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We pursue a systematic statistical mechanics study of finite smectic stacks of semiflexible manifolds
bounded by interfaces under tension. We address, by analytic calculations and Monte Carlo simulations, the
effects of the surface tension on smectic interlayer distances. We use our theoretical results to elucidate the so
called vapor pressure parad®xPP) in multilamellar membrane phases and explain the experiments of Kat-
saragBiophys. J.73, 2924 (1997; 75, 2157(1998]. We show that the effects of the interfacial tension are
substantially weaker than suggested by the previous theoretical discussion of the VPP Rff&isgornik
and V. A. Parsegian, Biophys. 32, 942 (1997]. By consistently taking into account the discrete, layered
character of smectic liquid crystals, and anharmonic phonon effects, we show that the essence of VPP effects
is in spatially nonuniform thermal expansion of smectic interlayer separations. We find that the average period
of the whole finite stack can be both smallerdinary VPP effect at high enough interfacial tensjamrshigger
(a reverse VPP effect at low interfacial tensions, overlooked in previous studikgive to the average period
of the corresponding infinite smectic stack. Looking at stacks from outside, these two effects show up as if
there is an attractivéfor the ordinary VPP effegt or repulsive(for the reverse VPP effecpseudo-Casimir
force acting between the two stack interfaces. We show however that the physics of VPP effects is obscured by
schematically invoking Casimir-like forces. Rather, the ordinary and the reverse VPP effects arbdih be
characterized athermomechanical anharmonic effects caused by a spatially nonuniform thermal expansion of
smectic interlayer distancesnterlayer distances close to stack surfaces expand(iess for the ordinary
(reverse VPP effect than those deep in the stack. The reverse VPP prevails at low interfacial tensions, simply
because the membrane at the top of the stack is more free to fluctuate than membranes in the bulk. By
increasing interfacial tension above a threshold value, fluctuations of the membrane at the stack top become
suppressed, and the ordinary VPP effect prevails. In this study, we demonstrate that finite-size VPP effects in
a strongly entropic system, such as the sterically stabilized lamellar phases, can be described quantitatively
well by a simple analytic approach.
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[. INTRODUCTION in ordinary crystals. In smectic liquid crystals, however, such
fluctuation effects are significantly stronger due to the soft
Smectic liquid crystals and smecticlike phases have beecharacter of these systems and thus a more prominent role is
attracting attention of experimentalists and theorists for deplayed by long-range thermal fluctuations.
cadeg1-13], in particular because of the biophysical signifi-  Due to these reasons, the smectic “bond lengdhthay
cance of these systenjgd—6,10,14—-19 Thermal fluctua- substantially depend also on te&zeof smectic systems, in
tions play a significant role in these systems. Typicalparticular, on the number of manifolds comprising the smec-
examples for this are sterically stabilized smectic phases dic stack,N. Thus, in two-dimensional2D) sterically stabi-
large flexible manifolds, such as fluid membranes or semilized smectic phases of semiflexible polymers under isotro-
flexible polymers interacting by purely hard-core repulsionpic osmotic pressure, the average stack pesads almost
[2,10-12,20-2B In these phases, the restriction of the fluc-10% biggerin small stacks =2 or 3) than in the bulk of
tuations of thermally rough manifolds by the presence ofan infinite stack =), as revealed in our recent study Ref.
neighboring manifolds(hard-core interaction yields the [11]. In that study, the interfacial manifolds at the surfaces of
well known Helfrich effective(entropig repulsion interac- the system are considered to be tensionless. Under some con-
tion [10]. In these so called unbound phases of manifoldsditions, however, the smectic interfaces may acquire a non-
the smectic equation of state, which relates the isotropic oszero surface tensioty. Classical examples for this are the
motic pressuré® to the smectic period, is purely entropic  multilamellar bilayer membrane phases that have interfaces
in nature[11,12,22,23 In particular, it predicts that the av- corresponding to water-vapor-liquid interfacgvith the
erage smectic perioa diverges forP— 0. On the other side, lamellar phase on the liquid sigeor multilamellar phases
thermal fluctuations are quantitatively significant also in thewith interfacial manifolds bound to solid substratesrre-
bound phases of manifolds, in whiehremains finite forP sponding to essentially infinite surface tengioh7,18. For
—0, due to the presence of attractive intermanifold interacthese systems, it has been pointed out by Podgornik and
tions[15—-19. In these bound phases, the act(rahormal-  Parsegiari14] that the interfacial surface tension could sup-
ized) value of the smectic phase periadmay be substan- press thermal fluctuations of the manifolds and thus substan-
tially different from the mean-field estimate that minimizestially reduce the value of the average smectic pedgdof
the bare intermanifold potential. Here, the effect of thermalthe N-manifold stack. This finite-size surface tension effect
fluctuations is similar to the familiar thermal bond expansionwas argued to be quantitatively remarkably strong and vis-
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ible even for macroscopically large valueshf14]. It was  ments of Katsaragsee Secs. Il and Nl Importantly, this
interpreted in terms of a long-range pseudo-Casimir attraceonclusion holds even for thefinite surface tensiory, or,
tive force between the system interfacas in Refs[24,25)), equivalently, for the smectic liquid crystals fluctuating over
and furthermore, it was suggested as an explanation for theolid surfacegsubstrates In fact, by using our smectic stack
so calledvapor pressure paradoxVPP), frequently mani- model, we find that the VPP effect has well defined, finite
fested in practicd 14]: namely, in oriented smectic stacks limit for y—<, see Secs. Il and Ill. Here, we elucidate this
with vapor-liquid or solid interfaces, it has been indeed notedmportant limit which may be nearly reached in realistic
that the smectic periody may be significantly smaller than smectic systems with vapor-liquid interfaces. Recently,
the valuea.. expected for the corresponding infinite systems,Nagle and Katsargd 8] put forward a qualitative picture of
N=<. Such a period reduction may result from some otheVPP effects, aimed to reconcile the difference between the
(not due to finite-sizeeffects, see Refl14]. Still, it has been experimentd17] and the theory of Refl14]. This picture
argued that these other effects have been eliminated in treiggests a mechanism weakening the VPP effect, by invok-
experiments with the systems exhibiting VPP phenomenang the unbinding of the vapor-liquid interface from the
This has provided a basis to broadly adopt the theory oftack. We find however that the VPP effectisywayquan-
Podgornik and Parsegidti4] as an explanation of the VPP. titatively weak in the stacks withl=100 or more manifolds,
However, a recent twist in this history of the VPP came fromevenif the high surface tension vapor-liquid interfaces are
the careful experiments of Katsarfs7]. They have strik-  strongly bound to the stack. Another interesting prediction of
ingly indicated that there igo VPP in multilamellar mem-  our study is the existence ofraverseVPP effect that occurs
brane phases in equilibrium with saturated water vaporin a range ofsmall surface tensiony (see Secs. Il and Ij)
Thus, a new enigma emerged, on how to reconcile the exiser for vapor-pressure interfaces weakly coupled to smectic
ing theory of VPP with the recent experimental observationsstacks(see Sec. Y. Under these conditions, we find that the
In this paper, we address this enigma by pursuing a sysaverage smectic periaa}, of finite smectic stacksN<) is
tematic statistical mechanics study of finite stacks with actually bigger than the average period of infinite smectic
semiflexible manifolds bounded by interfaces under tensiorsystems,a.,. We find that the ordinary VPP phenomenon,
We address, by analytical calculations and numerical simuwith a smallerthana,,, requires interfacial tensiong ex-
lations, the finite-size effects of the surface tension on theeeding a critical threshold valug (in the model of Secs. I
smectic period, i.e., the average interlayer distance. We fingnd Ill), or a strong enough coupling between the smectic
that these effects are substantially weaker than suggested Byack and vapor-liquid interfadsee Sec. Y. The threshold
the previous theoretical discussion of the VPP phenomena igurface tensiony* =0(1)8y, wheredy is the well known
Ref. [14]. Within our theory of VPP in finite smectic liquid “elastic” surface tension of the interface of semi-infinite
crystals, these systems are described more microscopicallymectic liquid crystal§12,13, see Sec. [1Only for y~ y*
as stacks of interacting manifoldg,1,12,20,22,23,26 This  ~ 5y, finite smectic stacksN<) are nearly uniform, with
is in contrast to the standard Landau-Peierls smectic Comg,~a., (see the end of Sec. Il and our recent st{itig]).
tinuum elastic model that has been employed in RB4l.  Otherwise, fory smaller (bigge) than y*, ay is bigger
This classical continuuntelastio model essentially ignores (smallej thana.., and the reverséordinary VPP effect pre-
the discreteJayeredcharacter of smectic liquid crystals. Its yaijls.
formal application in Refl14] yields a strong dependence of  An important feature of the study presented here is the
the strength of the VPP on the microscopic short-distanc@ajculation of the spatiallyonuniformsmectic layer spac-
cutoff of the manifoldsAx (such as the lipid molecule size  ings. We calculate them here as the function of the distance
In fact, the presence of the experimentally smeX in the  from smectic surfaces. Such a calculation has not been done
quantitative results of Podgornik and Parsediad] is the  in the previous studies of the VPP phenomenon. Thus, the
main source for their remarkably large estimates of theheory of Podgornik and Parsegifi] effectively assumes
strength of the VPP effect in equilibrium smectic liquid crys- that the smectic spacings are uniform throughout the whole
tals: Within their theory, the strength of the VPP effect wassystem. We show here that this is a grossly oversimplified
actually found to diverge in the continuum limix—0 [14].  picture, see Secs. Il and lIl. In fact, we find that VPP phe-
Moreover, the application of the theory of Podgornik andnomena themselves, i.e., the dependence of the smectic av-
Parsegian to the unbound, sterically repelling smectic stacksrage period on the system siXgis, in large part, related to
of membranes yields a strange conclusion that the intermemhe behavior of nonuniform smectic spacings in the regions
brane separatiofsmectic periofl ay reaches a finite value close to the smectic surfaces as discussed in Secs. Il and III.
(an)max~Axy/N in the limit of zero osmotic pressur®  This feature imposes severe limitations on the experimental
—0 [14]. Here, we find that these features are artifacts obbservations of the VPP phenomeisae Sec. IV.
formally using the smectic continuum model in Rgf4]. In In this study, we show that invoking schematic similarities
fact, themore microscopic smectic stack model, used by usto standard pseudo-Casimir effects, as done in Héi, ob-
here(and also in Refs[11] and[12]), hasfinite continuum  scures the real nature of the VPP effects, such as the impor-
limit Ax—0, and thus only a weak dependence of the smectant role played byi) the layered character ari) the an-
tic period on the microscopic manifold cutoffx. In the  harmonic effects in smectic liquid crystals. By consistently
result, the magnitude of the VPP effect we find is small,taking into account these two features, we show that VPP
making it hardly observable in the stacks with= few hun-  effects arethermomechanical anharmonic finite-size effects
dred manifolds, in accord with the aforementioned experi-caused bypatially nonuniform thermal expansion of smectic
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(a) (b) ay<a, (c) a>a, of the whole finite stackay, is bigger than the bulkther-
o~~~ modynamic limi} stack period of the corresponding infinite
VaVaVaVa stack,a.,, and one has the reverse VPP effect in Fi@).1
W By looking at the finite stackrom the outsidgthis finite-size
W anharmonic effect looks like an effect of a repulsive Casimir
R %0 %Y force acting between stack surfaces. However, the physical
m origin of our reverse VPP effect is in the nonuniformity of
NN interlayer distances arising because the surface membrane is
W more free to fluctuate than other membrafe=e Fig. {c)].
W Moreover, even the ordinary VPP effect, interpreted as the
“mechanical Casimir effect” by Podgornik and Parsegian, is
@ also more deeply related to the nonuniformity of interlayer

distances. This point is obscured in the theory of Podgornik
and Parsegiapl4], by assuming that the smectic interlayer
distances are uniform throughout the system. Only from the
anharmonic theory presented in the present study, it becomes
clear that the ordinary VPP effect is also intimately related to
the nonuniformity of smectic interlayer distandese Fig.
1(b)]: Here, large enough surface tension suppresses fluctua-
FIG. 1. (a) Manifold configurations close to the center of an ONS of the membrane at the top of the stack. Consequently,
infinite (N=1°) smectic stack, with the average periad. (b) and  thermal expansion of interlayer distances is smaller close to
(c) depict a finite stack oN fluctuating manifoldshereN=10),  the stack surfaces than in the bulk. Thus, for large enough
with the average periody=(hy—h,)/(N—1). (b) depicts the or-  interfacial tensions, the average period of the whole finite
dinary VPP effect, withay<a.., that occurs at large enough inter- Stack,ay, is smaller than the bulkthermodynamic limit
facial tensions(c) depicts the reverse VPP effect, with>a.,, period of the corresponding infinite stack, [see Figs. (a)
that occurs at small enough interfacial tensiofd. through (f) and Xb)]. From the outside, this ordinary VPP effect in Fig.
magnify three different situations at the stack interfadgThere is ~ 1(b) appears as a stack contraction due to some attractive
a water layer between the outmost manifold and vapor, i.e., thseudo-Casimir force between stack surfaces. But, from the
water-vapor interface is bound to the outmost manifgigid bi-  outside, one cannot see the spatially nonuniform smectic in-
layen. (e) There is no vapor, i.e., the water-vapor interface is un-terlayer distances underlying the VPP effect. Thus, reducing
bound from the outmost lipid bilayef) The outmost manifold is a /PP effects to mechanical Casimir effects, as suggested by
lipid monolayer with tails in the vapor. Podgornik and Parsegiafi4], obscures the real physical
character of these effects. We elucidate these findings by our
interlayer distancesas detailed in Sec. Il. Here, we go be- analytic theory(Sec. 1), and document our results rigorously
yond the previous schematic physical picture of VPP pheby Monte Carlo simulations of the stacks of semiflexible
nomena that has attempted to formally reduce them tananifolds(Sec. Ill). The simulations clearly show the pres-
pseudo-Casimir effecfd 4]. Essential for the physical under- ence of the reverse VPP effect for small surface tensions
standing of VPP effects are the spatially nonuniform smecti@accord with the analytical theory of Sec).IAt large enough
interlayer distances which vary in magnitude as one movesurface tension, our simulations document the ordinary VPP
from the stack surface to the center of the stack, as depictegffect with a magnitude in accord with the analytic theory of
in Fig. 1 (see Secs. Il and I In particular, the aforemen- Sec. II. We note that the reverse VPP effect has been noticed
tioned reverse VPP effect is an anharmonic effect easily unalready before, in our recent stufii], for the special case
derstood by considering the case of a membrane stack withf zero surface tension. It may be unsurprising to see such an
zero surface tension at the stack interfaces. In this case ainharmonic effect that emerges simply because the mem-
membranes are tensionless, and the major difference betwebrane at the top of the stack is more free to fluctuate, and
membranes is in their coordination number, i.e., the numbethus acquires a larger intermembrane spading, larger
of their neighboring membranes. It is 1 for the two mem-thermal bond expansigrthan the membranes deep in the
branes at the bottom and the top of the stack, and it is 2 fostack[see Fig. {c)]. This effect is washed out by modeling
other membranes. Because of this basic yet very importarihe stack as a formal harmonic continugemployed in the
difference in the membrane confinement, the interlayer sepdaheory of Podgornik and Parsegi@h4]). By ignoring the
ration of the membrane at the stack surféadth just one layered character of the stack, effects such as our reverse
neighboj fluctuates more strongly than those of other mem-VPP are simply lost due to formal continuum approach to the
branes in the bulKthat are confined by two neighbors and problem. Likewise, ignoring the realistic, layered character
thus have more constrained fluctuatiprBue to this, ther- of smectic liquid crystals directly causes the huge overesti-
mal expansionan anharmonic effeciof the interlayer dis- mate of the strength of the ordinary VPP effect and afore-
tances is bigger close to stack surfaces than in the staagkentioned artifacts of the theory of Podgornik and Parse-
center(in the bulk, where the interlayer distance is close to gian, such as the finite swelling of sterically stabilized
its thermodynamic limit., [see Figs. (a) and Xc)]. Hence, lamellar phases of purely repelling membranes. These prob-
for zero or small enough surface tensions, the average periddms of the old theory of VPP effects, as well as the experi-
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ments of Katsarafl7], have urged the development of the illustrated in Fig. 1, for the case of 3D multilamellar phases

