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Survival probability of a ballistic tracer particle in the presence of diffusing traps
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We calculate the survival probabilityPS(t) up to time t of a tracer particle moving along a deterministic
trajectory in a continuousd-dimensional space in the presence of diffusing but mutually noninteracting traps.
In particular, for a tracer particle moving ballistically with a constant velocityc, we obtain an exact expression
for PS(t), valid for all t, for d,2. Ford>2, we obtain the leading asymptotic behavior ofPS(t) for large t.
In all cases,PS(t) decays exponentially for larget, PS(t);exp(2ut). We provide an explicit exact expression
for the exponentu in dimensionsd<2 and for the physically relevant case,d53, as a function of the system
parameters.
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The calculation of the survival probability of a tracer pa
ticle moving in the presence of diffusing traps is a proble
of long standing interest as it appears, in various guises,
wide variety of contexts such as reaction-diffusion syste
@1#, chemical kinetics@2–4#, predator-prey models@5#, and
‘‘walker persistence’’ problems@6#. The tracer particle dies
instantly upon meeting any of the diffusing traps. Perhaps
simplest of all these problems is the case when the diffus
traps arenoninteractingand the motion of the tracer particl
is governed by its own intrinsic dynamics that depends
the specific problem. For example, if the tracer particle
static, this problem is known as thetarget annihilationprob-
lem @7#. Of particular interest is the case when the tra
particle itself has a diffusive motion, a problem that was fi
studied by Bramson and Lebowitz@8# and has recently see
a flurry of activity @9–13#. It is, however, somewhat frustra
ing that, despite various new developments, thisdiffusive
target annihilationproblem has defied adirect exact solu-
tion. In contrast, we show in this paper that theballistic
target annihilationproblem, where the tracer particle mov
ballistically with a constant velocity, is exactly solvable.

A precise definition of the general problem is as follow
Consider a set of particles initially~at timet50) distributed
randomly in a continuousd-dimensional space with averag
density r. Each of these particles subsequently underg
independent diffusive motion with the same diffusion co
stantD. A tracer particle is introduced into the system at
50 at the origin and subsequently moves according to
own prescribed equation of motion. This motion can be
ther deterministic or stochastic, depending on the probl
For a given trajectoryRW 0(t) of the tracer particle, we ask
what is the probabilityPS(t) that none of the random walk
ers hits the tracer particle up to timet? Evidently PS(t)
depends implicitly on the trajectoryRW 0(t). For a determinis-
tic motion of the tracer particle where the trajectoryRW 0(t) is
prescribed, its survival probability is preciselyPS(t). On the
other hand, for stochastic motion of the tracer particle
survival probability is obtained by subsequently averag
PS(t) over all possible trajectories of the tracer partic
Thus the basic step, in either case, is to computePS(t) for a
given deterministic trajectoryRW 0(t). In this paper we limit
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ourselves to the study of this general deterministic traject
problem and, in particular, present explicit exact resu
when the trajectory is ballistic~see Fig. 1!.

For a given fixed trajectoryRW 0(t), this problem can be
formally reduced to a single-particle problem as follows. L
Q(rW i ,t) be the probability that thei th random walker, start-
ing from the initial positionrW i , does not meet the trajector
RW 0(t) up to timet. Note thatQ(rW i ,t) depends implicitly on
the trajectoryRW 0(t). The initial positionrW i of the i th walker
is a random variable distributed over a volumeV of a
d-dimensional space with uniform probability density 1/V.
We assume that there areN such walkers. Eventually we wil
take the limit N→`, V→` keeping the densityr5N/V
fixed. Since the random walkers are independent, one im
diately getsPS(t)5^) i 51

N Q(rW i ,t)& where the angular brack

ets denote the average over the initial positionsrW i of the
random walkers. We next writeQ(rW i ,t)512P(rW i ,t) and
use the product measure of the initial condition to wr
PS(t)5@121/V*P(rW,t)drW#N. Taking the V→` limit at
fixed r gives

PS~ t !5expF2rE P~rW,t !drW G5exp@2m~ t !#, ~1!

FIG. 1. A schematic picture of the space~horizontal!-
time~vertical! trajectories of the diffusing traps~solid curves! and
that of the ballistic tracer particle~dashed line! in d51. The dif-
fusing trajectories are allowed to cross each other.
©2003 The American Physical Society01-1
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wherem(t)5r*P(rW,t)drW andP(rW,t) is the probability that a
single random walker starting atrW hits the trajectoryRW 0(t)
before timet. Note that the calculation ofP(rW,t) and hence
that of m(t) is, in general, very hard even for this singl
particle problem due to themoving boundaryRW 0(t). Such
problems, generally termed Stefan problems, are well kno
to be formidable to solve@14#. In some simple cases one ca
derive the asymptotic behaviors ofP(rW,t) for large t @5#.
Unfortunately, this asymptotic form ofP(rW,t) cannot be used
to perform the integral overrW in Eq. ~2! since this integral
usually diverges. One therefore needs an alternative
proach.

