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Existence of high-order correlations in cortical activity
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Neurons collect signals originating from a large number of other cells. The variability of this integrated
population activity at the millisecond time scale is a critical constraint on the degree of signal integration and
processing performed by single neurons. Optical imaging, EEG, and fMRI studies have indicated that cortical
activity shows a high degree of variability at a time scale of hundreds of ms. However, currently no experi-
mental methods are available to directly assess the variability in the activity of populations of neurons at a time
scale closer to that of the characteristic time constants of neurons, i.e., around 10 ms. Here we integrate
pertinent experimental data in one rigorous mathematical framework to demonstrdt® thathigh temporal
variability in the spiking activity of individual neurong?) the second-order correlation properties of the
spiking activity of cortical neurons, an@®) the correlations of the subthreshold dynamics, all impose high
amplitude, fast variability in the population activity of cortical neurons. This implies that higher order corre-
lations, a necessary condition for temporal coding models, must be a central feature of cortical dynamics.
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I. INTRODUCTION A. Considerations from physiological data

The optimal solution to directly access the fast cortical

Neurons in the neocortex receive signals from thousandgariability would be to simultaneously record the spiking
of other neuron§l—4]. The type of processing these circuits activity of individual neurons in a large ensemble of few
can perform depends on the cellular properties of thdéhousands of cells. Currently, simultaneous recordings of
postsynaptic neurons and on the statistical properties of thefinly up to a maximum number of feurons have been
presynaptic signals. Although knowledge about the former igeported[6]. Hence, the available experimental results only
quickly accumulating, our insight into the latter is more lim- Provide indirect hints on the fast dynamics of cortical neu-
ited. In the visual system, stimulus properties change on &Nns. A number of relevant observations, however, are avail-
behavioral time scale of hundreds of milliseconds. Therefore2Ple: (&) the membrane potentig/m) variability of single
neuronal activity shows some degree of variability on thish€urons at the millisecond time scale as revealed by intrac-
relatively long time scald5]. As neurons with similar re- ellular studieq7]. (b) The reliability in the spike timing8].

; - o The plausible presynaptic origin of the transition between
sponse properties have a higher probability to be connecte(t‘f) . . S
[1,3], this variability does not average out. However, theso-called, up-down statgS] and (d) the high spike timing

temporal operations performed by neurons are characteriz Vf riability, as quantified by the coefficient of variatio@V)
b P P y - 0]. All of these have been interpreted as providing indirect
by time constants on the order of tens of milliseconds. Cury

f ) tal techni ilable to directl hints for the existence of fast variability in the dynamics of
rently no (:]xpenmen'a efcl niques are avalfa € to direc hy opulations of cortical neurons. However, there are many
measure the dynamics of large numbers of neurons at thigemative, equally valid, interpretations to explain these

time scale. Hence, in order to understand the fast dy”amic%enomena and it remains unclear whether and under what

.e., measured at the millisecond time scale, of neurongongitions, fast variability should or should not occur.
populations in the cortex, we resort to a theoretical approach.

In particular, we want to assess whether the temporal vari-

ability in the activity of large neuronal ensembles averages o o
out (zero-variability systems in the followingor whether, Sophisticated statistical analysgkl] have been used to

under general dynamical conditions, some degree of fa§ entify patterns of activity in spike trains, interpreted as

variability must emerge. Answering this question is of reat‘j_fjingerprints" of §ynchr_onous events involving_a I_qrge frac-
y 9 g d g ion of neurons(i.e., high amplitude, fast variabilifyalso

importance to understand the operating conditions of Cortlca?:alled higher order correlation events

neurons and_thelr e”COd'Ug capabl_lltles: In case of ZET0 Varl= ) the literature, the concept of higher order correlations is
ability in the input dynamlcs_ to a given cortical neuron, it IS 1sed to indicate brief time intervala few ms during which
exposed _to a S”.‘OO_‘T‘ sqstamed Input current._ln the oppos_ng large fraction of cells in the population produces a spike,
case of high-variability, it processes afferent signals that willy, ;o generating what is also calledpapulation spikeor
vary strongly in _both their total amplitude as well as theirunitary even{12—14. These spiking events represent a form
temporal properties. of fast variability in the network’s activity. Accordingly, in
the present study, we will use the term “higher order events”
(sometime omitting “correlation” for simplicity to indicate
*Corresponding author. Email address: ben@ini.phys.ethz.ch  the presence of fast, few ms, variability in the population

B. Considerations from modeling studies
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dynamics, as opposed to completely uniform activity withdynamics: These steps allow us to formally prove that
constant, zero variability. This former case can be associateuigher order correlations must exist in cortical dynamics.
with “flat” population PSTHSs (i.e., the peri stimulus time The implications of this observation will be further elabo-
histograms of the population’s spiking activityvhich indi-  rated in the discussion.
cate that, at any moment in time, a constant number of spikes
is produced by the neuronal ensemble, and no higher order  D. Physiological constraints on neuronal processing
correlation events, or fast variability, appear.

