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Finite-size thermomechanical effects in smectic liquid crystals: The vapor pressure paradox
as an anharmonic phenomenon

Lianghui Gao and Leonardo Golubovic´
Physics Department, West Virginia University, Morgantown, West Virginia 26506-6315, USA

~Received 10 May 2003; published 13 October 2003!

We pursue a systematic statistical mechanics study of finite smectic stacks of semiflexible manifolds
bounded by interfaces under tension. We address, by analytic calculations and Monte Carlo simulations, the
effects of the surface tension on smectic interlayer distances. We use our theoretical results to elucidate the so
called vapor pressure paradox~VPP! in multilamellar membrane phases and explain the experiments of Kat-
saras@Biophys. J.73, 2924 ~1997!; 75, 2157 ~1998!#. We show that the effects of the interfacial tension are
substantially weaker than suggested by the previous theoretical discussion of the VPP effects@R. Podgornik
and V. A. Parsegian, Biophys. J.72, 942 ~1997!#. By consistently taking into account the discrete, layered
character of smectic liquid crystals, and anharmonic phonon effects, we show that the essence of VPP effects
is in spatially nonuniform thermal expansion of smectic interlayer separations. We find that the average period
of the whole finite stack can be both smaller~ordinary VPP effect at high enough interfacial tensions! or bigger
~a reverse VPP effect at low interfacial tensions, overlooked in previous studies!, relative to the average period
of the corresponding infinite smectic stack. Looking at stacks from outside, these two effects show up as if
there is an attractive~for the ordinary VPP effect!, or repulsive~for the reverse VPP effect! pseudo-Casimir
force acting between the two stack interfaces. We show however that the physics of VPP effects is obscured by
schematically invoking Casimir-like forces. Rather, the ordinary and the reverse VPP effects are to beboth
characterized asthermomechanical anharmonic effects caused by a spatially nonuniform thermal expansion of
smectic interlayer distances. Interlayer distances close to stack surfaces expand less~more! for the ordinary
~reverse! VPP effect than those deep in the stack. The reverse VPP prevails at low interfacial tensions, simply
because the membrane at the top of the stack is more free to fluctuate than membranes in the bulk. By
increasing interfacial tension above a threshold value, fluctuations of the membrane at the stack top become
suppressed, and the ordinary VPP effect prevails. In this study, we demonstrate that finite-size VPP effects in
a strongly entropic system, such as the sterically stabilized lamellar phases, can be described quantitatively
well by a simple analytic approach.

DOI: 10.1103/PhysRevE.68.041907 PACS number~s!: 87.15.2v, 82.70.Uv, 82.70.Kj
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I. INTRODUCTION

Smectic liquid crystals and smecticlike phases have b
attracting attention of experimentalists and theorists for
cades@1–13#, in particular because of the biophysical signi
cance of these systems@4–6,10,14–19#. Thermal fluctua-
tions play a significant role in these systems. Typi
examples for this are sterically stabilized smectic phase
large flexible manifolds, such as fluid membranes or se
flexible polymers interacting by purely hard-core repulsi
@2,10–12,20–23#. In these phases, the restriction of the flu
tuations of thermally rough manifolds by the presence
neighboring manifolds~hard-core interaction!, yields the
well known Helfrich effective~entropic! repulsion interac-
tion @10#. In these so called unbound phases of manifo
the smectic equation of state, which relates the isotropic
motic pressureP to the smectic perioda, is purely entropic
in nature@11,12,22,23#. In particular, it predicts that the av
erage smectic perioda diverges forP→0. On the other side
thermal fluctuations are quantitatively significant also in
bound phases of manifolds, in whicha remains finite forP
→0, due to the presence of attractive intermanifold inter
tions @15–19#. In these bound phases, the actual~renormal-
ized! value of the smectic phase perioda may be substan
tially different from the mean-field estimate that minimiz
the bare intermanifold potential. Here, the effect of therm
fluctuations is similar to the familiar thermal bond expans
1063-651X/2003/68~4!/041907~26!/$20.00 68 0419
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in ordinary crystals. In smectic liquid crystals, however, su
fluctuation effects are significantly stronger due to the s
character of these systems and thus a more prominent ro
played by long-range thermal fluctuations.

Due to these reasons, the smectic ‘‘bond length’’a may
substantially depend also on thesizeof smectic systems, in
particular, on the number of manifolds comprising the sm
tic stack,N. Thus, in two-dimensional~2D! sterically stabi-
lized smectic phases of semiflexible polymers under iso
pic osmotic pressure, the average stack periodaN is almost
10% bigger in small stacks (N52 or 3) than in the bulk of
an infinite stack (N5`), as revealed in our recent study Re
@11#. In that study, the interfacial manifolds at the surfaces
the system are considered to be tensionless. Under some
ditions, however, the smectic interfaces may acquire a n
zero surface tensiong. Classical examples for this are th
multilamellar bilayer membrane phases that have interfa
corresponding to water-vapor-liquid interface~with the
lamellar phase on the liquid side!, or multilamellar phases
with interfacial manifolds bound to solid substrates~corre-
sponding to essentially infinite surface tension! @17,18#. For
these systems, it has been pointed out by Podgornik
Parsegian@14# that the interfacial surface tension could su
press thermal fluctuations of the manifolds and thus subs
tially reduce the value of the average smectic periodaN of
the N-manifold stack. This finite-size surface tension effe
was argued to be quantitatively remarkably strong and
©2003 The American Physical Society07-1
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ible even for macroscopically large values ofN @14#. It was
interpreted in terms of a long-range pseudo-Casimir att
tive force between the system interfaces~as in Refs.@24,25#!,
and furthermore, it was suggested as an explanation for
so calledvapor pressure paradox~VPP!, frequently mani-
fested in practice@14#: namely, in oriented smectic stack
with vapor-liquid or solid interfaces, it has been indeed no
that the smectic periodaN may be significantly smaller tha
the valuea` expected for the corresponding infinite system
N5`. Such a period reduction may result from some ot
~not due to finite-size! effects, see Ref.@14#. Still, it has been
argued that these other effects have been eliminated in
experiments with the systems exhibiting VPP phenome
This has provided a basis to broadly adopt the theory
Podgornik and Parsegian@14# as an explanation of the VPP
However, a recent twist in this history of the VPP came fro
the careful experiments of Katsaras@17#. They have strik-
ingly indicated that there isno VPP in multilamellar mem-
brane phases in equilibrium with saturated water vap
Thus, a new enigma emerged, on how to reconcile the e
ing theory of VPP with the recent experimental observatio

In this paper, we address this enigma by pursuing a s
tematic statistical mechanics study of finite stacks withN
semiflexible manifolds bounded by interfaces under tens
We address, by analytical calculations and numerical sim
lations, the finite-size effects of the surface tension on
smectic period, i.e., the average interlayer distance. We
that these effects are substantially weaker than suggeste
the previous theoretical discussion of the VPP phenomen
Ref. @14#. Within our theory of VPP in finite smectic liquid
crystals, these systems are described more microscopic
as stacks of interacting manifolds,@11,12,20,22,23,26#. This
is in contrast to the standard Landau-Peierls smectic c
tinuum elastic model that has been employed in Ref.@14#.
This classical continuum~elastic! model essentially ignore
the discrete,layeredcharacter of smectic liquid crystals. It
formal application in Ref.@14# yields a strong dependence
the strength of the VPP on the microscopic short-dista
cutoff of the manifoldsDx ~such as the lipid molecule size!.
In fact, the presence of the experimentally smallDx in the
quantitative results of Podgornik and Parsegian@14# is the
main source for their remarkably large estimates of
strength of the VPP effect in equilibrium smectic liquid cry
tals: Within their theory, the strength of the VPP effect w
actually found to diverge in the continuum limitDx→0 @14#.
Moreover, the application of the theory of Podgornik a
Parsegian to the unbound, sterically repelling smectic sta
of membranes yields a strange conclusion that the interm
brane separation~smectic period! aN reaches a finite value
(aN)max;DxAN in the limit of zero osmotic pressure,P
→0 @14#. Here, we find that these features are artifacts
formally using the smectic continuum model in Ref.@14#. In
fact, themoremicroscopic smectic stack model, used by
here~and also in Refs.@11# and @12#!, hasfinite continuum
limit Dx→0, and thus only a weak dependence of the sm
tic period on the microscopic manifold cutoffDx. In the
result, the magnitude of the VPP effect we find is sm
making it hardly observable in the stacks withN' few hun-
dred manifolds, in accord with the aforementioned expe
04190
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ments of Katsaras~see Secs. II and III!. Importantly, this
conclusion holds even for theinfinite surface tensiong, or,
equivalently, for the smectic liquid crystals fluctuating ov
solid surfaces~substrates!. In fact, by using our smectic stac
model, we find that the VPP effect has well defined, fin
limit for g→`, see Secs. II and III. Here, we elucidate th
important limit which may be nearly reached in realis
smectic systems with vapor-liquid interfaces. Recen
Nagle and Katsaras@18# put forward a qualitative picture o
VPP effects, aimed to reconcile the difference between
experiments@17# and the theory of Ref.@14#. This picture
suggests a mechanism weakening the VPP effect, by inv
ing the unbinding of the vapor-liquid interface from th
stack. We find however that the VPP effect isanywayquan-
titatively weak in the stacks withN5100 or more manifolds,
even if the high surface tension vapor-liquid interfaces a
strongly bound to the stack. Another interesting prediction
our study is the existence of areverseVPP effect that occurs
in a range ofsmall surface tensionsg ~see Secs. II and III!,
or for vapor-pressure interfaces weakly coupled to sme
stacks~see Sec. IV!. Under these conditions, we find that th
average smectic periodaN of finite smectic stacks (N,`) is
actually bigger than the average period of infinite smect
systems,a` . We find that the ordinary VPP phenomeno
with aN smaller thana` , requires interfacial tensionsg ex-
ceeding a critical threshold valueg* ~in the model of Secs. II
and III!, or a strong enough coupling between the smec
stack and vapor-liquid interface~see Sec. IV!. The threshold
surface tensiong* 5O(1)dg, wheredg is the well known
‘‘elastic’’ surface tension of the interface of semi-infinit
smectic liquid crystals@12,13#, see Sec. II.Only for g'g*
'dg, finite smectic stacks (N,`) are nearly uniform, with
aN'a` ~see the end of Sec. II and our recent study@12#!.
Otherwise, forg smaller ~bigger! than g* , aN is bigger
~smaller! thana` , and the reverse~ordinary! VPP effect pre-
vails.

An important feature of the study presented here is
calculation of the spatiallynonuniformsmectic layer spac-
ings. We calculate them here as the function of the dista
from smectic surfaces. Such a calculation has not been d
in the previous studies of the VPP phenomenon. Thus,
theory of Podgornik and Parsegian@14# effectively assumes
that the smectic spacings are uniform throughout the wh
system. We show here that this is a grossly oversimplifi
picture, see Secs. II and III. In fact, we find that VPP ph
nomena themselves, i.e., the dependence of the smectic
erage period on the system sizeN, is, in large part, related to
the behavior of nonuniform smectic spacings in the regio
close to the smectic surfaces as discussed in Secs. II an
This feature imposes severe limitations on the experime
observations of the VPP phenomena~see Sec. IV!.

In this study, we show that invoking schematic similariti
to standard pseudo-Casimir effects, as done in Ref.@14#, ob-
scures the real nature of the VPP effects, such as the im
tant role played by~i! the layered character and~ii ! the an-
harmonic effects in smectic liquid crystals. By consisten
taking into account these two features, we show that V
effects arethermomechanical anharmonic finite-size effe
caused byspatially nonuniform thermal expansion of smec
7-2
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FINITE-SIZE THERMOMECHANICAL EFFECTS IN . . . PHYSICAL REVIEW E68, 041907 ~2003!
interlayer distances, as detailed in Sec. II. Here, we go b
yond the previous schematic physical picture of VPP p
nomena that has attempted to formally reduce them
pseudo-Casimir effects@14#. Essential for the physical unde
standing of VPP effects are the spatially nonuniform sme
interlayer distances which vary in magnitude as one mo
from the stack surface to the center of the stack, as depi
in Fig. 1 ~see Secs. II and III!. In particular, the aforemen
tioned reverse VPP effect is an anharmonic effect easily
derstood by considering the case of a membrane stack
zero surface tension at the stack interfaces. In this cas
membranes are tensionless, and the major difference betw
membranes is in their coordination number, i.e., the num
of their neighboring membranes. It is 1 for the two me
branes at the bottom and the top of the stack, and it is 2
other membranes. Because of this basic yet very impor
difference in the membrane confinement, the interlayer se
ration of the membrane at the stack surface~with just one
neighbor! fluctuates more strongly than those of other me
branes in the bulk~that are confined by two neighbors an
thus have more constrained fluctuations!. Due to this, ther-
mal expansion~an anharmonic effect! of the interlayer dis-
tances is bigger close to stack surfaces than in the s
center~in the bulk!, where the interlayer distance is close
its thermodynamic limita` @see Figs. 1~a! and 1~c!#. Hence,
for zero or small enough surface tensions, the average pe

