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Absorption effects in liquid crystal waveguides

J. A. Reyes and R. F. Rogue?
Departamento de Bica Qumica, Instituto de Fica, UNAM, Apartado Postal 20-364, 01000 ht® D.F., Mexico
(Received 30 May 2003; published 27 October 2003

An analytical and numerical study of the propagation of optical fields through a nematic hybrid slab is
developed. We take into account explicitly the absorption of radiation by the liquid crystal by introducing a
complex dielectric tensor. For a low intensity beam we first derive the eikonal equation and from it we
calculate the ray trajectories in the optical limit. We show that in the presence of absorption, there are no
caustics within the slab. Then we consider the WKB limit and calculate the field transverse magnetic modes,
their number and their cutoff frequencies. We show that for both limits the agreement between our analytical
and numerical results for the propagation constants is excellent, while there are larger differences in the
analytically and numerically calculated field amplitudes. These differences show that absorption effects are
important for this quantity and have their origin in the fact that the chosen parameter values in our exact
numerical calculations, strictly speaking, do not lie within the limits of validity of the WKB approximation.
Although a more precise comparison between these approaches requires the use of different sets of values of
the relevant parameters, our analysis shows the effects and complications arising from the inclusion of absorp-
tion. Finally, we discuss the scope and limitations of our approach.
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[. INTRODUCTION we are interested in studying those ranges where this effect is
noticeable. Particularly, we shall analyze this effect for dye-
The huge optical response of liquid crystalline materialsdoped nematics that have been experimentally shown to have
has made possible the production of gigantic optical nonlina wavelength range around the dye color where absorption is
earities[1] and strong nonlinear effects by using lasers withconsiderablg¢17,18|.
moderate intensity (kW/cf [2]. This high sensitivity of More specifically, in this work the propagation of an elec-
liquid crystals(LCs) has allowed us to use them to control tromagnetic wave through an absorbing doped, hybrid, pla-
the light output of optical devices such as waveguidest| nar, nematic cell is studied analytically and numerically. The
or optical fiberq7,8]. absorption effects in the propagation of radiation through a
The phenomenon of light-induced molecular reorientatiomematic are taken into account by assuming a complex nem-
is at the basis of the high nonlinear response of liquid crysatic dielectric tensor, whose imaginary part is due to the ab-
tals and has been a subject of intense research activity in tteorbing dye doping. However, the strong orientational non-
last decad¢9,10]. However, in spite of these features which linearity is not considered and the nematic’'s orientation is
make their use so attractive in the design of optical devicesassumed to remain constant, that is, our analysis is restricted
liquid crystals also show important limitations which might to analyze the linear propagation regime. We generalize a
be related to the characteristics of light absorption in thes@reviously developed formalisit—8] to include the propa-
systems. Some of them are, for instance, their slow responggtion of optical fields in absorbing media. This generaliza-
times (millisecond$ or the strong absorption and scattering tion consists of performing a systematic analysis in power of
losses (20 dB cm') they exhibit[11]. These effects due to the dimensionless parametiegl, which measures the ratio
absorption are greatly enhanced when small traces of lightetween the thickness slaland the wavelength of the opti-
absorbing moleculedess than 1%are added to the system. cal field. By varyingkyl from very large values to values of
Their presence can strongly alter the character of their interthe order of 10, the electromagnetic fields are suitable to be
action with light and may reduce the threshold intensity fordescribed by rays or quasiplanar waves corresponding, re-
the optical Freedericksz transition by two orders of magni-spectively, to the so called optical limi©OL) and the WKB
tude, giving rise to the so calledriessy effec{12-14. limit. In the OL we find and solve a complex eikonal equa-
In recent works different nonlinear optical phenomena intion and calculate the ray trajectories, whereas for the WKB
dye-doped LC waveguides have been studied theoreticallgpproximation we obtain the field amplitudes. We discuss a
and experimentally. These include the nonlinear beam splitgeneralization of Fermat's principle for a lossy, anisotropic
ting activated above certain light intensity threshdf], the  inhomogeneous medium and give an interpretation of the
nonlinear mode coupling mismatch between the sections of @mplex ray trajectories. By using experimental values for
three-section guiding device and the decreasing output powehe refractive indices of the doped nematic, we compare our
versus increasing input powgt6]. Although LC optical de- analytical and numerical results for the propagation constant
vices are carefully designed to work in the wavelength rangevith absorption, with previously derived analytical and nu-
for which the absorption effect is practically negligible, heremerical results without absorptiofil9]. This comparison
shows that absorption effects for this model calculation may
be quite large for some properties and play an important role
*Corresponding author. Email address: zepeda@fisica.unam.mxn this propagation process. More specifically, for the propa-
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z E,(x,Ko), andH,(x,ko), whereko=w/c is the free space
1‘ , wave numberw the frequency of the field, andthe speed
il of light in vacuum([6,23,24. These modes are the only ones

