. By differentiating the equations of the ori
nal maps~1!, one obtains the evolution equations for tange
vectorsj5(dx(1),dx(2), . . . ,dx(N))T, which in matrix form
readjn115Tnjn , with the Jacobian matrixTn given by

Tn5F ~12«!1
«

h~a!
BGDn , ~2!

where the matricesDn and B are defined, respectively
by Dn

jk5 f 8(xn
( j ))d jk and Bjk51/r jk

a (12d jk), where r jk

5minlPZu j 2k1 lNu. Notice that the particular choice of th
interaction law is embodied in the matrixB which is time
independent.

Once specified the initial conditions, the LS is extract
from the evolution of the initial tangent vectorj0 : jn
5Tnj0, whereTn[TnTn21¯ T2T1 is product ofn Jacobian
matrices calculated at successive points of the discrete
jectory. If L1 , . . . ,LN are the eigenvalues ofL̂
5 lim

n→`
(TnT n

T)1/2n ~that are real and positive!, the

Lyapunov exponents are obtained as@32#

lk5 ln Lk , k51, . . . ,N. ~3!

We start by applying the expressions above to the pie
wise linear mapsx° f (x)5bx ~mod1!, with b>1. In this
case we havef 8(x)5b5const, thereforeDn5b1N , andTn
becomes

Tn5bF ~12«!1N1
«

h~a!
BG[bB̂, ~4!

the rightmost identity defining the matrixB̂. Since the sym-
metric tangent map does not depend on time, it resultsL̂
04520
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5b B̂. So, in order to obtain the LS, it is enough to diag
nalizeB. Because of its periodicity,B can be diagonalized in
Fourier space@33#, the eigenvalues being

bk52 (
m51

N8 cos~2pkm/N!

ma
, k51, . . . ,N, ~5!

where we considered oddN. Finally, from Eq. ~3!, taking
into account the special form ofL̂, the LS is given by

lk5 ln b1 lnU12«1
«

h~a!
bkU. ~6!

This expression is consistent with previous numerical res
@34#. In the extreme casesa→` and a50 the known ex-
pressions@14,29# are recovered.

Now we will consider lattices of nonlinear maps. An im
portant case that can be tackled easily is the one where
maps are in the CSS. As it will become clear soon, t
instance provides relevant information on the synchroni
tion transition. In the CSS, the dynamical variables of
maps coincide, i.e.,xn

(1)5xn
(2)5•••5xn

(N)[xn
(* ) , at each

time stepn. The LS for the CCS whena50 has already
been found by Kaneko@14#. Now, for arbitrarya, we have
Dn5 f 8(xn

(* ))1N , thus, Tn5 f 8(xn
(* ))B̂ and TnT n

T

5() j 51
n @ f 8(xj

(* ))#2)B̂2n. Therefore, for the CSS, following
Eq. ~3!, one arrives at

lk* 5 lim
n→`

1

n (
i 51

n

lnu f 8~xi
(* )!u1 lnU12«1

«

h~a!
bkU, ~7!

wherebk are the eigenvalues ofB defined in Eq.~5!. Assum-
ing ergodicity, the time average in Eq.~7! can be substituted
by an average over the single-map attractor. In this way
gets

lk* 5lU1 lnU12«1
«

h~a!
bkU, ~8!

wherelU5^ lnuf8(x(* ))u& is the Lyapunov exponent of an un
coupled map. This expression isgeneral: it applies to any
lattice of nonlinear 1D maps coupled with the scheme h
considered, the parameters that define the particular
coupled map affecting onlylU . For instance, for the logistic
map x° f (x)5ax(12x), with a54 and xP@0,1#, lU
5^ lnu4(122x(* ))u&5ln 2 @35# and the contribution of the
power-law coupling is always lnu12«1@«/h(a)#bku. Notice
that the LS in CSSs has the same structure as the LS
tained for piecewise linear maps@Eqs.~5! and ~6!#.

The synchronization transition can be characterized b
complex order parameter@4# defined, for timen, as Rn

5u(1/N)( j 51
N e2p ixn

( j )
u. A time-averaged amplitudeR̄ is com-

puted over an interval large enough to warrant that the lat
has attained the asymptotic state. In the CSS, one haR̄
51. On the opposite case of completely nonsynchroni
maps, the site state variablesxn

( j ) are so uncorrelated thatR̄
;O(N21/2).
2-2
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A diagnostic of synchronization can also be extrac
from the LS. It can be easily verified that, for arbitrarya, the
CSS lies along the direction of the eigenvector associa
with the largest exponent. This was previously observed
Kaneko for the particular casea50 @14#. Therefore, the CSS
will be transversally stable if the (N21) remaining expo-
nents are nonpositive, that is,l̃2* <0 ~where the tilde stands

for ordered exponents!. The second largest exponentl̃2* cor-
responds in Eq.~8! to k51 ~or k5N21, due to degen-
eracy!. The analytical expression for the critical line«c(a)
results in

«c5~12e2lU!S 12
2

h~a! (
m51

N8 cos~2pm/N!

ma D 21

, ~9!

where «c is the coupling strength below which the S
ceases to be transversely stable, such that synchronized
are not typically observed. It is noteworthy that Eq.~9! is
quite generalfor the coupling scheme here considered:
parameters that define the particular uncoupled nonlin
map ~embedded inlU) just participate through the first fac
tor.