FIG. 1. ~a! Manifold configurations close to the center of a
infinite (N5`) smectic stack, with the average perioda` . ~b! and
~c! depict a finite stack ofN fluctuating manifolds~hereN510),
with the average periodaN5^hN2h1&/(N21). ~b! depicts the or-
dinary VPP effect, withaN,a` , that occurs at large enough inte
facial tensions.~c! depicts the reverse VPP effect, withaN.a` ,
that occurs at small enough interfacial tensions.~d! through ~f!
magnify three different situations at the stack interface.~d! There is
a water layer between the outmost manifold and vapor, i.e.,
water-vapor interface is bound to the outmost manifold~lipid bi-
layer!. ~e! There is no vapor, i.e., the water-vapor interface is u
bound from the outmost lipid bilayer.~f! The outmost manifold is a
lipid monolayer with tails in the vapor.
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of the whole finite stack,aN , is bigger than the bulk~ther-
modynamic limit! stack period of the corresponding infinit
stack,a` , and one has the reverse VPP effect in Fig. 1~c!.
By looking at the finite stackfrom the outside, this finite-size
anharmonic effect looks like an effect of a repulsive Casim
force acting between stack surfaces. However, the phys
origin of our reverse VPP effect is in the nonuniformity
interlayer distances arising because the surface membra
more free to fluctuate than other membranes@see Fig. 1~c!#.
Moreover, even the ordinary VPP effect, interpreted as
‘‘mechanical Casimir effect’’ by Podgornik and Parsegian,
also more deeply related to the nonuniformity of interlay
distances. This point is obscured in the theory of Podgor
and Parsegian@14#, by assuming that the smectic interlay
distances are uniform throughout the system. Only from
anharmonic theory presented in the present study, it beco
clear that the ordinary VPP effect is also intimately related
the nonuniformity of smectic interlayer distances@see Fig.
1~b!#: Here, large enough surface tension suppresses fluc
tions of the membrane at the top of the stack. Conseque
thermal expansion of interlayer distances is smaller clos
the stack surfaces than in the bulk. Thus, for large eno
interfacial tensions, the average period of the whole fin
stack,aN , is smaller than the bulk~thermodynamic limit!
period of the corresponding infinite stack,a` @see Figs. 1~a!
and 1~b!#. From the outside, this ordinary VPP effect in Fi
1~b! appears as a stack contraction due to some attrac
pseudo-Casimir force between stack surfaces. But, from
outside, one cannot see the spatially nonuniform smectic
terlayer distances underlying the VPP effect. Thus, reduc
VPP effects to mechanical Casimir effects, as suggested
Podgornik and Parsegian@14#, obscures the real physica
character of these effects. We elucidate these findings by
analytic theory~Sec. II!, and document our results rigorous
by Monte Carlo simulations of the stacks of semiflexib
manifolds~Sec. III!. The simulations clearly show the pre
ence of the reverse VPP effect for small surface tensions~in
accord with the analytical theory of Sec. II!. At large enough
surface tension, our simulations document the ordinary V
effect with a magnitude in accord with the analytic theory
Sec. II. We note that the reverse VPP effect has been not
already before, in our recent study@11#, for the special case
of zero surface tension. It may be unsurprising to see suc
anharmonic effect that emerges simply because the m
brane at the top of the stack is more free to fluctuate,
thus acquires a larger intermembrane spacing~i.e., larger
thermal bond expansion! than the membranes deep in th
stack@see Fig. 1~c!#. This effect is washed out by modelin
the stack as a formal harmonic continuum~employed in the
theory of Podgornik and Parsegian@14#!. By ignoring the
layered character of the stack, effects such as our rev
VPP are simply lost due to formal continuum approach to
problem. Likewise, ignoring the realistic, layered charac
of smectic liquid crystals directly causes the huge overe
mate of the strength of the ordinary VPP effect and afo
mentioned artifacts of the theory of Podgornik and Par
gian, such as the finite swelling of sterically stabilize
lamellar phases of purely repelling membranes. These p
lems of the old theory of VPP effects, as well as the expe
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L. GAO AND L. GOLUBOVIĆ PHYSICAL REVIEW E 68, 041907 ~2003!
ments of Katsaras@17#, have urged the development of th
consistent theory of VPP phenomena presented in this pa

The organization of this paper is as follows. In Sec. II, w
introduce the smectic stack model and derive our anal
predictions for the VPP effects. In Sec. III, we address th
effects by an exact scaling analysis and by Monte Ca
simulations of entropically dominated smectic systems s
as the sterically stabilized lamellar phases. In that section
show that finite-size effects in these strongly entropic s
tems can be described quantitatively well by means o
simple analytic theory. In Sec. IV, we further discuss a
summarize our findings. Some important details of our c
culations are discussed in Appendixes A and B.

II. FINITE SMECTIC STACKS: ANALYTIC PREDICTIONS
FOR NONUNIFORM INTERLAYER SPACINGS

In this section, we discuss finite (d11)-dimensional
smectic stacks ofN fluctuating d-dimensional semiflexible
manifolds under an external isotropic osmotic pressureP, see
Fig. 1. The microscopic smectic Hamiltonian for this stack
interacting manifolds is

H5Hbulk1Hsur f . ~2.1!

Here, the first term, the smectic bulk Hamiltonian has
usual form@11#

Hbulk~$hn%!

5E ddxH (
n51

N21

@P•„hn11~x!2hn~x!…

1V„hn11~x!2hn~x!…#

1 (
n52

N21
k

2 S ]2hn~x!

]x2 D 2J , ~2.2!

with hn(x) describing thenth manifold height function
aboved-dimensionalx plane~base plane!. In Eq. ~2.2!, V is
an intermanifold interaction potential. Note that, by E
~2.2!, the external osmotic pressureP contributes the free
energy termP3~stack volume! @11#. Physically significant
realizations of this model are 3D multilamellar phases
membranes (d52), and 2D smectic phases of semiflexib
polymers (d51). k in Eq. ~2.2! is the manifold bending
rigidity. The thermodynamic properties of this smectic sta
model have been discussed in detail in Ref.@11#, for the case
of tensionless interfacial manifolds. The second term in
~2.1!, the stack surface contribution is given by

Hsur f~h1 ,hN!5E ddq

~2p!d @Ksur f
(1) ~q!uh̃1~q!u2

1Ksur f
(N) ~q!uh̃N~q!u2#, ~2.3!

whereKsur f
(1) (q) andKsur f

(N) (q) are the surface dispersion rel

tions of the stack interfacial manifoldsh1 andhN @ h̃n(q) is
the Fourier transform ofhn(x)]. The form of these dispersion
relations depends on the nature of the system interface
04190
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illustrated in Fig. 1, for the case of 3D multilamellar phas
of lipid bilayer membranes (d52). If there is a thin water
layer between the outmost manifold and vapor, and
water-vapor interface isstronglybound to outmost manifold
~for whatever reason! as in Fig. 1~d!, the appropriate form of
Ksur f is

Ksur f
(N) ~q!5kq41gq2 ~2.4!

with g being the surface tension between water and va
As noted by Nagle and Katsaras@18#, under some conditions
the vapor-water interface may unbind from the outm
manifold and move away from it, as depicted in Fig. 1~e!.
For this case, the surface dispersion relation is simply tha
the bilayer,Ksur f

(N) (q)5kq4, i.e., the surface manifolds ar
~also! tensionless. Finally, the surface manifold may be
monolayer membrane with hydrophobic lipid tails in the v
por, see Fig. 1~f!. For this case,Ksur f

(N) (q)5kmonoq
41gq2

with kmono'k/2, and g is typically significantly smaller
than the water-vapor surface tension. In Sec. IV, we detai
these complex phenomena and their influence on finite s
effects in smectic liquid crystals. In this section, we w
focus on the basic model with the simple interface dispers
relation given by Eq.~2.4!. For concreteness, here we co
sider the symmetric stacks as in Fig. 1, withKsur f

(1) (q)
5Ksur f

(N) (q). An essential feature of our discussions here
consistent incorporation of the smectic discreteness, i.e
the layered character of smectic liquid crystals. This is do
by describing smectic liquid crystals microscopically,
stacks of interacting manifolds rather than by using the c
tinuum Landau-Peierls model employed in Ref.@14# to dis-
cuss the VPP effects. Within harmonic phonon theory, s
stacks have been discussed by Holyst and other authors@26#.
Already at harmonic level, the incorporation of smectic d
creteness may bring new insights into smectic physics
exemplified by the study of Leiet al., @27#. Anharmonic ef-
fects in stacks have been also studied, in particular, in
investigations of sterically stabilized phases of semiflexi
polymers and fluid membranes@11,12,20,22,23#, and in the
studies of closely related strongly entropic membrane s
tems@15,16#, such as the recent work of Manciu and Ruc
enstein@15# discussing the equation of state of a small sta
with two bilayer membranes. In the discussions that follo
hereafter, by consistently taking into account the discre
layered character of smectic liquid crystals and anharmo
phonon effects, we will show that the essence of the V
effects~see the Introduction! is in spatially nonuniform ther-
mal expansion of smectic interlayer distances, which vary
magnitude as one moves from the stack interfaces tow
the stack center. In other words, VPP effects are elucida
here as thermomechanical anharmonic finite-size effe
present in finite smectic stacks ofN semiflexible manifolds
~such as membranes or semiflexible polymers!. By consider-
ing these anharmonic effects, we will find here that the
erage period of the whole finite stack can be both sma
~ordinary VPP effectat high enough interface tensions! or
bigger~reverse VPP effectat low interface tensions!, relative
to the average period of the corresponding infinite (N5`)
smectic stack.
7-4
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The presence of the surface tensiong may have substan
tial finite-size effects on various quantities of smectic s
tems, such as the average interlayer distances

aN~n!5^hn11~x!2hn~x!&P,N,g , ~2.5!

and the average smectic period of the whole finite stack

aN5
1

N21 (
n51

N21

aN~n!5 K hN~x!2h1~x!

N21 L
P,N,g

, ~2.6!

i.e., the equation of state relatingaN andP for any givenN.
Indeed, the surface tension tends to suppress fluctuation
manifolds close to stack surfaces. With increasingg we thus
expect to encounter a crossover between our reverse
effect (aN.a` , at low g) and the ordinary VPP effect (aN
,a` , at highg), which has been anticipated in the Intr
duction ~see Fig. 1!. To study the behavior ofaN(g) as the
function of N andg analytically, in this section we will as
sume that the net intermanifold potentialVnet(r )5V(r )
1Pr in Eq. ~2.2! @r 5hn11(x)2hn(x)# has analytic mini-
mum atr 0 and expand it in powers ofr 2r 0,

Vnet~r !5V~r !1Pr5 (
k50

`
bk

k!
~r 2r 0!k,

with bk5dkVnet(r 0)/dr0
k (b150). By truncating this expan

sion to the quadratic order, one obtains the standard
monic approximation to the smectic Hamiltonian@26#.
Within the harmonic approximation@26# , the average inter-
layer distances, Eq.~2.5! are independent ofN andn, and all
equal tor 0. Nonuniformity of smectic interlayer distance
i.e., the dependence ofaN(n) on N andn, may emerge due to
the anharmonic terms in the expansion ofVnet , such as the
cubic termb3(r 2r 0)3/3! and higher-order terms@11#. aN(n)
can be calculated systematically via the loop expansion
powers of the temperatureT, see Appendix A~also, Ref.@11#,
Appendix!. To the lowest@O(T1)#, one-loop order, one thu
obtains

aN~n,g!5r 02
b3

2b2
^@un11~x!2un~x!#2&0 , ~2.7!

for average interlayer distances Eq.~2.5!, and

aN~g!5r 02
b3

2b2

1

N21 (
n51

N21

^@un11~x!2un~x!#2&0 ,

~2.8!
04190
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for the average smectic period of the whole stack, Eq.~2.6!.
In Eqs.~2.7! and~2.8!, un is the manifold displacement from
the T50 equilibrium position@hn(x)5nr01un(x)#. The
equilibrium average in Eq.~2.7! is done with respect to the
harmonic smectic elastic Hamiltonian

H05E ddxF (
n51

N
k

2S ]2un~x!

]x2 D 2

1 (
n51

N21
b2

2
@un11~x!2un~x!#2

1
g

2S ]u1

]x D 2

1
g

2 S ]uN

]x D 2G . ~2.9!

For derivation and a simple physical interpretation of E
~2.7!, see Appendix A.

The second term in Eqs.~2.7! and ~2.8!, with typically
b3,0, is just the thermal ‘‘bond expansion’’ of the loca
smectic layer spacingaN(n,g) away from itsT50 valuer 0.
Importantly, this bond expansion isnonuniform, i.e.,
aN(n,g) is n dependent, as depicted in Fig. 1. Indeed,
detailed in Appendix A, the intermanifold distanceaN(n,g)
and average smectic periodaN(g) are found@by Eqs.~2.7!
and ~2.8!# to be of the form

aN~n,g!5a`1Ad8@ I N~n,d,ḡ !2I `~d!# ~2.10!

and

aN~g!5a`1Ad8@ I N~d,ḡ !2I `~d!#. ~2.11!

Here

a`5r 01Ad8 I `~d! ~2.12!

is the average smectic bulk (N5`) period. In Eqs.~2.10!
and ~2.11!, ḡ signifies a dimensionless surface tension, d
fined via

ḡ5
g

dg
. ~2.13!

Here,

dg5Akb2 ~2.14!

is the characteristic smectic surface tension scale, see R
@9,12,13#, and our discussions at the very end of this secti
For a finiteN, the smectic interlayer spacings are differe
from its bulk valuea` in Eq. ~2.12!, as indicated by Eqs
~2.10! and ~2.11!, with
I N~n,d,ḡ !5E
0

1

dR
~12R!d/221

Rd/4

S 12
@Z~R,ḡ !#2

R3
R2(N22)D 1

1

2

Z~R,ḡ !

R2
~R21!~R2(n21)1R2(N212n)!

12
@Z~R,ḡ !#2

R2
R2(N22)

, ~2.15!

and
7-5
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I N~d,ḡ !5
1

N21 (
n51

N21

I N~n,d,ḡ !5E
0

1

dR
~12R!d/221

Rd/4

S 12
@Z~R,ḡ !#2

R3
R2(N22)D 2

1

N21

Z~R,ḡ !

R2

1

11R
~12R2(N21)!

12
@Z~R,ḡ !#2

R2
R2(N22)

,

~2.16!
n

-

io

e

th

a

r-

rface

-

-

with

Z~R,ḡ !5R2
ḡAR2R

ḡAR11
, ~2.17!

see Appendix A. In Eqs.~2.10!–~2.12!, the quantities

Ad852
b3

2b2

Sd

~2p!d

kBT

2b2
S b2

k D d/4

~2.18!

@with Sd being the area of thed-dimensional unit sphere#,
I `(d)5B(12d/4,d/2), and a` are all independent of the
surface tensiong. Ad8 in Eq. ~2.18! is typically positive, i.e.,
b3,0, i.e., smectic bulk period Eq.~2.12! typically expands
due to thermal fluctuations,a`.r 0 ~see Ref.@11# and the
discussions in the following!. We stress that the only
g-dependent terms in Eqs.~2.10! and~2.11! are the integrals
I N(n,d,ḡ) and I N(d,ḡ). Their presence induces a depe
dence of the average interlayer distanceaN(n) on the surface
tensiong. Far away from the system’s surface (N@n@1),
the dependence ofaN(n) on g andn disappears in the ther
modynamic limitN→`. Indeed, by Eqs.~2.10!–~2.14!, one
can easily show that

lim
n→`

lim
N→`

I N~n,d,ḡ !5I `~d!,

and thus

lim
n→`

lim
N→`

aN~n,d,g!5a` .

Likewise, for N→`, the average smectic periodaN in Eq.
~2.11! approaches its bulk valuea` . This is illustrated in
Fig. 2 which gives the ratio ofI N(d,ḡ)/I `(d) for d51 and
d52, for various values of the dimensionless surface tens
ḡ @obtained by numerically integrating Eq.~2.16!#. Appar-
ently from this figure, this ratio approaches 1 for whatev
values ofḡ, and thus, by Eq.~2.11!, aN→a` in the thermo-
dynamic limit N→`. From Fig. 2 and Eq.~2.11!, the stack
average periodaN(g) has an interesting dependence on
surface tensiong: Note thatI N(d,ḡ).I `(d) in a range of
small values ofḡ, and aN(g) is thus bigger than its bulk
value a` . On the other side, from Fig. 2, to haveaN(g)
,a` , the dimensionless tensionḡ needs to be bigger than
critical threshold valueḡ* 5O(1), asdetailed in the follow-
ing @see Eqs.~2.29!–~2.34!#. Furthermore, the average inte
layer spacingsaN(n)5^hn11(x)2hn(x)& in Eq. ~2.10! also
04190
-

n

r

e

have an interesting dependence on the dimensionless su
tension ḡ5g/dg. This is illustrated in Fig. 3, giving the
numerically obtained ratioI N(n,d,ḡ)/I `(d) for the N520
manifolds stack. From Eq.~2.10!, the local interlayer spac
ings aN(n) essentially follow this ratio as a function ofn.