Fortunately, a technique for computingm(t) for a general
trajectory RW 0(t) has recently been developed@13#. It was
shown that, ford,2, m(t) satisfies the exact integral equ
tion @13#

r5E
0

t

dt8ṁ~ t8!G„RW 0~ t !,tuRW 0~ t8!,t8…, ~2!

where ṁ5dm/dt and G„RW 0(t),tuRW 0(t8),t8…5@4pD(t
2t8)#2d/2exp$2@RW 0(t)2RW 0(t8)#

2/4D(t2t8)% is the standard
d-dimensional diffusion propagator. For the marginal dime
sion d52, Eq.~2! is still valid, though one has to introduc
an ultraviolet cutoff in the diffusion propagator. The deriv
tion of this integral equation has been detailed in Ref.@13#.
Note that for continuous space withd.2, if the tracer is a
point particle then the random walkers will never meet
point particle trajectory. This is, however, not true on a l
tice. So, if one sticks to a continuous space, the problem
sensible ford.2 provided the tracer particle has a fini
size. The formula in Eq.~2! assumes a point particle traje
tory and hence is valid only ford<2. Ford.2, there is no
equivalent formula and one has to use other methods~see
later in the paper!.

For a general trajectoryRW 0(t) it is not easy to invert the
integral equation~2! to obtain an explicit expression fo
m(t). However, the advantage of Eq.~2! is that in many
cases it can be exploited to derive exact asymptotic res
For example, for the ‘‘diffusive target annihilation’’ problem
Eq. ~2! has been used to derive asymptotically exact bou
for the survival probability@13#. Note, however, that in the
diffusive case, one had to average over all trajectories of
tracer particle weighted with the Wiener measure@13#. An-
other solvable case is ind51 when the tracer particle move
deterministically asR0(t)5cAt. For this case an exact ex
pression form(t) for large t was obtained@13#.

The purpose of this paper is to present another solva
case where the tracer particle moves ballistically through
system. Ford<2, we will consider the tracer to be a poin
particle with a trajectoryRW 0(t)5ctẑ, wherec denotes the
velocity of the particle andẑ denotes the unit vector alon
the direction of motion, which we choose to be thez axis.
For d.2, we will consider the tracer particle to be a ball
finite radiusa. For d<2, we show how Eq.~2! can be ex-
ploited to derive an explicit exact result forPS(t) for all t.
04510
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For d.2, we use a different method. We will present
explicit result form(t) in the physically relevant dimensio
d53, though our method can, in principle, be used for a
d.2. Note that this problem has an alternative physical
scription. In terms of the relative coordinatesRW i5rW i2RW 0, it
represents a system of noninteracting particles diffusing
the presence of a constant drift velocity in the negativz
direction. The physical origin of this drift could be, for ex
ample, an external field such as gravity or an electric fie
The survival probabilityPS(t) of the tracer particle, in this
alternative formulation, is simply the probability that none
the particles hits the origin up to timet.

We consider first the cased,2. The substitutionRW 0(t)
5ctẑ in Eq. ~2! reduces it to a convolution form,

r5E
0

t

dt8ṁ~ t8!
exp@2c2~ t2t8!/4D#

@4pD~ t2t8!#d/2 , ~3!

which can, subsequently, be solved by the Laplace transf
method. We denotea5c2/4D and define the Laplace trans
form m̃(s)5*0

`m(t)e2stdt. Taking Laplace transforms on

both sides of Eq.~3! and usingm(0)50, we obtainm̃(s)
5A@(a1s)12d/2/s2#, whereA5r(4pD)d/2/G(12d/2) is a
constant. To invert the Laplace transform, we writem̃(s)
5A(1/s1a/s2)(a1s)2d/2. The inverse Laplace transform
of the first factor (1/s1a/s2) is simply (11at) and that of
the second factor (a1s)2d/2 can be easily found to be
e2attd/221/G(d/2). We then use the convolution theore
again to writem(t) as

m~ t !5
A

G~d/2!
E

0

t

@11a~ t2t1!#e2at1t1
d/221dt1 . ~4!

The integral on the right-hand side can be expressed
closed form as

m~ t !5B@~11at !g~d/2,at !2g~d/211,at !#, ~5!

where B5r(4pD)d/2sin(pd/2)/@pad/2# and g(n,x)
5*0

xexp(2y)yn21dy is the incomplete gamma function. Not
that the exact expression form(t) in Eq. ~5! is valid for all t
andd,2.

