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Survival probability of a ballistic tracer particle in the presence of diffusing traps
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We calculate the survival probabilityg(t) up to timet of a tracer particle moving along a deterministic
trajectory in a continuoud-dimensional space in the presence of diffusing but mutually noninteracting traps.
In particular, for a tracer particle moving ballistically with a constant velocitye obtain an exact expression
for P4(t), valid for all t, for d<2. Ford=2, we obtain the leading asymptotic behaviorRy{(t) for larget.

In all casesPg(t) decays exponentially for large P(t) ~exp(— 6t). We provide an explicit exact expression
for the exponeny® in dimensiongd<2 and for the physically relevant casks 3, as a function of the system

parameters.
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The calculation of the survival probability of a tracer par- ourselves to the study of this general deterministic trajectory
ticle moving in the presence of diffusing traps is a problemproblem and, in particular, present explicit exact results
of long standing interest as it appears, in various guises, in when the trajectory is ballistitsee Fig. 1
wide variety of contexts such as reaction-diffusion systems For a given fixed trajectoryRy(t), this problem can be
[1], chemical kinetic§2—4], predator-prey model5], and  formally reduced to a single-particle problem as follows. Let
“‘walker persistence” problem$6]. The tracer particle dies Q(r,,t) be the probability that theth random walker, start-
instantly upon meeting any of the diffusing traps. Perhaps th*ang from the initial positiorﬂ , does not meet the trajectory

simplest of all these problems is the case when the diffusin%
traps arenoninteractingand the motion of the tracer particle

o(t) up to timet. Note thatQ(Fi ,t) depends implicitly on

is governed by its own intrinsic dynamics that depends orihe trajectoryRq(t). The initial positionr; of theith walker

the specific problem. For example, if the tracer particle is'S @ random variable distributed over a volurveof a
static, this problem is known as therget annihilationprob- ~ d-dimensional space with uniform probability density/1/
lem [7]. Of particular interest is the case when the tracetVe assume that there axesuch walkers. Eventually we will
particle itself has a diffusive motion, a problem that was firsttake the limitN—o, V—o keeping the density=N/V
studied by Bramson and Lebowif8] and has recently seen fixed. Since the random walkers are independent, one imme-

N

a flurry of activity[9-13]. It is, however, somewhat frustrat- diately getsPS(t):<Hi:1Q(Fi ,t)) where the angular brack-
ing that, despite various new developments, tifusive  ets denote the average over the initial positiohf the

target annihilationproblem has defied direct exact solu-
tion. In contrast, we show in this paper that thallistic
target annihilationproblem, where the tracer particle moves
ballistically with a constant velocity, is exactly solvable.

A precise definition of the general problem is as follows.
Consider a set of particles initiallat timet=0) distributed
randomly in a continuoud-dimensional space with average
density p. Each of these particles subsequently undergoes
independent diffusive motion with the same diffusion con-
stantD. A tracer particle is introduced into the systemtat
=0 at the origin and subsequently moves according to its
own prescribed equation of motion. This motion can be ei-
ther deterministic or stochastic, depending on the problem.
For a given trajectoryio(t) of the tracer particle, we ask:
what is the probabilityP(t) that none of the random walk-
ers hits the tracer particle up to timt@ Evidently Pg(t)
depends implicitly on the trajectorl?o(t). For a determinis-

tic motion of the tracer particle where the trajectd?t()(t) is
prescribed, its survival probability is precisdbg(t). On the
other hand, for stochastic motion of the tracer particle the
survival probability is obtained by subsequently averaging

FIG

P<(t) over all possible trajectories of the tracer particle.time(
Thus the basic step, in eltheicase, is to comiyl) for a  that of the ballistic tracer particledashed lingin d=1. The dif-
given deterministic trajectorRy(t). In this paper we limit  fusing trajectories are allowed to cross each other.
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Ps(t)=exp[ —pJ P(r,t)dr

1.
vertical) trajectories of the diffusing trap&olid curve and

random walkers. We next WritQ(ﬂ ,t)=1—P(ﬂ ,t) and
use the product measure of the initial condition to write
Ps(t)=[1—INSP(r,t)dr]V. Taking the V—o limit at
fixed p gives

=exd—u(®)], (1)

/

(o}

A schematic picture of the spdberizontal-
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whereu(t)=pfP(r,t)dr andP(r,t) is the probability thata For d>2, we use a different method. We will present an
single random walker starting athits the trajectoryﬁo(t) explicit result foru(t) in the physically relevant dimension

. . - d=3, though our method can, in principle, be used for any
before tlmet._ the that the calculation d?(r,t) anq hence d>2. Note that this problem has an alternative physical de-
that of u(t) is, in general, very hard even for this single-

. : - scription. In terms of the relative coordinatRs=r;— Ry, it
particle problem due to thenovingboundaryRo(t). Such represents a system of noninteracting particles diffusing in
problems, generally termed Stefan problems, are well know

1o be formidable t WELAL | ol e presence of a constant drift velocity in the negative
© be formidable to solv14]. In some simple cases one can direction. The physical origin of this drift could be, for ex-

derive the asymptotic behaviors &f(r,t) for larget [S].  ample, an external field such as gravity or an electric field.