FIG. 2. The ratioI N /I ` as a function of manifold numberN for

various values of dimensionless interface tensionḡ, for ~a! 2D
stacks of semiflexible polymers (d51) and~b! 3D stacks of mem-

branes (d52). From top to bottom, the values ofḡ values are 0,

0.5ḡ* , 1ḡ* , 1, 5ḡ* , 10ḡ* , and`. Note that, for the dimension

less interfacial tension'ḡ* , the average stack period, Eq.~2.11!, is
nearly independent of the number of the manifoldsN ~see the end of
Sec. II for discussions of this feature!.
7-6
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From Fig. 3 and Eq.~2.10!, we see that, in a range of sma
values of ḡ, the local spacingsaN(n) are actuallybigger
than the bulk perioda` , in accord with the aforementione
behavior of the average stack periodaN . This feature is a
manifestation of our reverse VPP effect@see the Introduction
and Fig. 1~c!#. In fact, in Fig. 3, only for the values ofḡ
above a certain threshold, the interlayer spacingsaN(n) are
all smaller than a` . This feature is the signature of the o
dinary VPP effect@see the Introduction and Fig. 1~b!#. We
discuss these effects in more detail later on in this sect
Here, we stress that our results above have well defin
finite values in the limits of zero and infinite surface tensio
ḡ50 andḡ5`, as detailed in Appendix A@see Eqs.~A28!–
~A33!#. We stress that forḡ→0, the functionZ(R) in Eq.
~2.17! has well defined limit,Z(R)→Z0(R), with

Z0~R!52R3. ~2.19!

FIG. 3. The ratio I N(n)/I ` as a function of n in a
N520-manifold stack, for various values of the dimensionless s

face tensionḡ. ~a! 2D stacks of semiflexible polymers (d51) and
~b! 3D stacks of membranes (d52). From top to bottom, the value

of ḡ values are 0, 0.5ḡ* , 1ḡ* , 1, 5ḡ* , 10ḡ* , and`. The inset
shows that the interlayer distances, Eq.~2.10!, become nearly uni-

form for the dimensionless interfacial tension'ḡ* ~see the end of
Sec. II for discussions of this feature!.
04190
n.
d,
,

Likewise, for ḡ→`, Z(R)→Z`(R) with

Z`~R!51R2. ~2.20!

For 3D smectic stacks of membranes (d52), the integrals in
Eqs.~2.15! and~2.16! can be calculated exactly in the limit
ḡ50 andḡ5` ~see Appendix A!. We obtain

I N~d52,ḡ50!5
p

2~N21!FcotS p

4ND21G ~2.21!

and

I N~d52,ḡ5`!5
p

2~N21!FcotS p

4~N21! D21G .
~2.22!

We also find, for the intermembrane distances in Eq.~2.13!,

I N~n,d52,ḡ50!5
p

2NFcotS p

4ND2
1

2
cotS p

4N
1

np

N D
2

1

2
cotS p

4N
2

np

N D G ~2.23!

and

I N~n,d52,ḡ5`!5
p

2~N21!
FcotS p

4~N21! D
1

1

2
cotS p

4~N21!
1

~n2 1
2 !p

~N21!
D

1
1

2
cotS p

4~N21!
2

~n2 1
2 !p

~N21!
D G .

~2.24!

To elucidate the physical phenomena implied by these
sults, we consider them in several practically interesting li
its discussed in the following.

In practice, the number of the manifolds in smectic stac
is often large,N@1. It is thus interesting to see the behavi
of local smectic spacingsaN(n) in semi-infinitesmectic liq-
uid crystals, i.e., to consideraN(n) for a fixedn in the limit
N→`. In this limit, from Eq.~2.10!,

a`~n,g!5a`1Ad8 D~n,d,ḡ ! ~2.25!

with

D~n,d,ḡ !5I `~n,d,ḡ !2I `~d!

5E
0

1

dR
~12R!d/221

Rd/4

Z~R,ḡ !

2R2
~R21!R2(n21).

~2.26!

r-
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For n@1, we find the asymptotic expansion of Eq.~2.26!,

D~n,d,ḡ !5
12ḡ

11ḡ

G~11d/2!

221d/2

1

n11d/2
1•••. ~2.27!

Note that the asymptotic power law tail ofa`(n,g)2a`

;D(n,ḡ) in Eq. ~2.27! changes sign asḡ5g/dg crosses 1.
Furthermore, for 3D stacks of membranes (d52), we can
calculateD(n,d,ḡ) analytically for ḡ50,1, and`. We ob-
tain

D~n,d52,ḡ50!5
1

8~n21/4!~n11/4!

51
1

8n2 1OS 1

n3D ,

D~n,d52,ḡ51!52
1

32n~n21/2!~n21/4!

52
1

32n3 1OS 1

n4D ,

D~n,d52,ḡ5`!52
1

8~n23/4!~n21/4!

52
1

8n2 1OS 1

n3D . ~2.28!

Note that, from Eqs.~2.28! and ~2.25!, there is a simple
relation between semi-infinite system with infinite and ze
surface tensiong,

a`~n1 1
2 ,g5`!2a`52@a`~n,g50!2a`#.

The results in Eq.~2.28! also manifest a qualitative chang
of the smectic spacings asḡ5g/dg crosses 1. For values o
ḡ other than 0, 1, and̀ , one can obtain only numerica
results forI `(n,d,ḡ)5I `(d)1D(n,d,ḡ), see Fig. 4. Over-
all, this figure and Eqs.~2.25!–~2.28! evidence the existenc
of the low- and high-ḡ regimes, characterized by interlay
spacings bigger~for the low-ḡ regime! or smaller~for the
high-ḡ) than the bulk interlayer spacinga` . We anticipate
here that the low-ḡ regime is directly related to the revers
VPP effect@see the Introduction and Fig. 1~c!#. Likewise, the
high-ḡ regime is directly related to the ordinary VPP effe
in Fig. 1~b!. We elucidate the physical nature of these tw
regimes in the following.

Next, let us consider the case of a large but finite sme
stack with many manifolds,N@1. In this limit, I N(d,ḡ) in
Eq. ~2.11! for the average smectic period can be asympt
cally expanded,

I N~d,ḡ !5I `~d!1
C1~d,ḡ !

N
1

Cd/211~d,ḡ !

Nd/211
1•••,

~2.29!
04190
ic

i-

where

C1~d,ḡ !52E
0

1

dR
~12R!d/221

Rd/412

Z~R,ḡ !

R11
~2.30!

and

Cd/211~d,ḡ !52E
0

`

dx
e2x

12S ḡ21

ḡ11
D 2

e2x

3F S ḡ21

ḡ11
D 2

xd/21xd/221S ḡ21

ḡ11
D

3S H ḡ21

ḡ11
J 2

21D G . ~2.31!

For 3D stacks of membranes (d52), C1(d,ḡ) in Eq. ~2.30!
can be calculated analytically,

FIG. 4. The ratioI `(n)/I ` as the functionn, in a semi-infinite
manifolds stack (N5`), for various values of the dimensionles

surface tensionḡ. ~a! 2D stacks of semiflexible polymers (d51)
and ~b! 3D stacks of membranes (d52). From top to bottom, the

values ofḡ are 0, 0.5ḡ* , 1ḡ* , 1, 5ḡ* , 10ḡ* , and`. The inset
shows that interlayer distances, Eq.~2.10!, become nearly uniform

for the dimensionless interfacial tension'ḡ* ~see the end of Sec. I
for discussions of this feature!.
7-8
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C1~d52,ḡ !52
p

2
12

ln~11ḡ !

ḡ
. ~2.32!

C1(d,ḡ) and Cd/211(d,ḡ) as functions of the parameterḡ

are given in Fig. 5 ford51 and 2. We find thatC1(d,ḡ) is
positive for small g and changes sign atḡ5ḡ* (d) with
ḡ* '0.76 ford51, andḡ* '0.592 ford52, see Fig. 5. For
N@1, from Eqs.~2.11! and ~2.29!,

aN~g!2a`'
l~g!

N
. ~2.33!

FIG. 5. C1(d,ḡ) andCd/211(d,ḡ) as functions ofḡ for ~a! 2D
stacks of semiflexible polymers (d51) and~b! 3D stacks of mem-

branes (d52). C1(d,ḡ) goes to zero forḡ→ḡ* (d). For d51,

ḡ* 50.76; for d52, ḡ* 50.592. We note that, ford51, C1(d

51,ḡ50)50.82, C1(d51,ḡ5`)521.56, whereas, ford52,

C1(d52,ḡ50)522p/2, C1(d52,ḡ5`)52p/2. These values

are in accord with the exact relationC1(d,ḡ50)2C1(d,ḡ5`)
5I `(d)5B(12d/4,d/2), by noting thatI `(d52)5B(1/2,1)52,
and I `(d51)5B(3/4,1/2)52.3963.
04190
Here,

l~g!5Ad8 C1~d,ḡ ! ~2.34!

is an important characteristic length, as evidenced in the
lowing. From Eqs.~2.33! and ~2.34!, for ḡ.ḡ* , l(g),0
and the average smectic periodaN(g) is smaller than the
infinite smectic perioda` . Physically, this feature emerge
due to the suppression of the thermal fluctuations of
manifolds close to the interfaces of the system, which
caused by surface tension of interfaces@as conceptualized in
Fig. 1~b!#. Due to it, for the manifolds close to the stac
surfaces, the fluctuation contribution to their interlayer sp
ingsaN(n,g) @the second, bond expansion term in Eq.~2.7!#
is smaller than in the bulk. Thus, for large enough surfa
tension, from Eqs.~2.7! and ~2.8!, bothaN(n,g) andaN(g)
are smaller than the bulk smectic perioda` @we recall that
b3 in Eqs.~2.7! and~2.8! is typically negative#. This feature
is the signature of the ordinary VPP effect anticipated in
Introduction@see Fig. 1~b!#. On the other side, in the range o
small surface tensionḡ,ḡ* , from Eqs.~2.33! and ~2.34!,
l(g).0, and the average smectic periodaN(g)actually ex-
ceeds its bulk valuea` . This feature is the signature of ou
reverse VPP effect anticipated in the Introduction@see Fig.
1~c!#. As noted therein, this effect can be physically ration
ized by considering theḡ50 limit. Then, all manifolds are
tensionless, but the surface manifolds~with just one neigh-
bor! are obviously more free to thermally fluctuate than oth
manifolds ~confined by two neighbors!. Consequently, for
small enough surface tensions, the thermal bond expan
of interlayer spacings@the second bond expansion term
Eq. ~2.7!# is bigger for the manifolds close to stack surfac
than for those in the bulk, as evidenced above by our qu
titative results forḡ,ḡ* . Thus, for small enough surfac
tension, from Eqs.~2.7! and ~2.8!, bothaN(n,g) andaN(g)
arebigger than the bulk smectic perioda` , and one has our
reverse VPP effect, as depicted in Fig. 1~c!.

Thus, by consistently taking into account the discrete, l
ered character of smectic liquid crystals, and anharmo
phonon effects, the above theory shows that the essenc
VPP effects is in spatially nonuniform thermal expansion
smectic interlayer separations. The average period of
whole finite stack can be both smaller~ordinary VPP effect at
high enough interfacial tensions! or bigger ~a reverse VPP
effect at low interfacial tensions!, relative to the average pe
riod of the corresponding infinite smectic stack, see Fig.
Looking at stacks from theoutside, these two effects show
up as if there is an attractive~for the ordinary VPP effect! or
repulsive~for the reverse VPP effect! pseudo-Casimir force
acting between the two stack interfaces. However, the ph
ics of VPP effects is obscured by schematically invoki
Casimir-like forces. Rather, the ordinary and the reverse V
effects are to beboth characterized as anharmonic effec
caused by a spatially nonuniform thermal expansion
smectic interlayer distances. Interlayer distances close
stack surfaces expand less~more! for the ordinary~reverse!
VPP effect than the interlayer distances deep in the stack
Figs. 1~a!–1~c!. The reverse VPP prevails at low interfac
7-9
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L. GAO AND L. GOLUBOVIĆ PHYSICAL REVIEW E 68, 041907 ~2003!
tensions simply because the membrane at the top of the s
is then more free to fluctuate than membranes in the b
Therefore, for low interface tensions, thermal expansion
interlayer distances~an anharmonic fluctuation effect! is big-
ger close to stack interfaces than in the stack center, w
interlayer spacing is close to its thermodynamic limita` .
Thus, at low surface tensions, the average period of
whole finite stack,aN , is bigger thana` and one has the
reverse VPP effect in Fig. 1~c!. By increasing interface ten
sion above a threshold value, fluctuations of the membran
the stack surface become suppressed, and the ordinary
effect in Fig. 1~b! prevails. For this effect too, the spati
nonuniformity of thermal expansion plays the essential ro
Here, the thermal expansion of interlayer distances~thesame
anharmonic fluctuation effect! is smaller close to stack inter
faces than in the stack center, where interlayer spacin
close to its thermodynamic limita` . Thus, at high enough
surface tensions, the average period of the whole finite st
aN , is smaller thana` . Previous Podgornik-Parsegia
theory of VPP@14# obscures the essential role played by t
nonuniformity of smectic interlayer distances, by simply a
suming that they are uniform throughout the system. Wit
this assumption, the difference between the average perio
the whole finite stackaN and its bulk valuea` is attributed to
an extra pressureDP ~pseudo-Casimir pressure! acting on
the smectic stack interfaces in addition to the osmotic p
sure. Within this interpretation, the average periodaN(d,g)
of a finite stack can be written by using the infinite sta
equation of state,a`5 f `(P), with P replaced byP1DP,

aN~g!5 f N~P!

5 f `~P1DP!

' f `~P!1
] f `~P!

]P
DP1•••

5a`1
]a`

]P
DP1•••. ~2.35!

Thus, forN@1, the extra pressure is given by

DP'
aN~g!2a`

]a` /]P
. ~2.36!

From Eqs.~2.36!, ~2.33! and ~2.34! we find

DP'
l~g!

Na`
Bsm'

l~g!