consistent theory of VPP phenomena presented in this papef lipid bilayer membranesd=2). If there is a thin water
The organization of this paper is as follows. In Sec. I, welayer between the outmost manifold and vapor, and the

introduce the smectic stack model and derive our analytievater-vapor interface istronglybound to outmost manifold

predictions for the VPP effects. In Sec. lll, we address theséfor whatever reasgras in Fig. 1d), the appropriate form of

effects by an exact scaling analysis and by Monte CarldK,,, is

simulations of entropically dominated smectic systems such

as the sterically stabilized lamellar phases. In that section, we Kg':‘,)rf(q) =kq*+ yq? (2.9

show that finite-size effects in these strongly entropic sys-

tems can be described quantitatively well by means of avith y being the surface tension between water and vapor.

simple analytic theory. In Sec. IV, we further discuss andAs noted by Nagle and Katsargks|, under some conditions,

summarize our findings. Some important details of our calthe vapor-water interface may unbind from the outmost

culations are discussed in Appendixes A and B. manifold and move away from it, as depicted in Fige)l
For this case, the surface dispersion relation is simply that of
Il. FINITE SMECTIC STACKS: ANALYTIC PREDICTIONS the bilayer,K{\(q)=«q*, i.e., the surface manifolds are
FOR NONUNIFORM INTERLAYER SPACINGS (also tensionless. Finally, the surface manifold may be a

) ) . . _ _ monolayer membrane with hydrophobic lipid tails in the va-
In fchls section, we dls_cuss fmlted_& 1)-d|meh3|ohal por, see Fig. (f). For this CaSEKsurf(q) Kmondl*+ Y92

smectic stacks ofN quctuatlr_]g d—dmensmnal semiflexible With ko~ /2, and y is typically significantly smaller
rhanlfolds under an extemal Isotropic osmotic presfﬂme than the water-vapor surface tension. In Sec. 1V, we detail on
.F'g' L The microscopic smectic Hamiltonian for this stack Ofthese complex phenomena and their influence on finite size-
interacting manifolds is effects in smectic liquid crystals. In this section, we will
2.1) focus on the basic model with the simple interface dispersion

' relation given by Eq(2.4). For concreteness, here we con-

Here, the first term, the smectic bulk Hamiltonian has thesider the symmetric stacks as in Fig. 1, wik{})«(q)

H=Hpu+Hsurs-

usual form[11] —K(urf(q) An essential feature of our discussions here is
consistent incorporation of the smectic discreteness, i.e., of
Hpui({n}) the layered character of smectic liquid crystals. This is done
N—1 by describing smectic liquid crystals microscopically, as
_ d ) _ stacks of interacting manifolds rather than by using the con-
f d X[ 21 [P (o100~ hi(x)) tinuum Landau-Peierls model employed in Rgf4] to dis-
cuss the VPP effects. Within harmonic phonon theory, such
+V(hy41(X) = hp(X))] stacks have been discussed by Holyst and other aut?6}s
N-1 5 2 Already at harmonic level, the incorporation of smectic dis-
_ 9 n(x) 2.2 creteness may bring new insights into smectic physics, as
n=2 2\ gx2 ’ ' exemplified by the study of Leét al, [27]. Anharmonic ef-

fects in stacks have been also studied, in particular, in the
with h,(x) describing thenth manifold height function investigations of sterically stabilized phases of semiflexible
aboved-dimensionalx plane(base plang In Eq.(2.2), Vis polymers and fluid membrang$1,12,20,22,2B and in the
an intermanifold interaction potential. Note that, by Eq.studies of closely related strongly entropic membrane sys-
(2.2), the external osmotic pressufe contributes the free tems[15,16, such as the recent work of Manciu and Ruck-
energy termPX(stack volume [11]. Physically significant enstein[15] discussing the equation of state of a small stack
realizations of this model are 3D multilamellar phases ofwith two bilayer membranes. In the discussions that follow
membranesd=2), and 2D smectic phases of semiflexible hereafter, by consistently taking into account the discrete,
polymers @=1). « in Eq. (2.2) is the manifold bending layered character of smectic liquid crystals and anharmonic
rigidity. The thermodynamic properties of this smectic stackphonon effects, we will show that the essence of the VPP
model have been discussed in detail in R&L], for the case effects(see the Introductionis in spatially nonuniform ther-
of tensionless interfacial manifolds. The second term in Eqmal expansion of smectic interlayer distances, which vary in
(2.1), the stack surface contribution is given by magnitude as one moves from the stack interfaces towards

the stack center. In other words, VPP effects are elucidated

(h )= J [K ( )|h ()2 here as thermomechanical anharmonic finite-size effects
Hsuri(h1hy (27r)d "t surf 9)1hq present in finite smectic stacks bf semiflexible manifolds
_ (such as membranes or semiflexible polymeBy consider-

+ KO () [An(a) 2], (2.3 ing these anharmonic effects, we will find here that the av-

erage period of the whole finite stack can be both smaller
whereK {((q) andK{{)«(q) are the surface dispersion rela- (ordinary VPP effectat high enough interface tensionsr
tions of the stack interfacial manifolds, andhy [h,(q) is  bigger(reverse VPP effecit low interface tensionsrelative
the Fourier transform dfi,(x)]. The form of these dispersion to the average period of the corresponding infinite=(>)
relations depends on the nature of the system interfaces, amectic stack.

041907-4



FINITE-SIZE THERMOMECHANICAL EFFECTS IN . . . PHYSICAL REVIEW B8, 041907 (2003

The presence of the surface tensipmay have substan- for the average smectic period of the whole stack, ).
tial finite-size effects on various quantities of smectic sys-In Egs.(2.7) and(2.8), u,, is the manifold displacement from

tems, such as the average interlayer distances the T=0 equilibrium position[h,(X)=nro+u,(x)]. The
equilibrium average in Eq2.7) is done with respect to the
an(n)=(hn+1(X) (X)) p N,y (2.9 harmonic smectic elastic Hamiltonian

and the average smectic period of the whole finite stack,

H(): f ddX

N 2. 2 N-1p
p) %( - (X)) + 3 U 10— (0

N—-1 2
hn(X) —hq(X) n=1 X
n=1 P.N,y y C7U1)2 v [ duy\ 2 29
i.e., the equation of state relatirag, andP for any givenN. 2\ dx 2\ dx '

Indeed, the surface tension tends to suppress fluctuations of

manifolds close to stack surfaces. With increasjnge thus ~ For derivation and a simple physical interpretation of Eq.
expect to encounter a crossover between our reverse VER.7), see Appendix A.

effect (ay>a.., at low y) and the ordinary VPP effecty The second term in Eqs2.7) and (2.8), with typically
<a.., at highy), which has been anticipated in the Intro- P3<0, is just the thermal “bond expansion” of the local
duction (see Fig. L To study the behavior cdiy(y) as the —Smectic layer spacingy(n,y) away from itsT=0 valuer,,.
function of N and y analytically, in this section we will as- mportantly, this bond expansion isionuniform i.e.,
sume that the net intermanifold potentisl.(r)=V(r)  a(n,¥) is n dependent, as depicted in Fig. 1. Indeed, as
+Prin Eq. (2.2 [r=h,,1(X)—hn(X)] has analytic mini- detailed in Appendix A, the intermanifold distanag(n, y)

mum atr, and expand it in powers af—r, and average smectic periag,(y) are found[by Egs.(2.7)
and (2.8)] to be of the form

o0

by ) _
Vied 1) =V(r)+Pr= >, H(r—ro) : an(n,y)=a,+A{[In(n,d,y)—1..(d)] (2.10

k=0
. K K : . and
with b,=d*V,e(ro)/drg (by=0). By truncating this expan-

sion_to the qu_adra_ltic order, one obtains the_ sta_ndard har- aN(7)=am+A&[IN(d,;)—Iw(d)]. (2.11
monic approximation to the smectic Hamiltonig26].

Within the harmonic approximatiof26] , the average inter- Here

layer distances, Eq2.5) are independent dfl andn, and all

equal tor,. Nonuniformity of smectic interlayer distances, a.=Tot+Ay 1.(d) (2.12
i.e., the dependence af,(n) on N andn, may emerge due to . i i
the anharmonic terms in the expansion\bt,, such as the IS the average smectic bullNE<<) period. In Egs.(2.10
cubic termbs(r —r)%/3! and higher-order ternfd 1]. ay(n) and (2._1]), v signifies a dimensionless surface tension, de-
can be calculated systematically via the loop expansion ifined via

powers of the temperatufie see Appendix Aalso, Ref[11],

Appendix. To the lowes{ O(T?)], one-loop order, one thus = l_ (2.13
obtains oy
bs X Here,
an(n, ) =ro= 5r~([Un+1(X) =Us(X)]%0, (2.7
2b, " " Sy=1/xb, 2.14
for average interlayer distances E@.5), and is the characteristic smectic surface tension scale, see Refs.
N—1 [9,12,13, and our discussions at the very end of this section.

For a finite N, the smectic interlayer spacings are different
from its bulk valuea.. in Eq. (2.12), as indicated by Egs.
(2.9 (2.10 and(2.11), with

b
an(7) =" 5p- 1.2 ([Uns 200~ Un(0 1o,

|
ZRYP |, LZRY)
In(n,d,) JlolR(l_R)d/Z_1 R ° R
NN, G, y)= dl =
© RY L ZRIE o
R2

(R_ 1)(R2(n71)+ RZ(N*l*n))

. (219

and
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— _
iz 1( _MR&N—Z) _ Nl - Z(R;’) (1 RAD)

R -1 R
In(d, )= E In(n,d,y)= de ~a — ,

R2

(2.16

with have an interesting dependence on the dimensionless surface

_ tension;= vyl 8y. This is iIIustratEd in Fig. 3, giving the
Z(R,?)zRZ@, (2.17 numerically obtained ratidy(n,d,y)/1..(d) for the N=20
y\/ﬁ+1 manifolds stack. From Ed2.10), the local interlayer spac-

ings ay(n) essentially follow this ratio as a function of
see Appendix A. In Eqs2.10—(2.12), the quantities

o ngdkBszd/“ 1'2""_'""l'|-|-|-..
Ad= " 3p, (2m)9 2b,| (2.1 0 b

[with Sy being the area of thé-dimensional unit sphefe [
|..(d)=B(1—d/4,d/2), anda., are all independent of the 08
surface tensiory. A in Eq. (2.18) is typically positive, i.e., [
b;<0, i.e., smectic bulk period E@2.12) typically expands
due to thermal fluctuations..>r, (see Ref[11] and the
discussions in the following We stress that the only 04
y-dependent terms in Eq.10 and(2.11) are the integrals [

In(n,d,y) and l(d,y). Their presence induces a depen-
dence of the average interlayer distaagg¢n) on the surface
tensiony. Far away from the system’s surface$n>1),
the dependence @fy(n) on y andn disappears in the ther- 0 2 4 8 8 10 12 14 16 18 20
modynamic limitN— . Indeed, by Eqs(2.10—(2.14), one
can easily show that

(@)
806 =1

0.2}

00

lim lim Iy(n,d,y)=1.(d),

n—ooN— o

and thus

lim lim ay(n,d,y)=a..

n—ooN-—©

Likewise, forN— o, the average smectic periay, in Eq.
(2.12) approaches its bulk valua, . This is illustrated in
Fig. 2 which gives the ratio offy(d,y)/1..(d) for d=1 and
d=2, for various values of the dimensionless surface tensior
v [obtained by numerically integrating E¢R.16)]. Appar- |
ently from this figure, this ratio approaches 1 for whatever T T T T T T TR T T
values ofy, and thus, by Eq(2.11), ay—a.. in the thermo- 0 2 4 6 8 10 12 14 16 18 20
dynamic limitN—co. From Fig. 2 and Eq(2.11), the stack N

average perio@y(y) has an interesting dependence on the

surface tensiory: Note thatly(d,)>1.(d) in a range of various values of dimensionless interface tens%nfor (@) 2D

small values ofy, anday(y) is thusbigger than its bulk  stacks of semiflexible polymersi€ 1) and(b) 3D stacks of mem-
value a... On the other side, from Fig. 2, to haa(y) branes =2). From top to bottom, the values cyfvalues are 0,
<a.,., the dimensionless tenmqnneeds to be bigger than a 0.5y*, 1y*, 1, 5y*, 10y*, and~. Note that, for the dimension-
critical threshold Vam@’ =0(1), asdetailed in the follow-  |ess interfacial tensios v*, the average stack period, H8.11), is

ing [see Eqs(2.29—-(2.34]. Furthermore, the average inter- nearly independent of the number of the manifditisee the end of
layer spacinggy(n)=(h,; 1(X)—hy(X)) in Eq. (2.10 also  Sec. Il for discussions of this featire