Let us consider some limiting cases of the general re
in Eq. ~5!. In the limit when the velocityc→0 at fixedt, our
problem reduces to the static ‘‘target annihilation’’ proble
for which exact results are already available@7,10#. Expand-
ing Eq. ~5! for small a5c2/4D we find, to leading order,
m(t)5A1td/2 whereA152r(4pD)d/2sin(pd/2)/pd. This in-
dicates a stretched exponential decay for the survival pr
ability PS(t)5exp(2A1t

d/2) and the constantA1 matches ex-
actly that of the static case derived earlier@7,10#. Note that
the limit c→0 for fixed t is equivalent to the limitt→0 with
c fixed, since in Eq.~5! the timet appears only in the scaling
combinationat. Thus the resultPS(t)5exp(2A1t

d/2) also
holds for smallt with c fixed. We now consider the opposit
limit of t→` at fixedc. In this case we find, from Eq.~5!,
m(t)→A2t as t→` where A2
5r(4pD)d/2sin(pd/2)G(d/2)/@pa (d22)/2#. This indicates
1-2
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an exponential decay for the survival probability at la
times,PS(t)→exp(2ut) where the decay exponentu5A2 is
given by the following exact expression:

u5rpd/221~4D !d21sin~pd/2!G~d/2!c22d, ~6!

as a function of the four physical parametersr, c, D, andd.
The marginal dimensiond52 is a special case. The inte

gral equation~2! is still valid, provided one introduces a
ultraviolet cutoff reflecting the necessity of a lattice stru
ture. Alternatively, a short time cutofft0 can be introduced in
the diffusion propagator:

G„RW 0~ t !,tuRW 0~ t8!,t8…

5exp$2@RW 0~ t !2RW ~ t8!#2/4D~ t2t8

1t0!%/@4pD~ t2t81t0!#,

where we considert0 to be small. To extract the leadin
asymptotic behavior, one can putt050 inside the exponen
tial and retain it only in the denominator of the propagat
Using this propagator in Eq.~2!, substitutingRW 0(t)5ctẑ and
then taking the Laplace transform as ford,2 gives m̃(s)
54prD/@s2g̃(s)# where g̃(s)5*0

`dtexp@2(a1s)t#/(t1t0).
Unlike thed,2 case, it is now difficult to invert the Laplac
transform. However, the large-t behavior ofm(t) can be eas-
ily extracted from thes→0 behavior of the Laplace trans
form. As s→0, g̃(s)→F(at0) where F(x)5*0

`du

3exp(2u)/(u1x). Inverting m̃(s), one then getsm(t)
→@4prD/F(at0)#t as t→`. In the limit t0!1/a, one gets
F(at0)'2 ln(at0). Thus, the survival probability again de
cays exponentially for larget, PS(t)5exp(2ut), whereu is
now nonuniversal,u54prD/@2 ln(at0)#.

We turn now to the cased.2. We consider a spherica
tracer particle of radiusa moving ballistically with constant
velocity c in the z direction. Unfortunately, ford.2 we do
not yet have an analog of Eq.~2!. Thus one has to resort t
the original single-particle formulation in Eq.~1!. Fortu-
nately, for the ballistic case ind.2, the exact asymptotic
behavior ofPS(t) for larget can be derived even within thi
formulation. It turns out to be advantageous in this case
consider the alternative description of the problem in ter
of the relative coordinatesRi(t)5r i(t)2RW 0(t) where the
traps diffuse independently in the presence of an exte
drift along the negativez direction. Upon shifting to this
relative coordinate, one finds from Eq.~1!,

PS~ t !5expF2rE P~RW ,t !dRW G5exp@2m~ t !#, ~7!

where P(RW ,t)512Q(RW ,t) and Q(RW ,t) is the probability
that a trap, diffusing in the presence of an external drift a
starting at the initial positionRW outside the sphere of radiu
a, does not hit the surface of the sphere before timet. The
integral in Eq.~7! is now restricted to the regionuRW u>a.

It is easy to see that the probabilityQ(RW ,t) satisfies a
backward Fokker-Planck equation,
04510
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5D¹2Q2cẑ•¹W Q, ~8!

which takes the form of a diffusion equation with drift. Th
is a backward equation since we are varying the initial po
tion RW of the trap. Equation~8! holds in the regionuRW u>a

with the boundary conditionsQ(RW ,t)50 for uRW u5a and
Q(RW ,t)→1 asuRW u→`. This is because if the particle star
at the surface of the sphere att50, the probability that it
does not hit the surface before timet vanishes for allt.0.
Similarly, if the particle starts at infinity, with probability 1 i
will not hit the sphere in any finite timet. Evidently the
probabilityP(RW ,t)512Q(RW ,t) also satisfies the same bac
ward Fokker-Planck equation in Eq.~8! ~with Q replaced by
P) but with a reversal of boundary conditions,P(RW ,t)51
for uRW u5a andP(RW ,t)→0 asuRW u→`.

