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Characterization of topological structure on complex networks
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Characterizing the topological structure of complex networks is a significant problem especially from the
viewpoint of data mining on the World Wide Web. ‘‘Page rank’’ used in the commercial search engine Google
is such a measure of authority to rank all the nodes matching a given query. We have investigated the page-rank
distribution of the real Web and a growing network model, both of which have directed links and exhibit a
power law distributions of in-degree~the number of incoming links to the node! and out-degree~the number of
outgoing links from the node!, respectively. We find a concentration of page rank on a small number of nodes
and low page rank on high degree regimes in the real Web, which can be explained by topological properties
of the network, e.g., network motifs, and connectivities of nearest neighbors.
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The World Wide Web~WWW! is a gigantic collection of
information which is organized by links between Web pag
It is considered as a directed graph where nodes are
html pages and directed links are hyperlinks between pa
in natural manner. One of the topological properties of
Web is a power law behavior for the degree distributio
P(k);k2g, where the degreek is the number of hyperlinks
for a given page@1#. Recent studies show that such a pow
law distribution is a common feature of many complex n
works, i.e. food networks@2#, metabolic network@3#, citation
networks@4#, Internet~hardware! @5#, and WWW@6#. Recent
empirical measurement reports that the in-degree~the num-
ber of incoming links to the node! and out-degree~the num-
ber of outgoing links from the node! distributions of the Web
are approximately scale-free in form with exponentsg in
52.1 andgout52.7 @6#, although there is some deviation fo
small degree. The number of average in-degree and
degree per nodeD'7.5 is also reported. However, this glo
bal network property gives no information about identific
tion of a given node and its neighbors. Characterizing
topological structure of the Web is motivated by some lar
scale web applications, i.e., data mining on the Web. O
fundamental and challenging issue is to extract what
want from the Web which consists of billions of page
Along with query matching technique, evaluating the r
evance of the pages is also important. ‘‘Page rank’’ dev
oped by the commercial search engine Google@7,8# is such a
topological measure of authority of the Web to rank all pag
matching a given query. In Google, the searching result
keywords is shown in order by page rankxn given by

xn5d (
mPVn

xm

j m
1~12d!, ~1!

wheredP(0,1) is calleddampening factor, j m is the number
of links ~hyperlinks! coming out from node~page! m, andVn
is a set of nodes that points to noden @9#. Equation~1! is
written by asymmetric adjacency matrixA and xn can be
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expressed as the dominant eigenvector ofA. A diagram of
consistent incoming/outgoing flows of page rank can be
scribed from the dominant eigenvector~see Fig. 1!. If there is
a node with no outgoing links, page rank of the node lea
out and might go to zero. Otherwise, if an outgoing link on
points to itself, all page rank could concentrate on that no
The dampening factor not only avoid these page rank l
and concentration but also takes user browsing behavior
account, where a user does not click on an infinite numbe
links, but gets bored sometimes and jumps to another pag
random. Intuitively, a node has a high page rank if there
many nodes that point to it or if there are some nodes w
high page rank that point to it. Assume that links are ra
domly connected, then one expects page rank might dep
on their in-degree since a given link has a similar weight
other links. However, recent empirical data shows that th
is very little correlation between page rank and in-deg
~out-degree! distributions, except for nodes with very hig
in-degree@10#. It means that nonrandom characteristics
topological properties is crucial for page rank.

In this paper, we investigate the page rank distribution
the real Web and a theoretical model of growing networks
study the topological features of the networks. Using n

FIG. 1. Illustration of page rank transition diagram. The val
shown below the directed link represents the flow of page rank.
given by a sum of incoming flow of page rank. A sum of incomin
flows is equal to a sum of outgoing ones. In this figure, the dam
ening factord is set to zero.
©2003 The American Physical Society04-1
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work motifs and a rewiring algorithm, we construct a ne
work model which may reproduce characteristics of the r
Web and follow the characteristics of empirical results.

