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Existence of high-order correlations in cortical activity
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Neurons collect signals originating from a large number of other cells. The variability of this integrated
population activity at the millisecond time scale is a critical constraint on the degree of signal integration and
processing performed by single neurons. Optical imaging, EEG, and fMRI studies have indicated that cortical
activity shows a high degree of variability at a time scale of hundreds of ms. However, currently no experi-
mental methods are available to directly assess the variability in the activity of populations of neurons at a time
scale closer to that of the characteristic time constants of neurons, i.e., around 10 ms. Here we integrate
pertinent experimental data in one rigorous mathematical framework to demonstrate that~1! the high temporal
variability in the spiking activity of individual neurons,~2! the second-order correlation properties of the
spiking activity of cortical neurons, and~3! the correlations of the subthreshold dynamics, all impose high
amplitude, fast variability in the population activity of cortical neurons. This implies that higher order corre-
lations, a necessary condition for temporal coding models, must be a central feature of cortical dynamics.

DOI: 10.1103/PhysRevE.68.041905 PACS number~s!: 87.19.La, 02.50.2r, 89.75.Fb, 95.75.Wx
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I. INTRODUCTION

Neurons in the neocortex receive signals from thousa
of other neurons@1–4#. The type of processing these circui
can perform depends on the cellular properties of
postsynaptic neurons and on the statistical properties of t
presynaptic signals. Although knowledge about the forme
quickly accumulating, our insight into the latter is more lim
ited. In the visual system, stimulus properties change o
behavioral time scale of hundreds of milliseconds. Therefo
neuronal activity shows some degree of variability on t
relatively long time scale@5#. As neurons with similar re-
sponse properties have a higher probability to be conne
@1,3#, this variability does not average out. However, t
temporal operations performed by neurons are character
by time constants on the order of tens of milliseconds. C
rently no experimental techniques are available to dire
measure the dynamics of large numbers of neurons at
time scale. Hence, in order to understand the fast dynam
i.e., measured at the millisecond time scale, of neuro
populations in the cortex, we resort to a theoretical approa
In particular, we want to assess whether the temporal v
ability in the activity of large neuronal ensembles avera
out ~zero-variability systems in the following!, or whether,
under general dynamical conditions, some degree of
variability must emerge. Answering this question is of gre
importance to understand the operating conditions of cort
neurons and their encoding capabilities: in case of zero v
ability in the input dynamics to a given cortical neuron, it
exposed to a smooth sustained input current. In the oppo
case of high-variability, it processes afferent signals that w
vary strongly in both their total amplitude as well as th
temporal properties.

*Corresponding author. Email address: ben@ini.phys.ethz.ch
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A. Considerations from physiological data

The optimal solution to directly access the fast cortic
variability would be to simultaneously record the spikin
activity of individual neurons in a large ensemble of fe
thousands of cells. Currently, simultaneous recordings
only up to a maximum number of 102 neurons have been
reported@6#. Hence, the available experimental results on
provide indirect hints on the fast dynamics of cortical ne
rons. A number of relevant observations, however, are av
able: ~a! the membrane potential~Vm! variability of single
neurons at the millisecond time scale as revealed by int
ellular studies@7#. ~b! The reliability in the spike timing@8#.
~c! The plausible presynaptic origin of the transition betwe
so-called, up-down states@9# and ~d! the high spike timing
variability, as quantified by the coefficient of variation~CV!
@10#. All of these have been interpreted as providing indire
hints for the existence of fast variability in the dynamics
populations of cortical neurons. However, there are ma
alternative, equally valid, interpretations to explain the
phenomena and it remains unclear whether and under w
conditions, fast variability should or should not occur.

B. Considerations from modeling studies

Sophisticated statistical analyses@11# have been used to
identify patterns of activity in spike trains, interpreted
‘‘fingerprints’’ of synchronous events involving a large fra
tion of neurons~i.e., high amplitude, fast variability! also
calledhigher order correlation events.

In the literature, the concept of higher order correlations
used to indicate brief time intervals~a few ms! during which
a large fraction of cells in the population produces a spi
thus generating what is also called apopulation spikeor
unitary event@12–14#. These spiking events represent a for
of fast variability in the network’s activity. Accordingly, in
the present study, we will use the term ‘‘higher order even
~sometime omitting ‘‘correlation’’ for simplicity! to indicate
the presence of fast, few ms, variability in the populati
©2003 The American Physical Society05-1
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BENUCCI, VERSCHURE, AND KÖNIG PHYSICAL REVIEW E 68, 041905 ~2003!
dynamics, as opposed to completely uniform activity w
constant, zero variability. This former case can be associ
with ‘‘flat’’ population PSTHs ~i.e., the peri stimulus time
histograms of the population’s spiking activity!, which indi-
cate that, at any moment in time, a constant number of sp
is produced by the neuronal ensemble, and no higher o
correlation events, or fast variability, appear.

The statistical significance of the results mentioned at
beginning of this section, however, is still hotly debate
Other theoretical studies either simply assumed the existe
of higher order events@13#, or focused on large-scale recu
rent neural networks with simplified neuronal models@15–
18# to demonstrate that fast variability in the form of pop
lation spikes is an emergent property of the systems stu
@14#.

In summary, also in interpreting the results of these th
retical approaches, we face the problem: it is not clear un
which conditions, if ever, fast variability emerges.