Lz
Bsm ~2.37!

with Bsm52a(]P/]a) being the usual smectic compres
ibility modulus ~see, e.g., Ref.@11#! andLz'Na` being the
height of the stack. Forḡ.ḡ* , the extra~Casimir! pressure
DP is positive for the ordinary VPP effect, as if the sta
interfaces would be attracting each other. Conversely, foḡ

,ḡ* , DP is negative for the reverse VPP effect, as if the
is a repulsive pseudo-Casimir force between the stack in
faces.
04190
ck
k.
f

re

e

at
PP

:

is

k,

-
n
of

s-

r-

However, the above schematic interpretation of the V
effects in terms of the pseudo-Casimir pressure obscures
real nature of these effects, namely, the essential role pla
by the nonuniform thermal expansion of the smectic int
layer distances. Indeed, a true extra osmotic pressureDP
would induce auniform strain aN(n)2a` throughout the
bulk, that would be, from Eq.~2.37!, proportional toDP
;1/N. However, this isnot the case, as evidenced in Fig.
For example, close to the center of the stack (n'N/2), we
find

aN~nmid ,g!2a`;1/N11d/2!1/N ~2.38!

with nmid'N/2 @much similar to the result in Eq.~2.27!#. In
fact, the leading 1/N contribution to the difference betwee
the average stack periodaN and its bulk valuea` comes
from the regions that are close to the two stack interfaces
see this, let us rewrite Eq.~2.6! as

aN~g!2a`5

(
n51

N21

@aN~n,g!2a`#

N21
. ~2.39!

For N@1, the sum in Eq.~2.39! can be asymptotically
evaluated by using the semi-infinite smectic spacing pro
a`(n), and by recalling thatbothsmectic interfaces contrib
ute to the sum. Thus, forN@1,

aN~g!2a`'
l~g!

N
~2.40!

with

l~g!52(
n51

`

@a`~n,g!2a`# ~2.41!

exactly. In Eq.~2.41!, the factor of 2 emerges simply becau
both stack interfaces contribute to the sum in Eq.~2.39!. In
the semi-infinite system,a`(n)2a`;1/n11d/2!1/n and the
sum in Eq.~2.41! is finite, suggesting, using Eq.~2.40!, that
the differenceaN2a` is dominated by the behavior of th
smectic spacings close to the stack surfaces. We note tha
previous one-loop results also reflect this exact asympt
behavior in Eqs.~2.40! and ~2.41!. In fact, the one-loop re-
sult for l(g) in Eq. ~2.34! can be shown to be consiste
with Eq. ~2.41!, by noting thatD(n,ḡ) in Eq. ~2.26! is actu-
ally related toC1(ḡ) in Eq. ~2.30! via the identityC1(ḡ)
52(n51

` D(n,ḡ). The one-loop result shows that the chara
teristic lengthl(g) is intimately related to the thermal ex
pansion of the stack. Indeed, using Eq.~2.12!, Ad85(a`

2r 0)/I `(d). Thus, using Eq.~2.34!,

l~g!5
C1~d,ḡ !

I `~d!
~a`2r 0! ~2.42!

and thus
7-10
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FINITE-SIZE THERMOMECHANICAL EFFECTS IN . . . PHYSICAL REVIEW E68, 041907 ~2003!
aN~g!2a`5
C1~d,ḡ !

I `~d!

a`2r 0

N
~2.43!

for N@1, to one-loop order. More generally, for anyN, from
Eqs.~2.11! and ~2.12!,

aN~g!2a`5S I N~d,ḡ !

I `~d!
21D ~a`2r 0! ~2.44!

to one-loop order. We recall that the ratioI N(ḡ,d)/I `(d)
here is given by Fig. 2, ford51 and 2, whereasI `(d)
5B(12d/4,d/2), so I `(d52)52 and I `(d51)>2.3936.
Equations~2.42!–~2.44! manifestly show that the strength o
the finite-size effect of the surface tensiong crucially de-
pends on the magnitude ofa`2r 0, i.e., the thermal expan
sion of the smectic bulk perioda` away fromr 0 minimizing
the net intermanifold potentialVnet(r )5V(r )1Pr.

To exemplify our results, let us consider the system st
ied in the experiments of Katsaras@17#, aimed to investigate
the VPP phenomenon~see Sec. I!. He studied multilamellar
La phase of bilayer DMPC fluid membranes (d52). The
bare intermembrane potential for these systems of neu
lipids is the sum of van der Waals attraction and hydrat
force repulsion,

V~r !'2
H

l 2 1Phlhe2 l /lh, ~2.45!

with l 5r 2amin5hn112hn2amin being the surface-to
surface intermembrane distance~water gap!, amin being the
membrane thickness~representing the smallest possib
smectic phase period!. Equation~2.45! applies for l up to
'amin . Here, for DMPC membranes, the material’s para
eters in the potential Eq.~2.45! are, after Ref.@19#, H
5WH/12p50.0483kBT (T5300 K), lh50.191 nm, Ph
51.323108 J/m3. For DMPC lipid bilayers,amin'4.4 nm,
whereas the membrane bending rigidity constantk
'12.8kBT. Let us consider the case with zero osmotic pr
sure,P50, so thatr 0 is obtained by minimizingV(r ) in Eq.
~2.45! over l 5r 2amin . This yields the equationPhlh

3/2H
5(lh / l )3exp(l/lh), yielding potential minimum atl 05r 0
2amin'6.5lh'1.243 nm, i.e.,r 055.64 nm. Due to ther-
mal fluctuations, the stack average period expands a
from r 0 to the true equilibrium valueaN . The magnitude of
this thermal expansion, for the infinite stack (N5`), can be
estimated by Eqs.~2.12!, ~2.18!, and ~2.45!, to be, for P
50,

a`2r 05Ad528 I `~d52!

5
l 0

2

F1212S lh

l 0
D 2G S l 0

lh
D 1/2

S 123
lh

l 0
D 3/2

kBT

2pA2kH
.

~2.46!

With l 0 /lh'6.5 as found above, one finds for DMPC,a`

2r 0'0.411 nm for the thermal period expansion in the bu
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(N5`). This estimate can be now easily combined with E
~2.43! to see the conditions needed for the finite-size V
effects to be observed in the experiments of Katsaras withLa
phases of DMPC membranes (d52). For this purpose, we
recall that hered52, and Eq.~2.43! is to be used with
I `(d52)52, whereasC1(ḡ,d52) is given by the simple
closed formula in Eq.~2.32!, depicted in Fig. 5~b! versusḡ
5g/dg. We stress that the values ofC1 are confined in a
finite range between the valuesC1522p/2.0 reached for
ḡ→0, andC152p/2,0 reached forḡ→`, @see, also, Fig.
5~b!#. With this range in mind, and by recalling thata`

2r 0'0.41 nm as found above, we see that Eq.~2.43! indi-
cates thatuaN(g)2a`u is less than 0.03 nm~the maximum
accuracy in the experiments of Katsaras@17#! already forN
.10 membranes, and forwhatevervalue of the surface ten
sion g. In fact, for N5600–1800 membranes, as in the i
vestigation of Katsaras@17#, the magnitude of the VPP finite
size effect in our Eq.~2.43! is uaN2a`u;331025 nm, far
below the experimental resolution. Our results thus expl
the enigmatic absence of noticeable VPP effects in these
periments~see Sec. I!. As uaN2a`u;(a`2r 0)/N, the pri-
mary limiting factor for the VPP phenomenon is a typica
small value of the stack period thermal expansiona`2r 0.
From our results, the best systems to study VPP effects
relatively small stacks, withN510–20 membranes. It is in
teresting to note that membrane stacks are in practice
quently asymmetric. For example, in the recent experim
of Vogel et al. @28#, one membrane is supported on a so
substrate~corresponding tog5` limit !, while the other one
was free to fluctuate in water@as in Fig. 1~e!, corresponding
to g50]. We are not going to pursue here a detailed disc
sion of asymmetric stacks. We just note that, by a reason
similar to that yielding Eq.~2.30!, for asymmetric stacks, on
also has the exact asymptotic formula

aN2a`5
l

N
1•••. ~2.47!

Here l5(l11l2)/2, with, to one-loop order, l i

5Ad8C1(ḡ i ,d)5(a`2r 0)C1(ḡ i ,d)/I `(d), (i 51,2), where
g1 and g2 are interfacial tensions of the upper and low
interfaces of the stack.

Thus, the finite-size VPP effects are shown here to
significantly limited by the sizeN of the stack, and by the
practically modest thermal expansion effects. Small sta
with 10–20 manifolds~such as the thin smectic films@26#!
would be best to use to investigate these effects in fut
experiments. We note that the validity of the one-loop the
pursued in this section is, in part, only qualitative, if th
theory is to be applied~at room temperature! to strongly
anharmonic potentials with sharp minima, such as the po
tial in Eq. ~2.45!. For this potential, at room temperatur
two- and higher-loop corrections are comparable to the o
loop result. For this reason, in Sec. III we consider in de
systems with strongly anharmonic potentials, with sha
nonanalytic minima. Interestingly, there we find that VP
effects in these entropically dominated systems are b
qualitatively and quantitatively similar to those found in th
7-11
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section, and can be understood by the one-loop theory
plied to effective~coarse-grained! potentials acting betwee
manifolds, see Sec. III. Finally, we stress that the anal
results discussed in this section are presented in the
tinuum limit Dx→0, with Dx being the manifold short-
distance cutoff@e.g., for membranes,Dx5 lipid molecule
size#. In fact, the stack model has a finite continuum limit f
d,4, and the corrections due to a finite molecular sizeDx
are small in practical situations@see the end of Appendix A#.

Finally, we comment on the magnitude of the charac
istic value of the interface tension separating the regime
the reverse and the ordinary VPP effects. From the result
this section, the crossover between the two regimes oc
for the interface tension g* 5ḡ* •dg5ḡ* Akb2

5O(1)Akb2. @See Eqs.~2.13! and~2.14!, and our results for
ḡ* .# For g smaller~bigger! thang* , aN is bigger~smaller!
than a` , and the reverse~ordinary! VPP effect prevails. A
special feature of the finite smectic stacks with tensiong
'g* is that they are nearly uniform@see Figs. 2–4, and
recall Eqs.~2.10! and ~2.11!#. It is not an accident that this
happens for interface tension'dg5Akb2. In fact, dg
5Akb25AKsmBsm is the well known smectic ‘‘elastic’’ sur-
face tension of the interface of semi-infinite smectic liqu
crystals@12,13#. Furthermore, it has been recently shown,
our work @12#, that applying interface tensions'dg makes
finite smectic stack nearly uniform forany N. This is because
for g'g* 'dg, finite stacks behave as subsystems of in
nite, spatially uniform smectic stacks@such as that in Fig.
1~a!#. Thus, for g'g* , one hasaN'a` , as evidenced in
Fig. 2 @here, recall Eq.~2.11!#. We direct readers to Ref.@12#
for details of this interesting effect in finite smectic stac
with interfacial tensionsg'dg.

III. FINITE-SIZE EFFECTS IN ENTROPICALLY
DOMINATED SMECTIC STACKS

In this section, we consider finite-size effects in the sta
of manifolds interacting through strongly anharmonic pote
tials, with nonanalytic minima. Typical examples are ste
cally stabilized phases of manifolds interacting through
hard-core potential of the form

Vhc~r !5H 0, r .amin

`, r ,amin .
~3.1!

Here, as in Sec. II,r 5hn11(x)2hn(x), and amin is the
manifold thickness setting the smallest possible period of
smectic phase. The net potentialVnet(r )5V(r )1Pr has a
nonanalyticminimum atr 5amin @see Fig. 6~a!# and the per-
turbation theory of Sec. II can not be directly applied to the
smectic systems of great practical and theoretical inte
@2,10–12,21–23#. As pointed out for the first time by Hel
frich @10#, the equation of state in these sterically stabiliz
systems is purely entropic in character of the form@11#

a`5b`~d!
~kBT!4/(41d)

kd/(41d)P(42d)/(41d)
1amin ~3.2!
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in the thermodynamic limitN→`. Here, for 2D smectic
phases of semiflexible polymers (d51), b`(d51)>0.611
~as recently found by us in Ref.@11#!, whereas for 3D smec
tic phase of membranes (d52), b`(d52)>0.595 ~see
Refs. @22,23#, and the discussion in the following!. Highly
entropic character of the equation of state~3.2! is physically
described by introducing the concept of the effective rep
sive potential, of the form

Ve f f~r !5
42d

2d
a`~d!

~kBT!4/(42d)

kd/(42d)~r 2amin!
2d/(42d)

~3.3!

with a`(d,g)5@b`(d,g)# (41d)/(42d), see Ref.@11#. Mini-
mization of the effective net potentialVnet(r )5Ve f f(r )
1Pr gives the steric equation of state~3.2!. We stress that
the above results apply ford,4, when the free semiflexible
manifolds are thermally rough. Then, also, the stack mo
has perfect continuum limitDx→0, with Dx, for example,
the lipid molecule size, in the application to lamellar phas
of membranes (d52), see Appendix A.

In the following we will study the finite-size effect in
these system, by means of an exact scaling analysis
Monte Carlo simulations. It will be shown that these resu
may be rationalized by the analytic results of Sec. II, p
vided one assumes that manifolds interact by effect

FIG. 6. ~a! The net potential for sterically stabilized system
Vnet(r )5Vhc(r )1Pr. ~b! A model potential for bound stacks o
manifolds. ForP5U0 /(amax2amin), potentials in~a! and ~b! are
the same forr ,amax.
7-12
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coarse-grained potentials such as that in Eq.~3.3!. Besides
the direct interest for the unbound stack of manifolds@with
a`→` for P→0, as in Eq.~3.2!#, our results will shine
more light also on the behavior ofboundstacks of manifolds,
in the situation in which potentials have analytic but sha
minima, yielding strong anharmonic effects of thermal flu
tuations. When the intermembrane distance fluctuates
away from the sharp analytic or nonanalytic minimum of t
potential, such as in Fig. 6~b!, analytic details of the potentia
close to its minimum do not matter. For example, the sh
nonanalytic potential minimum in Fig. 6~b! can be slightly
rounded and replaced by a sharp analytic minimum. Suc
change cannot affect significantly fluctuations of interme
brane distance, if their magnitude is bigger than the size
the rounded range. Such situations are frequently realize
practice at room temperature~see the end of Sec. II!. Inter-
membrane distance may strongly fluctuate far away from
sharp minimum of the intermembrane potential. The sum
the full perturbation theory is divergent in such situation
indicating that the fluctuations behave as in potentials w
sharp nonanalytic minima, such as the potential depicte
Fig. 6~b!. This potential has a finite rangeamax, but for r
,amax, it has exactly the same shape as the net potentia
the sterically stabilized systems,Vnet(r )5Vhc(r )1Pr, Fig.
6~a!, provided P5Uo /(amax2amin), with U0 being the
depth of the binding potential in Fig. 6~b!. Away from the
unbinding transition (a`2amin!amax2amin), the binding
potential in Fig. 6~b! should yield the same physics as the n
potential of the unbound sterically stabilized systems und
nonzero osmotic pressure, Fig. 6~a!. Thus, by studying it, one
can learn more also on the aforementioned strong entr
effects in the bound stack of manifolds.

We proceed by considering the stack Hamiltonian, E
~2.1!–~2.4!, with purely hard-core intermanifold interactio
potential in Eq.~3.1!. We will use the fact that the stac
model ford,4 has finite continuum limitDx→0 ~see Ap-
pendix A, and, also, Ref.@11#!. Thex coordinate can be thu
treated as continuous, and the stack model can be thus f
rescaled for the physically interesting manifolds withd51
~semiflexible polymers! or d52 ~membranes!. Here, it is
convenient to do this rescaling as follows:

x5Zxx8, hn~x!5Zhhn8~x8!1namin . ~3.4!