Figure 1 presents the synchronization regions in the
rameter space«3a for N coupled logistic mapsx° f (x)
54x(12x). The critical line was obtained analytically from
Eq. ~9! and numerically by means of two procedures: eith
when R̄Þ1 is numerically detected or by the condition
nullity of the second largest Lyapunov exponent in the CS
The numerical results are in good agreement with the a
lytical prediction.

As can be observed in Fig. 1, the critical frontier depen
on the system sizeN. In the limit N→` we obtain

α
0.0 0.2 0.4 0.6 0.8 1.0 1.2

ε
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1.0

21

8

SYNCHRONIZED
51501

FIG. 1. Synchronization domains in parameter plane«3a for a
1D lattice of N coupled logistic mapsx° f (x)54x(12x). The
critical line «c(a) was determined analytically from Eq.~9! for
different values ofN ~full lines! and numerically from the condi

tions R̄Þ1 ~open symbols! and l̃2* 50 ~full symbols! for N521
and 51.
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«c,`5
12e2lU

12C~a!
, ~10!

whereC(a) corresponds to

C~a!5 lim
N→`

S F (
m51

N8 cos~2pm/N!

ma GF (
m51

N8 1

maG21D .

~11!

This limit is equal to unity fora.1, so that Eq.~10! fur-
nishes a divergent result. Fora outside the domain of con
vergence of the series, one gets

C~a!5
12a

p12aE0

p cos~x!

xa
dx. ~12!

So, if the system is finite, synchronization can
achieved for anya provided the coupling strength« is large
enough. However, in the limitN→`, synchronization is
only possible for sufficiently long-range interactions~see
Fig. 2!, namely, fora,ac51. This critical value here ob-
tained for 1D CMLs is different from the one reported f
other 1D systems with similar power-law interactions, su
as ferromagnetic spin models@24# or many-particle classica
Hamiltonian systems@25#; in such cases, the critical valu
for the existence of an order/disorder transition isac52. In
a generalization of the Kuramoto model, the value ofac is
controversial: Whileac52 was first reported@28#, recent
analytical considerations point toac51 @36#. Although the
generalized Kuramoto model is a continuous-time dynam
system, our analytical result~namely,ac51) suggests tha
the latter value is the correct one.

The expressions we have derived for the LS of chains
maps can be straightforwardly generalized for hypercu
lattices of arbitrary dimensiond. In fact, for the general

α
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εc

10-1
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λU = ln 2
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21
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501
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FIG. 2. Critical coupling strength for synchronization vs ran
parameter, for different values ofN indicated in the figure. The
critical lines were determined analytically from Eqs.~9! and ~10!
for a generic 1D lattice with power-law couplings andlU5 ln 2.
Inset: the same data in a 1/«c vs a plot.
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d-dimensional case, it is straightforward to show that
eigenvalues of the matrixB become

bk52d (
m̄Þ0

cos~2p r̄ k•m̄/N1/d!

ma
, k51, . . . ,N, ~13!

where r̄ k is the position vector of sitek, m̄5(m1 , . . . ,md),
with 0<mi<N8, and N85(N1/d21)/2. The normalization
factor reads

h~a,d!52d (
m̄Þ0

1

ma
}

Na/d21

12a/d
. ~14!

Then, following the same lines as before but now for t
sake of generalizing Eq.~10!, it is easy to see that«c,` will
diverge if a/d.1, which leads toac5d.

Additionally, our results for the LS could be extended
the more general class of coupling schemes where the de
dence of the coupling strength on the intermap distanc
not necessarily of the power-law type. In these cases,
should feed Eqs.~6! and ~8! with the eigenvalues of the
appropriate matrixB, which contains the particular depen
dence of the interaction strength on distance.
.F
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In conclusion, we have presented analytical expressi
for the LS of CMLs with an interaction which decays wit
the lattice distance as a power law, for two cases:~i! piece-
wise linear coupled maps, and~ii ! the CSS of lattices of
one-dimensional maps. Our results enable us to predict
critical values for synchronization in the coupling parame
plane~strength versus range!, and also may be used to obta
related quantities of interest, such as KS entropies
Lyapunov dimensions. Such exact analytical results are
cial in order to avoid difficulties present in numerical a
proaches, such as shadowing breakdown, due to unavoid
finite precision of numerical simulations. In addition, w
have shown that, in the thermodynamical limit, the critic
range for synchronization is equal to the lattice dimensi
Many of our results could be extended to lattices
continuous-time oscillators, and hence have an even w
range of applicability.
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