On a positive side, the above-mentioned experimental
theoretical studies all contribute bits of information to th
‘‘puzzle,’’ i.e., the problem of the fast variability. In the re
mainder of the paper we will use a number of ‘‘puzz
pieces,’’ such as our knowledge of the pairwise correlatio
of neuronal activity and the CV of single cells. We will in
tegrate these observations in a framework that will allow
to prove that under very general conditions, irrespectively
the preparation, cortical area, or species, etc., fast variab
cannot cancel out. Subsequently we will consider the
evance of these results with respect to the information p
cessing and coding strategies of cortical neurons.

C. Structure of the paper

After describing in detail three experimental results me
as important constraints of the neuronal dynamics~Sec. I D!,
Sec. II faces the question, using formal mathematical ar
ments, of whether it is possible to have zero fast variabi
in the activity of large ensembles of cells, given our expe
mental and theoretical knowledge of the cortical dynam
We describe systems~ensembles of spiking neurons! without
fast variability ~Secs. I A and I B! and check their compat
ibility with physiological constraints~Sec. II C!. We will
make use of design theory, a branch of combinatorics
provide examples of dynamical systems that are charac
ized by a total absence of fast variability and that are s
fairly compatible with physiological constraints. This su
gests that a more careful analysis is required to support
commonly held notion of nonzero variability in the sho
time scale. At the end of Sec. II, we describe the problem
classifying such systems in a formal and exhaustive w
which leads us to abandon the formalism of design theor
favor of a more classical statistical one. In Sec. III, in ord
to solve this ‘‘classification problem,’’ we introduce a stati
tical approach@random controller method~RC!, Secs. III A
and III B# to describe any systems with zero fast variabil
~including those introduced in the context of design theory
Sec. II! and verify again their compatibility with physiologi
cal constraints, Secs. III C and III D. Finally, in Sec. IV w
prove the incompatibility of such systems with the cortic
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dynamics.1 These steps allow us to formally prove th
higher order correlations must exist in cortical dynami
The implications of this observation will be further elab
rated in the discussion.

D. Physiological constraints on neuronal processing

In order to assess whether a model accurately descr
the cortical dynamics, it needs to satisfy a number of phy
ological constraints. The three constraints considered h
are as follows:

~C1! High temporal variability observed in the spikin
activity is quantified by the coefficient of variation~CV!
@19#, which is defined as the ratio between the standard
viation and the mean of the interspike intervals~ISI!. The CV
of cortical neurons is measured to be 1 or more, a variab
that exceeds that of a pure Poisson process@20#.

~C2! Second, the spiking activity of pairs of neurons
the primary visual cortex shows a correlation that is prop
tional to the similarity of their feature preference@21,22#.
These experimentally observed correlations are ‘‘weak’’
the sense that only very few spikes between pairs of sp
trains are correlated. Typical correlation strength, measu
as the peak amplitude of the cross-correlogram over the
set@23#, is about 0.1@21,22,24,25#, implying that only 1 out
of 10 spikes is in some specific temporal relationship@26#.
This weak pairwise correlation has been observed in sev
cortical areas, in different species, and in anaesthetize
well as in awake behaving animals@22#.

~C3! Paired intracellular recordings in primary visual co
tex have detected correlations in the subthreshold memb
potentials of neighboring neurons@27,28#. It has been shown
@27# that the normalized peaks of the cross-correlogra
range around 0.4, which indicates that 40% of the time,
subthreshold membrane potential of neighboring cells in
sual areas is correlated. This correlation is amplified dur
visual stimulation with normalized peaks as big as 0.8@27#.

Here we address the question how the above propertie
cortical neurons, i.e., high CV and subthreshold and supr
reshold pairwise correlations, constrain the overall dynam
of cortical networks in the short time scale. We prove that
a neuronal ensemble, during high-input regimes, some
gree of variability must exist.

II. ZERO-VARIABILITY SYSTEMS: COMPATIBILITY
WITH CONSTRAINTS „C1… AND „C2…

In order to characterize the fast variability of cortical ne
rons, the second and higher order statistical properties~i.e.,
mean firing rate, pairwise correlation strength, and unit
events! of the input activity to any given target cell, compris

1To help the reader follow the logical structure of the paper
will begin and end relevant sections, which are not pure formalis
or definitions, with ‘‘Introduction’’ and ‘‘Summary’’ paragraphs, re
spectively, each of them terminated by a ‘‘•’’ symbol. The read
who is not interested in the mathematical proofs can then ea
follow the backbone of the logical structure, reading only tho
paragraphs.
5-2
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EXISTENCE OF HIGH-ORDER CORRELATIONS IN . . . PHYSICAL REVIEW E68, 041905 ~2003!
ing 5000 to 20 000 input spike trains@4#, need to be defined
@3,21,24#. A qualitative observation gives an intuitive idea
a possible solution. Considering that the number of pairw
coincidences rises quadratically with the number of affere
and that the number of spikes available to generate s
coincidences rises only linearly with the number of afferen
it follows that spikes have to be ‘‘used’’ multiple times t
generate coincidences, i.e., higher order correlations m
appear. However, this intuition can be misleading and
raises the question whether the emergence of higher o
events is a necessary consequence of the experimental
straints.

