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We obtain exact analytical results for lattices of maps with couplings that decay with distancé. a&/e
analyze the effect of the coupling range on the system dynamics through the Lyapunov spectrum. For lattices
whose elements are piecewise linear maps, we get an algebraic expression for the Lyapunov spectrum. When
the local dynamics is given by a nonlinear map, the Lyapunov spectrum for a completely synchronized state is
analytically obtained. The critical line characterizing the synchronization transition is determined from the
expression for the largest transversal Lyapunov exponent. In particular, it is shown that in the thermodynamical
limit, such transition is only possible for sufficiently long-range interactions, namelyyfo&.=d, whered
is the lattice dimension.

DOI: 10.1103/PhysReVE.68.045202 PACS nuni)er05.45.Ra, 05.45.Xt

Synchronization between coupled chaotic systems is onderlying microscopic dynamigswhich still require deeper
of the most intriguing nonlinear phenomefid. It has been understanding[19]. Simple dynamical models, such as
attracting much interest since the past two decédgsas it CMLs, may add new knowledge on nonequilibrium long-
appears in a wide range of real systems such as in arrays &inge systems. However, there is a lack of analytical results
Josephson junctionigd], oscillating chemical reactiongt], ~ for CMLs with arbitrary range couplings. Exact analytical
physiological processd$], and has applications as in com- results are particularly crupial because the occurrence of phe-
municationg6] and control theory7]. There are many types nomena such as shadowing breakdd2@] or spurious syn-
of synchronized behavidig], but we are particularly inter- Cchronizatiori21] set difficulties in numerical approaches due
ested in the completely synchronized stat@®SS$ of to the unavoidable finite precision of numerical simulations.

coupled-map lattice§CMLSs), where all maps present the Here we examine a form of coupling whose intensity de-

same amplitude at all times. Complete synchronization is aff2Y> Wr:[h thle dibstance bet\c/jveer(; §itle;_s las 'rﬂl with a=0
example of nonequilibrium phase transitif®], which may 22]. It has also been considered in biological netwd&3,

be related to actual critical phenomena such as thf-el.1 ferromagnetic spin model24], many-particle conserva-

superconducting-normal transition in Josephson junction%ve (Hamiltonian timg gvolutiohcla_ssical systemf25,24,
[10] arge populations of limit cycle oscillatof27], and a gener-

CMLs, which are dynamical systems with discrete spac@“za“on of t_h_e Kuramoto _modeﬂ28],_ among other ex-
and time, and a continuous state variable, have been invesfilPles. Explicitly, we consider a chain bf coupled one-
gated as theoretical models of spatiotemporal phenomena fimensional chaotic maps—f(x) such that the coupling
a variety of problems in condensed matter physics, neurd?'€Scription is
science, and chemical physitl]. The spatiotemporal be- N' D) (i+1)