I,/

FIG. 2. The ratid /I, as a function of manifold numbé for
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Likewise, for y—, Z(R)—Z..(R) with

Z.(R)=+R2. (2.20

For 3D smectic stacks of membranek=(2), the integrals in
Eqs (2. 15) and(2.16) can be calculated exactly in the limits

v=0 andy: y=x (see Appendix A We obtain

— T T
|N(d=2,’y:0)=m Cco m -1 (221)
0.80 =00 02468 1no 12 14 16 18 20 e and
0 2 4 6 8 10 12 14 16 18 20 [
n T T T 3
\ T T T T T T T H IN(d_z”y OO) 2(N_1)[C0<4(N_1)) l:|
1.05 . (2.22
L d=2, N=20 (b)
100 7 We also find, for the intermembrane distances in @ql3,
0.95 E
8 I i — T 1 T N
= %r - In(n,d=2,y=0)=3g COt(4N 2 CO[(4N W)
£ 0851 -
= 0.80 _ ] 1 m nwr
i ' 29NN N (223
0.75 F 4
0.70 [ \?=°° ogo2fl ] and
0.65 0 2 46 8101214161820 E
0 2 4 6 8 10 15 14 16 18 20 m &
n In(nd=27=2)= 55, f(4(N—1))
FIG. 3. The ratio Iy(n)/l., as a function ofn in a 1 - (n— %)ﬂ.
N=20-manifold stack, for various values of the dimensionless sur- +—co +
face tensiony. (a) 2D stacks of semiflexible polymersi€ 1) and 2 4N-1)  (N-1)
(b) 3D stacks of membraned(=2) From top to bottom, the values 1 (n— l)ﬂ.
of y values are 0, 08", 1y*, 1, 5y*, 10y*, ande. The inset + o{ Tr 2 )
shows that the interlayer distances, £2.10, become nearly uni- 4(N—-1) (N-1)

form for the dimensionless interfacial tensiem* (see the end of (2.24)
Sec. Il for discussions of this feature

To elucidate the physical phenomena implied by these re-
From Fig. 3 and Eq(2.10, we see that, in a range of small sults, we consider them in several practically interesting lim-

values of y, the local spacingsy(n) are actuallybigger its discussed in the following.

than the bulk period., , in accord with the aforementioned In practice, the number of the manifolds in smectic stacks
behavior of the average stack periag. This feature is a is often largeN>1. It is thus interesting to see the behavior

manifestation of our reverse VPP effésee the Introduction ©Of local smectic spacingay(n) in semi-infinitesmectic liq-
and Fig. 10)]. In fact, in Fig. 3, only for the values 0? uid crystals, i.e., to considexy(n) for a fixedn in the limit

above a certain threshold, the interlayer spaciag@) are N— . In this limit, from Eq.(2.10,

all smallerthana., . This feature is the signature of the or- —

dinary VPP effecfsee the Introduction and Fig(H)]. We a.(n,y)=a.+Ag A(n,d,y) (2.29
discuss these effects in more detail later on in this section.

Here, we stress that our results above have well definedyith

f|n|te values in the limits of zero and infinite surface tension,

y=0 andy=, as detailed in Appendix fsee Eqs(A28)— A(n,d,y)=1..(n,d,y)—1..(d)
(A33)]. We stress that fory—>0, the functionZ(R) in Eq. 1-R)¥2-1 Z(R,
(2.17) has well defined limitZ(R)— Z,(R), with J dR (R) (R—1)R20-D),
Rd/4 2R
Zo(R)=—R3 (2.19 (2.26
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Forn>1, we find the asymptotic expansion of EQ.26), T ' L L
1.05 F .
_ a
— 1-yI'(1+d2) 1 @
A(n,d,y)= 1+, 2202 plvdz e (227 1.00 |-
8 1.002
Note that the asymptotic power law tail @f.(n,y)~a. 3 095 jf o_o* 1000 N
~A(n,y) in Eqg. (2.27 changes sign ag= y/ dy crosses 1. :g gzzz
Furthermore, for 3D stacks of membranes=2), we can 090 0.9941 i
calculateA(n,d,y) analytically for y=0,1, and«. We ob- 0.992}
. 0.85 | .
tain \ 0.9901
Y= o0 098846 8 10121416 18 20
_ 1 0.80 | " .
A n,d:2, =0)= | I P | PR TR TP N
( 7=0) 8(n—1/4)(n+1/4) 0 2 4 6 8 10 12 14 16 18 20
n
1 1
= + W + O ?) 1 1-05 T v 1 T 1 T 1 v
[ d=2 (b)
. 1 1.00
A(n,d=2,7=l):—32n(n_1/2)(n_1/4) 0_95- B — i
1 1 g 090 i ]
BESE S o |
32n n = 085} 0.088} i
~ oo} o ]
_ 1 ] 9941
A(n,d=2,y=0)=— 0.75 0.992p .
8(n—3/4)(n—1/4) -l — 0 Z 4 6 8 1012 14 16 18 20
070 Ny=o n .
1 1 I
10|l =]. ) 0.65 .
8n2 O( ns) (2 28 PR R NI R RN S I S N R
0 2 4 6 8 10 12 14 18 18 20
Note that, from Eqs(2.28 and (2.25), there is a simple n

relation between semi-infinite system with infinite and zero

FIG. 4. The ratiol .(n)/1.. as the functiom, in a semi-infinite
manifolds stack =), for various values of the dimensionless
surface tensiory. (a) 2D stacks of semiflexible polymersi€ 1)
and (b) 3D stacks of membranesi€2). From top to bottom, the
values ofy are 0, 0.5*, 1y*, 1, 5y*, 10y*, andc. The inset
shows that interlayer distances, E8.10, become nearly uniform
for the dimensionless interfacial tensieny* (see the end of Sec. Il
for discussions of this feature

surface tensiory,
a.(N+3,y=2)—a,=—[a.(n,y=0)—a.].

The results in Eq(2.28 also manifest a qualitative change
of the smectic spacings as= y/ 7y crosses 1. For values of
vy other than 0, 1, ande, one can obtain only numerical

results forl .(n,d,y)=1.(d)+A(n,d,y), see Fig. 4. Over-
all, this figure and Eq_si2.23—(2.28) evidence the existence

of the low- and highy regimes, characterized by interlayer

where

(1_ R)d/Z*l Z(R,;)

_ 1
spacings biggetfor the low-y regime or smaller(for the Ci(d,y)=— fo dR RU4T2 Ryl (230
high-y) than the bulk interlayer spacira, . We anticipate
here that the |OW7 regime is directly related to the reverse and
VPP effectsee the Introduction and Fig(d]. Likewise, the . x
high-; regime is directly related to the ordinary VPP effect Cd/2+1(d:;): —f dx — >
in Fig. 1(b). We elucidate the physical nature of these two 0 _ 7;1 x
regimes in the following. ;Jr 1 €
Next, let us consider the case of a large but finite smectic o, o

stack with many manifolddN>1. In this limit, Iy(d,vy) in % y-1 a2 ydiz-1 7;1
Eq. (2.1)) for the average smectic period can be asymptoti- ;Jr 1 X ;Jrl
cally expanded,

= = x({;_l]z 1 (2.31)

In(d,y)=1..(d)+ 01(3’7) Cdﬁ;}z(fl’” y+1

For 3D stacks of membraned £ 2), Cl(d,;) in Eq. (2.30
can be calculated analytically,

041907-8
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1-0 1 T 1 v 1 T 1 M 1 v 1 T 1 T 1

——C,(@=1,¥)
oS e C,fd=1,7) 1

oo

1.0} .

A5} 5

0 5 10 15 20 25 30 35 40
¥

05F (b) —C@=2y)

0 10 20 30 40

FIG. 5. C4(d,y) andCg,.1(d,y) as functions ofy for (a) 2D
stacks of semiflexible polymersi& 1) and(b) 3D stacks of mem-

branes (=2). Cl(d,?) goes to zero for7—>7*(d). Ford=1,
¥*=0.76; ford=2, y*=0.592. We note that, fod=1, C,(d
=1,y=0)=0.82, C,(d=1,y=x)=—1.56, whereas, ford=2,
C,(d=2,y=0)=2—7/2, C;(d=2,y=»)=—x/2. These values
are in accord with the exact relatioB,(d,y=0)—C,(d,y=)
=1,(d)=B(1-d/4,d/2), by noting thatl ..,(d=2)=B(1/2,1)=2,
andl,.(d=1)=B(3/4,1/2)=2.3963.

— @ In(1+y)
Ci(d=2,y)=— = +2———. (2.32
2 y
Ci(d,7) and Cyp.1(d,7) as functions of the parameter
are given in Fig. 5 fod=1 and 2. We fincttha_Cl(d,y) is
E)sitive for small v ang changes sign ag=y*(d) with
v*~0.76 ford=1, andy* ~0.592 ford=2, see Fig. 5. For
N>1, from Egs.(2.11) and(2.29),

A
aN(y)—aw%. (2.33

PHYSICAL REVIEW B8, 041907 (2003

Here,

Ny)=A§ Cy(d,y) (2.34

is an important characteristic length, as evidenced in the fol-
lowing. From Egs.(2.33 and (2.34), for y>y*, \(y)<O0

and the average smectic periagi(y) is smaller than the
infinite smectic perioda,.. Physically, this feature emerges
due to the suppression of the thermal fluctuations of the
manifolds close to the interfaces of the system, which is
caused by surface tension of interfa¢as conceptualized in
Fig. 1(b)]. Due to it, for the manifolds close to the stack
surfaces, the fluctuation contribution to their interlayer spac-
ingsay(n,y) [the second, bond expansion term in E2}7)]

is smaller than in the bulk. Thus, for large enough surface
tension, from Eqs(2.7) and (2.8), bothay(n,y) anday(y)

are smallerthan the bulk smectic period,, [we recall that

b in Egs.(2.7) and(2.8) is typically negativé This feature

is the signature of the ordinary VPP effect anticipated in the
Introduction[see Fig. 1b)]. On the other side, in the range of

small surface tension<y*, from Egs.(2.33 and (2.34),
N(y)>0, and the average smectic periagd(y)actually ex-
ceeds its bulk value.. . This feature is the signature of our
reverse VPP effect anticipated in the Introduct{see Fig.
1(c)]. As noted therein, this effect can be physically rational-

ized by considering the#=0 limit. Then, all manifolds are
tensionless, but the surface manifoladgth just one neigh-
bor) are obviously more free to thermally fluctuate than other
manifolds (confined by two neighboys Consequently, for
small enough surface tensions, the thermal bond expansion
of interlayer spacing$the second bond expansion term in
Eqg. (2.7)] is bigger for the manifolds close to stack surfaces
than for those in the bulk, as evidenced above by our quan-

titative results fory<<y*. Thus, for small enough surface
tension, from Eqs(2.7) and(2.8), bothay(n,y) anday(y)
arebiggerthan the bulk smectic perioa,., and one has our
reverse VPP effect, as depicted in Figc)l

Thus, by consistently taking into account the discrete, lay-
ered character of smectic liquid crystals, and anharmonic
phonon effects, the above theory shows that the essence of
VPP effects is in spatially nonuniform thermal expansion of
smectic interlayer separations. The average period of the
whole finite stack can be both small@rdinary VPP effect at
high enough interfacial tensionsr bigger (a reverse VPP
effect at low interfacial tensionsrelative to the average pe-
riod of the corresponding infinite smectic stack, see Fig. 1.
Looking at stacks from theutside these two effects show
up as if there is an attractivéor the ordinary VPP effegtor
repulsive(for the reverse VPP effecpseudo-Casimir force
acting between the two stack interfaces. However, the phys-
ics of VPP effects is obscured by schematically invoking
Casimir-like forces. Rather, the ordinary and the reverse VPP
effects are to beéboth characterized as anharmonic effects
caused by a spatially nonuniform thermal expansion of
smectic interlayer distances. Interlayer distances close to
stack surfaces expand legaore for the ordinary(reversg
VPP effect than the interlayer distances deep in the stack, see
Figs. @—-1(c). The reverse VPP prevails at low interface

041907-9



L. GAO AND L. GOLUBOVIC PHYSICAL REVIEW E 68, 041907 (2003

tensions simply because the membrane at the top of the stack However, the above schematic interpretation of the VPP
is then more free to fluctuate than membranes in the bulkeffects in terms of the pseudo-Casimir pressure obscures the
Therefore, for low interface tensions, thermal expansion ofeal nature of these effects, namely, the essential role played
interlayer distance@n anharmonic fluctuation effeds big- by the nonuniform thermal expansion of the smectic inter-
ger close to stack interfaces than in the stack center, whelayer distances. Indeed, a true extra osmotic presAlRe
interlayer spacing is close to its thermodynamic lirait. would induce auniform strain ay(n) —a.. throughout the
Thus, at low surface tensions, the average period of theulk, that would be, from Eq(2.37), proportional toAP
whole finite stackay, is bigger thana,, and one has the ~1/N. However, this isotthe case, as evidenced in Fig. 3.
reverse VPP effect in Fig.(8). By increasing interface ten- For example, close to the center of the staok=(N/2), we

sion above a threshold value, fluctuations of the membrane §ind

the stack surface become suppressed, and the ordinary VPP

effect in Fig. 1b) prevails. For this effect too, the spatial an(Npmig,y) —a,~ 1N 2< 1N (2.39
nonuniformity of thermal expansion plays the essential role:

Here, the thermal expansion of interlayer distartessame  with n,;;~N/2 [much similar to the result in Eq2.27]. In
anharmonic fluctuation effelcts smaller close to stack inter- fact, the leading M contribution to the difference between
faces than in the stack center, where interlayer spacing ithe average stack periogy and its bulk valuea., comes
close to its thermodynamic limi.,. Thus, at high enough from the regions that are close to the two stack interfaces. To
surface tensions, the average period of the whole finite stackee this, let us rewrite E¢2.6) as

an, is smaller thana,. Previous Podgornik-Parsegian

theory of VPP[14] obscures the essential role played by the N-1

nonuniformity of smectic interlayer distances, by simply as- E [an(n,y)—a.]

suming that they are uniform throughout the system. Within an(y)—a, = n=1 (2.39
this assumption, the difference between the average period of ” N—-1

the whole finite stacky and its bulk value., is attributed to

an extra pressurdP (pseudo-Casimir pressyracting on  For N>1, the sum in Eq.(2.39 can be asymptotically
the smectic stack interfaces in addition to the osmotic presevaluated by using the semi-infinite smectic spacing profile
sure. Within this interpretation, the average perigdd, y) a..(n), and by recalling thalboth smectic interfaces contrib-
of a finite stack can be written by using the infinite stackute to the sum. Thus, fai>1,

equation of statea,,=f..(P), with P replaced byP+ AP,

M) 04
an(7)=fn(P) ay)=a.= =~ (249
=f.(P+AP) with
f -(P)
~f,(P)+ P AP+ o
My=22 [au(n,y)-a.] (2.4
da,, a
=a,+—AP+.... (2.39
aP exactly In Eq.(2.41), the factor of 2 emerges simply because
o both stack interfaces contribute to the sum in Ej39. In
Thus, forN>1, the extra pressure is given by the semi-infinite systema..(n) —a..~1/n*"%<1/n and the
sum in Eq.(2.4)) is finite, suggesting, using ER.40, that
AP~ an(y) —ax »3 the differenceay—a.. is dominated by the behavior of the
 da,loP (2.36 smectic spacings close to the stack surfaces. We note that our
previous one-loop results also reflect this exact asymptotic
From Egs.(2.36), (2.33 and(2.34) we find behavior in Egs(2.40 and (2.4]). In fact, the one-loop re-
sult for A\(y) in Eq. (2.34 can be shown to be consistent
A(y) A7) with Eg. (2.4D, by noting thatA(n, y) in Eq. (2.26 is actu-
AP~ g Bsm~ L, Bsm 230 Ay related toCy(y) in Eq. (2.30 via the identityCy()

=23._,A(n,y). The one-loop result shows that the charac-

with Bg,= —a(dP/da) being the usual smectic compress- teristic length\ () is intimately related to the thermal ex-
ibility modulus (see, e.g., Ref11]) andL,~Na. being the pansion of the stack. Indeed, using E@.12, Aj=(a.
height of the stack. Foy>y*, the extra(Casimip pressure  —ro)/l(d). Thus, using Eq(2.34),
AP is positive for the ordinary VPP effect, as if the stack o
interfaces would be attracting each other. Conversely;yfor Ci(d,y)

— . ; Ny)=——=>(a,—To) (2.42
<+v*, AP is negative for the reverse VPP effect, as if there l(d)

is a repulsive pseudo-Casimir force between the stack inter-
faces. and thus
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Ci(d,y) a.—rg
l.(d) N

(2.43

aN(’)’) —Ax=

for N>1, to one-loop order. More generally, for aNy from
Egs.(2.11) and(2.12),

In(d,y)

.(d) —1)(aw—r0) (2.49

aN(’)/)_aoo:(

to one-loop order. We recall that the raﬁg(?d)/lw(d)
here is given by Fig. 2, fod=1 and 2, whereas..(d)
=B(1-d/4d/2), sol,(d=2)=2 andl,(d=1)=2.3936.

Equationg2.42—(2.44) manifestly show that the strength of

the finite-size effect of the surface tensigncrucially de-

pends on the magnitude af,—r, i.e., the thermal expan-

sion of the smectic bulk perioal,, away fromry minimizing
the net intermanifold potential,¢(r)=V(r)+Pr.

PHYSICAL REVIEW B8, 041907 (2003

(N=<). This estimate can be now easily combined with Eq.
(2.43 to see the conditions needed for the finite-size VPP
effects to be observed in the experiments of Katsaraslwjth
phases of DMPC membraned=2). For this purpose, we
recall that hered=2, and Eq.(2.43 is to be used with

l.(d=2)=2, whereascl(?dZZ) is given by the simﬂle
closed formula in Eq(2.32), depicted in Fig. ) versusy

=yl S8y. We stress that the values 6f, are confined in a
finite range between the valu€s=2— 7/2>0 reached for

'y—>0 andC, = — m/2<0 reached fory—>oo [see, also, Fig.
5(b)]. With this range in mind, and by recalling that,
—ro~0.41 nm as found above, we see that Ef43 indi-
cates thatay(y)—a.| is less than 0.03 nnthe maximum
accuracy in the experiments of Katsafag]) already forN
>10 membranes, and fovhatevervalue of the surface ten-
sion . In fact, for N=600-1800 membranes, as in the in-
vestigation of Katsargd 7], the magnitude of the VPP finite-

To exemplify our results, let us consider the system studsize effect in our Eq(2.43) is |ay—a..|~3x10 ° nm, far

ied in the experiments of Katsarpk7], aimed to investigate
the VPP phenomenofsee Sec.)l He studied multilamellar
L, phase of bilayer DMPC fluid membraned=2). The

below the experimental resolution. Our results thus explain
the enigmatic absence of noticeable VPP effects in these ex-
periments(see Sec.)l As |ay—a.|~(a.—rg)/N, the pri-

bare intermembrane potential for these systems of neutrghary limiting factor for the VPP phenomenon is a typically
lipids is the sum of van der Waals attraction and hydrationsmall value of the stack period thermal expansion-r.

force repulsion,

H
- 12 + Ph)\heill}\h,

V(r)= I

(2.45

with I=r—anin=h,+1—hy,—amin being the surface-to-
surface intermembrane distangeater gap, a,,;, being the

membrane thicknesgrepresenting the smallest possible

smectic phase peripdEquation(2.45 applies forl up to

~amn. Here, for DMPC membranes, the material’s param-,

eters in the potential Eq(2.45 are, after Ref.[19], H
=Wy/127=0.048%;T (T=300 K), A,=0.191 nm, P,
=1.32x1C® J/n?. For DMPC lipid bilayersami,~4.4 nm,
whereas the membrane bending rigidity constast

From our results, the best systems to study VPP effects are
relatively small stacks, witiN=10-20 membranes. It is in-
teresting to note that membrane stacks are in practice fre-
quently asymmetric. For example, in the recent experiment
of Vogel et al. [28], one membrane is supported on a solid
substratgcorresponding toy=cc limit), while the other one
was free to fluctuate in waté¢as in Fig. 1e), corresponding

to y=0]. We are not going to pursue here a detailed discus-
sion of asymmetric stacks. We just note that, by a reasoning
similar to that yielding Eq(2.30), for asymmetric stacks, one
also has the exact asymptotic formula

A
aN—ax:_+...

N (2.47)

~12.&gT. Let us consider the case with zero osmotic pres-

sure,P=0, so thatrj is obtained by minimizing/(r) in Eq.

(2.45 over |=r—ap,,. This yields the equatiof,\3/2H

=(\p/1)3exp(/\y), yielding potential minimum ato=r,
—amin~6.5\,~1.243 nm, i.e.r,=5.64 nm. Due to ther-

mal fluctuations, the stack average period expands awa'§7|

from r to the true equilibrium valuey . The magnitude of
this thermal expansion, for the infinite stadk<«), can be
estimated by Eqgs(2.12), (2.18, and (2.45, to be, for P
:O’

A, —To=Al_,l.(d=2)

o

(1 3_) ¥ 2m\2kH

lo

(2.49

With Io/Ny~6.5 as found above, one finds for DMP&,

Here N=(A{t\,)/2, with, to one-loop order, \;

=A4C1(7i,d)=(a.—1¢)Cs(%,d)/1..(d), (i=1,2), where

v, and y, are interfacial tensions of the upper and lower
terfaces of the stack.

Thus, the finite-size VPP effects are shown here to be
significantly limited by the sizeN of the stack, and by the
practically modest thermal expansion effects. Small stacks
with 10—20 manifoldssuch as the thin smectic filnj26])
would be best to use to investigate these effects in future
experiments. We note that the validity of the one-loop theory
pursued in this section is, in part, only qualitative, if this
theory is to be appliedat room temperatujeto strongly
anharmonic potentials with sharp minima, such as the poten-
tial in Eq. (2.495. For this potential, at room temperature,
two- and higher-loop corrections are comparable to the one-
loop result. For this reason, in Sec. Ill we consider in detail
systems with strongly anharmonic potentials, with sharp
nonanalytic minima. Interestingly, there we find that VPP
effects in these entropically dominated systems are both

—ro~0.411 nm for the thermal period expansion in the bulkqualitatively and quantitatively similar to those found in this
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section, and can be understood by the one-loop theory ap-
plied to effective(coarse-grainedpotentials acting between
manifolds, see Sec. lll. Finally, we stress that the analytic
results discussed in this section are presented in the con-
tinuum limit Ax—0, with Ax being the manifold short-
distance cutoff[e.g., for membranesAx=lipid molecule B
size]. In fact, the stack model has a finite continuum limit for
d<4, and the corrections due to a finite molecular size
are small in practical situatiorisee the end of Appendix]A

Finally, we comment on the magnitude of the character-
istic value of the interface tension separating the regimes of
the reverse and the ordinary VPP effects. From the results of
this section, the crossover between the two regimes occurs
for the interface tension y*=4y*.5y=y* kb,
=0(1)/xb,. [See Eqs(2.13 and(2.14), and our results for
v*.] For v smaller(biggep than y*, ay is bigger(smallejy
thana,, and the reverséordinary VPP effect prevails. A V(r)
special feature of the finite smectic stacks with tensigns
~~* is that they are nearly uniforrisee Figs. 2—4, and
recall Egs.(2.10 and(2.11)]. It is not an accident that this
happens for interface tensios 8y=\/kb,. In fact, oy a. a
= kb,= K< Bsmis the well known smectic “elastic” sur- ol
face tension of the interface of semi-infinite smectic liquid r
crystals[12,13. Furthermore, it has been recently shown, in Yo
our work [12], that applying interface tensions5y makes
finite smectic stack nearly uniform fany N This is because
for y=~y*~ 5y, finite stacks behave as subsystems of infi-
nite, spatially uniform smectic stacksuch as that in Fig.
1(@)]. Thus, for y=~+v*, one hasay~a.., as evidenced in FIG. 6. (@) The net potential for sterically stabilized systems,
Fig. 2[here, recall Eq(2.11)]. We direct readers to Ref12]  V,o(r)=Vu(r)+Pr. (b) A model potential for bound stacks of
for details of this interesting effect in finite smectic stacksmanifolds. ForP=U/(amax—amin), Potentials in(@ and (b) are
with interfacial tensionsgy~ 5. the same for <ap,y.

Vel (a)

in the thermodynamic limitN—c. Here, for 2D smectic

phases of semiflexible polymersi€1), B.(d=1)=0.611

(as recently found by us in Rdfl11]), whereas for 3D smec-
In this section, we consider finite-size effects in the stackgic phase of membranesd€2), B.(d=2)=0.595 (see

of manifolds interacting through strongly anharmonic poten-Refs.[22,23, and the discussion in the followingHighly

tials, with nonanalytic minima. Typical examples are steri-entropic character of the equation of stéde?) is physically

cally stabilized phases of manifolds interacting through thedescribed by introducing the concept of the effective repul-

Ill. FINITE-SIZE EFFECTS IN ENTROPICALLY
DOMINATED SMECTIC STACKS

hard-core potential of the form sive potential, of the form
_ 4/(4—d)
0, r>amn y _4-d (kgT)
= #(r) = a,(d) - — (3.3
Vhe(r) ®, r<a. (3.9 e 2d K@= (p g . y20/(4-d)

with a..(d,y)=[B(d,y)]* V49 see Ref[11]. Mini-
5nizati0n of the effective net potentiaV,,o(r)=Vess(r)
+Pr gives the steric equation of stat®.2). We stress that
the above results apply fat<4, when the free semiflexible
j:ganifolds are thermally rough. Then, also, the stack model

Here, as in Sec. lly=h,,1(X)—hy(X), and an, is the
manifold thickness setting the smallest possible period of th
smectic phase. The net potenti).(r)=V(r)+Pr has a
nonanalyticminimum atr = a,,;, [see Fig. 6a)] and the per-
turbation theory of Sec. Il can not be directly applied to thes
smectic systems of great practical and theoretical intere
[2,10-12,21-2B As pointed out for the first time by Hel-
frich [10], the equation of state in these sterically stabilize
systems is purely entropic in character of the fdrt]

as perfect continuum limiax— 0, with Ax, for example,
the lipid molecule size, in the application to lamellar phases
dof membranesd=2), see Appendix A.