The statistical significance of the results mentioned at th?h
beginning of this section, however, is still hotly debated.
Other theoretical studies either simply assumed the existen

of higher order eventgl3], or focused on large-scale recur- (C1) High temporal variability observed in the spiking

rent neural networks with simplified neuronal modlS— 5 ity is quantified by the coefficient of variatiof€V)

18] to demonstrate that fast variability in the form of popu- [19], which is defined as the ratio between the standard de-

lation spikes is an emergent property of the systems studie@stion and the mean of the interspike intervdBl). The CV

[14]. of cortical neurons is measured to be 1 or more, a variability
In summary, also in interpreting the results of these theothat exceeds that of a pure Poisson pro¢ass

retical approaches, we face the problem: it is not clear under (C2) Second, the spiking activity of pairs of neurons in

which conditions, if ever, fast variability emerges. the primary visual cortex shows a correlation that is propor-
On a positive side, the above-mentioned experimental antional to the similarity of their feature preferen¢21,22,.

theoretical studies all contribute bits of information to this These experimentally observed correlations are “weak” in

“puzzle,” i.e., the problem of the fast variability. In the re- the sense that only very few spikes between pairs of spike

mainder of the paper we will use a number of “puzzle trains are correlated. Typical correlation strength, measured

pieces,” such as our knowledge of the pairwise correlationss the peak amplitude of the cross-correlogram over the off-

of neuronal activity and the CV of single cells. We will in- set[23], is about 0.121,22,24,2% implying that only 1 out

tegrate these observations in a framework that will allow usf 10 spikes is in some specific temporal relationstagl.

to prove that under very general conditions, irrespectively ofThis weak pairwise correlation has been observed in several

the preparation, cortical area, or species, etc., fast variabilitgortical areas, in different species, and in anaesthetized as

cannot cancel out. Subsequently we will consider the relwell as in awake behaving animd22].

evance of these results with respect to the information pro- (C3) Paired intracellular recordings in primary visual cor-

In order to assess whether a model accurately describes
e cortical dynamics, it needs to satisfy a number of physi-
ological constraints. The three constraints considered here
%te as follows:

cessing and coding strategies of cortical neurons. tex have detected correlations in the subthreshold membrane
potentials of neighboring neurofi27,2§. It has been shown
C. Structure of the paper [27] that the normalized peaks of the cross-correlograms

After describing in detail three experimental results mean ange around 0.4, which indicates that 40% of the time, the
9 P ubthreshold membrane potential of neighboring cells in vi-

as important constraints of the neuronal dynani@ec. D), sual areas is correlated. This correlation is amplified during

Sec. |l faces the question, using formal mathematical argue.c a1 stimulation with normalized peaks as big as [28).

metﬂteségzi\\/,\ilthect)??;rltéseﬂzseiﬂﬁeéoo?i\éiszerﬁlgisé:régibglrti}-l Here we address the question how the above properties of
mental and ¥heoret?cal knowledge of the,c%rtical d narFr)licsCortical neurons, i.e., high CV and subthreshold and suprath-
We describe systemensembles gf Spikin neurdrwitﬁout reshold pairwise correlations, constrain the overall dynamics
fast variabilit )(/Secs IA and | B ang chgck their compat- of cortical networks in the short time scale. We prove that in
I ) Y (S€CS. : P a neuronal ensemble, during high-input regimes, some de-
ibility with physiological constraints(Sec. [1Q. We will - :

) . . ree of variability must exist.
make use of design theory, a branch of combinatorics, t§

provide examples of dynamical systems that are character- _
ized by a total absence of fast variability and that are still ll. ZERO-VARIABILITY SYSTEMS: COMPATIBILITY
fairly compatible with physiological constraints. This sug- WITH CONSTRAINTS (C1) AND (C2)

gests that a more careful analysis is required to support the |n order to characterize the fast variability of cortical neu-
90mm0n|y held notion of nonzero Var|ab.|l|ty in the short rons, the second and h|gher order statistical propeﬂ'jes
time scale. At the end of Sec. I, we describe the problem ofnean firing rate, pairwise correlation strength, and unitary

classifying such systems in a formal and exhaustive wayevents of the input activity to any given target cell, compris-
which leads us to abandon the formalism of design theory in

favor of a more classical statistical one. In Sec. Ill, in order
to solve this “classification problem,” we introduce a statis- 114 help the reader follow the logical structure of the paper we

tical approachrandom controller metho@RC), Secs. IIlA |l begin and end relevant sections, which are not pure formalisms
and Il1 B] to describe any systems with zero fast variability or definitions, with “Introduction” and “Summary” paragraphs, re-
(including those introduced in the context of design theory inspectively, each of them terminated by a “s” symbol. The reader
Sec. l) and verify again their compatibility with physiologi- who is not interested in the mathematical proofs can then easily
cal constraints, Secs. Il C and IlID. Finally, in Sec. IV we follow the backbone of the logical structure, reading only those
prove the incompatibility of such systems with the cortical paragraphs.
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ing 5000 to 20 000 input spike traifd], need to be defined @ 1534567 _ (b)
[3,21,24. A qualitative observation gives an intuitive idea of © [elelo 2
a possible solution. Considering that the number of pairwise o % %es 8 3
. . . . . Lo1a0
coincidences rises quadratically with the number of afferents, 3 el el I e 6 s
and that the number of spikes available to generate such ~ [ Jo[ | Jele ’ “lotto
coincidences rises only linearly with the number of afferents, ~, ~ —*—*—"—«g 3 0101
it follows that spikes have to be “used” multiple times to 3 3@“”“’”“
generate coincidences, i.e., higher order correlations must Bin No.
appear. However, this intuition can be misleading and it
. i . (c) (d)
raises the question whether the emergence of higher order
. . Lampl et al. [27]
events is a necessary consequence of the experimental con- O O "
straints. O /lomreN ) & 151 Cellf and Cell2
Introduction Here we use systemSymmetric designs @ Rl & ®©@ gg;? 2 ilj
that are well known in the field of combinatorics and design () O S =% 55 o o5
(c) «ZVB Correlation peak

theory [29,30, but are not yet introduced in the study of
cortical systems. For our very basic use of design theory, it is