e . X : : e (x y+Hf(xy )
havior is governed by two simultaneous mechanisms: the x() —=(1—¢)f(x{)+ > n n
intrinsic nonlinear dynamics of each map, and diffusion due n(a) =1 re
to the spatial coupling between maps; the dynamical pattern 1
being the outcome of the competition between them. ThisWhere x0 represents the state variable for the sitéi
applies, in particular, to the problem of synchronization of n pres ¢
chaotic map$12]. The effective coupling range is a crucial =12,...N) at time n, ¢=0 anda=0 are the coupling
factor to determine whether or not chaotic maps mutuaIIyStrengFh and effective range, respectively, anfa)
synchronize. Nearest-neighbor couplirigsort ranggdo not ~ =23;-,r “ is the normalization factor, withN’=(N
favor synchronization, since the coupling effect is typically —1)/2 for oddN. In conservative systeni®5,26, scaling by
too weak to overcome the intrinsic randomness of map dy# plays an important role in making the systems pseudoex-
namics[13]. On the other hand, long-range couplings tend totensive. Here periodic boundary conditioxfd =x{=™ and
facilitate synchronization, as exemplified by the limiting caserandom initial conditions are assumed. The coupling term is
of global (mean-field coupling[14]. Lattices of nonlocally a weighted average of discretized spatial second derivatives,
coupled maps appear in neural networks with local producthe normalization factors being the sum of the corresponding
tion of information[15], models of physicochemical reac- statistical weights. It is straightforward to prove that in the
tions[16], assemblies of biological cells with oscillatory ac- limits a=0 anda—«, Eq. (1) reduces to the global mean-
tivity [17], and diffusion coupling in nucleation kinetif$8].  field and the local Laplacian-type couplings, respectively.
Beyond CMLs, systems with many degrees of freedom with We characterize the spatiotemporal synchronization dy-
long-range couplings are an interesting object of study benramics by means of the Lyapunov spectr(t§) of the lat-
cause of their anomaliggappearing at the level of the mac- tice, which enables one to estimate, for instance, the
roscopic thermodynamical description as well as in the unKolmogorov-Sinai(KS) entropy through the Pesin formula
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[29] and the Lyapunov dimension, which gives an upper=gg. So, in order to obtain the LS, it is enough to diago-

bound on the effective number of degrees of freedom needeghlizeB. Because of its periodicitys can be diagonalized in
to characterize the system dynami@g]. Besides character- Fourier spacé33], the eigenvalues being

izing a CSS, when it exists at all, we must investigate its

stability with respect to small perturbations. If the_ CSS turns N' cog 27k m/N)
out to be dynamically unstable, we are faced with two pos- b,=2 E S k=1,... N, (5)
sibilities: either the CSS presents the so-called bubbling at- m=1 m

tractor, and in this case the CSS only lasts for a finite time, or

the CSS loses transversal stability through a blowout bifur—Where we considered odd. Finally, from Eq.(3), taking

cation[8]. into account the special form d, the LS is given by

In this work we will present exact analytical results for
the CML (1). We will show that for a one-dimensionélD) Ae=In B+Inl1—e+ Lbk _ (6)
lattice of N coupled piecewise linear maps it is possible to n(a)

obtain an exact analytical expression for the LS, the result
shown in Refs[14,29 being recovered in the limita&=0
and a—~. When the maps+— f(x) are nonlinear, we will
show that analytical results are still possible for CSSs. B)Pr : . : . .
means of the algebraic formulas for the LS, one can find the Now we will consider lattices of ”0.”“r.‘ear maps. An im-
synchronization regions in thex « space, since the second portant case that can be tagkle(_j easlly is the one where fche
largest Lyapunov exponefibelonging to the direction trans- maps are in Fhe CSS. As it will b?come clear soon, t.h's
versal to the synchronization manifol@M)] equal to zero instance provides relevant information on the synchroniza-

indicates a transition to the synchronized stit®,31. Fi- tion transition. In the CSS, the dynamical variables of all

oo e xW=x@ = . —y(N=y)
nally, the results obtained for a chain of maps will be ex-maps coincide, i.€.x "=Xy Xn =X, at each
tended tod-dimensional hypercubic lattices. time stepn. The LS for the CCS whem=0 has already

In order to calculate the LS one has to consider the tan?€en found by Kanekpl4]. Now, for arbitrarya, we have
gent dynamics. By differentiating the equations of the origi-Dn="1'(x{"))1y,  thus, T,=f'(x{)B and Z,7}
nal mapg(1), one obtains the evolution equations for tangent:(Hlf‘zl[f’(x].(*))]z)ézn_ Therefore, for the CSS, following
vectorsé=(x,x?, ... ,6x™M)T, which in matrix form  Eq_(3), one arrives at
read¢,, =T,&,, with the Jacobian matriX, given by

?‘his expression is consistent with previous numerical results
[34]. In the extreme cases—c and =0 the known ex-
essiong 14,29 are recovered.