Introduction. Here we use systems~symmetric designs!
that are well known in the field of combinatorics and des
theory @29,30#, but are not yet introduced in the study
cortical systems. For our very basic use of design theory,
just necessary to know that this field of mathematics is
tremely helpful in identifying features and emergent prop
ties of large-scale complex systems constrained by ‘‘som
limitations. To provide an intuitive example of what w
mean with a complex system, one can imagine a raster
of the spiking activity of a large ensemble of cells. Desi
theory helps to understand the structure of such plots,
equivalently, the properties of the corresponding populat
PSTH.

In the fields of combinatorics and design theory@29# sys-
tems have been identified that have zero variability in th
PSTH~‘‘flat’’ population PSTH! and nonzero pairwise corre
lations. For some of these systems the constraint of high
is also satisfied. We now verify in detail the compatibility
these systems with the three physiological constraints in
duced above individually. In the last paragraph of Sec. I
we will provide a clear example to give an intuitive idea
how symmetric designs can be generated and in which
they could relate to cortical dynamics.

A. Definitions and formalism: redefining the problem

It is useful to think of a spike train as a binary strin
where the ‘‘ones’’ represent the occurrence of a spike and
‘‘zeros’’ a nonoccurrence. The length of the string is defin
by the duration of the single ‘‘bins,’’Dtbin , which are used
to discretize the spike train, and the number of binsNbin .
This is essentially the time resolution of the syste
DtbinNbin5T, with T being the total duration of the spik
train. The string of time bins can be thought of as a gro
S5$s1 ,...,sn% of elements. Considering that the spikes c
occur in any time bin, all elements between min(S) and
max(S) must be included, and it is always possible to sh
the elements such that min(S)5tstart. In general,S can be
thought of as a permutation of the elements of the
$min(S),...,max(S)%. Therefore, the problem can be viewed
a finite fieldZn , for some integern. Given these definitions
we assume thatS5$0,1,2,...,Nbin21%, and that any spike
train can be represented by a subsetC5$c1 ,...,ck% of S. In
order to faithfully represent the spike train we want eve
element inC to carry information about the spike timing. Fo
example,ci5l means that a spike occurs at a timeDtbinl.
If the firing rate is constant then the size of every subset i
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a fixed valuek. Suppose we haveC1 ,...,Cm as distinct non-
empty subsets~spike trains!, then the weak pairwise correla
tion constraint~C2! translates touCi∧Cj u5q, for any pair of
subsets, withq being a fixed parameter defining the numb
of overlaps~the strength of the correlation!.

B. Symmetric designs

For the systems with a flat population PSTH described
design theory, the number of subsetsm5Nbin , and these
objects are called symmetric (Nbin ,k,q) designs@29,30#.

One well studied example of symmetric design is the
called Fano plane, Fig. 1~a!: In this caseNbin57. The Fano
plane is ap52 symmetric design, which means thatNbin
5p21p11, k5p11 andl51, so blocks of different sizes
can be created using higherp values. Other examples o
large-scale symmetric designs are the so-called Hadam
designs@symmetric (4t21, 2t21, t21) designs#; projective
planes~symmetric (p21p11,p11,1) designs!, etc.

FIG. 1. Symmetric designs:~a! Representation of the Fan
plane, projective plane of order 2, a symmetric~7,3,1! design. This
‘‘squared grid’’ can be associated with a raster plot of spike trains
the following way: every row represents the spiking activity of
single cell~seven in this example!, where the occurrence of a spik
is a filled circle and the nonoccurrence is simply an empty b
Note that the number of elements~filled circles, or ‘‘spikes’’ in the
raster plot representation! along the columns is constant and equ
to that along the rows~or spike trains!, as indicated by the side
histograms.~b! Example of a ‘‘graph’’ and its associated incidenc
matrix. ~c! Schematic of the mathematical space where the
scribed objects can exist. The light gray oval symbolizes the bo
of the group of zero-variability systems~ZVB!, while the black oval
is the border of the group of average RC systems~^RC&!. This latter
group includes classified~C! and unclassified~U! symmetric de-
signs~the circles with the corresponding letters!, which satisfy the
constraints of high CV, indicated with the letter~a!, and of pairwise
correlations for the spiking activity~b!, but not the constraint for the
subthreshold correlations, crossed~c!. The space between the oval
indicated simply with RC, represents in general the systems~open
circles! produced by the RC method, which deviates from the
erage behavior, i.e., smallN and duration time. For these cases, C
and correlation strengths cannot be fixed.~d! Histogram of the peak
values of the subthreshold cross-correlated activity, adapted f
Lampl et al. @27#.
5-3
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BENUCCI, VERSCHURE, AND KÖNIG PHYSICAL REVIEW E 68, 041905 ~2003!
Symmetric designs interpreted as raster plots