) . L FIG. 1. Symmetric designs(a) Representation of the Fano
just necessary to know that this field of mathematics is exblane’ projective plane of order 2, a symmetii3, design. This

tremely helpful in identifying features and emergent pl’()p(:"r'“squared grid” can be associated with a raster plot of spike trains in

ties of large-scale complex systems constrained by SOMEthe following way: every row represents the spiking activity of a

limitations. To provide an intuitive example of what we ginge cell(seven in this examplewhere the occurrence of a spike
mean with a complex system, one can imagine a raster plg§ 3 filled circle and the nonoccurrence is simply an empty box.
of the spiking activity of a large ensemble of cells. DesignNote that the number of elemerffiiled circles, or “spikes” in the
theory helps to understand the structure of such plots, angster plot representatipmlong the columns is constant and equal
equivalently, the properties of the corresponding populationo that along the rowsor spike traing as indicated by the side
PSTH. histograms(b) Example of a “graph” and its associated incidence
In the fields of combinatorics and design the@2@] sys-  matrix. (c) Schematic of the mathematical space where the de-
tems have been identified that have zero variability in theiiscribed objects can exist. The light gray oval symbolizes the border
PSTH(“flat” population PSTH) and nonzero pairwise corre- of the group of zero-variability systeni&VB), while the black oval
lations. For some of these systems the constraint of high C\s the border of the group of average RC syst&R<)). This latter
is also satisfied. We now verify in detail the compatibility of group includes classifiedC) and unclassifiedU) symmetric de-
these systems with the three physiological constraints introsigns(the circles with the corresponding lettgravhich satisfy the
duced above individually. In the last paragraph of Sec. 1l Bconstraints of high CV, indicated with the lett@), and of pairwise
we will provide a clear example to give an intuitive idea of correlations for the spiking activit{b), but not the constraint for the

how symmetric designs can be generated and in which Wa@upthresholld corre!ations, crossel Thg space between the ovals,
thev could relate to cortical dvnamics. R mdlcated simply with RC, represents in general_the syst@psen
y y circles produced by the RC method, which deviates from the av-

erage behavior, i.e., small and duration time. For these cases, CV

A. Definitions and formalism: redefining the problem and correlation strengths cannot be fix@t).Histogram of the peak
) ) ) ) ) ~ values of the subthreshold cross-correlated activity, adapted from
It is useful to think of a spike train as a binary string | ampl et al.[27].

where the “ones” represent the occurrence of a spike and the
“zeros” a nonoccurrence. The length of the string is defined
by the duration of the single “bins,At;,, which are used

to discretize the spike train, and the number of g, . tion constrain{C2) translates tdC;CIC;| = g, for any pair of

This is essentially the time resolution of the system: ; . X L

. i . .~ 'subsets, witlg being a fixed parameter defining the number
AtpinNpin=T, with T being the total duration of the spike of overlaps(trllwqe stregngth of tr?e correlatipn g
train. The string of time bins can be thought of as a group

S={s;,...,sy} of elements. Considering that the spikes can
occur in any time bin, all elements between rgn@nd
max(S must be included, and it is always possible to shift For the systems with a flat population PSTH described in
the elements such that mB)Etg,:. In general,S can be  design theory, the number of subsets=Ny;,, and these
thought of as a permutation of the elements of the sebbjects are called symmetritN(;,,k,q) designg29,30.
{min(S),...,max@)}. Therefore, the problem can be viewed in  One well studied example of symmetric design is the so-
a finite fieldZ,,, for some integen. Given these definitions, called Fano plane, Fig.(4): In this caseNy;,=7. The Fano

we assume tha8={0,1,2,..Np;,—1}, and that any spike plane is ap=2 symmetric design, which means thd;,

train can be represented by a subSet{c,,...,c} of S In =p2+p+1,k=p+1 and\=1, so blocks of different sizes
order to faithfully represent the spike train we want everycan be created using higher values. Other examples of
element inC to carry information about the spike timing. For large-scale symmetric designs are the so-called Hadamard
example,ci=\ means that a spike occurs at a tithg,;,\. designgsymmetric (4—1, 2t—1,t—1) designg projective

If the firing rate is constant then the size of every subset is oplanes(symmetric p?+p+1,p+1,1) designs etc.

a fixed valuek. Suppose we havé,...,C,, as distinct non-
empty subsetgspike traing, then the weak pairwise correla-

B. Symmetric designs
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Symmetric designs interpreted as raster plots two remarkable features: the exponential that describes the
distribution of the interspike intervals is necessarily incom-

sign) as a raster plot, Fig.(a). If we assume that each of the plete and “pathologica!“ cross—correlation.structures, alwa_ys
seven columns represents an interval of 5 ms, i.e., the timafongly asymmetricali.e.,, nonzero abscissa for the main

resolution, the Fano plane represents the raster plot of sevél¢a@® are produced, supplementary material Fih) 142].
neurons for a total trial duration of 35 ms. The filled circles None of the above zero-variability systems can describe

represent the occurrence of a spike for the corresponding céff€ réal cortical dynamics. They do not satisfy either the CV
at a given time. For example, cell 4 emits three spikes, th@' cross-correlation constram.t. Un_fortunately, satisfactory
first spike in a time between 0 and 5 ms, the second spik€X@mPples cannot be found either in the context of graph
between 15 and 20 ms, and the third between 30 and 35 m&€0ry[31], which focuses on the properties of the incidence
All the cells have the same mean firing réésrery row has 3 Matrix, Fig. Ib), or advocating the so-calledalanced in-