First of all, we show the in-degree vs page rank distrib
tion in the real Web derived from the empirical data of No
Dame University domain@1# @Fig. 2~1a!#. Note that the av-
erage page rank of a node is 1 because their sum is nor
ized to the number of nodesN. The dampening factord
50.15 is chosen for both empirical data and theoreti
model, which is a typical value reportedly applied in prac
cal use. As page rank at a given node is represented by a
of incoming flows from nearest neighbors, they are thou
to depend on in-degree distribution. Out-degree at that n
is also correlated since the page rank leaks from the outg
links. The data were collected by a software agent that
lows all hyperlinks on a node and recursively follows the
to retrieve the related node, therefore none of the nodes
in-degreei 50 which cannot be retrieved from any nod
Note that the nodes with in-degreei 50 have always zero
page rank since its flow goes out from the node and ne
returns. The figure shows that the page rank distribution
sically depends on in-degree, and most of the page rank
centrates on a small number of nodes in the network.
rate of nodes with zero page rank isz150.951. The average
page rank and its standard deviation@Fig. 2~2a!# indicates
that they follow a power law distribution and the statistic
fluctuation increases in the high in-degree region. Our re
with respect to the in-degree-page-rank correlation does
agree with the observation obtained in Ref.@10#. The prob-
ability p( i , j ) that a randomly chosen node has in-degrei
and out-degreej is a total degree of a node given byi 1 j ,
there is little correlation betweeni and j ~Fig. 3!. Moreover
we consider some topological characteristics which we
network motifs@11#, patterns of interlinks which consist ofm
nodes occurring at numbers significantly higher than thos
random networks. In particular, the following network mot
are noticeable since they are possible candidates for the
of high page-rank nodes. Form51 motif, a self-link, a di-
rected link which ends into itself, can reduce the outgo
flow to itself which could increased its ranking. Empiric
data shows self-link per links150.0183, whereass1'D/N
for random wired network. Them52 motifs include mutual
links, a directed link and opposite directed link between t
nodes, and multiple links, more than one link in the sa
direction between two nodes. The former can reduce the
going flow to itself by way of another node so as the self-li
@12#. For example, the two top ranking nodes in Fig. 2~1a!
have about 400 in-degree and one out-degree mutu
linked to one another. The rate of multiple links per link
s254.7731023, mutual links per link iss350.117, com-
pared with both 2D/N2 for a random wired network. Fo
m>3, numerous patterns of network motifs can be cons
ered. These high ranking nodes should be considered w
we build a theoretical model. In the second, we construc
growing model with directed link using an algorithm in Re
@13# to generate a directed scale-free network such as
Web. Although there are nodes with either zero in-degree
zero out-degree in the real Web, the original growing mo
@13# only has nodes with zero in-degree. As the nodes w
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in-degreei 50 have no influence~the page rank is always
zero! on the page-rank distribution, we transform this mod
to make nodes with out-degreej 50, ignoring nodes with
in-degreei 50. Starting with a single node, at each step
have the following.

~1! With probability p, a new node is created and a d
rected link from an existing target node to it is set up. T

FIG. 2. ~Color! ~1a! Log-log plot page-rank distributionx as a
function of in-degree for the real Web~dataset of Notre Dame Uni
versity domain,N53.263105,D54.60, the rate of nodes withj
50, z050.5765). In a large matrix computation, we sometim
need thousands of iterations to get a dominant vector, since
difference between dominant eigenvalue and other eigenva
could be considerably small and the convergence is slow. We m
53104 iterations in this case.~1b! Log-log plot of page-rank dis-
tribution x for the growing network model withN5105, D
54.72, l53.20, andm50.75. The rate of nodes withj 50, z0

50.58. ~2a! Average page rankx̄(1) and standard deviationsx(*)

as a function of in-degree for the real Web.~2b! x̄(1) andsx(*)

for growing network model. They are fitted by the formx̄52.1
31021i 1.0160.01 ~Solid line! and sx52.531021i 0.5260.02 ~dotted
line!. The scattered points ofsx for large i are due to statistica
fluctuations.~3a! In-degree—nearest neighbor average connect
ties of in-degree correlation functionI nn( i ) for the real Web.~3b!
I nn( i ) for the growing network model. A specific correlation b
tween in-degree of a node andI nn is not observed except statistica
fluctuation in the high in-degree regime.
4-2
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probability that existing node with out-degreej links to a
newly introduced node is defined asAj5 j 1l.

~2! With probability q512p, a directed link is created
between existing nodes. The link creation rate is assume
depend only on the out-degree of the nodej which it ema-
nates and the in-degree of the target nodei, which is defined
asC( j ,i )5( j 1l)( i 1m). The probabilityp( i , j ) is, in gen-
eral, not equal to the productpipj of the separate distribu
tion. However, its numerical distribution is not close to t
empirical result which seems to be rather a separate distr
tion ~Fig. 3!. Hence we adapted the separate distributionpipj
by making the out-degree of nodes reconfigured. The pa
rank distribution for in-degree is shown in Fig. 2~1b! with
relevant parameters,l53.20, m50.75, p50.21, to match
the empirical values. The maximum value of page rank
almost independent of in-degree whereas the minimum l
increases as growing in-degree. No concentration on s
numbers of nodes is found, which is different from empiric
data where most of the nodes have page rank of zero.
average page rankx̄ and its standard deviationsx follow a
power law distributionx̄; i 1.0060.01 and sx; i 0.5260.02 @Fig.
2~2b!#. We here prohibit self-link connection and multilin
connection, which would be discussed later when the n
work motifs are introduced. To evaluate the difference
tween the real Web and theoretical model, we add some
pological features to the original model by embeddi
network motifs, i.e., self-links, mutuallinks, multiple links
and nearest neighbor power law distribution obtained by
link rewiring algorithm. The probabilityP1( j ,i ) that a ran-
domly chosen link starts from a node with out-degreej and
ends into the one with in-degreei has a random link distri-
bution, i.e., separate distribution ofi and j. Assume that
P1( j ,i ) is randomly distributed, given by Bayiesan statisti
P1( j ,i )5P( j )P( i u j )5C j2gouti 12g in with normalized con-
stant C. The conditional probabilityP( i u j ) denotes that a
randomly selected link ends into a node with in-degreei,
provided that it emanates from node with out-degreej. How-
ever, the probabilityP( j ,i ) is not randomly distributed in the
real Web, for example, a trusted page~with many in-degrees!
tends to link to other trusted ones, a few but selected li
tend to link to trusted pages rather than many but nonse
tive links link to worthless pages. As is pointed out in R
@14#, the nearest neighbor’s average connectivities of un
rected link exhibits a power law dependence on the conn