that couple to the reorientational dynamicsrofAs will be
| ///— seen below, the inclusion of absorption of the incident optical
V field by the dye-doped nematic liquid crystal preserves this
“1 description in terms of TM modes. For this purpose we use

k E the same constitutive relation

1
|
g Di=e€jE;j, ©)
«~——+— dielectric ——>
:9 y but with a uniaxial dielectric tensog;;= e, &;;+ €,nin;,
n :/ which is now a complex quantity. This means that the dielec-
| tric constants perpendicular and parallel to the long axis of
} the molecules, namely, =€, +ie, and ¢=¢|+i¢|, are
|// — , also complex numbers whose imaginary parts describe the
! / absorption of the dyed nematic. The dielectric anisotropy is
€a=¢|—€, and, as usuali=\—1 denotes the imaginary

nematic unit. In terms of the dimensionless variakje=x/l and for
> X the geometry in Fig. 1, the componentsegfare the follow-
0 ] ing explicit functions of§, €,,=€, + €,C0SH(), €x=¢€,
+ €, SiNfA(0), and e,,= €, sin 6({) cosb({).
FIG. 1. Schematics of a hybrid slab waveguide. As for the case without absorption, we use Maxwell’s

) ) ) ) equations without sources to describe the optical field within
gation constant with and without absorption, we get an exine Jiquid crysta[24] and we arrive at the following general
cellent agreement, which indicates that for this property abgg; of equations for the amplitudes of the TM modes, un-

;orption e_ffects are small. In C(_)ntrast, a compgrison of_ th%oupled to the corresponding transverse ele¢Tie) modes,
field amplitudes for the absorption and absorptionless S'tu%amely

tions, show that absorption effects may be quite large and

should be taken into account in the dynamic description. d2Hy de,|dH,
€27 T|2iKolpéxzt ——|—=
Il. MODEL AND BASIC EQUATIONS d¢ d¢]d¢
Consider a dye-doped nematic crystal layer of thickriiess 2 . dezy —

contained betwgen tvsf)o parallel isotrgpic diglectric media, as kol [ kol (€€, —p%€z) +ip dz }Hy_o’ @
shown in Fig. 1. The transverse dimensions alongxthedy
directions are large compared kobut the cell has a finite 1 [ dH,
volumeV=L I. In the absence of external optical fields, the EZ_E”_GL ~&xPHy+ k_o|5xzd_§ ’ ®)
nematic will retain its initial orientatiom. However, if it is
excited by an obliquely applied laser beam in ihe plane, 1 i dH,
the orientation of the director inside the cell will change with Ex:ql_q PezHy— k_dfxzd_g : ©

position and time. If the polarization of the beam always
remains in the plane of incidence, in the absence of backHere p=g/k,, wheregs denotes the propagation constant of
flows the reorientation oh will also take place in thex-z ~ the mode and=x/I. As a consequence of the complex char-
plane and acter of;;, B is also a complex quantity3=p"+ip'. Its
A real part’ describes the propagation of the optical field
n=(sin#(x,t),0,cosh(x,t)), (1) along the waveguide and its imaginary pgtis inversely
proportional to the penetration length due to absorption ef-
whered is the reorientation angle defined with respect to thefgcts.
z axis in Fig. 1. An initially hybrid configuration of the di-  As usual, the stationary orientational configurations are
rector field which is parallel to the boundary a0 and  determined by minimizing the Helmholtz free energy func-
perpendicular to it orx=1 is assumed. The corresponding tional of the mode[6,19]. In this work we shall only con-
boundary conditions o are then sider the final stationary orientational state after reorientation
has occurred. This state is defined by the corresponding
0(x=0)=0, 6(x=1)=ml2. 2) Euler-Lagrange equation, which in dimensionless form reads