spikes. Moreover, the neurons show a fixed pairwise corre-cOMPlete block designeBIBD, see Bethet al. [29] for a

lation since, taken any of the possible pairs of cells, only ondormal definition. . . .
of the three spikes for each cell is located in the same column SummaryWhen detailing the compatibility of symmetric

as for another cell. For example, both cells 2 and 6 emit £€Signs with constraintC1) and (C2), problems arose in

spike in a time between 10 and 15 ms and that is the On|)f;'nding satisfactory examples. Nevertheless, no proof is

time overlap. The histogram at the bottom represents thavailable that at least one “good” system does not exist. We
population PSTH, which is characterized by zero variability. c2Nnot proceed by enumerating examples, because “classify-

A large number of symmetric design systems have been r ing these objects is clearly impossible with present methods”

ported in the literaturé29]. Hence, to create a system that [32] I-€., we cannot make a list of all symmetric designs and
implements a cortical raster plot with an arbitrary number ofeXclude them one by one. Design theory has been useful to
cells and of any duration, characterized by variability at thediSProve the intuition that C1 antC2) are sufficient to en-

hundreds of milliseconds time scale and no variability at thd©'c€ higher order correlations. Nevertheless, to continue we
tens of milliseconds time scale, turns out to be very easy2ve to utilize an additional approach, and return to symmet-

Several symmetric desigrias the Fano plangwith duration ~'lC designs further down. .
of few tens of milliseconds, each with the same rate and

correlation properties, can be verticallgmporally aligned IIl. THE CLASSIFICATION PROBLEM AND THE RC

to obtain the desired number of rowseurons in the popu- METHOD

Iﬁtion). ThiSfWhOUId forlm .theff'rSth"b]!.OCkaf Columnfs," |”e Introduction To circumvent the above-mentioned classi-
t edraster oft .3 poEu ation 3rt 3 llcrs”t ew tegls Okm' f'secl'fication problem and give a formal proof that zero-variability
onds. To provide the second and following blocks of Col-gy gtems are not compatible with cortical dynamics at any

umns(i.e_., the pomple_te te_mporal evolution of the system ime scale, we introduce a statistical method, the RC method
symmetric designs with different mean rates can be use an intuitive idea of how the RC method works is given in

This way the global population PSTH would show variabil- 4 o first paragraph of Sec. IIDAThis allows us to define

ity only in 100 of milliseconds time scale and not on & statistical guantities, which can be directly compared with

shorter time scale. Having this generating mechanism 'rﬂ)h ; ; : ;

. - . : ) ysiological and biophysical result§;1), (C2) and (C3).
mind, we will neglectlln_ the followmg the global dyn§m|cs This discussion will take all of Sec. IIl. Only in Sec. IV we
and focus on the *building blocks,” i.e., the symmetric de- iy solve the above-mentioned classification problem. At the

SIigns. ic desi b d buildi end of Sec. IV we will summarize the results and provide
Summary Symmetric designs can be used as buildingqq|sions in relation to this statistical approach. .
blocks to produce raster plotand from those PSThichar-

acterized by a global variability at the hundreds of millisec-
onds time scale and no variability at the tens of milliseconds
time scale. Such systems exhibit weak pairwise correlations, To give a clear idea about what the RC method is, we
C2, as experimentally observed in the dynamics of corticatould interpret again the incidence matrix associated with the
neurons. e Fano plane, Fig. ®), as a raster plot. At every time step a
fixed number of cellk is specifically selected by what we
call a controller, to make them spike, and the symmetric
design structure is produced. More specifically, referring to
Introduction To claim that symmetric designs can suc- Fig. 1(a), a generator of integei@.e., thecontroller) would
cessfully describe the cortical dynamics, we need to verifyproduce the sequences of tripled; 5, 7, (1, 3, 7, and so
their compatibility with the other constraint&C1) and(C3). on. These numeric sequences would simply mean that a filled
In this section we will focus or(C1), i.e., high temporal circle (spike) should be assigned in the first column at row 4,
variability in the single cell spiking activity. e 5 and 7, in the second column at row 1, 3, and 7, and so on,
In design theory, systems with high C&oefficient of until the structure of the Fano plane is created. The raster
variation of interspike intervalsan be found when studying plot of the Fano plane can then be considered as a possible
the so-calledcyclic difference set§29], an example using subset of integers generated by a random-uniform generator
arithmetic mod13) in the field Z,5 is given in the supple- of numerical sequencé®C method. Indeed, going back to
mentary material, Fig. (&), [42]. In this example, there are the previous example, the specific sequence of integers that