We can interpret the Fano plane~and any symmetric de
sign! as a raster plot, Fig. 1~a!. If we assume that each of th
seven columns represents an interval of 5 ms, i.e., the
resolution, the Fano plane represents the raster plot of s
neurons for a total trial duration of 35 ms. The filled circl
represent the occurrence of a spike for the corresponding
at a given time. For example, cell 4 emits three spikes,
first spike in a time between 0 and 5 ms, the second sp
between 15 and 20 ms, and the third between 30 and 35
All the cells have the same mean firing rate~every row has 3
spikes!. Moreover, the neurons show a fixed pairwise cor
lation since, taken any of the possible pairs of cells, only o
of the three spikes for each cell is located in the same colu
as for another cell. For example, both cells 2 and 6 em
spike in a time between 10 and 15 ms and that is the o
time overlap. The histogram at the bottom represents
population PSTH, which is characterized by zero variabil
A large number of symmetric design systems have been
ported in the literature@29#. Hence, to create a system th
implements a cortical raster plot with an arbitrary number
cells and of any duration, characterized by variability at
hundreds of milliseconds time scale and no variability at
tens of milliseconds time scale, turns out to be very ea
Several symmetric designs~as the Fano plane!, with duration
of few tens of milliseconds, each with the same rate a
correlation properties, can be vertically~temporally! aligned
to obtain the desired number of rows~neurons in the popu
lation!. This would form the first ‘‘block of columns,’’ i.e.,
the raster of the population for the first few tens of millise
onds. To provide the second and following blocks of c
umns~i.e., the complete temporal evolution of the system!,
symmetric designs with different mean rates can be us
This way the global population PSTH would show variab
ity only in 100 of milliseconds time scale and not on
shorter time scale. Having this generating mechanism
mind, we will neglect in the following the global dynamic
and focus on the ‘‘building blocks,’’ i.e., the symmetric d
signs.

Summary. Symmetric designs can be used as build
blocks to produce raster plots~and from those PSTHs! char-
acterized by a global variability at the hundreds of millise
onds time scale and no variability at the tens of millisecon
time scale. Such systems exhibit weak pairwise correlatio
C2, as experimentally observed in the dynamics of cort
neurons. •

C. The coefficient of variation constraint „C1…

Introduction. To claim that symmetric designs can su
cessfully describe the cortical dynamics, we need to ve
their compatibility with the other constraints,~C1! and~C3!.
In this section we will focus on~C1!, i.e., high temporal
variability in the single cell spiking activity. •

In design theory, systems with high CV~coefficient of
variation of interspike intervals! can be found when studyin
the so-calledcyclic difference sets@29#, an example using
arithmetic mod~13! in the field Z13 is given in the supple-
mentary material, Fig. 1~a!, @42#. In this example, there ar
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two remarkable features: the exponential that describes
distribution of the interspike intervals is necessarily inco
plete and ‘‘pathological’’ cross-correlation structures, alwa
strongly asymmetrical~i.e., nonzero abscissa for the ma
peak! are produced, supplementary material Fig. 1~b! @42#.

None of the above zero-variability systems can descr
the real cortical dynamics. They do not satisfy either the
or cross-correlation constraint. Unfortunately, satisfact
examples cannot be found either in the context of gra
theory@31#, which focuses on the properties of the inciden
matrix, Fig. 1~b!, or advocating the so-calledbalanced in-
complete block designs~BIBD, see Bethet al. @29# for a
formal definition!.

Summary. When detailing the compatibility of symmetri
designs with constraint~C1! and ~C2!, problems arose in
finding satisfactory examples. Nevertheless, no proof
available that at least one ‘‘good’’ system does not exist.
cannot proceed by enumerating examples, because ‘‘clas
ing these objects is clearly impossible with present metho
@32#, i.e., we cannot make a list of all symmetric designs a
exclude them one by one. Design theory has been usefu
disprove the intuition that C1 and~C2! are sufficient to en-
force higher order correlations. Nevertheless, to continue
have to utilize an additional approach, and return to symm
ric designs further down. •

III. THE CLASSIFICATION PROBLEM AND THE RC
METHOD

Introduction. To circumvent the above-mentioned clas
fication problem and give a formal proof that zero-variabil
systems are not compatible with cortical dynamics at a
time scale, we introduce a statistical method, the RC met
~an intuitive idea of how the RC method works is given
the first paragraph of Sec. III A!. This allows us to define
statistical quantities, which can be directly compared w
physiological and biophysical results,~C1!, ~C2! and ~C3!.
This discussion will take all of Sec. III. Only in Sec. IV w
will solve the above-mentioned classification problem. At t
end of Sec. IV we will summarize the results and provi
conclusions in relation to this statistical approach.

A. An introduction to the RC method

To give a clear idea about what the RC method is,
could interpret again the incidence matrix associated with
Fano plane, Fig. 1~a!, as a raster plot. At every time step
fixed number of cellsk is specifically selected by what w
call a controller, to make them spike, and the symmetr
design structure is produced. More specifically, referring
Fig. 1~a!, a generator of integers~i.e., thecontroller! would
produce the sequences of triplets:~4, 5, 7!, ~1, 3, 7!, and so
on. These numeric sequences would simply mean that a fi
circle ~spike! should be assigned in the first column at row
5, and 7, in the second column at row 1, 3, and 7, and so
until the structure of the Fano plane is created. The ra
plot of the Fano plane can then be considered as a pos
subset of integers generated by a random-uniform gener
of numerical sequences~RC method!. Indeed, going back to
the previous example, the specific sequence of integers
5-4
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EXISTENCE OF HIGH-ORDER CORRELATIONS IN . . . PHYSICAL REVIEW E68, 041905 ~2003!
would create the symmetric design,~4, 5, 7!, ~1, 3, 7!, and so
on, is a special choice between those that a random gene
of triplets of integers can produce. Given the proper value
k, this method ensures that any pair of rows has, on aver
the same number of intersections~fixed correlation strength!
and all the rows contain the same number of spikes~fixed
firing rate!. From these considerations we can formulate
first important theorem.

Theorem 1.Any zero-variability system, with any pair
wise correlation property, can be generated by the
method.