In the following we will study the finite-size effect in
these system, by means of an exact scaling analysis and
Monte Carlo simulations. It will be shown that these results

(3.2 may be rationalized by the analytic results of Sec. Il, pro-
vided one assumes that manifolds interact by effective

(kBT)4/(4+ d)
2= B(d) /(@) p(a—d)/(a+d) +@min
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coarse-grained potentials such as that in B¢3). Besides It is convenient to fix the rescaling consta@s and Z;,, by
the direct interest for the unbound stack of manifdlasth the conditions

a,—o for P—0, as in EQ.(3.2)], our results will shine

more light also on the behavior bbundstacks of manifolds, — P — K
in the situation in which potentials have analytic but sharp P'= kB_T:1’ K'=1F-L 3.7
minima, yielding strong anharmonic effects of thermal fluc-

tuations. When the intermembrane distance fluctuates fajielding, from Eq.(3.5),
away from the sharp analytic or nonanalytic minimum of the

potential, such as in Fig.(B), analytic details of the potential (kgT)Y/(4+d)  1/(4+d) (kgT)#/(4+d)

close to its minimum do not matter. For example, the sharp Zy= p2/(4+d) o Lp= d(@+d)p(a—d/(+d)’
nonanalytic potential minimum in Fig.(B) can be slightly K 3.9
rounded and replaced by a sharp analytic minimum. Such a :
change cannot affect significantly fluctuations of intermem-

nd from Eq.(3.6),
brane distance, if their magnitude is bigger than the size o? a3.9

the rounded range. Such situations are frequently realized in _ (kgT) 4+ )

practice at room temperatufeee the end of Sec.)llInter- an(n,y)=pBn(n,d,y") J@rd) o@E—a@rd + amin -
membrane distance may strongly fluctuate far away from the K P

sharp minimum of the intermembrane potential. The sum of 3.9

the full perturbation theory is divergent in such situations,Here

indicating that the fluctuations behave as in potentials with '

sharp nonanalytic minima, such as the potential depicted in i PR

Fig. 6(b). This potential has a finite rangg, .., but forr An(n.d,y")=(hn, 1 (X) ~ha(X )>P,:l"‘,:l'7l'amin:0

<amax, It has exactly the same shape as the net potential for (3.10

gzg) Stg:gﬁgﬁ; tgtillg e;d(;yste_rr;‘dne)[(r)vzt\éhcl(;) E;L’g F;ﬁé is the average done with respect to the rescaled stack Hamil-
, —“o max_ “min/» 0 . . — — .

depth of the binding potential in Fig.(6. Away from the tonian with the reduced parametdts=1, «'=1, as in Eq.

unbinding transition &..— amin<ama—amin), the binding (3.7, whereas, by using Eq3.8) and (3.9),

potential in Fig. 6b) should yield the same physics as the net

potential of the unbound sterically stabilized systems under a ? _ 7_/ _ (kgT)?/4* <) y (3.12)
nonzero osmotic pressure, Figap Thus, by studying it, one KgT  j(d+2)/(4+d)pa/(a+d) '

can learn more also on the aforementioned strong entropic

effects in the bound stack of manifolds. The reduced rescaled stack Hamiltonian thus has the form

We proceed by considering the stack Hamiltonian, Egs.
(2.1)—(2.4), with purely hard-core intermanifold interaction H N1
potential in Eg.(3.1). We will use the fact that the stack ﬁ:f dix’§ > [(h),1(x")—hi(x"))
model ford<4 has finite continuum limiAx—0 (see Ap- B n=1
pendix A, and, also, Refl11]). Thex coordinate can be thus N P2 (x") 2
treated as continuous, and the stack model can be thus freely +Vhe(hi s 1(X)=hi (X D]+ 2 —( - )
rescaled for the physically interesting manifolds witk 1 n=1 2\ ox'?

(ahi(x’))2+(&h,’\,(x’))2

convenient to do this rescaling as follows: n Y

2

(semiflexible polymernsor d=2 (membranes Here, it is
ox’ ox’

} . (3.12

x=2Zxx",  hy(xX)=Zyh/(X")+nam,. (3.9
Here, the hard-core potentidd,. is as in Eq.(3.1) with

This transformation maps the stack model véth,#0, into ~ @min="0. Notably, the average E3.10, done with respect
an isomorphic model witha,,;,=0, and the rescaled param- (© the Hamiltonian in Eq(3.19, depends only on a single

eters dimensionless parametef defined in Eq(3.11). There is a
close relationship betwee?( and the dimensionless surface

P'=PZ%2,, x'=xz22%"* ' =yZ2z972. (35 tensiony=1y/ 8y introduced in Sec. I[see Eqs(2.13 and

(2.14]: From Eq.(2.14), with b,=d?V4/da?, and from
Eqg. (3.3, we find that, for the sterically stabilized smectic

From Eq.(3.4), we have, for the average intermanifold spac- "
a-3.4 g P liquid crystals,

ings,

B [4+d (kgT)#= 9
aN(n:')’)_<hn+1(x)_hn(x)>P,K,y,amin 57: 4—d aoc(d)K(diz)/(“,d)(a_a . )4/(4*d)'
min

:Zh<hr,1+1(xl)_hr’1(x,)>P',K’,y’,amin=0+amin- (3'13)
(3.6 From Egs.(3.13 and(3.2), one also has
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B 4+d 1 «
= N2=d 5.(d)

(2+d)/(4+d) P4/(4+ d)

(kBT)Z/(4+d) (314>
Thus, by using Eqs(3.14) and(3.11),
— vy 4+d
=5, Ng=gP=(d7" (319

So, the paramete? of Sec. Il is simply proportional to the

parameter;’ here, which is the single parameter of the
rescaled reduced Hamiltonian E@.12 to be used to find

the constant;@,\,(n,d,7) by doing the average in E3.10.

These constants are nothing else but average intermanifol

spacings for the rescaled reduced Hamiltonian(Bd.2). We
can thus directly obtain the constamtg(n,d,y') by Monte

Carlo simulations of the rescaled reduced Hamiltonian Eq.

(3.12. Technical details of our simulations are the same as i
our previous closely related work, R¢fL1] (see the Appen-

dix therein. As in Sec. Il, here we are interested in the av-

erage period of the whole stack, Eg.6), which is here, by
using Eq.(3.9),

(k T)4/(4+d)

an(y)=Bn(d,") @ pa diarg " amin

(3.16
with
N—1 o

’d’ ' ! ’ ’ ’

= & A ey

BudY) =
(3.17

It is enlightening to express the above exact results in
form very similar to that we had in Sec. II: Using E@3.2),
(3.9, and(3.16), we have

(Kg )4/(4+d)
ANy =ant e arara LA,y ) ~ Bx(d)]
(3.18
and
(kgT)4/(4+d)
A1) =2t e g LAY~ ()]
(3.19

to be compared with Eq$2.10 and (2.11). We also have,
using Eqgs(3.16 and(3.2),

Bn(d,y")
B(d)

to be compared with Eq2.44). Obviously, the dimension-
less constant8y(d,y’) here play a role similar to that of the
dimensionless quantitidsg(d, y) of Sec. Il. This similarity is

an(y)—a.= ( l) (a—amin)  (3.20
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FIG. 7. (8 Monte Carlo simulation results for the universal
function By(d= 1,;’) for 2D stacks oN semiflexible polymers and
(b) interlayer spacing universal functiqﬂN(n,d=1;’) versusn
égr N=10 polymer stack for various values of the surface tension
y'=0, 0.5, 1, 2, 3, and 10 from top to bottom. The data in kajh
and (b) are well fitted by Eqs(2.10 and(2.11) (solid lineg with
B.(d=1)=0.611 andA;(d=1)=0.161.

Bn(d=1,y") given in Fig. 1a), and By(n,d=1,y") in Fig.
7(b), which are all obtained by Monte Carlo simulations of
the rescaled model, by calculating the average in E3147)

and (3.10. Thus, Fig. Ta) here clearly corresponds to Fig.
2(a) of Sec. I, yielding[in combination with Eq(3.20] the
same qualitative message we get in Sec. Il: In a range of

small tensiongy’, one has the reverse VPP effgetg. 1(c)],
with ay>a.,, as if there are repulsive pseudo-Casimir forces

between stack surfaces. And, only for large enogghthe
ordinary VPP effec{Fig. 1(b)] occurs, withay<a.., as if
there are attractive pseudo-Casimir for@eswever, see Sec.

Il for our criticism of schematically using here the concept of
such forces Local interlayer distanceay(n) that we find
here also behave in a similar way as in Sec. Il: Compare Fig.
3(a) of Sec. Il with Fig. Tb) here, both evidencing the cross-
over from the reverse to the direct VPP effect regime with
increasing surface tension. Overall, the exact results from our
simulations reflect the same crossover behavior we revealed

further amplified by our numerical results for the constantsn Sec. Il, from the one-loop perturbative results. This obser-
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vation is striking, having in mind that the perturbation theoryFord=1 (Sy-,=2), with 8..(d=1)=0.611, Eq.3.23 in-
a priori cgnno_t _be direc_tly applied to bare potentials with deed give#\|_,=0.161, in a remarkable agreement with the
nonanalytic minima, as in Fig. 6. Moreover, somewhat suraforementioned value of/_, fitting well all our Monte
prisingly, we will show in the following that the similarity Carlo simulations in Fig. 7.
between the simulations data and one-loop resulstsnly Let us summarize our quantitative findings on 2D smectic
q_ualltat_|ve. It will be argued on quantitative g_rou_nds that thestack of semiflexible polymers& 1) with purely hard-core
simulations results can be very well quantitatively under-repylsive[or with a binding potential as in Fig.(6), in the
stood by assuming that the strongly entropic systenith  regime away from the unbinding transitibhe nonuniform
nonanalytlc intermanifold pOtentIaIS, as In Flg) 6an be interpo|ymer Spacin@N(n,y) and the average smectic pe-
described by analytic coarse-grained potentials, similar to theog a,(y) are exactly given, respectively, by Eq8.18
standard steric repulsion effective potential in E3}3. _and(3.19. The B-constants therein are given, to a very good
In fact, our simulation results in Fig. 7 for 2D smectic gpproximation, by Eqs(3.2) and (3.22, with B.(d=1)
stacks of semiflexible polymersiE 1) suggest some even ~0.611, andA)_,=0.161, and; therein given by;
more remarkable features. = —
(a) All the data can be fit, within a few percent accuracy, = V38~(d=1)/5-y'=0.605" [after Eq.(3.15]. Here, the
by using just one-loop formulas such as E¢®.10 and dimensionless surface tension is related to the actual sur-
(2.11). Applied to the reduced Hamiltonian of this section, face tensiony by Eq. (3.11).

Eq.(3.12 (P'=«’=1), this means We would like to note that this excellent agreement with
’ the one-loop fitting formula was found by fitting the results
W, / , Vit of Monte Carlo simulations done in a moderate range of

Bn(n,d,y) = (N}, 1(X) = hp(x) e ! g

- surface tensiongup to y' =10, as in Fig. 7. It should be
=B..(d)+ A Ix(n,d,y)—1..(d)] (3.2) stressed however that our one-loop fitting formula remains
very good even for very large values of the surface tension

and v, and for small systems with judl=3 semiflexible poly-
mers(when one would normally suspect the use of a coarse-
— (hi(xX)—h}(x)) grained potential Indeed, we are able to solve exactly the
Bn(d,y')= N=1 N=3 polymers stack model in the limit of infinite surface
tension. The details are given in Appendix B, with the result
Z,Bw(d)‘FAéUN(d,)/)—ko(d)], (3.22 Bn_a(d=1,y=00)=0.416. (3.29

with y" and y related by Eq(3.15. This is documented in This is less than 5% smaller than the approximate value
Figs. 1b) and fa). There we fitall the data, obtained at six optained by our one-loop formula Eq3.22), vyielding
different values of the surface tension, by the one-loop equag,_(d=1,y=)=0.438. Figure &) gives our one-loop
tions (3.2) and (3.22, by treating the two parameters formula results forgy(d=1,y) versusN for y=0 and
therein, B..(d) and Aj, as fitting parameters. Surprisingly, [solid lineg, as obtained by Eq(3.22 with B..(d=1)
these two-parameter fits provide an excellent description foe=0.611 andA_,;=0.161.
all simulations data. Thus, Fig.(& gives our simulations Furthermore, in Fig. &), we include also the correspond-
results for the constani8y(d,y’) obtained from 6<9=54  ing results for 3D sterically stabilized smectic phases of
simulations, with different system sizésand different sur- membranesd=2), by giving By(d=2,y) versusN for y
face tensions. Note that all 54 simulations could be fit re-=0 and « [solid lined, as obtained by Eq(3.22 with
markably well by justwo-parameter one-loop fitting formula g..(d=2)=0.595 andA/_,=0.190. As detailed in Appen-
for ﬁN(d,;') in Eq. (2.33, with B..(d=1)=0.611 and dix B, we have obtained these values by relating the present
Al_,=0.161. These values provide also the good fits to th(ﬁ?nStam OSImOt]EC pres[;sure entserEb(ljeE) i:‘ the |h|’mﬁ§ tﬂ o
; ; TN in - e ensemble of membranes stacked between hard walls, tha
fﬁ?tgsgﬂgzpd%?mfafhiﬁnég{s_12’]?),_) in Fig. 7(b), by using has been extensively studied over recent y¢ags23. As

(b) Another surprising finding is that these results for 2Dfor d=1, for d.:2 we also find Fhat the or?e—lloop formula
sterically stabilized smectic phases of semiflexible polymer g.(3.22 provides a very good fit to the existing data, both
(d=1) can be rationalized simply by assuming that the apif Y= and fory=0 [20]. For these two values of, Eq.
propriate coarse-grained potential to be used in the one-loo 22, and Eq_s(2.2]) and(2.22) provide nice closed formu-
formulas(3.21) and(3.22 is exactly the samas the standard @S for the universal constants of membrane stacks
effective potential for the sterically stabilized smectic liquid

crystals, Eq(3.3). Indeed, by using Eq(3.3) [with kgT=« An(d=2,y=0)
=1, anda,;,=0, as in the reduced rescaled Hamiltonian T T
Eq. (3.12], we find, using Eq(2.18), =,8x(d=2)+A(’jz[m cot(m) —1}—2]
, 2 [4+d\"* sy 1 2— i
ATard\a—d) @l p i P =B(d=2)+Ag,—— (3.25
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FIG. 8. Solid lines;By(d,y) for y=0 and«, as the function of
the number of manifoldsN, obtained by By(d,y)=8.(d)
+Al[In(d,y) —1.(d)] for (8 N-polymer stack §=1), and(b) N
membrane stack d=2). Dashed lines giveByn(Nmig.d,?y)
= B.(d) +Aj[ I n(Npig,d, ¥) = 1.(d)] versusN for y=0 and, for
the layer in the middle of the stack with=n,;4=N/2 for N even,
andng,jq=(N+1)/2 for N odd. All the data are obtained by using
B-(d=1)=0.611 andA)_,=0.161, whereas..(d=2)=0.595
andAj_,=0.190.

and

BN(dZZ:'y:w)

, o
::BOO(dZZ)_l_Ad—Z{ Z(N_ 1)

1

00[(4<N7T—1))_1}_2]

=Bw(d=2)—Aa:2%+~~ (3.26

depicted in Fig. &). The limits y=0 andy=o play special

PHYSICAL REVIEW E 68, 041907 (2003

potential Eq.(3.3. We note that these two potentials need
not be identical. Their near coincidence that we found for 2D
sterically stabilized smectic stacks of semiflexible polymers
(d=1) is thus a puzzling but not essential feature of our
discussions here.