FIG. 3. ~Color! The distribution of nodes with in-degreei and
out-degreej. ~a! Empirical data and~b! original growing model.
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tivity degree. But no discussion about directed links has b
made so far. Hence we have measured in-degree vs ave
in-degree of nearest neighbors, which is crucial from
page rank point of view since the page rank at a given n
is determined by those from nearest neighbors. We se
Fig. 2~3a! that there is a small enhancement around interm
diate regimei;10 and suppression among low and high
degree regime. To provide these nonrandom link distributi
we introduce a rewiring algorithm of existing two links be
tween nodes. A correlation functionP2

(0)( i m ,i n) between the
in-degree of origin nodem and the in-degree of target noden
is written as

P2
(0)~ i m ,i n!5(

j
p~ i m , j !P~ i nu j !. ~2!

Other pairs of nearest neighbor correlations~in-out, out-in,
and out-out degree correlation! can be also deduced from
similar definitions. First of all, we randomly choose pairs
links a→b andc→d. If i a. i c and i b. i d , or if i a, i c and
i b, i d , these two links are rewired asa→d, c→b, provided
that none of these links already exist. Otherwise, we rew
with probability exp(2DH/T), where DH52( i a2 i c)( i b
2 i d) andT is an annealing parameter to prevent the syst
from getting trapped in a local minimum. When a rewirin
algorithm is performedl times per node, the link probability
distribution is approximately given by

P2
( l )~ i a ,i d!5 (

i b ,i c
P2

( l 21)~ i a ,i b!P2
( l 21)~ i c ,i d!@u~2DH !

1u~DH !exp~2DH/T!#, ~3!

whereu(x) is a step function. This rewiring algorithm con
serves the distribution ofp( i , j ). The nearest neighbor ave
age in-degree connectivity of noden given by i nn(n)
5(1/j n)(mPVi m , which can be reformulated in the probab
listic representation as

I nn
( l )~ i 1!5

1

P~ i 1! (
i 2

i 2P2
( l )~ i 1 ,i 2!. ~4!

FIG. 4. ~Color! Possible high page-rank nodes withm network
motifs. Thick line with arrow shows dozens of incoming links.
4-3
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As it is of no importance whether the system is in glob
minimum since the Web does not always reside in the m
mum point of some dynamics, we here takeT50. From Eq.
~4! I nn

(0)( i ); const and one rewiring per node makes t
curve of distributionI nn

(1)( i ) a similar shape to that observe
in the real Web.

We use the rewiring technique shown above and ot
rewirings for generating the network motifs, of which th
rate of appearances1 ,s2 ,s3 follow the empirical data.
Though we repeated more than 102 times the simulations for
N5104 network, the concentration of page rank on sm
nodes is rarely observed as far as nodes which become a
of motifs are randomly chosen. Instead, we find that the c
centration occurs when originally high page-rank nodes h
a small number of outgoing links and mutual links to s
lected high page rank nodes, put up mutual link exclusiv
or outgoing links to node with no out-degree. Most of the t
100 ranking nodes observed in the empirical data have s
a topological characteristic. Some typical patterns of v
high score which consists ofm nodes are described in Fig. 4
In other words, page rank is robust when originally low pa
rank nodes try to get high ranking by putting up arbitra
links to itself, but become vulnerable to intentional manip
e

b

n

i-
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lation of originally high rank nodes. Using the growin
model, some limiting cases are also investigated. For
ample, as the rate of mutual linkss1 is growing,sx is sup-
pressed. A weight of a given link becomes similar to oth
links as the mutual-link rate increases, since the flow of p
rank goes all over the network and returns to itself. In t
limit s151, sx has minimum value~it goes to zero ifd is
zero! andx is exactly proportional toi.

In conclusion, we have investigated the page-rank dis
bution of the real Web and the theoretical network model.
the real Web, we find that the page rank specifically depe
on in-degree and they may concentrate on a small numbe
nodes. This phenomenon can be explained by link man
lation of high ranking node, such as self-link, multiple-lin
mutual-link connections. As there are still higher degrees
motifs in the real Web, the influence of higher degree mo
on the network properties should be discussed in fut
work. To characterize the nodes in the network, page ran
well known to be valid in ranking order of the Web. Th
method could be also useful for other applications, i.e., me
bolic flow network and propagational investment curren
system~in which some value can propagate from node
node in the network!, to rank the specific quantity of given
nodes.
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