Proof. Given a zero-variability system, however gene
ated, it can be mapped into a binary matrix of zeros and o
as in Fig. 1~b!, which shows its incidence matrix. The tot
number of elements along the columns must be constan
definition of zero variability. The row indices of the select
cells at every time step arej integers~4, 5, 7; 1, 3, 7; etc. in
the previous example!. The whole system can then be d
scribed by a sequence of integers of length (T/Dtbin)j, i.e.,
proportional to the total durationT, divided by the time reso-
lution Dtbin . There is always a nonzero probability that
random generator can produce such a sequence. j

The concepts proposed here are schematized in Fig.~c!.

B. Formalism for the RC method

In Sec. III A we said that the RC method can gener
systems with fixed second order statistics, i.e., firing rate
pairwise correlations. We want now to better character
this statement and to analyze the limitations of the metho
well.

For fixed firing ratef and pairwise correlations streng
cs , a given cella correlates with cellb on average, every
T251/f cs s; i.e.,cs determines the mean time between tw
correlated spikes. However, the mean time before two sp
correlate again is also determined by the probabilityPr that
the controller will reselect the cellsa andb. From combina-
torial analysis and by indicating the number of cells withg
52, we have

Pr5

S N2g
n2g D
S N

n D ,

wheren is the number of spikes assigned at every step by
RC andN is the total number of spike trains. Forg51,2, the
previous expression can be approximated byPr5(n/N)g,
this way T15(N/n)2Dtbin , with T1 the average time o
coselection of a given pair of cells.

The method can produce systems according to the co
lation and firing rate constraints,cs and f, if the following
condition is satisfied: the average frequency of occurrenc
the intersections as determined bycs , and the frequency o
the random controller in selecting a given couple of ce
must be the same. This results in the following conditio
T25T1 , which is true if n5NAf csDtbin. This is what we
call theconsistencycondition.
04190
tor
r
e,

e

C

-
es

by

e
d
e
as

es

e

e-

of

s
,

Theorem 2.The RC method satisfies the consistency co
dition if f Dtbin>cs .

Proof. If the process selects a given cella with a fre-
quency 1/T1 for the correlation constraints with cellb, this is
also true in respect to the correlation constraints with all
other cells. Indeed, the frequency used by the controlle
select a given cell can be computed from its probability
selection. Forg51, Pr5(n/N)g, so the controller is select
ing any given neuron with a frequencyf pr5n/NDtbin . Us-
ing the expression forn as above, we get the following ex
pression, f pr5Af cs /Dtbin. Since the selection of a ce
corresponds to a spike insertion as well, it is necessary
f pr< f which means thatf Dtbin>cs . j

C. Consistency with cortical dynamics?

For typical values ofcs50.1 and Dtbin51 ms @21#,
cs /Dtbin5100, so the consistency condition is achieved o
for firing rates greater than 100 Hz, which is clearly not t
mean rate of a cortical neuron@33,34#. Yet, increasing the
value of Dtbin or decreasing the value ofcs can lead to
values off that are within those reported, assuring the co
sistency. Thus, the two constraints applied so far are
sufficient to exclude a zero variability population PSTH.

D. Confronting the RC method with the subthreshold
correlation constraint „C3…

We use now the third constraint, regarding the subthre
old correlations, to further narrow down the range of valid
of zero-variability systems.

Theorem 3.The maximum and minimum fraction of time
Tf andTu , respectively, during which two cells, whose spi
ing activities are produced by the RC method, can be co
lated, is given by

Tf511DtdecF f cs22A f cs

Dtbin
G

and

Tu5DtcorrF f cs12A f cs

Dtbin
G22DtdecA f cs

Dtbin
.

Proof. We first demonstrate the equality forTf . As shown
in Fig. 2~c! ~left panel!, in between two correlated spikin
episodes of cellsa andb ~dark gray spikes on the sides!, the
average distribution in time of the uncorrelated spikes~light
gray spikes! is such that between two consecutive spikes
cell b there will be a spike of cella. This is because the RC
method by definition minimizes the temporal overlaps b
tween the spiking activities of the two cells. We callDtdecthe
time interval centered around the uncorrelated spikes of c
A and B, during which the membrane potential of the tw
cells cannot be correlated. This is simply due to the up-do
swing of the action potential; if a cell is spiking and the oth
is not, the stereotyped shape of the action potential imp
that the correlation coefficient between the two membra
potentials is necessarily very small, Fig. 2~a!. From the con-
sistency condition of Theorem 2, we know that the avera
5-5
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interspike interval isTpr5ADtbin / f cs and the average dis
tance in time between two correlated spikes isT15T2
51/f cs .

Given these definitions we compute the fraction of t
total time available for possible subthreshold correlations
tween cell pairs, called ‘‘free time,’’Tf . This parameter rep
resents the upper tail of the distribution of the subthresh

FIG. 2. The third constraint~C3!. ~a! When performing paired
intracellular recordings from neighboring cells, a possible dyna
cal scenario could be characterized by common subthreshold
tuations where in between correlated episodes, only one of the
cells spikes due to some fast noise, while the other does not.
cause of the up-down swing of the action potential the correla
coefficient between the two traces computed in a time interval e
to the absolute refractoriness (Dtdec) is low, but excluding such a
brief event, the activity of the two cells could be on average co
lated (Dtcorr). ~b! This curve schematically reproduces the expe
mentally derived one as shown in Fig. 1~d!. The parametersTf and
Tu can be related to the upper and lower tails of the distributi
respectively.~c! The left panel illustrates the method used to der
Tf ~see text for the detailed derivation!. Dtdec refers to the duration
of the up-down swing of the action potential~absolute refractori-
ness!, Tpr is the interspike interval as derived by the RC metho
and T1 is the mean time of occurrence of correlated spikes. T
shaded areas are the time intervals used to compute the ‘‘free-t
parameter. The right panel instead relates to the derivation ofTu .
The main difference is that the shaded areas represent the inte
during which the two cells are for sure correlated (Dtcorr