We can interpret the Fano plat@nd any symmetric de-

A. An introduction to the RC method

C. The coefficient of variation constraint (C1)
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would create the symmetric desigd, 5, 7, (1, 3, 79, and so Theorem 2The RC method satisfies the consistency con-
on, is a special choice between those that a random generatdition if fAt,;,=c;.
of triplets of integers can produce. Given the proper value for Proof. If the process selects a given callwith a fre-
k, this method ensures that any pair of rows has, on averagguency 17, for the correlation constraints with cdl] this is
the same number of intersectioffixed correlation strengih ~ also true in respect to the correlation constraints with all the
and all the rows contain the same number of spifed  other cells. Indeed, the frequency used by the controller to
firing rate). From these considerations we can formulate theselect a given cell can be computed from its probability of
first important theorem. selection. Fory=1, P,=(n/N)?, so the controller is select-
Theorem 1.Any zero-variability system, with any pair- ing any given neuron with a frequendy, =n/NAty;,. Us-
wise correlation property, can be generated by the RGng the expression fon as above, we get the following ex-
method. pression, f,, = Jfcs/Aty;,. Since the selection of a cell
Proof. Given a zero-variability system, however gener-corresponds to a spike insertion as well, it is necessary that
ated, it can be mapped into a binary matrix of zeros and onef,, <f which means thatAty;,=>cs. |
as in Fig. 1b), which shows its incidence matrix. The total
number of elements along the columns must be constant by C. Consistency with cortical dynamics?
definition of zero variability. The row indices of the selected
cells at every time step aggintegers(4, 5, 7; 1, 3, 7; etc. in
the previous example The whole system can then be de-
scribed by a sequence of integers of lengtthAt,;,) &, i.e.,
proportional to the total duratiof, divided by the time reso-
lution Aty;,. There is always a nonzero probability that a
random generator can produce such a sequence.
The concepts proposed here are schematized in Fiy. 1

For typical values ofc,=0.1 and At,;,=1 ms [21],
cs/At,i, =100, so the consistency condition is achieved only
for firing rates greater than 100 Hz, which is clearly not the
mean rate of a cortical neurdi33,34. Yet, increasing the
value of At,;, or decreasing the value af; can lead to
values off that are within those reported, assuring the con-
sistency. Thus, the two constraints applied so far are not
sufficient to exclude a zero variability population PSTH.

B. Formalism for the RC method
D. Confronting the RC method with the subthreshold

In Sec. llIA we said that the RC method can generate correlation constraint (C3)
systems with fixed second order statistics, i.e., firing rate and Wi the third traint dina th bthresh
pairwise correlations. We want now to better characterize € use now the third constraini, regarding the subthresn-

this statement and to analyze the limitations of the method agld correlat_|on.s_, to further narrow down the range of validity
well. of zero-variability systems.

For fixed firing ratef and pairwise correlations strength Theorem 3The maximum and minimum fraction of time,

Cs, a given cella correlates with celb on average, every Ti andfl'q,. respectively, during which two cells, whose spik-
T,=1/fc, s; i.e.,c, determines the mean time between two Ng activities are produced by the RC method, can be corre-

correlated spikes. However, the mean time before two spike@ted’ is given by

correlate again is also determined by the probabHitythat fo
the controller will reselect the celsandb. From combina- Ti= 1+A'fde{f05—2 N —
torial analysis and by indicating the number of cells wjth Atpin
=2, we have and
N_
(n—;) Tu=Atgon| fegt2/ fes | oA \/ fe.
Pr: u=Atcorr| TCsT Fbm - tgec Fbm

N
( n) Proof. We first demonstrate the equality fof. As shown
in Fig. 2c) (left pane), in between two correlated spiking
episodes of cella andb (dark gray spikes on the sideshe
wheren is the number of spikes assigned at every step by thaverage distribution in time of the uncorrelated spiliht
RC andN is the total number of spike trains. Fgr=1,2, the  gray spikeg is such that between two consecutive spikes of
previous expression can be approximatedlyy=(n/N)?,  cell b there will be a spike of cel. This is because the RC
this way T,=(N/n)?Aty;,, with T, the average time of method by definition minimizes the temporal overlaps be-
coselection of a given pair of cells. tween the spiking activities of the two cells. We catly..the
The method can produce systems according to the corréime interval centered around the uncorrelated spikes of cells
lation and firing rate constraintgs andf, if the following A and B, during which the membrane potential of the two
condition is satisfied: the average frequency of occurrence afells cannot be correlated. This is simply due to the up-down
the intersections as determined &y, and the frequency of swing of the action potential; if a cell is spiking and the other
the random controller in selecting a given couple of cellsis not, the stereotyped shape of the action potential implies
must be the same. This results in the following condition,that the correlation coefficient between the two membrane
T,=T1, which is true ifn=Ny/fcAty;,. This is what we potentials is necessarily very small, FigaR From the con-
call the consistencycondition. sistency condition of Theorem 2, we know that the average
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(a) (b) correlation coefficienfFig. 2(b)]. This is because if during
g the available free time the two cells are indeed always cor-
§L " related, the maximum possible correlation coefficient would
Ll E be achieved. This free time is schematically shown by the
cella - ) shaded areas in Fig.(@ (left pane). Its fractional value,
At,,, g obtained normalizing for a given interspike interval,Tis
il e N =[('I_'pr—2Atdec)_/Tpr]+(AtdeC/Tl), Where_ the IE_;lst term on
<> the right-hand side comes from the consideration that corre-
Al lated spikes add to the free time. Using the expressions for
© T, : T, : T, and T, as defined above, we gét;=1+Atg.dfcs
r— 1 ™ | — I —2fcg/Atyinl.
a Ly A_V‘ A d s NN JT We proceed in a very similar way to compute the fraction
%% AT J B of time during which two cells are necessarily correlated,
b (= ) & ) ; 5 J.T g T, . This would represent the lower tail of the distribution of
s a” R T, J§ subthreshold correlation coefficients as in Figh)2First, we
Time need to recall an experimental observation: when computing
d — . — the cross-correlograms of the membrane potentials, Lampl
T ! "o et al. found that the widths of the peaks of these cross-
) correlograms were much broader than those computed for
05 19 08 05 the spiking activity[22]. The mean value reported was
/ [T [— T I—7 around 40 ms for Vm vs<10 ms for the spiking activity
% B b 8B % 4 inmas [22,27). This number indicates that when two cells are in a
Aty (M9) Aty (M) Aty (m9) correlated state, they will on the average stay correlated for a