Overall, the one-loop theory results provide quantitatively
very good description of finite-size effects in sterically stabi-
lized smectic stacks of both semiflexible polymers and mem-
branes. With this in mind, using Eq€3.20 and (3.22), we
have, for the smectic perioal(7y),

A’ _
aN<y>—ax=BTfm[lN<d.y>—u(d)](aw—amm).
(3.27)

with y=9'J(4—d)B.(d)/(4+d); here 4

= y(kgT) 24+ 0)] 2+ dI(@+d)pal(d+d) “see Eqs,(3.11) and
(3.19. As in Sec. ll, the finite-size effect expressed by Eq.
(3.27 decays as N, reflecting the general exact result
stated in Eq(2.40. From Eqs(3.27) and(2.41), we find, for
N>1,

A
an(y)—a,~ —f\r) (3.28
with
AlC4(d,y)
A=~ g (R am), (329

to be compared with similar results in Sec[dke Eqs(2.42)

and (2.43]. Let us consider these results for the stacks of
membranesd=2). With the aforementioned valuesAf_,

and B..(d=2), we have[A}/B..(d)]4-,=0.319, whereas
C4(v,d) is in the range betwee@,=2— /2 for y=0 and
Ci=—m/2 for y=2. Thus, from Eq.(3.29, A(7y) is in the
range between (y=0) and\(y=x), with

A y=0)=+0.131a,—anin) (3.30
and

N y=0)=-0.502a.,— anin)- (3.3)
Equationd3.28—(3.31) provide useful estimates of the mag-
nitude of finite-size effects foN>1. More generally, for a
finite but not necessarily largd, for membranes stacks we

have, by using Eq3.27), with [A{/B.(d)]4-,=0.319, and
Egs.(2.27) (for y=0) and(2.22 (for y=),

role in the applications of our theory to the realistic system,aN(YZ 0)—ax

as detailed in Sec. IV. In contrast to tHe=1 case, for mem-
branes @=2), the valueA;_,=0.190 obtained by fitting to

the data is substantially different from the value that would

be suggested by E¢3.23 (yielding Aj_,=0.119). This dif-

a
co m)—l =2t (as—amin)
(3.32

. a
=03195—

ference simply indicates that the appropriate coarse-grained
potential is not exactly the same as the standard effectivend
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an(y=*)—a. with Q(d)=AJl..(d)/B..(d) =AB(1—d/4,d/2)/B..(d). Up
to the proportionality constar®(d), Eg. (3.34) is remark-
~0 31# 77 cot( 77 ) _1} _2] (8—am) ably the same as E(R.44) of Sec. II. Finally, it is interesting
' 2(N—1)[ 4(N—-1) o Tmin to note that, surprisingly, the consta@{(d) has nearly the
same value fod=1 andd=2. Indeed, ford=1, by using
(333 our fit values Aj_,=0.161, B.(d=1)=0.611, and
B(3/4,1/2)=2.3963, we findQ(d=1)=0.631. Likewise, for
Let us now address the magnitude of these effects, ifl=2, by using the aforementioned valuég_,=0.190,
relation to our previous discussion of the experiments of Kat3..(d=2)=0.595, and B(1/2,1)=2, we find Q(d=2)
saras[17] aimed to investigate the VPP phenomerisee = =0.639. Thus, to a high, 1% accurac@(d=1)=Q(d
Sec. |, and the end of Sec).IAs noted before in this section, =2). Understanding thigt least approximajesuperuniver-
at room temperature the actual experimental membrane sy§ality of Q(d) is beyond our scope here. We point it however
tem may be characterized as a strongly entropic system withS an inspiration for future studies. Anothékely related
bare binding potential with a sharp minimum, of the form aspect left for future studies is to explain the hlgh accuracy

the sterically stabilized phases under an osmotic pregsere

call the discussion of Fig.)6We can thus use the above Finally, let us elucidate the behavior of the local smectic
results to argue about the visibility of VPP effects in the . Y, : . a
experimental system of Katsaras with the bound stacks O(flntermamfold interlayer _distances, an(n) =(hn.1(X)

P y —h,(x)), for thenth layer of anN-manifold stack. For them

DMPC membrane$l7]. For these systems, experimentally
the stack perioé.,~6.2 nm, whereaa,,;, can be identified we have, from Eqsi3.2), (3.18 and(3.21),

with the position of the minimum of potentidR.45, amin Bn(n,d,y")
=r,~5.64 nm, by the results of Sec. Il. Thus, the thermal an(n,y)—a.= T ad)
stack period expansiom..—ayi,=a.—ry~0.56 nm. For *
example, let us consider the limjt=, where the VPP ef- In(n,d,y)
fect is the strongest. From Eq.31) and (3.28, ay—a.. =Q(d) R
~—0.501x0.56 nmN~ —0.28 nmN. Thus, withN in the *

range betweemM =600 and 1800 membranes, as in the ex- (3.39
periments of Katsargdl7], ay—a.. is in the range between

—4.6x10 % nm and—1.6x 10" % nm. So, the magnitude of

the finite-size effectay—a.,, is hundred times smaller than

3% 10 2 nm, which is the maximum accuracy in the experi-
ments of Katsara$l7]. Thus, our results well explain the

absence of a noticeable VPP effect in these experiments.

requiring thafay —a.| be within the experimental accuracy, uniform interlayer distances occur only close to the stack

one has 0.28 niN>3x10 2 nm, yielding N<9 mem- surfaces. The interlayer distances close to stack center
branes. Thus, foN>10 membranes, the VPP effect becomes ' y ’

practically unobservable in these experiments. Recall that waN(Mmig) With Nmig~N/2, ‘approach their thermodynamic

have reached quantitatively the same conclusion in our disflemlt more quickly than the average stack periagl. This is

: . o evidenced in Fig. 8, depictingy (solid lines for the whole
cussions in Sec. Il, through the application of the one-loop . .
theory to the bare interaction potent{@.45, which is mar- stack periodsee Eq.(3.20], and Bn(nmia) (dashed lines

ginally strongly entropic at room temperature. It has bee grs'g]e Olrt])t\(?ircl)iéler d'?;an_c)esa atrotarl]cehesstaitcsk tr?eerrr{nt?de ni?ﬁic
pointed out however that the results obtained in that way ™"~~~ Y. n(Nmia) 8pp y

may be unwarrantetat room temperatujelt is thus pleas- imit B, more quickly than By. Thus, importantly,
ing to see that the more careful treatment of strong entropik":‘N(nmid'7’)_"""3|<|""’\‘_aocl for N>1. In fact, recall that
effects, presented in this section, yields nearly the sam N_aff&,%/N’ whereas, from Eq(3.39, |an(Nmia) —a-|
guantitative estimates. It should be stressed that this is notﬁl_/N i’ as_already no'ged in Sec. II. It follows that the
result of a simple coincidence, but rather a consequence ain contribution to the differencey —a.. comes from the

the fact that a strongly entropic system can be quantitativel yers cIose.to thGQSt?Ck lmtgrfaces rath?]r_ thfan those Iclose to
well treated by the one-loop theory in combination with suit- ts center. Figure 9 clearly ocuments this eatgﬂee also
ec. Il, Egs(2.389—(2.41), and discussions therdirExperi-

ably defined effective potentials. Due to this, we had a stroni} implicati fihis f . .
similarity of the results presented in this section with thelental implications of this fact are discussed in Sec|d¥e

results of Sec. Il. Thus, Eq3.27 of this section can be item (4) therein.
given in the form

a high (few percent accuracy?

- 1} (aoc_ amin)

1 (aoc_amin)-

In Fig. 9, we plot the ratid y(n,d,y)/1..(d) for the interest-

ing limits y=0 andy=<, ford=1 andd=2, for stacks of
various sizesN. It is instructive to compare the local inter-
layer distances in Eq.3.35 with their stack average value

(), see Eqgs(3.20 and(3.34). From Eq.(3.35 and Fig.

, we see that, for stacks witti>10 manifolds, highly non-

IV. COMMENTS AND SUMMARY

We begin this section by commenting on the effects of a
-~ typically large value of water liquid-vapor surface tensian
(ax—amin) (3.39 ) X
It will be convenient to expresg as

Iy(d, )
an)—aw:Q(d)[%—l
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FIG. 9. The universal function$y(n,d,y)/l..(d) for y=0
(solid lineg and y= (dashed lines for (a) various 2D stacks dfl
semiflexible polymersgd=1, and(b) various 3D stacks oN fluid

membranesd=2. We note that fod=2, |.,(d=2)=2, whereas
is given analytically by Eqs(2.23

In(n,d,y) for y=0 andy=
and(2.249).

keT
LT

Here, |,
scale. Typlcally,

4.0

period a. Indeed with y~70x 103 J/n?, one hasl,

~0.24 nm at room temperature, whereas-6 nm,
bound stacks of membrangsee Sec. Il enfl or evena
~50 nm for highly swollen phases of unbound membranes

for

[2,10-13. The large separation between the length stale

and the stack period has profound implications on the mag-

nitude of dimensionless surface tensigr= y/8y, intro-
duced in Sec. Il, see Eg&.13 and(2.14). For example, for

— 9Pl ga= + 9°V 41/ 902
with d=2, yielding

<kBT>2 P

bo=3a.(d=2)— 7~ =3

sterically stabilized membrane phasésg;=/«xb,, with b,
. Here V¢4 is as in Eq.(3.3),

(4.2
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and

k
Sy=+Ba.(d=2) —IBQ— 4.3

with a.,,(d=2)=[B.(d=2)]3=0.212 (see Sec. )|, and|
=a—apmin, membrane surface-to-surface separatiap;{

the membrane thicknessUsing Egs.(4.2) and (4.3), the
dimensionless surface tension

e A e
7oy Baao L AL @9
For, sayl~1 nm and ,~0.24 nm, from Eq(4.4), we have
v~20. So,y>1 for the sterically stabilized system of repel-
ling membranes, even for the modest membrane separations.
Essentially, the same estimate as in Eqg3) is obtained also
for the bound stacks of membranes, for the realistic situa-
tions with strong entropic effecfsee Sec. Ill, the discussion
of Fig. 6(b) therein. Thus, quite generally for strongly en-
tropic systems,y>y*(d=2)=0.592[see Sec. Il and Fig.
5(b)]. It would be thus tempting to assume that, to a good
approximation, one can apply to these systems the results of
Secs. Il and Il in the limity—x [see, e.g., Eqs2.22),
(2.29, (3.3D, and (3.33, and Fig. 7. This conclusion is
however unwarranted as the liquid-vapor interface is not
firmly bound to the outmost membranes of the stack, as as-
sumed in the discussion of Secs. Il and Ill. Elsewhere, in
Ref.[29], we reexamine our results in light of a more real-
istic model that incorporates the degrees of freedom associ-
ated with liquid-vapor interfaces. Interactions between these
interfaces and nearby membranes are typically repulsive, and
liquid-vapor interfaces are generally expected to unbind from
the stack fo?— 0. This may provide a mechanism weaken-
ing the surface tension VPP effects, as already noted by
Nagle and Katsarakl8]. In Ref. [29] we find that this is
indeed the case for thieound stacks of manifolds such as
DMPC bilayers discussed in Secs. Il and Ill. For such stacks,
in the limit of zero surface osmotic pressuike;»0, the stack
perioday approaches a finite value, whereas the vapor-liquid
interface completely unbinds from the stack under the influ-
ence of repulsivedisjoining van der Waals forces, as we

=kgT/y is a characteristic surface tension lengthdetail in Ref.[29]. For P—0, such stacks behave exactly as
is small Compared to the lamellar phase the zero surface tension stacks in Secs. Il andsée also

Fig. 1(e), and the discussion following E¢2.4)]. Thus, for

example, using Eq.3.32 [or Eq.(3.34 with ;: 0], for the
average period oN-membrane stacks we have

_<hN(X) —hai(x))

N=

N—-1
ar ar
:ax+Q(d=2)(m co[(m)—l}—l}(aw—ro)
(4.9
with Q(d=2)=0.639, and, for exampl&g.,—r,=0.56 nm

being the thermal expansion for DMHEee Sec. ll]. Like-
wise, the local average intermembrane spacings are given by
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an(n)=(hp+1(x)—h(x))

In(n,d=2,y=0)

=am+Q(d=2){ 5 1|(a.—ryg),

(4.9

with I y(n,d=2,y=0) explicitly given by Eq.(2.23. We
note that for practically significant limiN>1, from Eq.
(4.5, we have also the equation

1 T a,— Iy a,.—ro
ay—a,.==|2—=/Q(d=2) N 50.137T,

2 2
(4.7)
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providing a useful simple result for discussing the experi-
mental visibility of VPP effects in these systems. We note
that hereay<a., in Egs.(4.8) and(4.10 reflecting the pres-
ence of the ordinary VPP effe¢Fig. 1(b)], as detailed in
Secs. Il and III.

Let us summarize our major results and compare them
with the previous theoretical study of Podgornik and Parse-
gian, Ref.[14].

(1) We find that both the reversey(>a..) and ordinary
(ay<a.,) finite-size VPP effects may be present in smectic
stacks ofN semiflexible manifolds, as conceptualized in Fig.
1. The magnitude of these effects is limited by the magnitude
of the stack thermal expansion. For example,Nor 1, we
find thatay—a.=N\/N, with |\|~|a..—r| being the stack

providing a useful simple result for discussing the eXpe”'period thermal expansion away frof=0 smectic period

mental visibility of finite-size effects in the bound stacks at

in Sec. lll. We note that heray>a., in Egs.(4.5 and(4.7)
reflecting the presence of our reverse VPP efféa. 1(c)]
revealed in Secs. Il and lll.