In previous works we have described the propagation of ,
electromagnetic waves within planar and cylindrical nematic-” ~ +q[sin 20(|E = |E|2) +(E,E* +E,E* )cos 20]=0.
cells in terms of the dynamics of the complete representationd * z e e
provided by the transverse magnefiévl) modes E, (X, ko), (7)
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Here E,=E,/Eq, E,=E,/E,, andl=cEZ/8x is the inten- (o —peytlee (e, p?)]Y?

sity of the incident field;* indicates complex conjugate. The S=(0)= fo d¢ €, +Sp. (13
paramete=cE?1%/8wK, whereK is the elastic constant in

the equal constant approximation, is proportional to the ratiarhus, from Eq.(11) we arrive at

between the electric energy of the beam to the elastic energy o1

of the nematic and, therefore, measures the strength of the, . fd ,—Pentlee(€,—P)] N
coupling between the optical field and the orientational con- (&:x)=px 0 4 €57 So-
figuration of the nematic. Clearly, to close the orientational (14)

equation(7) it is necessary to determine first the TM modes.

Although this may be accomplished to different orders of By using the general theory of the Hamilton-Jacobi equa-

approximation in the parametégl, here we only consider tion [26], we derive the following equation for the ray tra-

the OL and the WKB limit which are defined, respectively, Jectories:

by the conditionkyl>1 andkyl >1 [25]. For the OL we can

neglect the wavelike behavior of the optical field and to de- ¢ &z P | €€

scribe it, it is enough to consider the locus traced by the field 7:X_f d7 e_zz+ zz €, P2
. . . . . 7z

amplitude maximum, which is referred to as the ray trajec-

tory, On the other hand, for the WKB limit in whickyl is ~ wherey is the invariant generalized coordinate conjugated to

not so large, not only the phase of the wave has spatial varig. It should be stressed that is also complex,y= x,

: (15

tions but the field amplitude as well. +iyx;. As usual, its real pary, gives the path along which
the intensity of the field is maximum, that is, it defines the
Il. OPTICAL FIELD DYNAMICS ray trajectory. However, it is modified by the imaginary part

i i i i . Xi, Which represents the path along which dissipation is a
Now, since the concept of ray trajectory is defined only inminimum, as will be shown in the following section. In this
the OL, and the TM modes will be required in the WKB limit gange it defines a dissipation function depending.ofiur-

later on, following the usual procedure of ge_zome_trical Opticsthermore, in contrast to the absorptionless ¢@$ehere it is
we assume that the TM modes may be written in the form ¢ ohyious that there is a singularity in the trajectérgus-

tic) when e,,=p?, as suggested by E@15), because this

Ei(r.)=Eq(Nexdi{kdW(r)~wt}], j=xz, (8)  condition is now complex. Actually, it will be shown below
_ _ R for a specific dyed-doped nematic that indeed there are no
Hy(r,t)=Hoy(r)exgi{ko W(r) — wt}], (9)  caustics when absorption is present.

The propagation constaptmay be expressed in terms of
where the Hamilton’s characteristic functioV is now a the propagation angler, defined in Fig. 1, by evaluating
complex quantityWv=W"+iW'. This generalizes the idea of dy/d¢ at {=0 from Eq.(15). This leads to
optical path in such a way that its real psivt describes the

usual optical path between two fixed points of a medium, €a
. . i _ tana— —
whereas its imaginary componewf measures the absorp 2
tion of the electromagnetic wave when it propagates through p=: ' (16)
the liquid crystal. If Eqs(8) and(9) are substituted into Egs. €.\ €€
(4)—(6) and the resulting equations are solved up to terms of (tana— _a) T”
order zero and one in the parametkgl] ~1, we arrive at the €

following eikonal equation:

AW
| o

Where:E(EJ_'i-E”)/Z. However, to calculate the trajectory

2 IW\ 2 IW\ [ dW explicitly, it is necessary to know the functiosg(6). In this
+2€,, = €€,

+ €,

9 ax )\ ot work we shall only consider the case in which the dynamics
(10) of the field is completely decoupled to the orientational dy-

namics, i.e.g=0. Then, from Eq(7) the stationary configu-
with y=2z/1. As for the case wher®/ is real, we solve this rational state turns out to be
equation by using the following canonical transformation:

aa
W(Z,x)=px+S(0), (1D 0= (17

but whereW, p, andS(¢) are all complex quantities. Substi- With this result the components @f; in Eq. (15 can be
tution of Eq.(11) into Eq.(10) yields the following ordinary  determined as explicit functions @f To calculate the real
differential equation foS({): and imaginary parts of two ray trajectories for two incidence
angles, we take the material parameters of the nematic phase
ds(o)|? oo 9SO o (12 OfZhKM—1277 with small addition§l wt%) of dye [17].
€z d¢ tePea d¢ tPien— e =0, (12 This substance possesses a nematic phase in the temperature
range—20°C<T<60°C and it is characterized by a posi-
whose general solution for a given initial conditi8g reads tive low-frequency dielectric anisotropye=12.2. Dye | ex-
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though y; is small and a description which totally neglects
2 absorption[20—-22,7,27 is expected to be valid in this re-
gion; but absorption effects cannot be ignored for ¢, .

IV. TM MODES

Consider now the TM modes. According to E®), the
phase of the TM modes is determined in the OL. However, to

calculate the amplitudeo;(r), Ho,(r) as a function of po-
sition within the cell, it is necessary to solve E¢4.—(6) in
the WKB limit, since in the OL the field amplitudes are
constant. For this purpose we assume that

S(0) =8P+, (18)

FIG. 2. Real(- - -) and imaginary ( - -) parts of the ray
trajectory for «=40° for the nematic phase of doped ZhKM
—1277.(—) denotes the case without absorption.

where the superscript denotes the solutions of(Eg). up to
vanishing and first order irkgl) ~. Substitution of this form
of S(¢) into Eqg.(12) leads to

hibits positive dichroism. From their measurements of the

polarization absorption spectra of the dyes as a function of sz(tO) de;, ds(:o) dey,
the wavelength of the lightsee Fig. 1 in Ref[17]), for a dsV() i €2z dz? + d; d¢ tp d¢
concentration~1% and A\~640 nm, one gets thag, d = i2k I ,
=2.25+i1.0, €,=0.64+i0.02. Inserting these values into ¢ 0 VejeL(€zz—p7)

Eq. (15), we plot the real and imaginary parts of the trajec- (19

tory for «=40° anda=70°, respectively, as shown in Figs.
2 and 3. We have included as a reference the trajectory f
the absorptionless case, as calculated in [R&4]. These .

plots show that_, indee(_j, there are no caustics even in the S(0)=SO()+ L'”WJFC:- (20)
absorptionless limit, which corresponds to what we have de- - 2Kl

noted as the weak limit in Reff24]. The dissipation function

Xi increases continuously as the ray moves towards the righfere C . are integration constants that will be determined
hand side end of the cell ang is less deflected than the from the boundary conditions for the TM modes. For a given
trajectory without absorption. On the other hang=70° Ko, these conditions take the fori8]

corresponds to the strong regime lirff24], which exhibits a

c;{yhose general solution is

caustic at/.= 0.48 when absorption is absent. The trajectory HI§|§:o: Hyls-0, (21

is always real forf<{. and as a consequence, the field am-

plitude oscillates. In contrast, faf> ¢, the trajectory is no 1 dH; 1 dH,

longer defined and the field amplitude is evanescent. More- — =0T o , (22
L . P . €c dy € dy _

over, the dissipation functioly; increases at a notoriously (=0

larger rate precisely af={., indicating that the amplitude R
of the propagating field will decrease fge>¢.. Thus, the Hyl=1=Hyl-1, (23
field’s energy is more concentrated in the regiegn{, even