FIG. 2. The third traintC3 Wh formi ired duration comparable to the width of the cross-correlograms.
raceliolar re?:orélrin Cso?rzrrﬁ'rrg k)]'b(oar)in Ciﬂspz Og:é?tﬂepz"gami_We use this observation to introduce a correlation interval,
) 9 9 g ap y Ateorr (Ateorr>>Atged, Which is also centered around each

cal scenario could be characterized by common subthreshold fluc= ! . .
Eplke. DuringAt,.,, the two cells are necessarily correlated

tuations where in between correlated episodes, only one of the tw] luding the brief int | during th £ 1h
cells spikes due to some fast noise, while the other does not. B excluding the briet interval during the occurrence ot the

cause of the up-down swing of the action potential the correlatiorsPiKe, Atgec; see Fig. 2a)]. Ateor can be justified in the
coefficient between the two traces computed in a time interval equdPllowing way: Atqec has been defined before based on the
to the absolute refractorinesa (.o is low, but excluding such a Stereotyped shape of action potentials. Hence, outside this
brief event, the activity of the two cells could be on average correlime interval, we have no hypothesis about the correlation
lated (At,). (b) This curve schematically reproduces the experi- properties of the membrane potentials. Suppose instead that
mentally derived one as shown in FigdL The parameter§; and  we have been able to measure the mean valuet gf;, then
T, can be related to the upper and lower tails of the distributionright outside this interval the two cells must on average, by
respectively(c) The left panel illustrates the method used to derivedefinition, be correlated. An example of this scenario for the
Tt (see text for the detailed derivatipr\tg, refers to the duration  subthreshold dynamics is schematically shown in Fig):2
of the up-down swing of the action potenti@bsolute refractori-  both cells might depolarize towards threshold simulta-
ness, T, is the interspike interval as derived by the RC method,neously, but only one emits a spike. During such an episode,
and T, is the mean time qf occurrence of correlated spikes. _Thqhe Vm of the two cells is strongly correlatett.,,, , except
shaded areas are the time |r_1tervals used to compute t_he "‘free-tlmqﬁuring the swing of the action potentialty... The shaded
parameFer. The rlght.panel instead relates to the derlvatlo'n,.of areas in Fig. &) (right panel represent the time during
The_ main d_n‘ference is that the shaded areas represent the mterv%ich the two membrane potentials must be correlated for a
during which the two cells are for sure correlatedtfor  yiven interspike interval. The fractional value is thap
—Atged- (d) The three panels shoW; and T, as a function of =

. o , =[(2Atcor—2At4ed/ T |+ (Ateor /T1), where the last
At for three different values of the mean firing rate: 30, 60, andterm on the right side %f the equation comes from the con-
80 Hz, respectively. The five different horizontal and oblique lines . . . . . .

sideration that correlated spikes add to the time during which

refer toT; andT, while Aty.. changes from 1 to 5 ms, respectively h I b lated. Usi h ; f
(1 for the top lines and 5 for the bottom line3he two vertically the two cells mus.t e correlated. Using the expressions for
and T, given above we getT,=AtcfCs

aligned filled circles in the first panel indicate the valueg pind Tor

T, (from bottom to top, respectivelygiven a distribution whose T 2VfCs/Atyin] —2AtgecvfCs/Atpin. n
mean is around 0.4, as in Fig(d). We now want to check if there is a set of parameters

(Ateorr Atgec.fiCs), such thatT; and T, i.e., the higher
interspike interval isT,, = Aty /fcs and the average dis- and lower tails of the distribution of correlation strengths, are
tance in time between two correlated spikesTis=T,  compatible with the experimental daf&ig. 2(d)]. Every
=1/fcs. panel relates to a different average firing ritand it shows

Given these definitions we compute the fraction of theT; and T, as a function ofAt.,,, for different values of
total time available for possible subthreshold correlations beAt .. with c;=set to 0.1. The thick horizontal and vertical
tween cell pairs, called “free time,T;. This parameter rep- lines at 0.4% and 10 ms indicate the mean correlation value
resents the upper tail of the distribution of the subthresholds experimentally observed and the typical average width for
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cross-correlograms of pairs of spike trains, respectively. The
dotted horizontal lines correspond to differen} values 70
while Atg4ec is increasing from 1 to 5 mgoing from the top
to the bottom, respectively In the same way, the oblique
lines show the behavior dff,. The results demonstrate that
there isnot a set of values such tha@; and T, would match
the distribution found by Lampét al. [27]. A very narrow 55
distribution with a mean around 40%s reported by Lampl s
et al) can be obtained fof <30 Hz, At.,,<10ms, and 200 40 2 :
Atqec=5 ms, as qualitatively indicated by the filled circles in Duration (ms) No.©
the left part of panek, corresponding to the filled circles
shown in paneb. These values fof, Atye., andAt.,,, are FIG. 3. Simulation results. The free-time param@ters plotted
not compatible with the observed data and the dynamicatgainst the total number of cells and the duration of the time win-
conditions studied here, i.e., high input regimes. The concludow used to compute the mean value of the parameter for of each
sion is that the temporal distribution of the spikes producedouple of spike trains. Such a mean has been computed averaging
by the RC method is not consistent with the subthreshold s _values ob_tained from all possiple combinations of two spike
correlation properties observed in the experiments. trains for a given number qf cells_ in the_sample. Tht_a upper trace
The incompatibility of the RC method with the physi- rgfers to an ensemble of spike t_ralns having weak pairwise corrgla-
ological data results from its inability to capture the pertinent!ionS €s=0.1). The lower plane instead refers to uncorrelated Pois-
correlation statistics. This suggests that in order to satisfy th&°n SPike trains. In both cases the firing rate was fixed to 85 Hz. In
constraints(C1)—(C3) some degree of temporal alignmentst € _correla_te_d case, cha_racterlzed by temporal a_llgnments in the
must occur. We evaluated this contention using a numerica}jp'kIng activity, the free-time parameter shows a h|gher \(alue thah
simulation. or the uncorrelated case, 55% and 35%, respectively. Higher vari-