A different behavior is found for thenbound sterically
stabilized stacks of membranes. For them, tooFfer0, the

tense vapor-liquid interfaces unbind from the stack, due t

repulsive van der Waals forc€29]. However, forP—0, the

tensionless stack membranes themselves also unbind. Int

membrane separation divergiesterthan the separation b

tween the stack and the vapor-liquid interfaces, as we deta]

in Ref.[29]. There, we show that frorR—0, i.e., for highly

swollen stacks we can directly use our results of Sec. Il
obtained in the limit of infinite surface tension. Thus, for

example, using Eq(3.33 [or Eq. (3.34)], for the average
period of N-membrane stacks we have

_ {0 =hy()

an N—1
:aw+Q(d=2)[4(N7T_1){cot(4(N7T_l))—1}—1]
X (8 — apin) 4.9
with Q(d=2)=0.639, and a,—amin=pPB-(d=2)

X (kgT)?3 k13PY3 with B..(d=2)=0.595 (see Sec. )

ro- As detailed in Secs. Il and lll, this feature of our theory

Gell explains the absence of noticeable VPP effects in the

experiments of Katsardd7]. \(y) depends on the surface
tension of interfacial manifolds. However, it has finite limits
for y—0 and y—w. For example,\(0)=-0.137@.,
—rg), AM(°)=+0.502@..—rg), for entropically dominated

(5nembrane stack$in both unbound and bound lamellar

phases, see Sec. lIThis result is in contrast to the corre-

E‘srponding results of Podgornik and Parsegian in R&d),
e- yielding much largern, for example, \(o0)=—(1/3a.,)

ff[(am—ro)/Ax]z(K/kBT)(ax—rO). In their theory, |\|
>|a,—rg|, asx/kgT~ 10, and, more importantlya.,—r|
p>Ax is the short-distance cutofAx~1 nm, the lipid mol-
ecule siz¢ Note that for the unbound stacks of membranes
with a,—rg~a.,~100 nn>Ax, the Podgornik-Parsegian
result forA (=) exceeds the thermal stack period expansion
by a factor of 10. Moreover, the Podgornik-Parsegian
theory strangely predicts that the smectic perdof steri-
cally stabilized (purely repelling membrane stack ap-
proaches dinite value @y)max=amin+ (kg T/x)Y?°Ax\N,

in the limit of zero osmotic pressur®—0. Such an unex-
pected effect has never been observed in a sterically stabi-
lized system of unbound membranes, and contradicts any
common intuition on the behavior of purely repelling mani-
folds. Our theory is free of such unphysical results. See, for
example, our Eq93.2), (3.9), (3.16), (3.33, (4.7), or (4.10),

all manifestly showing thaay~1/PY3*—x as P—0. We

Likewise, the local average intermembrane spacings argyess, this is an exa@onperturbativeresult.

given by
an(n)=(h,;1(x) —hy(x))

Iy(n,d=2,y=0)

=a,+Q(d=2) 5

1 (aoc_ a-min)
(4.9

with 1y(n,d=2,y=) explicitly given by Eq.(2.24. We
note that, for the practically significant limi{>1, using Eq.
(4.8), we have also the equation

T Ao, — A Ao, — Api
ay— a.=— ZQ(olzz)Tm'”z—0.502T"“”,

(4.10

(2) So, what is causing the problems in the theory of
Podgornik and Parsegian? It is the very first assumption done
in the theory, to use the smectic continuum elastic model, the
standard Landau-Peierls model of smectic liquid crystals,
which ignores the layered character of the smectic liquid
crystals and replaces the smectic displacemgyix) with
the continuum fieldu(z,x), with z=na. Next, it was as-
sumed that the smecticcoordinate is essentially continuous
(Az=0), whereas the only short-distance cutof\is (lipid
molecule sizg However, trulyAz=a (smectic phase period
and, in practical situation®yz>AXx. So, takingAz=0 and
keepingAx as the only short-distance cutoff is obviously a
problematic assumption of the theory of Podgornik and Par-
segian. It is the major cause of the difficulties of their theory
discussed in itenil) above. This assumption yields large and
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unphysical predictions for the VPP phenomena in [RE4). ics investigations of smectic stacks, such as the work of
These problems culminate in their prediction of the artificialBachmannet al. [22]. We find that finite-size effects in
maximum period &y)max~AXyN for the sterically stabi- strongly entropic stacks, such as the sterically stabilized
lized lamellar phases of purely repelling membrafeste  phases, can be describgdantitativelywell by a simple ana-
that, strangely, thisgy)max goes to zero fodx—0]. lytic one-loop theorysee Sec. Ill. The assumption underly-

(3) In contrast to the theory of Podgornik and Parsegianing the success of such an approach to these nonperturbative
our theory does not make the assumption that the smecticproblems, namely, the existence of suitably defined effective
coordinate is continuous. Rather than using the continuoutoarse-graingdpotentials is well documented by the present
Landau-Peierls model, we keep in our calculations the disstudy, by carefully relating the analytic theory of Sec. Il to
crete, layered character of smectic liquid crystals, by describMonte Carlo simulations of Sec. Ill. We highlight this find-
ing smectic layers by their height functions,(x), n ing because of its interest for future theoretical studies of
=1,2,3 ... N. Thus, rather than dealing with the smectic smectic stacks of manifolds.
continuum model employed by Podgornik and Parsegian, we
employ here a more microscopic smectic model vittin- ACKNOWLEDGMENTS
teracting semiflexible manifolds. Within this approach, im-
portantly, all interesting resulfsmectic average period, €fc.
have a finite value in the continuum limitx— 0, in contrast
to the results of Podgornik and Parsegian in R&#]. In
fact, throughout this paper we presented our results in the
limit Ax—0 (corrections due to a nonzerox are small in APPENDIX A:
practical situations, see the end of Appendix A . Here, we discuss the results outlined in Sec. Il. First, we

(4) An essential feature of our Tesu'ts here_ s the Spat""‘"ypresent the derivation of our E@2.7). Prior to giving its
honuniform character of smectic interiayer dlstanm\_s(,n) formal derivation, we give a simple physical interpretation of
=(h,1(X)—hn(x)), for the nth layer of anN-manifold

. . . the one-loop perturbation theory result for local smectic
stack. They have not been calculated in the previous St”d'e?pacings in Eq(2.7). The result is easily rationalized by

of the VPP phenomena. Thus, the POdg_omik'Parse_giaE'onsidering the interaction part of the smectic Hamiltonian
theory, Ref.[14], effectively assumes that interlayer dis- of Sec. Il

tances are uniformp-independent, and schematically de-

scribes VPP effects in terms of pseudo-Casimir forces. We

have demonstrated here that such a picture obscures the reblint= dx

nature of the VPP phenomena. Their essence is in spatially

nonuniform thermal expansion of smectic interlayer dis- f . [N—l
= [ d%

We thank Rudi Podgornik for bringing the VPP phenom-
ena to our attention. These contacts have been, in part, aided
by the kind hospitality of the Aspen Center for Physics.

N—-1
nZl vnet(hm(x)—hn(x))]

tances as revealed in Sec[dke the discussion following Eq. 2
(2.34]. We have found that the VPP phenomenon itself, i.e., n=1
the differenceay—a.., is in large part related to the behavior (A1)
of local interlayer distancea(n) in the regions close to the
stack interfaces, see Eq2.389—(2.41), and the discussions With €,(X) = Uy 1(X) = Un(X) =hy 1 1(X) =hp(X) = 1. Within
at the end of Sec. Ill, and Figs. 8 and 9 therein. Here, wdhe harmonic approximatiorbg— 0, etc), one hagen(x))
recall thatay— a..~ 1/N, whereas for the interlayer distances =0, i.e., (hn.+1(X) —hn(X))o=r,, simply because the har-
ayn(n) close to the stack centen~N/2, we haveay(n  Mmonic smectic Hamiltonian has the symmets,(x)
=N/2)—a,~ 1IN 92<1/N. Thus, we havday(n=N/2) ——e,(X). This symmetry is however broken by the odd
—a.|<|ay—a.|, and the main contribution to the differ- anharmonic terms such a®je,(x)]%3!, etc. Thus,
ence between the stack average pedgdand its thermody- (€n(X))#0, in general, due to the anharmonic terms. A
namic limit valuea,. comes from the layers close the stack Simple and appealing way to see this is by replacing in Eq.
surfaces, as evidenced in Fig. 9. This fact provides furthefAl) the cubic termbsey(x)e,(x)e,(x)/3! by the term
severe limitations to the experimental observations of VPFE&,(X){[€n(X)]?)o/3!, with C being a numerical constant.
phenomena based on standard x-ray diffractiiourier ~ This self-consistent “statistical linearization” of the problem
transform techniques which are probing interlayer distancescan be shown to yield the correct res(tth one-loop order
close to the center of the stack. For them we haygén providedC=3, see below. With this self-consistent approxi-
=N/2)—a,~(ay—a..)/N¥2. Thus, for membrane stacki( mation,
=2), withN~1000(as in the experiments of Katsafds]), N-1
an(n=N/2)—a,, is about thousand times smaller thag Him:f ddX{ D
—a.., which itself is already smaller than the experimental n=1
resolution[see Secs. Il and [} As detailed in Secs. Il and b
1, finite-size VPP effects are practically significant only in B3 2
small stacks with up toN~10 manifolds such as the thin JFC3! {[en(X)1%0en(x)
smectic film[26].

(5) Beyond the significance for VPP effects, our resultsThus, the cubic term produces an effective entropic local
are of a more fundamental interest for the statistical mecharstress~bg([€,(x) %), in the second term of EqA2). This

b b
bo+ = [€n() 17+ 5 Ten() ]+ -

b
bo+ = [en()12

] . (A2)
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stress introduces a nonzero local stréi(x)), which can
be simply obtained by minimizing the abokk,; in Eq.(A2)
overe,(x). This easily yields

<hn+1(x) - hn(x)> - rOE<en(X)>

Chb
== 31, (&0 T

B Cb3 2
= — 3!—b2<[un+1(x)_un(x)] >0'

(A3)

Equation (A3), with C=3, is indeed in accord with Eq.

(2.7). Equation(A3) is strictly valid as the leadin@ne-loop

term of the low-temperature expansion. Indeed, in the Tow-

limit, it suffices to keep only the cubic anharmonic term

H(?’)—Ni‘,l f ddx%[e (x)]° (A4)
int_n=l 31 n

PHYSICAL REVIEW B8, 041907 (2003

By noting that([e, (x')]?), on the right-hand side of Eq.
(A7) does not depend axi, and by using Eq(A8), we find
that Eq.(A7) yields Eq.(A3) with C=3, i.e., Eq.(2.7).

Next, we outline here the derivation of Eq2.10—(2.15
by calculating the harmonic average in E8.7), i.e., Eq.
(A3). For a general value of the surface tensign such
calculation poses a difficult but tractable analytic problem,
see Refs[12] and[26]. Here, we will solve this problem by
the method of effective Hamiltonians elaborated in our re-
cent study[12]. To obtain the average in E.7), we con-
sider the harmonic smectic Hamiltonian E&.9) in the form

N—-1 1 N—-1 b
~ 2~ ~
HOZJ {2 EKq4|Un(Q)|2+ 2 ?|Un+1(Q)_Un(q)|2
g | n=2 n=1
+ K@) [ug(a) 2+ KO () [un(a) 2], (A9)

with [ = fd%/(2m)® andu,(q) being the Fourier transform
of uy(x). The average in Eq2.7) involves onlyu,; 1(X)

in Eq. (A1). By expanding the Boltzmann factor in powers of and uy(x). This harmonic average can be found exactly by

this term, one has the perturbation expansion,

<en(x)> = <en(x)>0

1
- |(B_T[<en(X)Hi(r?t)>0_<en(x)>0<Hi(r?t)>O+ el

(A5)

constructing an effective Hamiltonian fou,,,(x) and
Un(X), Hesf(Ups1,Uy,), that is obtained by minimizingl, in

Eq. (A9) for a fixed shape of the manifolds,(x) and
Uns1(X). First, let us consider the manifolds under tié
manifold and obtain the effective Hamiltonidih.¢(u,) for

the nth manifold by minimizing Hy Eqg. (A9) over
Uq,Us, ...,U,_ for a fixedu,. This minimization can be
done in several interesting ways. For example, as detailed in

where, as beford, - - ), signifies the average with respect to Ref. [12], such a problem can be reducéay successive

the harmonic stack Hamiltonian E¢R.9) [or, Eq. (A9) be-
low]. As {(en(x))o=0, we thus have

1 (3)
<en(x)>:_kB_T<en(X)Hint>0 (AG)

to the leading order at low. For the harmonic average on

minimizations ovem,,u,, ... ,u,_) to iterating the recur-

the right-hand side of this equation, we have, by the Wickyith the initial condition

theorem,

— 1 b3 < ! ’
<en(x)>_ - kB_T §< en(x)ngl f dx [en’(x )]3> .
1 3by"t

it 31 2, | 9 (en0en (X))o

X{[en(x)]%)0. (A7)

sion relation
bZKm(q)
== 4 —_— = —
Km+1(9)=xq"+ b, K. (q) m=123...n-1
(A10)
Ka(q)=K(a). (A11)

After (n—1) iteration steps, all the manifolds except the last
one, u,, are integrated out, and one regains the effective
Hamiltonian

1 ~
Heritn)= [ SKa@fn@ a2

For a harmonic smectic Hamiltonian with just nearest neigh-

bor interactiongsuch as Eq(2.9), or Eq.(A9) below), it is
straightforward to show that

J ddxl<en(x)en’(xr)>0: <en(q)en'(_Q)>O|q=O

SovkeT
b,

(A8)

Our task now is to find the dispersion relati&h,(q) by
iterating Eq.(A10). For this purpose, it is interesting to note
that the recursion relation E¢A10) can be mapped into the
calculation of theequivalent resistancef the circuit shown

in Fig. 10@) with resistance«,(q), «q*, andb,. Conse-
quently,K,(q) is the equivalent resistance of the ladder cir-
cuit in Fig. 10ab), K,(q)=u,/I. By the first Kirchhoff's
rule, the voltages at junctions in Fig. () satisfy
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(@

’ﬁm+1 Kq4 i'lm

Kon(@ b,

K.(@

FIG. 10. (a) Simple circuit for the calculation of equivalent “re-
sistance”K,,; 1(q). (b) Ladder circuit used for the calculation of
the equivalent resistand€,(q)=K_(q).

um+1_um+ um—l_um_ Um

kq* xq* b,

m=23,...n—1.
(A13)

Physically, the voltages in EGA13) correspond to smectic

phonon displacements,(q) in Eq. (A9) [in fact, Eq.(A13)
can be more directly obtained by varying EG\9) over

Um(9)]. Equation(A13) can be solved by setting
Un=ARI"+ A,RY. (A14)

From Egs.(A13) and (Al4), one finds the characteristic
equation forR; andR, of the form

R—2 L_«qt A15
2T R, (A15)
From Eq.(Al15),
Ry(q) = —— LK 1+Kq4)2 1<1
VTR T 2n, 2b, '
(Al6)

The equivalent resistand€,(q)=u,/l can be obtained by
invoking two “boundary conditions”[obvious from Fig.