Unfortunately, this asymptotic form &¥(r,t) cannot be used The survival probabilityPs(t) of the tracer particle, in this

to perform the integra| ovelF in Eq (2) since this integra| alternative formulation, is Slmply the probablllty that none of

usually diverges. One therefore needs an alternative aphe particles hits the origin up to tinte

proach. We consider first the cas#<2. The substitutiorlfio(t)
Fortunately, a technique for computipgt) for a general =tz in Eq. (2) reduces it to a convolution form,

trajectory Ry(t) has recently been developéd3]. It was

shown that, fod<2, u(t) satisfies the exact integral equa- _ ftdt’ L exf —c*(t—t')/4D] 3

tion [13] P~ s () [47D(t—t")]¥2 ®

toe - =, which can, subsequently, be solved by the Laplace transform
p= Odt m(t)G(Ro(1),t{Ro(t") "), (2 method. We denote=c2/4D and define the Laplace trans-

form ﬁ(s)=f§u(t)e‘5tdt. Taking Laplace transforms on

where p=du/dt and G(Ry(t),t|Ry(t'),t")=[4=D(t  both sides of Eq(3) and usingu(0)=0, we obtainu(s)
—t')] P2exp—[Ro(t)—Ro(t') 4D (t—t')} is the standard —Al(a+s)'”9%s’], whereA=p(47D)¥*T (1-d/2) is a
d-dimensional diffusion propagator. For the marginal dimen-constant. To invert the Laplace transform, we wrjigs)
siond=2, Eq.(2) is still valid, though one has to introduce =A(1/s+ a/s?)(a+s)” %2 The inverse Laplace transform
an ultraviolet cutoff in the diffusion propagator. The deriva- of the first factor (1$+ a/s?) is simply (1+ at) and that of
tion of this integral equation has been detailed in R&8].  the second factor +s)~92 can be easily found to be
Note that for continuous space with>2, if the tracer is a €~ “t%>"YT'(d/2). We then use the convolution theorem
point particle then the random walkers will never meet theagain to writeu(t) as

point particle trajectory. This is, however, not true on a lat- A .

tice. So, if one sticks to a continuous space, the problem is _ . —ates di2—1

sensible ford>2 provided the tracer particle has a finite (= I'(d/2) fo[“_a(t tle” " dl. (@)
size. The formula in Eq(2) assumes a point particle trajec-

tory and hence is valid only fal<2. Ford>2, there isno The integral on the right-hand side can be expressed in
equivalent formula and one has to use other metiigsds  closed form as

later in the paper

For a general trajectorﬁo(t) it is not easy to invert the #(O=B(1+at)y(d2,at) = y(d/2+ Lat)], ®)

integral equation(2) to obtain an explicit expression for \\hare B=p(47D)¥%sin(md2)[7a®?] and  y(v,X)
n(t). However, the advantage of E) is that in many — [*exp(—y)y” ldy is the incomplete gamma function. Note

cases it can be exploited to derive exact asymptotic result§hat the exact expression far(t) in Eq. (5) is valid for allt
For example, for the “diffusive target annihilation” problem, andd<2

Eq. (2) has been used to derive asymptotically exact bounds
for the survival probability{13]. Note, however, that in the
diffusive case, one had to average over all trajectories of th

tracer particle welghte.d with the Wiener meas[{l@]. A= for which exact results are already availaprelQ]. Expand-
other solvable case is th=1 when the tracer particle moves ing Eq. (5) for small a=c%/4D we find, to leading order

deterministically asRo(t)=cy/t. For this case an exact ex- w(t)=At92 whereA, = 2p(47D)¥?sin(md/2)/=d. This in-

pression foru(t) for Ie}rget was obtained13]. dicates a stretched exponential decay for the survival prob-
The purpose of this paper is to present another solvablgbi”ty P«(t)=exp(—At??) and the constark, matches ex-