€

1—e+ b
T ()

(D

1 n
AE=lim= D In[f' (x* )| +In
B}Dn, @ (= fm 5 2, nlf ()

&€

TnZ{(l—s)—l— 7@

whereb, are the eigenvalues & defined in Eq(5). Assum-
ing ergodicity, the time average in E) can be substituted
by an average over the single-map attractor. In this way one

where the matricedD, and B are defined, respectively,
by Di=f"(x1)s) and By=1/rfi(1-8y), where rj
=min;.z|j —k+IN|. Notice that the particular choice of the

ets
interaction law is embodied in the matr& which is time g
independent. . €
Once specified the initial conditions, the LS is extracted k=Aytin 1—8+ka , 8

from the evolution of the initial tangent vectafy: &,
=Tnéo, WhereZ,=TTn_; -+ T,Ty is product ofn Jacobian  wherex = (In|f'(x*))|) is the Lyapunov exponent of an un-
matrices calculated at successive points of the discrete trgoupled map. This expression general it applies to any
jectory. If A,,..., Ay are the eigenvalues ofA lattice of nonlinear 1D maps coupled with the scheme here
=Iimnﬁw(7}1ﬂ)l’2” (that are real and positiye the considered, the parameters that define the particular un-
coupled map affecting only, . For instance, for the logistic
map x—f(x)=ax(1—x), with a=4 and xe[0,1], \y
Ne=InAp, k=1,...N. @  =(n[4@a-2x*)))=In2 [35] and the contribution of the
power-law coupling is always |h—e+[e/7(a)]bJ. Notice
We start by applying the expressions above to the piecelhat the LS in CSSs has the same structure as the LS ob-
wise linear mapsa—f(x)=Bx (modi), with =1. In this tained for piecewise linear mg_;ﬁEqs.(S) and(6)]. _
case we havé’(x)=8=const, therefor®,= g1y, andT, The synchronization transition can be characterized by a
becomes complex order parametddd] defined, for timen, as R,

= |(1/N)2}\':1e2”"‘§1”|. Atime-averaged amplitud@ is com-

puted over an interval large enough to warrant that the lattice
has attained the asymptotic state. In the CSS, oneRhas
A =1. On the opposite case of completely nonsynchronized
the rightmost identity defining the matrB. Since the sym-  maps, the site state variable’ are so uncorrelated th&
metric tangent map does not depend on time, it reshilts ~O(N™Y?),

Lyapunov exponents are obtained[88]

€ R
T.=8 (1—8)1N+WB =B, (4
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FIG. 1. Synchronization domains in parameter plaiex for a
1D lattice of N coupled logistic mapst— f(x)=4x(1—x). The
critical line e.(a) was determined analytically from Eq9) for
different values ofN (full lines) and numerically from the condi-
tions R#1 (open symbolsand X3 =0 (full symbolg for N=21
and 51.

A diagnostic of synchronization can also be extracted

from the LS. It can be easily verified that, for arbitrary the
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FIG. 2. Critical coupling strength for synchronization vs range
parameter, for different values @ indicated in the figure. The
critical lines were determined analytically from Ed9) and (10)
for a generic 1D lattice with power-law couplings aikg=In 2.
Inset: the same data in agl/vs « plot.

CSS lies along the direction of the eigenvector associate@hereC(«) corresponds to

with the largest exponent. This was previously observed by
Kaneko for the particular cage= 0 [14]. Therefore, the CSS

will be transversally stable if theN—1) remaining expo-

nents are nonpositive, that s <0 (where the tilde stands

for ordered exponenksThe second largest expon&g cor-
responds in Eq(8) to k=1 (or k=N—-1, due to degen-
eracy. The analytical expression for the critical limg(«)
results in

N’ -1
cog2mm/N)

mD[

2

— (1 _a-\y _
g.=(1—-e M| 1 e

)

1—e M
o1 10
Vo ocog2ami ][ N 1]
C(a)zlim( > — )
N—oo m=1 m m=1 m
(12)