This transformation maps the stack model withaminÞ0, into
an isomorphic model withamin50, and the rescaled param
eters

P85PZx
dZh , k85kZh

2Zx
d24 , g85gZh

2Zx
d22 . ~3.5!

From Eq.~3.4!, we have, for the average intermanifold spa
ings,

aN~n,g!5^hn11~x!2hn~x!&P,k,g,amin

5Zh^hn118 ~x8!2hn8~x8!&P8,k8,g8,amin501amin .

~3.6!
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It is convenient to fix the rescaling constantsZx and Zh by
the conditions

P̄85
P8

kBT
51, k̄85

k8

kBT
51, ~3.7!

yielding, from Eq.~3.5!,

Zx5
~kBT!1/(41d)k1/(41d)

P2/(41d)
, Zh5

~kBT!4/(41d)

kd/(41d)P(42d)/(41d)
,

~3.8!

and from Eq.~3.6!,

aN~n,g!5bN~n,d,ḡ8!
~kBT!4/(41d)

kd/(41d) P(42d)/(41d)
1amin .

~3.9!

Here,

bN~n,d,ḡ8!5^hn118 ~x8!2hn8~x8!& P̄851,k̄851,ḡ8,amin50

~3.10!

is the average done with respect to the rescaled stack Ha
tonian with the reduced parametersP̄851, k̄851, as in Eq.
~3.7!, whereas, by using Eqs.~3.8! and ~3.5!,

ḡ85
g8

kBT
5

~kBT!2/(41d)

k (d12)/(41d)P4/(41d)
g. ~3.11!

The reduced rescaled stack Hamiltonian thus has the for

H

kBT
5E ddx8H (

n51

N21

@„hn118 ~x8!2hn8~x8!…

1Vhc„hn118 ~x8!2hn8~x8!…#1 (
n51

N
1

2 S ]2hn8~x8!

]x82 D 2

1
ḡ8

2 F S ]h18~x8!

]x8
D 2

1S ]hN8 ~x8!

]x8
D 2G J . ~3.12!

Here, the hard-core potentialVhc is as in Eq.~3.1! with
amin50. Notably, the average Eq.~3.10!, done with respect
to the Hamiltonian in Eq.~3.12!, depends only on a single
dimensionless parameterḡ8 defined in Eq.~3.11!. There is a
close relationship betweenḡ8 and the dimensionless surfac
tensionḡ5g/dg introduced in Sec. II@see Eqs.~2.13! and
~2.14!#: From Eq. ~2.14!, with b25d2Ve f f /da2, and from
Eq. ~3.3!, we find that, for the sterically stabilized smect
liquid crystals,

dg5A41d

42d
a`~d!

~kBT!2/(42d)

k (d22)/(42d)~a2amin!
4/(42d)

.

~3.13!

From Eqs.~3.13! and ~3.2!, one also has
7-13
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dg5A41d

42d

1

b`~d!

k (21d)/(41d)P4/(41d)

~kBT!2/(41d)
. ~3.14!

Thus, by using Eqs.~3.14! and ~3.11!,

ḡ5
g

dg
5A41d

42d
b`~d!ḡ8. ~3.15!

So, the parameterḡ of Sec. II is simply proportional to the
parameterḡ8 here, which is the single parameter of th
rescaled reduced Hamiltonian Eq.~3.12! to be used to find
the constantsbN(n,d,ḡ8) by doing the average in Eq.~3.10!.
These constants are nothing else but average interman
spacings for the rescaled reduced Hamiltonian Eq.~3.12!. We
can thus directly obtain the constantsbN(n,d,ḡ8) by Monte
Carlo simulations of the rescaled reduced Hamiltonian
~3.12!. Technical details of our simulations are the same a
our previous closely related work, Ref.@11# ~see the Appen-
dix therein!. As in Sec. II, here we are interested in the a
erage period of the whole stack, Eq.~2.6!, which is here, by
using Eq.~3.9!,

aN~g!5bN~d,ḡ8!
~kBT!4/(41d)

kd/(41d) P(42d)/(41d)
1amin

~3.16!

with

bN~d,ḡ8!5

(
n51

N21

bN~n,d,ḡ8!

N21
5

^hN8 ~x8!2h18~x8!&
N21

.

~3.17!

It is enlightening to express the above exact results i
form very similar to that we had in Sec. II: Using Eqs.~3.2!,
~3.9!, and~3.16!, we have

aN~n,g!5a`1
~kBT!4/(41d)

kd/(41d)P(42d)/(41d)
@bN~n,d,ḡ8!2b`~d!#

~3.18!

and

aN~g!5a`1
~kBT!4/(41d)

kd/(41d)P(42d)/(41d)
@bN~d,ḡ8!2b`~d!#

~3.19!

to be compared with Eqs.~2.10! and ~2.11!. We also have,
using Eqs.~3.16! and ~3.2!,

aN~g!2a`5S bN~d,ḡ8!

b`~d!
21D ~a`2amin! ~3.20!

to be compared with Eq.~2.44!. Obviously, the dimension
less constantsbN(d,ḡ8) here play a role similar to that of th
dimensionless quantitiesI N(d,ḡ) of Sec. II. This similarity is
further amplified by our numerical results for the consta
04190
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bN(d51,ḡ8) given in Fig. 7~a!, andbN(n,d51,ḡ8) in Fig.
7~b!, which are all obtained by Monte Carlo simulations
the rescaled model, by calculating the average in Eqs.~3.17!
and ~3.10!. Thus, Fig. 7~a! here clearly corresponds to Fig
2~a! of Sec. II, yielding@in combination with Eq.~3.20!# the
same qualitative message we get in Sec. II: In a range
small tensionsḡ8, one has the reverse VPP effect@Fig. 1~c!#,
with aN.a` , as if there are repulsive pseudo-Casimir forc
between stack surfaces. And, only for large enoughḡ8, the
ordinary VPP effect@Fig. 1~b!# occurs, withaN,a` , as if
there are attractive pseudo-Casimir forces~however, see Sec
II for our criticism of schematically using here the concept
such forces!. Local interlayer distancesaN(n) that we find
here also behave in a similar way as in Sec. II: Compare
3~a! of Sec. II with Fig. 7~b! here, both evidencing the cross
over from the reverse to the direct VPP effect regime w
increasing surface tension. Overall, the exact results from
simulations reflect the same crossover behavior we reve
in Sec. II, from the one-loop perturbative results. This obs

FIG. 7. ~a! Monte Carlo simulation results for the univers

functionbN(d51,ḡ8) for 2D stacks ofN semiflexible polymers and

~b! interlayer spacing universal functionbN(n,d51,ḡ8) versusn
for N510 polymer stack for various values of the surface tens

ḡ850, 0.5, 1, 2, 3, and 10 from top to bottom. The data in both~a!
and ~b! are well fitted by Eqs.~2.10! and ~2.11! ~solid lines! with
b`(d51).0.611 andAd8(d51).0.161.
7-14



ry
ith
u

h
er

th

ic
n

y

n,

x
u
s
y,
fo

re
a

th

D
er
ap
lo

id

an

he

tic

-

od

-

ith
lts
of

ins
ion

se-
e
e
ult

lue

-
of

-
ent

, that

a
th

FINITE-SIZE THERMOMECHANICAL EFFECTS IN . . . PHYSICAL REVIEW E68, 041907 ~2003!
vation is striking, having in mind that the perturbation theo
a priori cannot be directly applied to bare potentials w
nonanalytic minima, as in Fig. 6. Moreover, somewhat s
prisingly, we will show in the following that the similarity
between the simulations data and one-loop results isnot only
qualitative. It will be argued on quantitative grounds that t
simulations results can be very well quantitatively und
stood by assuming that the strongly entropic system~with
nonanalytic intermanifold potentials, as in Fig. 6! can be
described by analytic coarse-grained potentials, similar to
standard steric repulsion effective potential in Eq.~3.3!.

In fact, our simulation results in Fig. 7 for 2D smect
stacks of semiflexible polymers (d51) suggest some eve
more remarkable features.

~a! All the data can be fit, within a few percent accurac
by using just one-loop formulas such as Eqs.~2.10! and
~2.11!. Applied to the reduced Hamiltonian of this sectio
Eq. ~3.12! ( P̄85k̄851), this means

bN~n,d,ḡ8!5^hn118 ~x8!2hn8~x8!&

5b`~d!1Ad8@ I N~n,d,ḡ !2I `~d!# ~3.21!

and

bN~d,ḡ8!5
^hN8 ~x8!2h18~x8!&

N21

5b`~d!1Ad8@ I N~d,ḡ !2I `~d!#, ~3.22!

with ḡ8 and ḡ related by Eq.~3.15!. This is documented in
Figs. 7~b! and 7~a!. There we fitall the data, obtained at si
different values of the surface tension, by the one-loop eq
tions ~3.21! and ~3.22!, by treating the two parameter
therein,b`(d) and Ad8 , as fitting parameters. Surprisingl
these two-parameter fits provide an excellent description
all simulations data. Thus, Fig. 7~a! gives our simulations
results for the constantsbN(d,ḡ8) obtained from 639554
simulations, with different system sizesN and different sur-
face tensions. Note that all 54 simulations could be fit
markably well by justtwo-parameter one-loop fitting formul
for bN(d,ḡ8) in Eq. ~2.33!, with b`(d51)>0.611 and
Ad518 >0.161. These values provide also the good fits to

simulations data forbN(n,d51,ḡ8) in Fig. 7~b!, by using
the one-loop formula in Eq.~3.21!.

~b! Another surprising finding is that these results for 2
sterically stabilized smectic phases of semiflexible polym
(d51) can be rationalized simply by assuming that the
propriate coarse-grained potential to be used in the one-
formulas~3.21! and~3.22! is exactly the sameas the standard
effective potential for the sterically stabilized smectic liqu
crystals, Eq.~3.3!. Indeed, by using Eq.~3.3! @with kBT5k
51, andamin50, as in the reduced rescaled Hamiltoni
Eq. ~3.12!#, we find, using Eq.~2.18!,

Ad85
2

41d S 41d

42dD d/4 Sd

~2p!d

1

@b`~d!#d/4
. ~3.23!
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For d51 (Sd5152), with b`(d51)>0.611, Eq.~3.23! in-
deed givesAd518 >0.161, in a remarkable agreement with t
aforementioned value ofAd518 fitting well all our Monte
Carlo simulations in Fig. 7.

Let us summarize our quantitative findings on 2D smec
stack of semiflexible polymers (d51) with purely hard-core
repulsive@or with a binding potential as in Fig. 6~b!, in the
regime away from the unbinding transition#: The nonuniform
interpolymer spacingaN(n,g) and the average smectic pe
riod aN(g) are exactly given, respectively, by Eqs.~3.18!
and~3.19!. Theb-constants therein are given, to a very go
approximation, by Eqs.~3.21! and ~3.22!, with b`(d51)
>0.611, and Ad518 >0.161, and ḡ therein given by ḡ

5A3b`(d51)/5•ḡ8>0.605ḡ8 @after Eq.~3.15!#. Here, the
dimensionless surface tensionḡ8 is related to the actual sur
face tensiong by Eq. ~3.11!.

We would like to note that this excellent agreement w
the one-loop fitting formula was found by fitting the resu
of Monte Carlo simulations done in a moderate range
surface tensions~up to ḡ8510, as in Fig. 7!. It should be
stressed however that our one-loop fitting formula rema
very good even for very large values of the surface tens
g, and for small systems with justN53 semiflexible poly-
mers~when one would normally suspect the use of a coar
grained potential!. Indeed, we are able to solve exactly th
N53 polymers stack model in the limit of infinite surfac
tension. The details are given in Appendix B, with the res

bN53~d51,g5`!>0.416. ~3.24!

This is less than 5% smaller than the approximate va
obtained by our one-loop formula Eq.~3.22!, yielding
bN53(d51,g5`)>0.438. Figure 8~a! gives our one-loop
formula results forbN(d51,g) versusN for g50 and `
@solid lines#, as obtained by Eq.~3.22! with b`(d51)
>0.611 andAd518 50.161.

Furthermore, in Fig. 8~b!, we include also the correspond
ing results for 3D sterically stabilized smectic phases
membranes (d52), by giving bN(d52,g) versusN for g
50 and ` @solid lines#, as obtained by Eq.~3.22! with
b`(d52)>0.595 andAd528 >0.190. As detailed in Appen
dix B, we have obtained these values by relating the pres
constant osmotic pressure ensemble, in the limitg5`, to
the ensemble of membranes stacked between hard walls
has been extensively studied over recent years@22,23#. As
for d51, for d52 we also find that the one-loop formul
Eq. ~3.22! provides a very good fit to the existing data, bo
for g5` and forg50 @20#. For these two values ofg, Eq.
~3.22!, and Eqs.~2.21! and~2.22! provide nice closed formu-
las for the universal constants of membrane stacks

bN~d52,g50!

5b`~d52!1Ad528 H p

2~N21! FcotS p

4ND21G22J
5b`~d52!1Ad528

22 1
2 p

N
1••• ~3.25!
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and

bN~d52,g5`!

5b`~d52!1Ad528 H p

2~N21! FcotS p

4~N21! D21G22J
5b`~d52!2Ad528

1
2 p

N
1••• ~3.26!

depicted in Fig. 8~b!. The limitsg50 andg5` play special
role in the applications of our theory to the realistic syste
as detailed in Sec. IV. In contrast to thed51 case, for mem-
branes (d52), the valueAd528 >0.190 obtained by fitting to
the data is substantially different from the value that wo
be suggested by Eq.~3.23! ~yielding Ad528 50.119). This dif-
ference simply indicates that the appropriate coarse-gra
potential is not exactly the same as the standard effec

FIG. 8. Solid lines:bN(d,g) for g50 and`, as the function of
the number of manifoldsN, obtained by bN(d,g)5b`(d)
1Ad8@ I N(d,g)2I `(d)# for ~a! N-polymer stack (d51), and~b! N
membrane stack (d52). Dashed lines givebN(nmid ,d,g)
5b`(d)1Ad8@ I N(nmid ,d,g)2I `(d)# versusN for g50 and`, for
the layer in the middle of the stack withn5nmid5N/2 for N even,
andnmid5(N11)/2 for N odd. All the data are obtained by usin
b`(d51)50.611 andAd518 50.161, whereasb`(d52)50.595
andAd528 50.190.
04190
,

ed
e

potential Eq.~3.3!. We note that these two potentials ne
not be identical. Their near coincidence that we found for
sterically stabilized smectic stacks of semiflexible polym
(d51) is thus a puzzling but not essential feature of o
discussions here.