ical simulati h ically that f ability at the origin for both the planes is contrasted by a stable
Numerica simu qtlonWe show numerically that for sys- convergent behavior in ensembles having more than 2—3 cells and
tems that are statistically very close to those generated by thg, o<e quration last longer than 100 ms.

RC method, i.e., zero-variability systems, theparameter is

too low with respect to the experimentally reported values(cg). This not only suggests that nonflat population PSTHs
Moreover, we show that only allowing variability in the zre necessary to match physiological conditions, but also that
population PSTH, it is possible to obtain values compatiblgne required variability should exceed that of an uncorrelated
with the experimental ones. We considered as an approximagjsson system.

tion of an RC system a group of uncorrelated Poisson spike Summary The RC method is a very general statistical
tra!ns. This is a s_impl_ification since Gaussian noise Characapproach to produce any system with zero fast variability,
terizes its dynamics, i.e., the nonflat population PSTH. Wencluding the symmetric designs. When confronted with the
then designed an algorithm to produce weak pairwise COIr&hysiological constraint$C1), (C2), and (C3), the systems
lated spike trains, allowing some degree of temporal alignyenerated by the RC method do not fulfill the subthreshold
ments and high CV. Results for this simulation using a meaonstraintC3). Some degree of temporal alignments, or syn-

rate of 85 Hz andAtye.=4 ms, are shown in Fig. 3. The cpronized activity, is necessary. A numerical simulation sup-
lower plane(uncorrelated Poisson trainshows a 35% value  norts these results. .

for the free-time parameter, while 55% is obtained for the
correlated system, compatible with reported experimental
values, Fig. 1d). The two systems have the same CV and
mean firing rate, but they differ in the correlation statistics. Introduction The average statistical behavior of systems
The important observation is that systems with some degregenerated by the RC method, including the symmetric de-
of temporal alignments are characterized by a free-time pasigns, is not compatible with the three constraints described
rameter that is compatible witt€3). This does not hold true at the beginning. The third one, concerning the subthreshold
for the uncorrelated Poisson case. The high variability closeorrelations, plays a major role. We went around the “clas-
to the origin of the plot and the asymptotic behavior aresification problem” and found a more general solution to
important features, which will be discussed later on. Increasereate zero-variability systems and to verify their compatibil-
ing the firing rate to 90 Hz leads to a decreasd pfor the ity with the cortical dynamics. These results can be naturally
uncorrelated system to 30% and when wideniig.. to 5  extended to the symmetric designs.

ms, an additional reduction to 17% is observed. The algo- The followinglemmawill answer the question whether or
rithm allowed us to vary the degree of temporal alignmentsot zero-variability systems can describe cortical dynamics
and accordingly the correlation strength: Egr=0.2 and un-  constrained byC1), (C2), and(C3), thus solving the classi-

60

50

Free time (%)

40

12

cells

IV. EXCLUDING THE SYMMETRIC DESIGNS

changed rate and high CV; reached 60%. fication problem presented in Sec. Il C. It comes simply as a
Note Looking at the results there are two important ob-corollary of Theorem 3.
servations: First, the expression for, as soon aN is Lemma 1Symmetric designs cannot describe cortical dy-

greater than 3, does not critically dependnSecond, the namics as defined big) high CV at the single cell levelb)
variability associated with the uncorrelated Poisson systerpairwise correlations for the spiking activityg) pairwise
does not produce a free-time parameter compatible witltorrelations in the sub-threshold domain.
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The proof is given in the supplementary material. Noteputting together fragmentary theoretical and experimental
that proving Lemma 1 is a central point to support the logicknowledge, it formally demonstrates under which general
consistency of the paper: Symmetric designs have been hegenditions fast variability must be observed. Whenever the
very useful to exemplify why constrain(€1) and(C2) can-  three constraint$C1), (C2), and (C3) hold, fast variability
not help in constraining the higher order correlation propermust be observed irrespective of the preparation, type of
ties of the dynamics, which has been a controversial issuggjjs, species, etc. To develop our proof we have made use of
since the introduction of the synfire chain model by Abelesdesign theory. With this approach, we could identify zero
[35,36. However, at the end of Sec. II, we could not solve4iapility systems that we subsequently matched against

the classification problem. If not resolved, there would have,pygiological constraints. We expect that this mathematical
been the possibility that a “special” symmetric design, 0bey-gramework, new to computational neuroscience, might turn
ing constraints(C1)—~(C3), could represent the cortical dy- ot to pe a useful tool for further analyses of the complex
namics characterized by zero variability in the few dynamics of neuronal systems.