This limit is equal to unity fora>1, so that Eq(10) fur-
nishes a divergent result. Far outside the domain of con-
vergence of the series, one gets

Cla) = 1—af7T cogX)

dx. (12
0o Xx“

77_l*a

So, if the system is finite, synchronization can be
achieved for anyr provided the coupling strengthis large

where e. is the coupling strength below which the SM enough. However, in the limiN—c, synchronization is
ceases to be transversely stable, such that synchronized staggfly possible for sufficiently long-range interactiofsee

are not typically observed. It is noteworthy that ) is

Fig. 2), namely, fora<a.=1. This critical value here ob-

quite generalfor the coupling scheme here considered: thetained for 1D CMLs is different from the one reported for
parameters that define the particular uncoupled nonlineasther 1D systems with similar power-law interactions, such
map (embedded invy) just participate through the first fac- as ferromagnetic spin mod€l24] or many-particle classical

tor.

Hamiltonian system$25]; in such cases, the critical value

Figure 1 presents the synchronization regions in the pafor the existence of an order/disorder transitionvjs=2. In

rameter space X « for N coupled logistic maps— f(x)

a generalization of the Kuramoto model, the valuengfis

=4x(1-x). The critical line was obtained analytically from controversial: Whilea.=2 was first reported28], recent
Eqg. (9) and numerically by means of two procedures: eitheranalytical considerations point t@,=1 [36]. Although the
when R#1 is numerically detected or by the condition of generalized Kuramoto model is a continuous-time dynamical
nullity of the second largest Lyapunov exponent in the CSSsystem, our analytical resulhamely, a.=1) suggests that
The numerical results are in good agreement with the anahe latter value is the correct one.

lytical prediction.

The expressions we have derived for the LS of chains of

As can be observed in Fig. 1, the critical frontier dependsnaps can be straightforwardly generalized for hypercubic

on the system sizBl. In the limit N— we obtain

lattices of arbitrary dimensionl. In fact, for the general
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d-dimensional case, it is straightforward to show that the

eigenvalues of the matri® become

cog 27 .- m/Nd)

b=29> . k=1,...N, (13
m#0 m®
wherer, is the position vector of site, m=(mj, ... ,mg),

with 0=<m;<N’, andN’=(NY—1)/2. The normalization
factor reads

1 Neld—1
= d —
Mad =23 i

(14)

Then, following the same lines as before but now for the

sake of generalizing Eq10), it is easy to see that, .. will
diverge if «/d>1, which leads tax.=d.
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In conclusion, we have presented analytical expressions
for the LS of CMLs with an interaction which decays with
the lattice distance as a power law, for two cagespiece-
wise linear coupled maps, an@) the CSS of lattices of
one-dimensional maps. Our results enable us to predict the
critical values for synchronization in the coupling parameter
plane(strength versus rangeand also may be used to obtain
related quantities of interest, such as KS entropies and
Lyapunov dimensions. Such exact analytical results are cru-
cial in order to avoid difficulties present in numerical ap-
proaches, such as shadowing breakdown, due to unavoidable
finite precision of numerical simulations. In addition, we
have shown that, in the thermodynamical limit, the critical
range for synchronization is equal to the lattice dimension.
Many of our results could be extended to lattices of
continuous-time oscillators, and hence have an even wider
range of applicability.

Additionally, our results for the LS could be extended to
the more general class of coupling schemes where the depen-
dence of the coupling strength on the intermap distance is We are grateful to S.R. Lopes, C. Tsallis, and R.O. Valle-
not necessarily of the power-law type. In these cases, on@s for useful comments, and to S. Ruffo for past fruitful
should feed Egs(6) and (8) with the eigenvalues of the remarks. This work was partially supported by Brazilian
appropriate matrix8, which contains the particular depen- agencies CAPES, CNPq, FAPERJ, FujaaAraucaia and
dence of the interaction strength on distance. PRONEX.
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