Overall, the one-loop theory results provide quantitative
very good description of finite-size effects in sterically sta
lized smectic stacks of both semiflexible polymers and me
branes. With this in mind, using Eqs.~3.20! and ~3.22!, we
have, for the smectic periodaN(g),

aN~g!2a`5
Ad8

b`~d!
@ I N~d,ḡ !2I `~d!#~a`2amin!,

~3.27!

with ḡ5ḡ8A(42d)b`(d)/(41d); here ḡ8
5g(kBT)2/(41d)/k (21d)/(41d)P4/(41d), see Eqs.~3.11! and
~3.15!. As in Sec. II, the finite-size effect expressed by E
~3.27! decays as 1/N, reflecting the general exact resu
stated in Eq.~2.40!. From Eqs.~3.27! and~2.41!, we find, for
N@1,

aN~g!2a`'
l~g!

N
~3.28!

with

l~g!5
Ad8C1~d,ḡ !

b`~d!
~a`2amin!, ~3.29!

to be compared with similar results in Sec. II@see Eqs.~2.42!
and ~2.43!#. Let us consider these results for the stacks
membranes (d52). With the aforementioned values ofAd528
and b`(d52), we have@Ad8/b`(d)#d52>0.319, whereas

C1(ḡ,d) is in the range betweenC1522p/2 for g50 and
C152p/2 for g5`. Thus, from Eq.~3.29!, l(g) is in the
range betweenl(g50) andl(g5`), with

l~g50!510.137~a`2amin! ~3.30!

and

l~g5`!520.502~a`2amin!. ~3.31!

Equations~3.28!–~3.31! provide useful estimates of the mag
nitude of finite-size effects forN@1. More generally, for a
finite but not necessarily largeN, for membranes stacks w
have, by using Eq.~3.27!, with @Ad8/b`(d)#d52>0.319, and
Eqs.~2.21! ~for g50) and~2.22! ~for g5`),

aN~g50!2a`

50.319H p

2~N21!FcotS p

4ND21G22J ~a`2amin!

~3.32!

and
7-16
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aN~g5`!2a`

50.319H p

2~N21!FcotS p

4~N21! D21G22J ~a`2amin!.

~3.33!

Let us now address the magnitude of these effects
relation to our previous discussion of the experiments of K
saras@17# aimed to investigate the VPP phenomenon~see
Sec. I, and the end of Sec. II!. As noted before in this section
at room temperature the actual experimental membrane
tem may be characterized as a strongly entropic system
bare binding potential with a sharp minimum, of the for
depicted in Fig. 6~b!. Away from membrane unbinding tran
sition, the physics going with this potential is the same as
the sterically stabilized phases under an osmotic pressure~re-
call the discussion of Fig. 6!. We can thus use the abov
results to argue about the visibility of VPP effects in t
experimental system of Katsaras with the bound stacks
DMPC membranes@17#. For these systems, experimenta
the stack perioda`'6.2 nm, whereasamin can be identified
with the position of the minimum of potential~2.45!, amin
>r 0'5.64 nm, by the results of Sec. II. Thus, the therm
stack period expansiona`2amin>a`2r 0'0.56 nm. For
example, let us consider the limitg5`, where the VPP ef-
fect is the strongest. From Eqs.~3.31! and ~3.28!, aN2a`

'20.50130.56 nm/N'20.28 nm/N. Thus, withN in the
range betweenN5600 and 1800 membranes, as in the e
periments of Katsaras@17#, aN2a` is in the range between
24.631024 nm and21.631024 nm. So, the magnitude o
the finite-size effect,aN2a` , is hundred times smaller tha
331022 nm, which is the maximum accuracy in the expe
ments of Katsaras@17#. Thus, our results well explain th
absence of a noticeable VPP effect in these experiments
requiring thatuaN2a`u be within the experimental accurac
one has 0.28 nm/N.331022 nm, yielding N,9 mem-
branes. Thus, forN.10 membranes, the VPP effect becom
practically unobservable in these experiments. Recall tha
have reached quantitatively the same conclusion in our
cussions in Sec. II, through the application of the one-lo
theory to the bare interaction potential~2.45!, which is mar-
ginally strongly entropic at room temperature. It has be
pointed out however that the results obtained in that w
may be unwarranted~at room temperature!. It is thus pleas-
ing to see that the more careful treatment of strong entro
effects, presented in this section, yields nearly the sa
quantitative estimates. It should be stressed that this is n
result of a simple coincidence, but rather a consequenc
the fact that a strongly entropic system can be quantitativ
well treated by the one-loop theory in combination with su
ably defined effective potentials. Due to this, we had a str
similarity of the results presented in this section with t
results of Sec. II. Thus, Eq.~3.27! of this section can be
given in the form

aN~g!2a`5Q~d!F I N~d,ḡ !

I `~d!
21G ~a`2amin! ~3.34!
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with Q(d)5Ad8I `(d)/b`(d)5Ad8B(12d/4,d/2)/b`(d). Up
to the proportionality constantQ(d), Eq. ~3.34! is remark-
ably the same as Eq.~2.44! of Sec. II. Finally, it is interesting
to note that, surprisingly, the constantQ(d) has nearly the
same value ford51 andd52. Indeed, ford51, by using
our fit values Ad518 50.161, b`(d51)50.611, and
B(3/4,1/2)52.3963, we findQ(d51)>0.631. Likewise, for
d52, by using the aforementioned valuesAd528 50.190,
b`(d52)50.595, and B(1/2,1)52, we find Q(d52)
>0.639. Thus, to a high, 1% accuracy,Q(d51)>Q(d
52). Understanding this~at least approximate! superuniver-
sality of Q(d) is beyond our scope here. We point it howev
as an inspiration for future studies. Another~likely related!
aspect left for future studies is to explain the high accura
provided by the simple one-loop formulas in fitting the r
sults from Monte Carlo simulations. How come that we d
not need, say, two-loop contribution to fit all the results w
a high ~few percent! accuracy?

Finally, let us elucidate the behavior of the local smec
~intermanifold! interlayer distances, aN(n)5^hn11(x)
2hn(x)&, for thenth layer of anN-manifold stack. For them
we have, from Eqs.~3.2!, ~3.18! and ~3.21!,

aN~n,g!2a`5FbN~n,d,ḡ8!

b`~d!
21G ~a`2amin!

5Q~d!F I N~n,d,ḡ !

I `~d!
21G ~a`2amin!.

~3.35!

In Fig. 9, we plot the ratioI N(n,d,ḡ)/I `(d) for the interest-
ing limits g50 andg5`, for d51 andd52, for stacks of
various sizesN. It is instructive to compare the local inte
layer distances in Eq.~3.35! with their stack average valu
aN(g), see Eqs.~3.20! and~3.34!. From Eq.~3.35! and Fig.
9, we see that, for stacks withN.10 manifolds, highly non-
uniform interlayer distances occur only close to the sta
surfaces. The interlayer distances close to stack ce
aN(nmid) with nmid'N/2, approach their thermodynami
limit more quickly than the average stack periodaN . This is
evidenced in Fig. 8, depictingbN ~solid lines! for the whole
stack period@see Eq.~3.20!#, and bN(nmid) ~dashed lines!
for the interlayer distances at the stack center@see Eq.
~3.35!#. Obviously,bN(nmid) approaches its thermodynam
limit b` more quickly than bN . Thus, importantly,
uaN(nmid ,g)2a`u!uaN2a`u for N@1. In fact, recall that
aN2a`;1/N, whereas, from Eq.~3.35!, uaN(nmid)2a`u
;1/N11d/2, as already noted in Sec. II. It follows that th
main contribution to the differenceaN2a` comes from the
layers close to the stack interfaces rather than those clos
its center. Figure 9 clearly documents this feature@see also
Sec. II, Eqs.~2.38!–~2.41!, and discussions therein#. Experi-
mental implications of this fact are discussed in Sec. IV@see
item ~4! therein#.

IV. COMMENTS AND SUMMARY

We begin this section by commenting on the effects o
typically large value of water liquid-vapor surface tensiong.
It will be convenient to expressg as
7-17
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g5
kBT

l g
2

. ~4.1!

Here, l g5AkBT/g is a characteristic surface tension leng
scale. Typically,l g is small compared to the lamellar pha
period a. Indeed, with g'7031023 J/m2, one has l g
'0.24 nm at room temperature, whereasa;6 nm, for
bound stacks of membranes@see Sec. II end#, or evena
;50 nm for highly swollen phases of unbound membra
@2,10–12#. The large separation between the length scalel g
and the stack perioda has profound implications on the mag
nitude of dimensionless surface tensionḡ5g/dg, intro-
duced in Sec. II, see Eqs.~2.13! and~2.14!. For example, for
sterically stabilized membrane phases,dg5Akb2, with b2
52]P/]a51]2Ve f f /]a2. Here Ve f f is as in Eq. ~3.3!,
with d52, yielding

b253a`~d52!
~kBT!2

k l 4 53
P

l
~4.2!

FIG. 9. The universal functionsI N(n,d,ḡ)/I `(d) for g50
~solid lines! andg5` ~dashed lines!, for ~a! various 2D stacks ofN
semiflexible polymers,d51, and~b! various 3D stacks ofN fluid
membranes,d52. We note that ford52, I `(d52)52, whereas

I N(n,d,ḡ) for g50 andg5` is given analytically by Eqs.~2.23!
and ~2.24!.
04190
s

and

dg5A3a`~d52!
kBT

l 2 , ~4.3!

with a`(d52)5@b`(d52)#3>0.212 ~see Sec. III!, and l
5a2amin , membrane surface-to-surface separation (amin ,
the membrane thickness!. Using Eqs.~4.2! and ~4.3!, the
dimensionless surface tension

ḡ5
g

dg
5

1

A3a`~d52!
S l

l g
D 2

>1.25S l

l g
D 2

. ~4.4!

For, say,l'1 nm andl g'0.24 nm, from Eq.~4.4!, we have
ḡ'20. So,ḡ@1 for the sterically stabilized system of repe
ling membranes, even for the modest membrane separat
Essentially, the same estimate as in Eq.~4.3! is obtained also
for the bound stacks of membranes, for the realistic sit
tions with strong entropic effects@see Sec. III, the discussio
of Fig. 6~b! therein#. Thus, quite generally for strongly en
tropic systems,ḡ@ḡ* (d52)>0.592 @see Sec. II and Fig
5~b!#. It would be thus tempting to assume that, to a go
approximation, one can apply to these systems the resul
Secs. II and III in the limitḡ→` @see, e.g., Eqs.~2.22!,
~2.29!, ~3.31!, and ~3.33!, and Fig. 7#. This conclusion is
however unwarranted as the liquid-vapor interface is
firmly bound to the outmost membranes of the stack, as
sumed in the discussion of Secs. II and III. Elsewhere,
Ref. @29#, we reexamine our results in light of a more rea
istic model that incorporates the degrees of freedom ass
ated with liquid-vapor interfaces. Interactions between th
interfaces and nearby membranes are typically repulsive,
liquid-vapor interfaces are generally expected to unbind fr
the stack forP→0. This may provide a mechanism weake
ing the surface tension VPP effects, as already noted
Nagle and Katsaras@18#. In Ref. @29# we find that this is
indeed the case for theboundstacks of manifolds such a
DMPC bilayers discussed in Secs. II and III. For such stac
in the limit of zero surface osmotic pressure,P→0, the stack
periodaN approaches a finite value, whereas the vapor-liq
interface completely unbinds from the stack under the in
ence of repulsive~disjoining! van der Waals forces, as w
detail in Ref.@29#. For P→0, such stacks behave exactly
the zero surface tension stacks in Secs. II and III@see also
Fig. 1~e!, and the discussion following Eq.~2.4!#. Thus, for
example, using Eq.~3.32! @or Eq. ~3.34! with ḡ50], for the
average period ofN-membrane stacks we have

aN5
^hN~x!2h1~x!&

N21

5a`1Q~d52!H p

4~N21!FcotS p

4ND21G21J ~a`2r 0!

~4.5!

with Q(d52)>0.639, and, for example,a`2r 0'0.56 nm
being the thermal expansion for DMPC@see Sec. III#. Like-
wise, the local average intermembrane spacings are give
7-18
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aN~n!5^hn11~x!2hn~x!&

5a`1Q~d52!F I N~n,d52,ḡ50!

2
21G ~a`2r 0!,

~4.6!

with I N(n,d52,ḡ50) explicitly given by Eq.~2.23!. We
note that for practically significant limitN@1, from Eq.
~4.5!, we have also the equation

aN2a`>
1

2 S 22
p

2 DQ~d52!
a`2r 0

N
>0.137

a`2r 0

N
,

~4.7!

providing a useful simple result for discussing the expe
mental visibility of finite-size effects in the bound stacks
zero osmotic pressure, as exemplified for the case of DM
in Sec. III. We note that hereaN.a` in Eqs.~4.5! and~4.7!
reflecting the presence of our reverse VPP effect@Fig. 1~c!#
revealed in Secs. II and III.

A different behavior is found for theunbound, sterically
stabilized stacks of membranes. For them, too, forP→0, the
tense vapor-liquid interfaces unbind from the stack, due
repulsive van der Waals forces@29#. However, forP→0, the
tensionless stack membranes themselves also unbind. I
membrane separation divergesfaster than the separation be
tween the stack and the vapor-liquid interfaces, as we de
in Ref. @29#. There, we show that fromP→0, i.e., for highly
swollen stacks we can directly use our results of Sec.
obtained in the limit of infinite surface tension. Thus, f
example, using Eq.~3.33! @or Eq. ~3.34!#, for the average
period ofN-membrane stacks we have

aN5
^hN~x!2h1~x!&

N21

5a`1Q~d52!H p

4~N21!FcotS p

4~N21! D21G21J
3~a`2amin! ~4.8!

with Q(d52)>0.639, and a`2amin5b`(d52)
3(kBT)2/3/k1/3P1/3, with b`(d52)50.595 ~see Sec. II!.
Likewise, the local average intermembrane spacings
given by

aN~n!5^hn11~x!2hn~x!&

5a`1Q~d52!F I N~n,d52,ḡ5`!

2
21G ~a`2amin!

~4.9!

with I N(n,d52,ḡ5`) explicitly given by Eq. ~2.24!. We
note that, for the practically significant limitN@1, using Eq.
~4.8!, we have also the equation

aN2a`>2
p

4
Q~d52!

a`2amin

N
>20.502

a`2amin

N
,

~4.10!
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providing a useful simple result for discussing the expe
mental visibility of VPP effects in these systems. We no
that hereaN,a` in Eqs.~4.8! and~4.10! reflecting the pres-
ence of the ordinary VPP effect@Fig. 1~b!#, as detailed in
Secs. II and III.

Let us summarize our major results and compare th
with the previous theoretical study of Podgornik and Par
gian, Ref.@14#.