2Dtdec). ~d! The three panels showTf and Tu as a function of
Dtcorr for three different values of the mean firing rate: 30, 60, a
80 Hz, respectively. The five different horizontal and oblique lin
refer toTf andTu while Dtdec changes from 1 to 5 ms, respective
~1 for the top lines and 5 for the bottom lines!. The two vertically
aligned filled circles in the first panel indicate the values ofTf and
Tu ~from bottom to top, respectively!, given a distribution whose
mean is around 0.4, as in Fig. 1~d!.
04190
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ld

correlation coefficient@Fig. 2~b!#. This is because if during
the available free time the two cells are indeed always c
related, the maximum possible correlation coefficient wo
be achieved. This free time is schematically shown by
shaded areas in Fig. 2~c! ~left panel!. Its fractional value,
obtained normalizing for a given interspike interval, isTf
5@(Tpr22Dtdec)/Tpr#1(Dtdec/T1), where the last term on
the right-hand side comes from the consideration that co
lated spikes add to the free time. Using the expressions
Tpr and T1 as defined above, we getTf511Dtdec@ f cs

22Af cs /Dtbin#.
We proceed in a very similar way to compute the fracti

of time during which two cells are necessarily correlate
Tu . This would represent the lower tail of the distribution
subthreshold correlation coefficients as in Fig. 2~b!. First, we
need to recall an experimental observation: when compu
the cross-correlograms of the membrane potentials, La
et al. found that the widths of the peaks of these cro
correlograms were much broader than those computed
the spiking activity @22#. The mean value reported wa
around 40 ms for Vm vs,10 ms for the spiking activity
@22,27#. This number indicates that when two cells are in
correlated state, they will on the average stay correlated f
duration comparable to the width of the cross-correlogra
We use this observation to introduce a correlation interv
Dtcorr (Dtcorr.Dtdec), which is also centered around eac
spike. DuringDtcorr the two cells are necessarily correlate
@excluding the brief interval during the occurrence of t
spike, Dtdec; see Fig. 2~a!#. Dtcorr can be justified in the
following way: Dtdec has been defined before based on
stereotyped shape of action potentials. Hence, outside
time interval, we have no hypothesis about the correlat
properties of the membrane potentials. Suppose instead
we have been able to measure the mean value ofDtdec, then
right outside this interval the two cells must on average,
definition, be correlated. An example of this scenario for
subthreshold dynamics is schematically shown in Fig. 2~a!:
both cells might depolarize towards threshold simul
neously, but only one emits a spike. During such an episo
the Vm of the two cells is strongly correlated,Dtcorr , except
during the swing of the action potential,Dtdec. The shaded
areas in Fig. 2~c! ~right panel! represent the time during
which the two membrane potentials must be correlated fo
given interspike interval. The fractional value is thenTu
5@(2Dtcorr22Dtdec)/Tpr#1(Dtcorr /T1), where the last
term on the right side of the equation comes from the c
sideration that correlated spikes add to the time during wh
the two cells must be correlated. Using the expressions
Tpr and T1 given above we get Tu5Dtcorr@ f cs

12Af cs /Dtbin#22DtdecAf cs /Dtbin. j
We now want to check if there is a set of paramet

(Dtcorr ,Dtdec, f ,cs), such thatTf and Tu , i.e., the higher
and lower tails of the distribution of correlation strengths, a
compatible with the experimental data@Fig. 2~d!#. Every
panel relates to a different average firing ratef, and it shows
Tf and Tu as a function ofDtcorr for different values of
Dtdec with cs5set to 0.1. The thick horizontal and vertic
lines at 0.4% and 10 ms indicate the mean correlation va
as experimentally observed and the typical average width
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EXISTENCE OF HIGH-ORDER CORRELATIONS IN . . . PHYSICAL REVIEW E68, 041905 ~2003!
cross-correlograms of pairs of spike trains, respectively.
dotted horizontal lines correspond to differentTu values
while Dtdec is increasing from 1 to 5 ms~going from the top
to the bottom, respectively!. In the same way, the obliqu
lines show the behavior ofTu . The results demonstrate th
there isnot a set of values such thatTf andTu would match
the distribution found by Lamplet al. @27#. A very narrow
distribution with a mean around 40%~as reported by Lamp
et al.! can be obtained forf <30 Hz, Dtcorr,10 ms, and
Dtdec55 ms, as qualitatively indicated by the filled circles
the left part of panelc, corresponding to the filled circle
shown in panelb. These values forf, Dtdec, andDtcorr are
not compatible with the observed data and the dynam
conditions studied here, i.e., high input regimes. The con
sion is that the temporal distribution of the spikes produc
by the RC method is not consistent with the subthresh
correlation properties observed in the experiments.

The incompatibility of the RC method with the phys
ological data results from its inability to capture the pertine
correlation statistics. This suggests that in order to satisfy
constraints~C1!–~C3! some degree of temporal alignmen
must occur. We evaluated this contention using a numer
simulation.