1 dHF| 1 dH, 04
02] @y [“Te Tyl @9
0.0
_0.2‘{ The superscriptk andR identify the isotropic dielectric me-
dia to the left and right of the nematic layer aaddenotes
04 the dielectric constant of the isotropic cladding.
-0.6 Substitution of Eq(20) into Eq.(9) yields the two inde-
= 08 ] pendent solutions foH(¢,t) and their linear combination
gives the general solution
-1.0-
1.2 € € v . ¢
1 H,({ ko) =| ——5| €'*k)Cco klff ko)d
14 y(£:Ko) (—p?) ol | (7.k0)d7
-1.6-]

: (29

. ¢
+D S|n( kol fo f(’/],ko)dﬂ)

FIG. 3. The same as in Fig. 2 far=70°.
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whereC andD are two arbitrary constants to be determined p’
also from the above boundary conditions. The functigns 03
andf(#n,ky) are defined, respectively, by

k—'klfgd Sxz 26
BlLko)=—ipkol | d7 2
and
| —n2 ]
f(ﬂ,ko)zw. (27) " 139 142 p
€72

On the other hand, it is well known thét,({,ko) in the
isotropic dielectric claddings without absorption is governed
by the following equatiori29]:

1.0 1.2 14 p'

FIG. 4. Graphic solution of the trascendental equati®) as a
function of the propagation constapt=p’+ip' for the range
(—0.001,0.001for Y, andY;, and for the intervals £ p'<1.5 and
0=<p'<0.3. The inset shows in more detail solutirior the mode

Solutions of Eq.(28) which vanish at infinity for the left, n=1.

Hy . and right HJ!, dielectric claddings are given by erate a propagation TM mode. The discrete values that do so
. N will be denoted byp,,, where the subinder identifies the
Hy=FelolvP™mect, (29 corresponding mode. From Eq®5), (29), and (30), it fol-
lows that the allowed values @f, are given by the solution

2

H
5 §2y+<kol>2(ec—p2>Hy=o. (28)

H)F/?:Gefkol vpzfecé, (30) of the complex transcendental equation
whereG andF are also undetermined constants. To find the euq(pﬁ— €c)
four constant<C, D, G, andF, it is necessary to impose the tang.+ - 5

€, — Py

the reference system at the left boundary of the slab, and
solve the resulting system of equations, we arrive at the fol- € —p2
lowing expressions for the TM modes in termspobr « for 17 Pn

the different regions of the cell: =0. (34)

2
boundary condition$21)—(24). If we insert Eqs(25), (29), €€ (Ph—€c) Y4y
and(30) into these boundary conditions, place the origin of 2 5 =Yy
€|~ Pn €j€. (P~ €c)
1-tane,

) e 4 [qm p2 = _ The real and imag_inary parts of the diﬁerenqe bgtween the
Hy({. ko) = —= gl VP~ €l (31  right and left hand sides of E¢34) are plotted in Fig. 4 as
VP™— € €€L functions of the parametgr,=p;,+ip;,, for the same mate-
rial parameters used in Fig. 2. Note that bdthandY; are
gl #(¢ ko) ¢ surfaces in the complex plane and the roots of @4) are
sin( kol J; dnf(n,k0)>

Hy(¢ ko) = ————o= determined by the intersection of these surfaces. For this
Ve, €/(€xx— P3) reason in Fig. 4 only those sections of these surfaces that lie
in the range {-0.001,0.001) are plotted as functions f
e||—p2 [ and p' in the intervals &p'<1.5 and G<p'<0.3, respec-
+ e —cos( kolf dnf(n,ko)) , tively. Although their intersection appears as an extended
€, €(p?—€c) 0 area in Fig. 4, it is always possible to reduce this area to a
single point, which represents the solution of E84). This
(32 is shown in the inset of Fig. 4. Actually, only two of the
several possible solutiong, and B, are shown; they corre-
H)anz D obet \/Ekol (1-0) spond, rlespectively, t(()j the Iowizitl order modbeslr,]z. The_
m eigenvalue corresponding #y 0"~ 7, is given by the coor
IELR ™ Fn dinates of the pointff,_,=1.403, p!,_,=0.243), namely,
e, —p? pao=1.403+10.243, see inset in Fig. 4. Similarly, the eigen-