~1! We find that both the reverse (aN.a`) and ordinary
(aN,a`) finite-size VPP effects may be present in smec
stacks ofN semiflexible manifolds, as conceptualized in F
1. The magnitude of these effects is limited by the magnitu
of the stack thermal expansion. For example, forN@1, we
find thataN2a`>l/N, with ulu;ua`2r 0u being the stack
period thermal expansion away fromT50 smectic period
r 0. As detailed in Secs. II and III, this feature of our theo
well explains the absence of noticeable VPP effects in
experiments of Katsaras@17#. l(g) depends on the surfac
tension of interfacial manifolds. However, it has finite limi
for g→0 and g→`. For example, l(0)520.137(a`

2r 0), l(`)510.502(a`2r 0), for entropically dominated
membrane stacks@in both unbound and bound lamella
phases, see Sec. III#. This result is in contrast to the corre
sponding results of Podgornik and Parsegian in Ref.@14#,
yielding much largerl, for example, l(`)52(1/3a`)
3@(a`2r 0)/Dx#2(k/kBT)(a`2r 0). In their theory, ulu
@ua`2r 0u, ask/kBT;10, and, more importantly,ua`2r 0u
@Dx is the short-distance cutoff@Dx;1 nm, the lipid mol-
ecule size#. Note that for the unbound stacks of membran
with a`2r 0'a`;100 nm@Dx, the Podgornik-Parsegia
result forl(`) exceeds the thermal stack period expans
by a factor of 104. Moreover, the Podgornik-Parsegia
theory strangely predicts that the smectic periodaN of steri-
cally stabilized ~purely repelling! membrane stack ap
proaches afinite value (aN)max5amin1(akBT/k)1/2DxAN,
in the limit of zero osmotic pressure,P→0. Such an unex-
pected effect has never been observed in a sterically s
lized system of unbound membranes, and contradicts
common intuition on the behavior of purely repelling man
folds. Our theory is free of such unphysical results. See,
example, our Eqs.~3.2!, ~3.9!, ~3.16!, ~3.33!, ~4.7!, or ~4.10!,
all manifestly showing thataN;1/P1/3→` as P→0. We
stress, this is an exact~nonperturbative! result.

~2! So, what is causing the problems in the theory
Podgornik and Parsegian? It is the very first assumption d
in the theory, to use the smectic continuum elastic model,
standard Landau-Peierls model of smectic liquid crysta
which ignores the layered character of the smectic liq
crystals and replaces the smectic displacementun(x) with
the continuum fieldu(z,x), with z5na. Next, it was as-
sumed that the smecticz coordinate is essentially continuou
(Dz50), whereas the only short-distance cutoff isDx ~lipid
molecule size!. However, trulyDz5a ~smectic phase period!
and, in practical situations,Dz.Dx. So, takingDz50 and
keepingDx as the only short-distance cutoff is obviously
problematic assumption of the theory of Podgornik and P
segian. It is the major cause of the difficulties of their theo
discussed in item~1! above. This assumption yields large an
7-19
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unphysical predictions for the VPP phenomena in Ref.@14#.
These problems culminate in their prediction of the artific
maximum period (aN)max;DxAN for the sterically stabi-
lized lamellar phases of purely repelling membranes@note
that, strangely, this (aN)max goes to zero forDx→0].

~3! In contrast to the theory of Podgornik and Parsegi
our theory does not make the assumption that the smecz
coordinate is continuous. Rather than using the continu
Landau-Peierls model, we keep in our calculations the
crete, layered character of smectic liquid crystals, by desc
ing smectic layers by their height functionshn(x), n
51,2,3, . . . ,N. Thus, rather than dealing with the smec
continuum model employed by Podgornik and Parsegian,
employ here a more microscopic smectic model withN in-
teracting semiflexible manifolds. Within this approach, im
portantly, all interesting results@smectic average period, etc#
have a finite value in the continuum limitDx→0, in contrast
to the results of Podgornik and Parsegian in Ref.@14#. In
fact, throughout this paper we presented our results in
limit Dx→0 ~corrections due to a nonzeroDx are small in
practical situations, see the end of Appendix A!.

~4! An essential feature of our results here is the spati
nonuniform character of smectic interlayer distances,aN(n)
5^hn11(x)2hn(x)&, for the nth layer of an N-manifold
stack. They have not been calculated in the previous stu
of the VPP phenomena. Thus, the Podgornik-Parse
theory, Ref. @14#, effectively assumes that interlayer di
tances are uniform,n-independent, and schematically d
scribes VPP effects in terms of pseudo-Casimir forces.
have demonstrated here that such a picture obscures the
nature of the VPP phenomena. Their essence is in spat
nonuniform thermal expansion of smectic interlayer d
tances as revealed in Sec. II@see the discussion following Eq
~2.34!#. We have found that the VPP phenomenon itself, i
the differenceaN2a` , is in large part related to the behavio
of local interlayer distancesaN(n) in the regions close to the
stack interfaces, see Eqs.~2.38!–~2.41!, and the discussion
at the end of Sec. III, and Figs. 8 and 9 therein. Here,
recall thataN2a`;1/N, whereas for the interlayer distance
aN(n) close to the stack center,n'N/2, we haveaN(n
5N/2)2a`;1/N11d/2!1/N. Thus, we haveuaN(n5N/2)
2a`u!uaN2a`u, and the main contribution to the differ
ence between the stack average periodaN and its thermody-
namic limit valuea` comes from the layers close the sta
surfaces, as evidenced in Fig. 9. This fact provides furt
severe limitations to the experimental observations of V
phenomena based on standard x-ray diffraction~Fourier
transform! techniques which are probing interlayer distanc
close to the center of the stack. For them we haveaN(n
5N/2)2a`'(aN2a`)/Nd/2. Thus, for membrane stack (d
52), with N;1000~as in the experiments of Katsaras@17#!,
aN(n5N/2)2a` is about thousand times smaller thanaN
2a` , which itself is already smaller than the experimen
resolution@see Secs. II and III#. As detailed in Secs. II and
III, finite-size VPP effects are practically significant only
small stacks with up toN;10 manifolds such as the thi
smectic film@26#.

~5! Beyond the significance for VPP effects, our resu
are of a more fundamental interest for the statistical mech
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ics investigations of smectic stacks, such as the work
Bachmannet al. @22#. We find that finite-size effects in
strongly entropic stacks, such as the sterically stabiliz
phases, can be describedquantitativelywell by a simple ana-
lytic one-loop theory@see Sec. III#. The assumption underly
ing the success of such an approach to these nonperturb
problems, namely, the existence of suitably defined effec
~coarse-grained! potentials is well documented by the prese
study, by carefully relating the analytic theory of Sec. II
Monte Carlo simulations of Sec. III. We highlight this find
ing because of its interest for future theoretical studies
smectic stacks of manifolds.
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APPENDIX A:

Here, we discuss the results outlined in Sec. II. First,
present the derivation of our Eq.~2.7!. Prior to giving its
formal derivation, we give a simple physical interpretation
the one-loop perturbation theory result for local smec
spacings in Eq.~2.7!. The result is easily rationalized b
considering the interaction part of the smectic Hamilton
of Sec. II,

Hint5E ddxH (
n51

N21

Vnet„hn11~x!2hn~x!…J
5E ddxH (

n51

N21 Fb01
b2

2
@en~x!#21

b3

3!
@en~x!#31•••G J

~A1!

with en(x)5un11(x)2un(x)5hn11(x)2hn(x)2r 0. Within
the harmonic approximation (b3→0, etc.!, one haŝ en(x)&
50, i.e., ^hn11(x)2hn(x)&05r 0, simply because the har
monic smectic Hamiltonian has the symmetryen(x)
→2en(x). This symmetry is however broken by the od
anharmonic terms such asb3@en(x)#3/3!, etc. Thus,
^en(x)&Þ0, in general, due to the anharmonic terms.
simple and appealing way to see this is by replacing in
~A1! the cubic termb3en(x)en(x)en(x)/3! by the term
Cen(x)^@en(x)#2&0/3!, with C being a numerical constan
This self-consistent ‘‘statistical linearization’’ of the proble
can be shown to yield the correct result~to one-loop order!
providedC53, see below. With this self-consistent approx
mation,

Hint5E ddxH (
n51

N21 Fb01
b2

2
@en~x!#2

1C
b3

3!
^@en~x!#2&0en~x!G J . ~A2!

Thus, the cubic term produces an effective entropic lo
stress;b3^@en(x)#2&0 in the second term of Eq.~A2!. This
7-20
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stress introduces a nonzero local strain^en(x)&, which can
be simply obtained by minimizing the aboveHint in Eq. ~A2!
over en(x). This easily yields

^hn11~x!2hn~x!&2r 0[^en~x!&

52
Cb3

3!b2
^@en~x!#2&0

52
Cb3

3!b2
^@un11~x!2un~x!#2&0 .

~A3!

Equation ~A3!, with C53, is indeed in accord with Eq
~2.7!. Equation~A3! is strictly valid as the leading~one-loop!
term of the low-temperature expansion. Indeed, in the lowT
limit, it suffices to keep only the cubic anharmonic term

Hint
(3)5 (

n51

N21 E ddx
b3

3!
@en~x!#3 ~A4!

in Eq. ~A1!. By expanding the Boltzmann factor in powers
this term, one has the perturbation expansion,

^en~x!&5^en~x!&0

2
1

kBT
@^en~x!Hint

(3)&02^en~x!&0^Hint
(3)&01•••#,

~A5!

where, as before,̂•••&0 signifies the average with respect
the harmonic stack Hamiltonian Eq.~2.9! @or, Eq. ~A9! be-
low#. As ^en(x)&050, we thus have

^en~x!&52
1

kBT
^en~x!Hint

(3)&0 ~A6!

to the leading order at lowT. For the harmonic average o
the right-hand side of this equation, we have, by the W
theorem,

^en~x!&52
1

kBT

b3

3!K en~x! (
n851

N21 E ddx8@en8~x8!#3L
0

52
1

kBT

3b3

3! (
n851

N21 E ddx8^en~x!en8~x8!&0

3^@en8~x8!#2&0 . ~A7!

For a harmonic smectic Hamiltonian with just nearest nei
bor interactions~such as Eq.~2.9!, or Eq. ~A9! below!, it is
straightforward to show that

E ddx8^en~x!en8~x8!&05^en~q!en8~Àq!&0uq50

5
dnn8kBT

b2
. ~A8!
04190
k
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By noting that^@en8(x8)#2&0 on the right-hand side of Eq
~A7! does not depend onx8, and by using Eq.~A8!, we find
that Eq.~A7! yields Eq.~A3! with C53, i.e., Eq.~2.7!.

Next, we outline here the derivation of Eqs.~2.10!–~2.15!
by calculating the harmonic average in Eq.~2.7!, i.e., Eq.
~A3!. For a general value of the surface tensiong, such
calculation poses a difficult but tractable analytic proble
see Refs.@12# and@26#. Here, we will solve this problem by
the method of effective Hamiltonians elaborated in our
cent study@12#. To obtain the average in Eq.~2.7!, we con-
sider the harmonic smectic Hamiltonian Eq.~2.9! in the form

H05E
q
F (

n52

N21
1

2
kq4uũn~q!u21 (

n51

N21
b2

2
uũn11~q!2ũn~q!u2

1Ksur f
(1) ~q!uũ1~q!u21Ksur f

(N) ~q!uũN~q!u2G , ~A9!

with *q5*ddq/(2p)d andũn(q) being the Fourier transform
of un(x). The average in Eq.~2.7! involves only un11(x)
and un(x). This harmonic average can be found exactly
constructing an effective Hamiltonian forun11(x) and
un(x), He f f(un11 ,un), that is obtained by minimizingH0 in
Eq. ~A9! for a fixed shape of the manifoldsun(x) and
un11(x). First, let us consider the manifolds under thenth
manifold and obtain the effective HamiltonianHe f f(un) for
the nth manifold by minimizing H0 Eq. ~A9! over
u1 ,u2 , . . . ,un21 for a fixed un . This minimization can be
done in several interesting ways. For example, as detaile
Ref. @12#, such a problem can be reduced~by successive
minimizations overu1 ,u2 , . . . ,un21) to iterating the recur-
sion relation

Km11~q!5kq41
b2Km~q!

b21Km~q!
, m51,2,3, . . . ,n21

~A10!

with the initial condition

K1~q!5Ksur f
(1) ~q!. ~A11!

After (n21) iteration steps, all the manifolds except the la
one, un, are integrated out, and one regains the effect
Hamiltonian

He f f~un!5E
q

1

2
Kn~q!uũn~q!u2. ~A12!

Our task now is to find the dispersion relationKn(q) by
iterating Eq.~A10!. For this purpose, it is interesting to no
that the recursion relation Eq.~A10! can be mapped into the
calculation of theequivalent resistanceof the circuit shown
in Fig. 10~a! with resistancesKm(q), kq4, andb2. Conse-
quently,Kn(q) is the equivalent resistance of the ladder c
cuit in Fig. 10~b!, Kn(q)5ũn /I . By the first Kirchhoff’s
rule, the voltages at junctions in Fig. 10~b! satisfy
7-21
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ũm112ũm

kq4
1

ũm212ũm

kq4
5

ũm

b2
, m52,3, . . . ,n21.

~A13!

Physically, the voltages in Eq.~A13! correspond to smectic
phonon displacementsũm(q) in Eq. ~A9! @in fact, Eq.~A13!
can be more directly obtained by varying Eq.~A9! over
ũm(q)]. Equation~A13! can be solved by setting

ũm5A1R1
m1A2R2

m. ~A14!

From Eqs. ~A13! and ~A14!, one finds the characteristi
equation forR1 andR2 of the form

R221
1

R
5

kq4

b2
. ~A15!

From Eq.~A15!,

R1~q!5
1

R2~q!
511

kq4

2b2
2AS 11

kq4

2b2
D 2

21,1.

~A16!

The equivalent resistanceKn(q)5ũn /I can be obtained by
invoking two ‘‘boundary conditions’’@obvious from Fig.
10~b!#,

I 5
ũn2ũn21

kq4
5

ũn

Kn~q!
~A17!

and

ũ15

b2K1~q!

b21K1~q!

kq41
b2K1~q!

b21K1~q!

ũ2 . ~A18!

FIG. 10. ~a! Simple circuit for the calculation of equivalent ‘‘re
sistance’’Km11(q). ~b! Ladder circuit used for the calculation o
the equivalent resistanceKn(q)[K,(q).
04190
From Eqs.~A14!–~A18!, we obtain the final form ofKn(q)
5ũn /I as

Kn~q!5b2S 1

R1
21D11

Z

R1
R1

2(n21)

12
Z

R1
2 R1

2(n21)

. ~A19!

For K1(q)5Ksur f
(1) (q)5gq21kq4, as in Sec. II, the quantity

Z in Eq. ~A19! has the form

Z~R1!5R1
2ḡAR12R1

ḡAR111
~A20!

with ḡ5g/Akb2. On the other hand, for the more gener
interface dispersion relation discussed in Ref.@29#, of the
form

K1~q!5Ksur f
(1) ~q!5kq41

b2
(sur f)~k8q41gq2!

b2
(sur f)1k8q41gq2

,

~A21!