Note that this Fokker-Planck equation can be written a
continuity equation, ] tP1¹W •JW50 with a current JW

52D¹W P1cẑP. Before solving this equation, we first mak
a simple observation. We have, from Eq.~7!, m(t)
5r* uRW u>aP(RW ,t)dRW . Therefore,ṁ(t)5r* uRW u>a] tP dRW . Us-
ing the continuity equation and Gauss’s divergence theor
we obtain

ṁ~ t !52rDE
uRW u5a

¹W P•dSW , ~9!

where the surface integral is over the sphere of radiusa. In
deriving Eq.~9! we have used the boundary conditions onP

and the identity* uRW u5aẑ•dSW 50.
It turns out that, ford.2, Eq. ~8! has a stationary solu

tion. This is because the particle always has a finite proba
ity to escape the sphere ford.2. Thus, in order to extrac
the leading asymptotic behavior ofm(t) for t→`, one can
replaceP(RW ,t) by its stationary solutionPst(RW ) on the right
hand side of Eq.~9!. A subsequent integration overt, using
m(0)50, shows that, to leading order for larget, m(t)5ut
where

u52rDE
uRW u5a

¹W Pst•dSW . ~10!

Note that while Eq.~9! is valid for all d, the result in Eq.~10!
is valid only ford.2. This is because the trick of replacin
P(RW ,t) by its stationary solutionPst(RW ) does not work for
d<2 since there is no stationary solution in that case.

Thus ford.2 the survival probability also decays exp
nentially for larget, PS(t);exp(2ut) with the exponentu
given by the general formula in Eq.~10!. Obtaining an ex-
plicit expression foru requires knowledge of the stationar
solution of Eq.~8! which we now provide for the physically
relevant dimensiond53. The stationary solution satisfie
the equation

D¹2Pst5cẑ•¹W Pst ~11!
1-3
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with the boundary conditionsPst(RW )51 for uRW u5a and
Pst(RW )→0 asuRW u→`. This problem does not have a radi
symmetry. Fortunately, the substitution Pst(RW )
5exp(bz)c(RW ), with b5c/2D, restores the radial symmetr
since c(RW ) satisfies the Poisson equation¹2c5b2c. The
general solution satisfying the boundary condition at infin
can be obtained by standard techniques, to give

Pst~RW !5R21/2ebR cosf(
l 50

`

bl Pl~cosf!Kl 11/2~bR!,

~12!

where R5uRW u, f is the angle betweenRW and thez axis,
Pl(x) is the Legendre polynomial of degreel, andKn(x) is
the modified Bessel function of indexn. The unknown co-
efficients bl are determined from the boundary conditio
Pst(R5a)51. SubstitutingR5a in Eq. ~12! and using the
orthogonality properties of the functionsPl(x) gives, after
some algebra,

Pst~RW !5Aa

R
ebR cosf(

l 50

` S l 1
1

2Dal Pl~cosf!
Kl 11/2~bR!

Kl 11/2~ba!
,

~13!

whereal5*21
1 Pl(x)e2baxdx5(21)lA2p/ba Il 11/2(ba).

Substituting the stationary solution, Eq.~13!, into Eq.~10!
and performing the surface integral, we finally obtain, afte
s

04510
a

few steps of algebra, the following rather nontrivial expre
sion foru in terms of the physical parametersr, D, a, andc:

u52parDF122p(
l 50

`

~21! l

3S l 1
1

2D Kl 11/28 ~ba!

Kl 11/2~ba!
I l 11/2

2 ~ba!G , ~14!

whereKn8(x)5dKn(x)/dx and b5c/2D. The series in Eq.
~14! can be summed numerically. IfH(ba) is the function in
the square brackets, thenH(x) is monotically increasing,
with H(0)52 andH(x)/x→1 for x→`. The former result,
corresponding toc50, recovers the known result,u
54parD, for a static target@11#. The latter, corresponding
to c→`, can be understood by noting that in this limit th
probability that the sphere has not been hit by a trap is gi
by exp(2rV), whereV5pa2ct is the volume swept out by
the sphere in timet and we require that this volume initially
contains no traps. Henceu→pa2cr in this limit, corre-
sponding toH(x)→x.

In summary, we have studied the general problem of c
culating the survival probability of a tracer particle movin
along a deterministic trajectory in the presence of diffus
traps. In particular, when the tracer particle moves balli
cally we have shown that its survival probabilityPS(t)
;exp(2ut) for large t in all dimensions. We have derive
exact expressions for the exponentu in terms of the system
parameters ford<2 and ford53.
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