: . ! N8ctly that of the static case derived earfi@10]. Note that
system. Fod<2, we WI||_)C0nSIdeI:\ the tracer to be a point the limit c— 0 for fixedt is equivalent to the limit— 0 with
particle with a trajectoryRy(t) =ctz, wherec denotes the ¢ fixed, since in Eq(5) the timet appears only in the scaling
velocity of the particle ana denotes the unit vector along combinationat. Thus the resulPg(t)=exp(—At??) also
the direction of motion, which we choose to be thexis.  holds for smallt with ¢ fixed. We now consider the opposite
Ford>2, we will consider the tracer patrticle to be a ball of limit of t—« at fixedc. In this case we find, from Ed5),
finite radiusa. For d=2, we show how Eq(2) can be ex-  w(t)— At as t—oo where A,
ploited to derive an explicit exact result féts(t) for all t. = p(47D)¥%sin(md/2)['(d/2)/[ wa'®~?"?]. This indicates

Let us consider some limiting cases of the general result
in Eq. (5). In the limit when the velocite—0 at fixedt, our
Broblem reduces to the static “target annihilation” problem
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an exponential decay for the survival probability at late Q ) .
times, Ps(t) —exp(— &) where the decay exponefit A, is = — DbV Q-czVQ, 8

given by the following exact expression:

9= pm92-1(4D)9 Lsin(wd/2)T (d/2)c? ¢, (6) yvhich takes the form of a diffusion equatic_)n with dnft This_
is a backward equation since we are varying the initial posi-
as a function of the four physical parametgrsc, D, andd.  tion R of the trap. Equatior{8) holds in the regiorR|=a
The marginal dimensiod=2 is a special case. The inte- with the boundary condition®Q(R,t)=0 for |R=a and
gral equation(2) is still valid, provided one introduces an Q(ﬁ,t)—>1 asllfi|—>oo. This is because if the particle starts

ultraviolet cu.toff reflecting.the necessity of a lattice st.ruc-at the surface of the sphere t0, the probability that it
ture. Alternatively, a short time cutoff, can be introduced in does not hit the surface before timeanishes for alt>0.

the diffusion propagator: Similarly, if the particle starts at infinity, with probability 1 it
G(ﬁo(t) tlﬁo(t') t) will not hit thia sphere in*any finite timé. Evidently the
' ' probability P(R,t) =1— Q(R,t) also satisfies the same back-

= exp{—[Ro(t) — R(t")]2/4D (t—t’ ward Fokker-Planck equation in E) (with Q replgced by
P) but with a reversal of boundary conditionB(R,t)=1
for |R|=a andP(R,t)—0 as|R|—.
where we considet, to be small. To extract the leading Note that this Fokker—PIachlf equation can be Writterl as a
asymptotic behavior, one can pigt=0 inside the exponen- continuity equation, ;P+V-J=0 with a current J
tial and retain it only in the denominator of the propagator.= —DVP+czP. Before solving this equation, we first make
Using this propagator in Eq2), substitutingRe(t)=ctzand & simple observation. We have, from Eq7), w(t)
then taking the Laplace transform as f<2 givesu(s)  =PJ|g=aP(R,t)dR. Therefore,u(t)=p[|g=adiP dR Us-

— 47pDI[s%G(3)] wherea(s)=fg°dtexp[—(a+s)t]/(t+t0). :23 th?a(?r?ntinuity equation and Gauss's divergence theorem,

Unlike thed< 2 case, it is now difficult to invert the Laplace
transform. However, the largebehavior ofu(t) can be eas-
ily extracted from th~$*>0 behavior of the Laplace trans- w(t)= _pr‘ VP.dS (9)
form. As s—0, g(s)—F(aty) where F(x)=/gdu IRI=a
X exp(—u)/(u+x). Inverting u(s), one then getsu(t)
—[4mpD/F(aty) ]t ast—oe. In the limitt,<1l/a, one gets
F(aty)~ —In(aty). Thus, the survival probability again de-
cays exponentially for largg Pg(t) =exp(— ), where 8 is
now nonuniversalf=4mwpD/[ —In(aty)].

We turn now to the casd>2. We consider a spherical

where the surface integral is over the sphere of radius
deriving Eq.(9) we have used the boundary conditionsPn
and the identityf |5/ ,z-dS=0.