Z in Eq. ~A19! has the form

Z~R1!5R1
2

Fk8

k
~12R1!1ḡAR1GF12~12R1!

b2

b2
(sur f)G2R1

Fk8

k
~12R1!1ḡAR1GF11

12R1

R1

b2

b2
(sur f)G11

.

~A22!

Now we are in the position to consider the whole stack
manifolds. TheN2n manifolds above the (n11)th mani-
fold can be treated in a similar way as the manifolds bel
thenth manifold. This eventually yields the effective Hami
tonian for ũn(q) and ũn11(q) of the form

He f f~un ,un11!5E
q

1

2
@K,~q!uũn~q!u2

1b2uũn11~q!2ũn~q!u2

1K.~q!uũn11~q!u2#, ~A23!

with K,(q)5Kn(q), as in Eq.~A19!, whereas

K.~q!5b2S 1

R1
21D 11

Z

R1
R1

2(N2n21)

12
Z

R1
2 R1

2(N2n21)

. ~A24!

Having the harmonic effective Hamiltonian in Eq.~A23!, we
finally obtain
7-22
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q K,~q!K.~q!

K,~q!1K.~q!
1b2

5
kBT

b2
E ddq

~2p!d

2S 12
Z2

R3R2(N22)D1
Z

R2 ~R21!~R2(n21)1R2(N212n)!

S 11
1

RD S 12
Z2

R2 R2(N22)D . ~A25!

~For simplicity, here and now on, we writeR instead ofR1.!
¯

1
N21

mp d/4
d

q.
Eq

ar
-

-
nite
For d,4, in the continuum limitQmax;1/Dx→`, the inte-
gration overq(0,q,`) in Eq. ~A25! can be conveniently
converted into the integration overR (1.R.0) with the aid
of relation betweenq andR in Eq. ~A15!, yielding

^@un11~x!2un~x!#2&5
Sd

~2p!d

kBT

2b2
S b2

k D d/4

I N~n,d,ḡ !

~A26!

with Sd being the d-dimensional unit sphere area an
I N(n,d,ḡ) as in Eq.~2.15!. After the summation overn, we
get the average for the whole stack

1

N21 (
n51

N21

^uun11~x!2un~x!u2&

5
Sd

~2p!d

kBT

2b2
S b2

k D d/4

I N~d,ḡ ! ~A27!

with I N(d,ḡ) as in Eq.~2.16!. By combining Eqs.~A26! and
~A27! with Eqs. ~2.7! and ~2.8!, we eventually find our re-
sults in Eqs.~2.10!–~2.12!, with I N(n,d,ḡ) and I N(d,ḡ)
therein as in Eqs.~2.15!–~2.16!. Therein,Z has the form as
in Eq. ~2.17!, for the interface dispersion relation in E
~2.4!. For a more general interface dispersion relation in
~A21!, Eqs.~2.15! and~2.16! are to be used withZ as in Eq.
~A22!.

For the two special values ofḡ50 or `, the average in
Eq. ~A26! can be calculated also by diagonalizing the h
monic Hamiltonian~A9! @for ḡÞ0,̀ , the eigenvalue prob
lem cannot be solved exactly#. This diagonalization yields
the following interesting results:

I N~n,d,ḡ !5
p

sinS d

4
p D212d/4

CN~n,d,ḡ ! ~ ḡ50 or `!

~A28!

with
04190
.

-

CN~n,d,g50!5
N (

m51
F12cosS N D G

3F12cosS 2mp

N
nD G ~A29!

and

CN~n,d,ḡ5`!5
1

N21 (
m51

N22 F12cosS mp

N21D Gd/4

3F11cosS 2mp

N21 H n2
1

2J D G , ~A30!

Also, we find

I N~d,ḡ !5
p

sinS d

4
p D212d/4

CN~d,ḡ ! ~A31!

with

CN~d,ḡ50!5
1

N21 (
m51

N21 F12cosS mp

N D Gd/4

~A32!

and

CN~d,ḡ5`!5
1

N21 (
m51

N22 F12cosS mp

N21D Gd/4

.

~A33!

Using Eqs.~A28!–~A33!, one can show the following inter
esting relations between the systems with zero and infi
surface tension:

I N11~d,ḡ5`!5
N21

N
I N~d,ḡ50! ~A34!

and

I N11~n1 1
2 ,d,ḡ5`!52I N11~d,ḡ5`!2I N~n,d,ḡ50!.

~A35!

Using Eq. ~A35!, we find for semi-infinite smectics (N
→`),
7-23
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D~n1 1
2 ,d,ḡ5`!52D~n,d,ḡ50!, ~A36!

with D(n,d,ḡ)5I `(n,d,ḡ)2I `(d) as in Eq.~2.26!. From
Eqs. ~A36! and ~2.25!, for inter-layer distances in sem
infinite systems, we find the relation

a`~n1 1
2 ,g5`!2a`52@a`~n,g50!2a`#

to be true for anyd ~to one-loop order!, as exemplified before
in Sec. II, ford52 @see Eq.~2.28! and below#. For finite but
large smectic stacks (N@1), the expansion in Eq.~2.29! was
useful on our discussion of Sec. II and III. By using E
~A34!, the coefficients of this expansion can be related
tween the systems with infinite and zero tension. Thus
find

C1~d,ḡ5`!5C1~d,ḡ50!2I `~d! ~A37!

with I `(d)5B(12d/4,d/2) as in the discussions of Sec. I
For d52, I `(d52)5B(1/2,1)52, and Eq.~A37! is in ac-
cord with the exact limits ofC1, which can be obtained by
Eq. ~2.32! yielding C1(d52,ḡ50)52p/212 and C1(d
52,ḡ5`)52p/2. For d51, I `(d51)5B(3/4,1/2)
>2.3963, and Eq.~A37! is in accord with the numerical re
sults for the limits ofC1, which can be obtained by Eq
~2.32! yielding C1(d51,ḡ50)>0.82 andC1(d51,ḡ5`)
>21.56, see Fig. 5.

For the physically interesting case of the smectic stack
membranes (d52), the sums in Eqs.~A29!, ~A30!, ~A32!,
and ~A33! can be done analytically. Indeed, by using t
identity A12cosu5A2sin(u/2), one can see that these sum
reduce to doable geometric~trigonometric! sums. In this
way, we obtain the results in Eqs.~2.21!–~2.24!. We stress
that the results forI N(n) in Eqs.~2.21!–~2.24! are given for
integern ~which is, of course, the physical case!. For a non-
integern, I N(n) contains also some additional terms prop
tional to sin(2pn), and 12cos(2pn), vanishing for integern.
We are not going to display these terms here, as they are
of physical significance. Still we note their existence for
nonintegern, for the readers trying to check our Eq.~A35!
~that requires replacementn→n11/2), by naively using the
expressions in Eqs.~2.23! and ~2.24!, which apply only for
integern.

As noted in Sec. II, the above formulas are applicable
d,4, when the momentum integral in Eq.~A26! has finite
continuum limit, i.e., one can set the upper momentum cu
therein,Qmax52p/Dx→`. In fact, to all orders of pertur-
bation theory, the continuum limitDx→0 is finite for d
,4, because the dispersion relations for all manifolds~in-
cluding also the interfacial manifolds! grow asq4 for largeq.
Consequently, in our theory, the cutoffQmax plays no sub-
stantial role for the VPP phenomena. In fact, by repeat
our analytic calculations with a finiteQmax52p/Dx, the
relative error (E) done by assumingDx50 can be shown to
be small ford,4, of the order

E5S Dx

Lb
D 42d

. ~A38!
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Here Lb is the smectic healing length,Lb5(k/b2)1/4 ~see
Ref. @12#!. For example, for sterically stabilized stacks~as
well as for strongly entropic bound stacks, see Fig. 6 a
Sec. III!, Lb coincides with the distance between ‘‘coll
sions’’ of a manifold with its neighbors, and thus (a
2amin)

25 l 2'(kBT/k)(Lb)42d. Thus, by using Eq.~A38!,

E5
kBT

k

~Dx!42d

l 2
. ~A39!

Therefore, for example, for 3D stacks of membranesd
52), E in Eq. ~A39! is small because, typically,kBT/k
;1/10 ~see Sec. II!, and the intermembrane separation~wa-
ter gap! is in the rangel 512100 nm, whereasDx'1 nm
~the lipid molecule size!. We stress that, by Eq.~A39! with
d52, already at the lower limit of the water gap range (l
'1 nm), the molecular scale~cutoff! effect is small for re-
alistic bilayer membranes in lamellar phases, withk
.10kBT. Thus, in particular, the theory of Ref.@14# fails to
provide the correct account of cutoff effectsevenfor small
intermembrane separations in realistic systems.

APPENDIX B:

In this appendix we consider smectic stacks withN mani-
folds in the limit of infinite surface tension of the interfaci
manifolds ~the first and the last manifolds of the stack!. In
this limit, the interfacial manifolds behave as infinitely rig
~and thus flat! but still mobile manifolds ‘‘pistons’’ whose
equilibrium distanceL5^hN2h1& adjusts according to the
applied value of the osmotic pressureP. Since the manifolds
are flat,hN(x)2h1(x) does not depend onx, and this prob-
lem becomes exactly equivalent~in the g→` limit ! to the
problem ofNk5N22 manifolds confined between two har
walls of the distanceL.

This feature can be used to extract the constantsbN(d,g),
in the limit g→`, from some of the previous knowledge o
the stacks ofNk5N22 manifolds confined between tw
hard walls at the distanceL5^hN2h1&5(N21)aN , in the
notation of the present paper. For simplicity, let us setamin
50 andk5kBT51, as this is possible to achieve by a su
able rescaling~similar to that used in Sec. III!.

Let us first consider the stack withN53 semiflexible
polymers (d51) fluctuating in a plane. In the limitg→`,
this problem reduces to the problem of a single semiflexi
polymer fluctuating between two hard walls at distanceL. By
using the exact result of Burkhardt@21#, for this problem we
have the osmotic pressure

P5
2

3

AB

L5/3
~B1!

with AB>1.1036, as found by Burkhardt from an analyt
transfer matrix calculation. Thus the distance between
hard walls is

L5S 2

3
ABD 3/5 1

P3/5
. ~B2!
7-24
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By using hereL5^hN2h1&5(N21)aN , with N53, we
have

aN535
L

2
5

1

2 S 2

3
ABD 3/5 1

P3/5
. ~B3!

By comparing Eq.~B3! with Eq. ~3.16! ~with amin50 and
k5kBT5P51), we obtain the exact value ofbN(d,g) for
N53, d51, andg5`,

bN53~d51,g5`!5
1

2S 2

3
ABD 3/5

. ~B4!

This equation, withAB51.1036, yieldsbN53(d51,g5`)
>0.416, as stated in Eq.~3.24!.

We used the same reasoning to extractbN(d52,g5`),
by using the results of Bachmannet al. @22# for the stack of
Nk5N22 membranes fluctuating between two hard walls

TABLE I. The first column gives the universal constantsbN(d
52,g5`) obtained by using Eq.~B7!, as explained in Appendix B
The second column gives the one-loop fit to data in the first colu
with b`50.595 andAd528 50.190, see Appendix B, Eq.~B8!.

N bN(d52,g5`)
b`(d52)1Ad528 @ I N(d52,g5`)

2I `(d52)#

3 0.426 0.426
4 0.487 0.487
5 0.516 0.515
6 0.532 0.532
7 0.543 0.543
8 0.550 0.551
9 0.556 0.556
10 0.560 0.561
11 0.564 0.564
12 0.567 0.567
13 0.569 0.569
14 0.571 0.572
15 0.572 0.573
16 0.574 0.575
17 0.575 0.576
n

ce

.

04190
t

distanceL ~corresponding, in our case, to the interfac
membranes withg5`). Reference@22# gives the results for
the osmotic pressure in the form~again we setk5kBT51
andamin50)

P5
2Nk

Nk11
aNk

(hw) 1

@L/~Nk11!#3 . ~B5!

Here,aNk

(hw) are the ‘‘hard-wall’’ universal constants tabulate

in Ref. @22#. See Table III therein. Pay attention that here
denote the number of membranes between hard walls asNk ,
to distinguish it from the total number of membranes he
5N5Nk12, which includes also the hard walls correspon
ing here to infinitely rigid interfacial membranes at distan
L5^hN2h1&. By using Eq.~B5!, with Nk5N22,

aN5
^hN2h1&

N21
5

L

N21
5F2~N22!

N21
aN22

(hw) G1/3 1

P1/3
.

~B6!

By comparing Eq.~B6! with Eq. ~3.16! ~with k5kBT5P
51 andamin50), we obtain the values ofbN(d,g) for d
52 andg5` in the form

bN~d52,g5`!5F2~N22!

N21
aN22

(hw) G1/3

. ~B7!

Here, the values ofaNk

(hw) are given in the Table III of Ref.

@22#, for N2251 through 15. By using that table, and o
Eq. ~B7!, we obtain our Table I, withbN(d52,g5`), for
N53 through 17. The table documents the fact that th
constants are well approximated by the one-loop formula

bN~d52,g5`!

5b`~d52!1Ad528 @ I N~d52,g5`!2I `~d52!#

5b`~d52!2Ad528

1
2 p

N
1•••, ~B8!

with b`(d52)>0.595 andAd528 >0.190, as employed in
the discussions of Sec. III. We recall that hereI `(d52)
52 andI N(d52,g5`) is exactly given by Eq.~2.22!.
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@21# T.W. Burkhardt, J. Phys. A30, L167 ~1997!.
@22# M. Bachmann, H. Kleinert, and A. Pelster, Phys. Rev. E63,

051709~2001!.
@23# G. Gompper and D.M. Kroll, Europhys. Lett.9, 59 ~1989!.
04190
ir

.

o
n

@24# L.V. Mikheev, Sov. Phys. JETP69, 358 ~1989!.
@25# A. Ajdari, B. Duplantier, D. Hone, L. Peliti, and J. Prost,

Phys. II2, 487 ~1992!.
@26# R. Holyst, D.J. Tweet, and L.B. Sorensen, Phys. Rev. Lett.65,

2153 ~1990!; R. Holyst, Phys. Rev. A44, 3692 ~1991!; see
also, V.P. Romanov and S.V. Ul’yanov, Phys. Rev. E63,
031706~2001!; Experimental studies of smectic stacks ha
been extensively conducted by de Jeu and co-workers.
J.D. Shindleret al., Phys. Rev. Lett.74, 722 ~1995!; E.A.L.
Mol et al., ibid. 79, 3439~1997!; A. Feraet al., ibid. 85, 2316
~2000!. We stress that, within the harmonic stack model, av
age smectic interlayer distances are uniform in finite sta
Their nonuniformity may emerge due to the anharmonic
fects discussed in our study here. In this respect, our an
monic thermomechanical finite-size VPP effects are differ
from the nonuniformity of, for example, smectic displaceme
fluctuations,̂ (un)2&, which are nonuniform (n dependent! al-
ready in the harmonic stack model. It is thus misleading
associate VPP effects with the nonuniformity of displacem
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