millisecond-time scale. Lemma 1 proves this is not possible.” 4. our formal analysis, we relied on a number of experi-

N mental results, and we have to assess whether these apply
From Theorem 3 and Lemma 1 we have the following. - nger the relevant conditions. The numerical estimates we
Theorem 4Dynamical systems that satisfy the constraintsp,ye ysed refer to values of the correlation strength, mean

of subthreshold and suprathreshold correlations and high C\‘{ring rate, and CV obtained in several species and cortical

must display higher-order events in the population dynamics,reas However, many experiments are performed under an-
Proof. This is guaranteed by the validity of Theorem 3, ogihesia, and data on the neuronal dynamics in awake ani-

Lemma 1, and from the observation that systems that are the,is are practically not available. The situation with respect

complement of zero-variability oné® mathematical terms 1, he third constraint, subthreshold correlations, is even

must have, by definition, some degree of variability, i.€.,mqre problematic. Due to the immense technical difficulties
some degree of higher-order events. Moreover, the generalifys thase recordings, only a few reports are availdBi&2g.
is guaranteed by the fact that the RC method can embrace &}, e positive side, we have no reason to doubt that the

the systems with zero variabiliffheorem 1. When the first o515 obtained in other species and cortical areas will be

two constraints are imposed, i.e., high CV and pairwise corg,alitatively different. Furthermore, the paradigms cited are

relations for the spiking activity, any zero-variability System (h,qe that form the backbone of much of experimental neu-
must behave according to the average behavior of the R physiology of the mammalian cortex. In this sense, the

systems(see the proof in Lemma)land consequently be .,nsiraints we have considered reflect state of the arin

disregarded, since it cannot satisfy the third constrairl ., ent neuroscience and we believe that our results are of
SummaryTo solve the classification problem we used theaneral relevance.

RC method. This allowed us to generate a larger group of gyperimental data and theoretical studies can be put to-

systems characterized by a flat population PSTH, which ingether to provide a comprehensive view and formally solve

cluded, as a subgroup, the symmetric designs. When checlsg hroplem of fast variability. Understanding this issue is of

ing for the compatibility between such systems and the COMgey relevance mainly for clarifying the consistency and fea-

straints (C1), (C2), and (C3) (i.e,, suprathreshold and gjpijity of different neuronal coding mechanisms, which in
subthreshold pairwise correlations and high)Q¥ found a one way or another do make assumptions on the fast vari-

negative answer, mainly for what concern the subthresholgb“ity Indeed when considering widely used rate-based
correlations. Flat population PSTHs, and symmetric designg,qdels, the key dynamical variable is the rate, i.e., the total
as vyell, cannot be compatible with a cortical dynam.|(.:s CONtount of inputs in a given time interval. Fast variability in the

strained by(C1), (C2), and (C3). Under these conditions, 45 ation activity, however, is a source of code degradation

some degree of variability must appear even in the tens milr37) 'poyation spikes induce high-amplitude “noise” in the
liseconds of ms time scale. * inputs, thus degrading the reliability of its spike count. More-
over, they can elicit spikes by a target cell degrading its
V. DISCUSSION informatiqn transduct_ion. The optimal working regime for
such coding mechanisms would be a total absence of fast
Here, we showed that the available experimental data owmariability. In contrast, correlation-based models rely on
the high temporal variability present in the spiking activity of higher-order correlation events, as a key dynamical feature
individual cortical neurons, together with their pairwise cor-used in information processiri§8,36. Neurons, acting in a
relation properties, enforce nonzero variability in the activity coincidence detection mode, are supposed to be strongly re-
of populations of cortical neurons. Thus, the variability in thesponsive to such unitary events. These correlation phenom-
activity of a large number of neurons converging onto a comena are a central feature for temporal coding schemes and
mon target does not average out. Although this was knowitheir computational relevance has been extensively explored
for the slow cortical dynamics, at a time scale of hundreds ofn theoretical studie$35]. By providing general statements
milliseconds, our results show that this is true also for theon when fast variability is necessarily observed in cortical
fast variability, in the few tens of milliseconds time scale. dynamics, our study elucidates under which dynamical con-
Although earlier theoretical work had suggested that thiditions the different coding mechanisms can work consis-
could be the case, a direct experimental or formal proof wasently and optimally.
missing. Hence, the contribution of our analysis is that by At a cellular level, the results presented here contribute to
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the hotly debated issue of cortical neurons acting as coincieal analysis in combination with available physiological data
dence detectors or temporal integratf@§]. If the flow of  can shed light onto a fundamental property of processing in
signals converging onto cortical neurons is smooth in timeneuronal circuits. Determining a set of general conditions
the average level of this input is the only available dynamicaunder which variability must emerge in the population dy-
variable. In contrast, if cortical neurons act as coincidencenamics is an important step to identify the possible informa-
detectors higher-order correlation events are necessary to etten processing strategies used by the cortex, and toward an
plain, for example, the high CV in the spike timifig0,40, understanding of the compatibility of cortical dynamics with
the bistability in the subthreshold dynam[&41], and spike  correlation-based encoding.
timing reliability [8]. Thus, systems with a nonvanishing
variability in the population activity are a necessary, mini-
mum requirement for the neuron to act as a coincident de-
tector. This work was supported by an ETH-#ch grant, the EU
The results presented here demonstrate that, in view dST-2000-28127/BBW 01.0208 grant, and the Swiss Na-
lack of direct experimental evidence, a rigorous mathematitional Fund(SNF, Grant No. 31-61415.01.
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