It turns out that, fod>2, Eq.(8) has a stationary solu-
tion. This is because the particle always has a finite probabil-

tracer particle of radiug moving ballistically with constant ;E’et?egjpnape thri St%?.irggg: %‘ Thltjs’f(')n :)rdzr t(()) (;x(t:r::t
velocity ¢ in the z direction. Unfortunately, fod>2 we do INg asymptoti vior pi(t) for t—ce, on

not yet have an analog of E(R). Thus one has to resort to 'eplaceP(R,t) by its stationary solutiofs(R) on the right
the original single-particle formulation in Eq1). Fortu- hand side of Eq(9). A subsequent integration ovérusing
nately, for the ballistic case id>2, the exact asymptotic #(0)=0, shows that, to leading order for largeu(t)= 6t
behavior ofPg(t) for larget can be derived even within this Where
formulation. It turns out to be advantageous in this case to
consider the alternative description of the problem in terms

of the relative coordinateRi(t)zri(t)—ﬁo(t) where the
traps diffuse independently in the presence of an external
drift along the negativez direction. Upon shifting to this Note that while Eq(9) is valid for alld, the result in Eq(10)
relative coordinate, one finds from Ed), is valid only ford>2. This is because the trick of replacing

P(R,t) by its stationary solutioP(R) does not work for
=exd — u(t)], ) d=<2 since there is no stationary solution in that case.

Thus ford>2 the survival probability also decays expo-

R R R nentially for larget, Pg(t) ~exp(— ) with the exponentd
where P(R,t)=1—-Q(R,t) and Q(R,t) is the probability given by the general formula in E¢L0). Obtaining an ex-
that a trap, diffusing in the presence of an external drift andplicit expression forg requires knowledge of the stationary
starting at the initial positiofR outside the sphere of radius solution of Eq.(8) which we now provide for the physically
a, does not hit the surface of the sphere before tiniEhe  relevant dimensiord=3. The stationary solution satisfies
integral in Eq.(7) is now restricted to the regioliR|=>a. the equation

It is easy to see that the probabili@(ﬁ,t) satisfies a 5 .
backward Fokker-Planck equation, DV“Pg=cz- VPg (11

(9:—pr» VP dS. (10)
|IR|=a

Pg(t)= exp[ - pj P(R,t)dR
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with the boundary condition®.(R)=1 for |R|=a and
P.(R)—0 as|R|—c. This problem does not have a radial
symmetry. Fortunately, the  substitution Pst(ﬁ)
=exp(ﬁz)¢(l§), with 8=c/2D, restores the radial symmetry
since #(R) satisfies the Poisson equatiify=B2y. The

general solution satisfying the boundary condition at infinity

can be obtained by standard techniques, to give

Psi( ﬁ)zR*”ZeBRwSﬁ_EO b/Pi(cos¢)K, ;1A BR),
(12)

where R=|R|, ¢ is the angle betweeR and thez axis,
P,(x) is the Legendre polynomial of degréeandK (x) is
the modified Bessel function of index The unknown co-
efficients b, are determined from the boundary condition
Ps(R=a)=1. SubstitutingR=a in Eq. (12) and using the
orthogonality properties of the functiori® (x) gives, after
some algebra,

A a ” 1 Ki+12(BR)

_ __aBRcos¢ — -~ 5
Ps(R) \[Re ;o I+ 5] aiPi(cosd) KitidBa)’
(13

wherea,= [1,P,(x)e” P¥dx=(—1)"V27/Bal,, 1, Ba).
Substituting the stationary solution, E4.3), into Eq.(10)

RAPID COMMUNICATIONS

PHYSICAL REVIEW E68, 045101R) (2003

few steps of algebra, the following rather nontrivial expres-
sion for 8 in terms of the physical parametersD, a, andc:

6=2mapD 1—27720 (—1)'
1\ Ki y(Ba) ,
X |+§)m||+1/2(ﬂa) , (14)

whereK (x)=dK,(x)/dx and B=c/2D. The series in Eq.
(14) can be summed numerically. H(3a) is the function in
the square brackets, thdi(x) is monatically increasing,
with H(0)=2 andH(x)/x—1 for x—oc. The former result,
corresponding toc=0, recovers the known resultd
=47apD, for a static targef11]. The latter, corresponding
to c—oo, can be understood by noting that in this limit the
probability that the sphere has not been hit by a trap is given
by exp(pV), whereV= mra®ct is the volume swept out by
the sphere in timé and we require that this volume initially
contains no traps. Hencé— ma®cp in this limit, corre-
sponding toH (X) — X.

In summary, we have studied the general problem of cal-
culating the survival probability of a tracer particle moving
along a deterministic trajectory in the presence of diffusing
traps. In particular, when the tracer particle moves ballisti-
cally we have shown that its survival probabilifyg(t)
~exp(—6t) for larget in all dimensions. We have derived
exact expressions for the exponehin terms of the system

and performing the surface integral, we finally obtain, after gparameters fod<2 and ford=3.
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