Numerical simulation. We show numerically that for sys
tems that are statistically very close to those generated by
RC method, i.e., zero-variability systems, theTf parameter is
too low with respect to the experimentally reported valu
Moreover, we show that only allowing variability in th
population PSTH, it is possible to obtain values compati
with the experimental ones. We considered as an approx
tion of an RC system a group of uncorrelated Poisson sp
trains. This is a simplification since Gaussian noise cha
terizes its dynamics, i.e., the nonflat population PSTH.
then designed an algorithm to produce weak pairwise co
lated spike trains, allowing some degree of temporal ali
ments and high CV. Results for this simulation using a me
rate of 85 Hz andDtdec54 ms, are shown in Fig. 3. Th
lower plane~uncorrelated Poisson trains! shows a 35% value
for the free-time parameter, while 55% is obtained for t
correlated system, compatible with reported experime
values, Fig. 1~d!. The two systems have the same CV a
mean firing rate, but they differ in the correlation statisti
The important observation is that systems with some deg
of temporal alignments are characterized by a free-time
rameter that is compatible with~C3!. This does not hold true
for the uncorrelated Poisson case. The high variability cl
to the origin of the plot and the asymptotic behavior a
important features, which will be discussed later on. Incre
ing the firing rate to 90 Hz leads to a decrease ofTf for the
uncorrelated system to 30% and when wideningDtdec to 5
ms, an additional reduction to 17% is observed. The al
rithm allowed us to vary the degree of temporal alignme
and accordingly the correlation strength: Forcs50.2 and un-
changed rate and high CV,Tf reached 60%.

Note. Looking at the results there are two important o
servations: First, the expression forTf , as soon asN is
greater than 3, does not critically depend onN. Second, the
variability associated with the uncorrelated Poisson sys
does not produce a free-time parameter compatible w
04190
e

al
-

d
ld

t
e

al

he

.

e
a-
e

c-
e
e-
-
n

e
al

.
ee
a-

e

s-

-
s

-

m
th

~C3!. This not only suggests that nonflat population PST
are necessary to match physiological conditions, but also
the required variability should exceed that of an uncorrela
Poisson system.

Summary. The RC method is a very general statistic
approach to produce any system with zero fast variabil
including the symmetric designs. When confronted with t
physiological constraints~C1!, ~C2!, and ~C3!, the systems
generated by the RC method do not fulfill the subthresh
constraint~C3!. Some degree of temporal alignments, or sy
chronized activity, is necessary. A numerical simulation s
ports these results.

IV. EXCLUDING THE SYMMETRIC DESIGNS

Introduction. The average statistical behavior of system
generated by the RC method, including the symmetric
signs, is not compatible with the three constraints descri
at the beginning. The third one, concerning the subthresh
correlations, plays a major role. We went around the ‘‘cla
sification problem’’ and found a more general solution
create zero-variability systems and to verify their compatib
ity with the cortical dynamics. These results can be natura
extended to the symmetric designs.

The following lemmawill answer the question whether o
not zero-variability systems can describe cortical dynam
constrained by~C1!, ~C2!, and~C3!, thus solving the classi-
fication problem presented in Sec. III C. It comes simply a
corollary of Theorem 3.

Lemma 1.Symmetric designs cannot describe cortical d
namics as defined by~a! high CV at the single cell level;~b!
pairwise correlations for the spiking activity;~c! pairwise
correlations in the sub-threshold domain.

FIG. 3. Simulation results. The free-time parameterTf is plotted
against the total number of cells and the duration of the time w
dow used to compute the mean value of the parameter for of e
couple of spike trains. Such a mean has been computed avera
Tf values obtained from all possible combinations of two sp
trains for a given number of cells in the sample. The upper tr
refers to an ensemble of spike trains having weak pairwise corr
tions (cs50.1). The lower plane instead refers to uncorrelated P
son spike trains. In both cases the firing rate was fixed to 85 Hz
the correlated case, characterized by temporal alignments in
spiking activity, the free-time parameter shows a higher value t
for the uncorrelated case, 55% and 35%, respectively. Higher v
ability at the origin for both the planes is contrasted by a sta
convergent behavior in ensembles having more than 2–3 cells
whose duration last longer than 100 ms.
5-7
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The proof is given in the supplementary material. No
that proving Lemma 1 is a central point to support the lo
consistency of the paper: Symmetric designs have been
very useful to exemplify why constraints~C1! and~C2! can-
not help in constraining the higher order correlation prop
ties of the dynamics, which has been a controversial is
since the introduction of the synfire chain model by Abe
@35,36#. However, at the end of Sec. II, we could not sol
the classification problem. If not resolved, there would ha
been the possibility that a ‘‘special’’ symmetric design, obe
ing constraints~C1!–~C3!, could represent the cortical dy
namics characterized by zero variability in the fe
millisecond-time scale. Lemma 1 proves this is not possi

•
From Theorem 3 and Lemma 1 we have the following
Theorem 4.Dynamical systems that satisfy the constrai

of subthreshold and suprathreshold correlations and high
must display higher-order events in the population dynam

Proof. This is guaranteed by the validity of Theorem
Lemma 1, and from the observation that systems that are
complement of zero-variability ones~in mathematical terms!
must have, by definition, some degree of variability, i.
some degree of higher-order events. Moreover, the gener
is guaranteed by the fact that the RC method can embrac
the systems with zero variability~Theorem 1!. When the first
two constraints are imposed, i.e., high CV and pairwise c
relations for the spiking activity, any zero-variability syste
must behave according to the average behavior of the
systems~see the proof in Lemma 1! and consequently be
disregarded, since it cannot satisfy the third constraint.j