10b)],

Up—Up—3 _ Un

| = = Al7
b Kel@) AL
and
b,K1(q)
- b,+Ki(q) ~
u;= us,. Al18
! 4y bKi(q) 2 (A18)
~ b,+K4(q)

PHYSICAL REVIEW E 68, 041907 (2003

From Egs.(A14)—(A18), we obtain the final form oK,,(q)
=u,/l as

Y4

— R2(-1)

L+ g RE

> (A19)

1__R2(I"I*1)
R !

1
Kn(Q):b2<R_1_l

ForK,(q) =K (a) = y9?+ «kq*, as in Sec. II, the quantity
Zin Eq. (A19) has the form

VR —Ry

_n2
Z(R)=R SRl (A20)

with ?z vI\kb,. On the other hand, for the more general
interface dispersion relation discussed in R&W], of the
form

bSO (' g*+ yg?)
b(zsurf)+ qu4+ yqz'
(A21)

Ki(@) =KD (@) =xg*+

Z in Eq. (A19) has the form

K’ —
—(1=Ry)+ 7Ry

b,
1- (1_ Rl)b(zsurf) - Rl

Z(R)=R?
e pp R b 1+1
R, b(zsurf)

(A22)

K’ —
—(1-Ry)+ 7R,

Now we are in the position to consider the whole stack of
manifolds. TheN—n manifolds above then(+1)th mani-
fold can be treated in a similar way as the manifolds below
the nth manifold. This eventually yields the effective Hamil-

tonian foru,(q) andu,.(q) of the form

1 ~
Hett(Un,Uns1) = Jq E[K<(Q)|un(Q)|2

+bo[Upn s 1(A) —Un(Q)|?

Ko (@[Unsa(@?], (A23)
with K_(q)=K,(q), as in Eq.(A19), whereas
z
= p2(N-n-1)
1 1+ RlRl
Ko(a)=by| - —1]— (A24)
1 _ 2(N-n—1)
1- —-R;
Rl

Having the harmonic effective Hamiltonian in E@23), we
finally obtain
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1
Ups1(X) —Up(X)|?) o=k Tf
<| n+1( ) n( )| >0 B q K<(q)K>(q) b
Ko(a)+K=(q) 2
21 1— Z_ZRZ(N*Z) + E(R_ 1)(R2(n71)+ RZ(N*lfn))
keT [ d R® R
- b_zj 2m° 72 ' (A29)
—_ — —__R2(N-2)
1+ R 1 R2R )
|
(For simplicity, here and now on, we wriieinstead ofR;.) _ g Nt mar 1974
Ford<4, in the continuum limiQ,,,~ 1/Ax—<, the inte- Py(n,d,y=0)= N 2 1—005{ W”
gration overg(0<g<) in Eq. (A25) can be conveniently m=1
converted into the integration ovBr(1>R>0) with the aid ommr
of relation betweer andR in Eq. (A15), yielding X 1—cos< N n) (A29)
. Sy keT[b, d/4l i and
([Up+1(x) —un(x)] >_W2_bz —| In(nd.y) - -
NV N—1 7= N—1
with Sd_ being the d-dimensional unit sphere area and |14 2mm B 1 A30
In(n,d,y) as in Eq.(2.15. After the summation oven, we COIN=1|" 2[)) (A30)
get the average for the whole stack
Also, we find
N—1
_ o _
N1 2, {uni00=un(I%) Indy)=—g———¥ndy) (A3
sin(zw)zl‘d/“
_ S kBT( bz)d/4| (d,7) (A27)
T (2mi2b,| k) MY with
o o 1 Nt mar\ 1974
with I y(d,y) as in Eq.(2.16. By combining Egs(A26) and Yy(d,y=0)= N1 > 1—co{ W” (A32)
(A27) with Egs.(2.7) and (2.8), we eventually find our re- m=1
sults in EQgs.(2.10—(2.12, with Iy(n,d,y) and Iy(d,y) and
therein as in Egqs(2.15—(2.16). Therein,Z has the form as
in Eq. (2.17), for the interface dispersion relation in Eg. 1 N2 ma | 144
(2.4). For a more general interface dispersion relation in Eq. \IIN(d,;:oo): _— 2 1—cos< _)
(A21), Egs.(2.15 and(2.16 are to be used witd as in Eq. N—1nm=1 N—1
(A22). (A33)

For the two special values of=0 or =, the average in ging Egs.(A28)~(A33), one can show the following inter-

Eq. (A26) can be calculated also by diagonalizing the har-ggiing relations between the systems with zero and infinite
monic Hamiltonian(A9) [for y# 0,0, the eigenvalue prob- syrface tension:

lem cannot be solved exacllyThis diagonalization yields

the following interesting results: — N—1 _
In+a(dy=20)=—g~In(d,¥=0) (A34)

Iy(n,d, )= Wy(ndy) (7=0 or =)  and

Insa(n+3,d,y=2)=21y,1(d,y==)—Iy(n,d,y=0).
(A28) (A35)

Using Eg. (A35), we find for semi-infinite smecticsN
with — ),

sin(zw) 21-di4
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A(n+1,d,y=%)=—A(n,d,y=0) (A36) HereL, is the smectic healing length,, = (x/b,)* (see
2 Y ’ Ref. [12]). For example, for sterically stabilized stactes
with A(n,d ;):l (n,d ?)—I (d) as in Eq.(2.26. From well as for strongly entropic bound stacks, see Fig. 6 and

Egs. (A36) and (2.25, for inter-layer distances in semi- Sec. I, L, coincides with the distance between “colli-
infinite systems, we find the relation sions” of a manifold with its neighbors, and thusa (

—amin)?=1%~(kgT/k)(Lp)* 9. Thus, by using Eq(A38),
a.(n+3,y==)—a.=—[a.(n,y=0)—a.]

kgT (Ax)4~¢
to be true for any (to one-loop order as exemplified before &= Kk 2
in Sec. Il, ford=2 [see Eq(2.28 and below. For finite but
large smectic stackdN> 1), the expansion in Eq2.29 was  Therefore, for example, for 3D stacks of membrands (
useful on our discussion of Sec. Il and Ill. By using Eq.=2), £ in Eq. (A39) is small because, typicallykgT/«
(A34), the coefficients of this expansion can be related be~1/10 (see Sec. )| and the intermembrane separatiova-
tween the systems with infinite and zero tension. Thus weer gap is in the rangd =1—100 nm, whereadax~1 nm
find (the lipid molecule size We stress that, by EGA39) with

_ _ d=2, already at the lower limit of the water gap rangé (
Ci(d,y=»)=Cy(d,y=0)—1.(d) (A37)  ~1 nm), the molecular scalgutoff) effect is small for re-

] ] ) ) alistic bilayer membranes in lamellar phases, with
with I..(d)=B(1—d/4,d/2) as in the discussions of Sec. Il. ~ 10k, T. Thus, in particular, the theory of RéfL4] fails to
Ford=2, 1.(d=2)=B(1/2,1)=2, and Eq(A37) is in ac-  provide the correct account of cutoff effeagenfor small
cord with the exact limits o2, which can be obtained by ntermembrane separations in realistic systems.

Eqg. (2.32 yielding C;(d=2,y=0)=—7/2+2 and C4(d

=2,y=»)=—m7/2. For d=1, 1,.(d=1)=B(3/4,1/2) APPENDIX B:

=2.3963, and E@A37) is in accord with the numerical re-
sults for the limits of C;, which can be obtained by Eq.
(2.32 yielding C4(d=1,y=0)=0.82 andC,(d=1,y=»)
=—1.56, see Fig. 5.

For the physically interesting case of the smectic stack o
membranesd=2), the sums in Eq9A29), (A30), (A32),
and (A33) can be done analytically. Indeed, by using the
identity \1— cosf=/2sin(@/2), one can see that these sums
reduce to doable geometrigrigonometri¢ sums. In this
way, we obtain the results in Eq&.21)—(2.24). We stress
that the results foty(n) in Egs.(2.2)—(2.24) are given for
integern (which is, of course, the physical cas€or a non-

i_ntegern, I.N(n) contains also some ad_diti_onal terms propor-jn, the fimit v—oo, from some of the previous knowledge on
tional to sm(ZT.n), and - cos(2mn), vanishing for integen. o gtacks ofNy=N-—2 manifolds confined between two
We are not going to display these terms here, as they are NRLrd walls at the distande= (hy—hy)=(N—1)ay, in the

of physical significance. Still we note their existence for A otation of the present paper. For simplicity, let 'usasr%
nonintege_m, for the readers trying to chec_k our E@‘?’S) =0 andk=kgT=1, as this is possible to acﬁieve by a suit-
(that requires replacementn +1/2), by naively using the 5, rescalingsimilar to that used in Sec. I

expressions in Eq42.23 and (2.24), which apply only for Let us first consider the stack witN=3 semiflexible

integern. L -
. . olymers @=1) fluctuating in a plane. In the limiy— o,
d <ﬁs nortzi It?](ferzr?c.)*etrr:te r%b%\{g fglmxlféz_\agg) ?}ZT?.?&E fOI{[:)his problem reduces to the problem of a single semiflexible
W um integral | ’ ni olymer fluctuating between two hard walls at distahcBy

continuum limit, i.e., one can set the upper momentum cuto sing the exact result of Burkharf1], for this problem we
therein, Q2= 2m/Ax—. In fact, to all orders of pertur- have the osmotic pressure

bation theory, the continuum limiAx—0 is finite for d
<4, because the dispersion relations for all manifdids
cluding also the interfacial manifoligrow asg* for largeq. p=-—_= (B1)
Consequently, in our theory, the cutd,, ., plays no sub- 3 5B

stantial role for the VPP phenomena. In fact, by repeating

our analytic calculations with a finit€,.=27/Ax, the  With Ag=1.1036, as found by Burkhardt from an analytic
relative error €) done by assumingx=0 can be shown to transfer matrix calculation. Thus the distance between two

(A39)

In this appendix we consider smectic stacks vitimani-
folds in the limit of infinite surface tension of the interfacial
manifolds (the first and the last manifolds of the stackn
his limit, the interfacial manifolds behave as infinitely rigid
Eand thus flat but still mobile manifolds “pistons” whose
equilibrium distanceL =(hy—h;) adjusts according to the
applied value of the osmotic pressireSince the manifolds
are flat,hy(x) —h4(x) does not depend ox, and this prob-
lem becomes exactly equivaletih the y—co limit) to the
problem ofN,=N-—2 manifolds confined between two hard
walls of the distancé.

This feature can be used to extract the constgrts, y),

be small ford<4, of the order hard walls is
Ax\4-d 2 3/5 1
g:(l-_b) . (A38) L=(§AB) P_3/5 (BZ)
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TABLE |. The first column gives the universal constagtg(d distanceL (corresponding, in our case, to the interfacial
=2,y=1) obtained by using E¢B7), as explained in Appendix B. membranes withy=«). Referencg22] gives the results for
The second column gives the one-loop fit to data in the first columnihe osmotic pressure in the fortagain we setk=kgT=1

with 8.,=0.595 andA;_,=0.190, see Appendix B, E4B8). anda;;=0)
Bo(d=2)+Ag_,[In(d=2,y=10) 2Ny 1
o _ _ - (hw)
N Bn(d=2,y=x) l..(d=2)] P Nk+1aNk [L/(Nk+l)]3 (B5)
3 0.426 0.426 .
4 0.487 0.487 Here,a&hkw) are the “hard-wall” universal constants tabulated
5 0.516 0.515 in Ref.[22]. See Table Il therein. Pay attention that here we
6 0.532 0.532 denote the number of membranes between hard wal§ as
7 0.543 0.543 to distinguish it from the total number of membranes here
8 0.550 0.551 =N=N,+ 2, which includes also the hard walls correspond-
9 0.556 0.556 ing here to infinitely rigid interfacial membranes at distance
10 0560 0561 L=(hy—hy). By using Eq.(B5), with N,.=N-2,
11 0.564 0.564
12 0.567 0.567 aN:<hN_hl> _ Lt :[Z(N_Z) a(hw)rlsi_
13 0.569 0.569 N-1 ~N-1 [ N-1 "2 p13
14 0.571 0.572 (B6)
12 82;21 82;: By comparing Eq.(B6) with Eq. (3.16 (with xk=kgT=P
: ' =1 anda,;,=0), we obtain the values g8y(d,v) for d
17 0.575 0.576 =2 andy=x in the form
. . 2(N_2) (hw) 1/3
By using hereL=(hy—h;)=(N—1)ay, with N=3, we Bn(d=2,y=00)= TNo1 ¥N-2| - (B7)
have

Here, the values of" are given in the Table IIl of Ref.

(B3)  [22], for N—2=1 through 15. By using that table, and our
Eq. (B7), we obtain our Table I, with3y(d=2,y=), for
N=3 through 17. The table documents the fact that these
constants are well approximated by the one-loop formula

L 1(2 \*1
-5 5(3%8) L
By comparing Eq.(B3) with Eq. (3.16 (with a,,;,=0 and
k=kgT=P=1), we obtain the exact value @f(d,y) for
N=3,d=1, andy=cc, Bn(d=2,y=)

B 3(d=17=°°)=1(EAB)3/5 (B4) =B.(d=2)+Aj_,[In(d=2,y=20) = 1(d=2)]
- ’ 2|3 '

1

' 2
This equation, withAg=1.1036, yieldsBy_s(d=1,y==) =Bu(d=2)=Agpy+ (B8)
=0.416, as stated in E@3.24).
We used the same reasoning to extrdg{d=2,y=), with B..(d=2)=0.595 andA;_,=0.190, as employed in
by using the results of Bachmarm al. [22] for the stack of the discussions of Sec. Ill. We recall that hdtgd=2)
N=N-—2 membranes fluctuating between two hard walls at=2 andl\(d=2,y=) is exactly given by Eq(2.22.
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