Summary. To solve the classification problem we used t
RC method. This allowed us to generate a larger group
systems characterized by a flat population PSTH, which
cluded, as a subgroup, the symmetric designs. When ch
ing for the compatibility between such systems and the c
straints ~C1!, ~C2!, and ~C3! ~i.e., suprathreshold an
subthreshold pairwise correlations and high CV! we found a
negative answer, mainly for what concern the subthresh
correlations. Flat population PSTHs, and symmetric desi
as well, cannot be compatible with a cortical dynamics c
strained by~C1!, ~C2!, and ~C3!. Under these conditions
some degree of variability must appear even in the tens
liseconds of ms time scale.

V. DISCUSSION

Here, we showed that the available experimental data
the high temporal variability present in the spiking activity
individual cortical neurons, together with their pairwise co
relation properties, enforce nonzero variability in the activ
of populations of cortical neurons. Thus, the variability in t
activity of a large number of neurons converging onto a co
mon target does not average out. Although this was kno
for the slow cortical dynamics, at a time scale of hundreds
milliseconds, our results show that this is true also for
fast variability, in the few tens of milliseconds time sca
Although earlier theoretical work had suggested that t
could be the case, a direct experimental or formal proof w
missing. Hence, the contribution of our analysis is that
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putting together fragmentary theoretical and experimen
knowledge, it formally demonstrates under which gene
conditions fast variability must be observed. Whenever
three constraints~C1!, ~C2!, and ~C3! hold, fast variability
must be observed irrespective of the preparation, type
cells, species, etc. To develop our proof we have made us
design theory. With this approach, we could identify ze
variability systems that we subsequently matched aga
physiological constraints. We expect that this mathemat
framework, new to computational neuroscience, might t
out to be a useful tool for further analyses of the comp
dynamics of neuronal systems.

For our formal analysis, we relied on a number of expe
mental results, and we have to assess whether these a
under the relevant conditions. The numerical estimates
have used refer to values of the correlation strength, m
firing rate, and CV obtained in several species and cort
areas. However, many experiments are performed under
esthesia, and data on the neuronal dynamics in awake
mals are practically not available. The situation with resp
to the third constraint, subthreshold correlations, is ev
more problematic. Due to the immense technical difficult
of these recordings, only a few reports are available@27,28#.
On the positive side, we have no reason to doubt that
results obtained in other species and cortical areas will
qualitatively different. Furthermore, the paradigms cited
those that form the backbone of much of experimental n
rophysiology of the mammalian cortex. In this sense,
constraints we have considered reflect thestate of the artin
current neuroscience and we believe that our results ar
general relevance.

Experimental data and theoretical studies can be put
gether to provide a comprehensive view and formally so
the problem of fast variability. Understanding this issue is
key relevance mainly for clarifying the consistency and fe
sibility of different neuronal coding mechanisms, which
one way or another do make assumptions on the fast v
ability. Indeed when considering widely used rate-bas
models, the key dynamical variable is the rate, i.e., the to
count of inputs in a given time interval. Fast variability in th
population activity, however, is a source of code degrada
@37#. Population spikes induce high-amplitude ‘‘noise’’ in th
inputs, thus degrading the reliability of its spike count. Mor
over, they can elicit spikes by a target cell degrading
information transduction. The optimal working regime f
such coding mechanisms would be a total absence of
variability. In contrast, correlation-based models rely
higher-order correlation events, as a key dynamical fea
used in information processing@38,36#. Neurons, acting in a
coincidence detection mode, are supposed to be strongly
sponsive to such unitary events. These correlation phen
ena are a central feature for temporal coding schemes
their computational relevance has been extensively explo
in theoretical studies@35#. By providing general statement
on when fast variability is necessarily observed in corti
dynamics, our study elucidates under which dynamical c
ditions the different coding mechanisms can work cons
tently and optimally.

At a cellular level, the results presented here contribute
5-8



nc

e
ca
nc
o

g
ni
d

at

ta
in

ns
y-
a-

d an
th

a-

EXISTENCE OF HIGH-ORDER CORRELATIONS IN . . . PHYSICAL REVIEW E68, 041905 ~2003!
the hotly debated issue of cortical neurons acting as coi
dence detectors or temporal integrators@39#. If the flow of
signals converging onto cortical neurons is smooth in tim
the average level of this input is the only available dynami
variable. In contrast, if cortical neurons act as coincide
detectors higher-order correlation events are necessary t
plain, for example, the high CV in the spike timing@10,40#,
the bistability in the subthreshold dynamics@9,41#, and spike
timing reliability @8#. Thus, systems with a nonvanishin
variability in the population activity are a necessary, mi
mum requirement for the neuron to act as a coincident
tector.

The results presented here demonstrate that, in view
lack of direct experimental evidence, a rigorous mathem
eb

p.

m

A.

E
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cal analysis in combination with available physiological da
can shed light onto a fundamental property of processing
neuronal circuits. Determining a set of general conditio
under which variability must emerge in the population d
namics is an important step to identify the possible inform
tion processing strategies used by the cortex, and towar
understanding of the compatibility of cortical dynamics wi
correlation-based encoding.
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