value associated witB is pg=1.1892+i0.575.
(33 . :
Let us now derive an expression for the cutoff frequency
wc, for the TM mode of orden. This is accomplished by
whereg.= kolfédnf(n,ko). The remaining TM mode com- setting pﬁzeC in Eq. (34). Sincee, is real, this condition
ponentsE,(z,ky) and E,(z,ky) are obtained from Eq96)  yields the minimum value op,, in order to have a propagat-
and (5), respectively. However, not all the values@fgen- ing TM mode in the slab. Then, from E¢34) we get

. n
x| singe+ec \| ——— 0S¢ |,
€j€.(Pr—€c)
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1 which allows us to determine parametrically the ray trajec-
A (35  tories. From this equation the Hamiltonian variables known

ncw
I :
as the ray components are given by

w. =
Cn

with dx;

1 2 €€, €, € [€q €, 6”3
KE— K{ —— | ——1I — Pi= ’
™ VETEL \€T €/ € \€ €~ €& ) dx, dx
(36) o Tk Tm
o . KMdr dr
and whereK andIl denote the complete elliptic functions of

first and third classes, respectively. For the nematic phase @fnd from here the invariarpijdxj /dr equals the Lagrangian,
doped ZhKM-1277 we getA =0.852+i0.602. Upon sub- Eq.(37). Thus, Eq.(39) leads exactly to

stitution into Eq. (35) we get forn=1 and|1=10°m,

Rd o ]=7.346x 10" Hz and Info ]=—5.201 pie; p=1 (40)

X16* _HZ' As usual, wacn] gives the minimum frequency and proves that Eq37) is, indeed, a Lagrangian density or
for which the mode propagates. On the other hand, note thalyienged optical path. It is interesting to note that this “ex-

when Infwe ] i_S in§erted into Eqs(8) and(9) the field han’ @ tended” Fermat's principle is similar to the variational prin-
damped contribution. Therefore, [lm. ] denotes the mini- ciple for geodesics in gravitatiof81], where in this case
mum frequency of a damped wave that remains inside theij(F) plays the role of the metric tensgy; = —eij(F). In

(39

waveguide. this sense the optical trajectory is equivalent to a beam mov-
ing through a curved space imposed by the dielectric tensor.
V. GENERALIZED FERMAT'S PRINCIPLE This type of analogies have been used recently for analyzing

I . . _ the behavior of anisotropic nonabsorbing med@al.
To justify the interpretation of the complex ray trajecto- g, far, it has not been proven that the extremals) afre

ries used in the last section, here we discuss the generalizgijeed minima. We shall now state the Weiestrass’ and Leg-
tion of Fermat’s principle for an anisotropic inhomogeneous , o o —
medium. Recall that Fermat’s principle for an isotropic non_gndres cg]dmons n_ecessary for_a real m|n|ml_Jm. x_(et),
absorbing medium, establishes that the trajectory traced by ¥(7), andz(7) be a fixed extremaC embedded in a field,
ray between two fixed points of the medium is such that the’» W, and letx(7), y(7), andz(7) be any neighboring curve

optical pathl =fEi\/Eds, wheree is the dielectric constant C @IS0 embedded in the field with the same end poiys

of the medium ands is the arc length of the trajectory, is andP; asC. Then, the extremum will be a real minima if
minimized. To extend this principle to the case of a general L

lossy, anisotropic inhomogeneous medium we follow the f ux',y’,z',x,y,z)dr— f_U(x’,y’,z’,x,y,z)dr>O.
procedure introduced by Born and WdI80]. Consider a ¢ ¢

tensore;; (F) depending on the dielectric tensor and note that 1)
the only scalar proportional teij(F) and quadratic indx; Using the Hilbert's independence integfa&3], we may
which can be constructed & dx dx; . Thus, we propose the replace the second integral by one extended not Gveut
following generalization for the optical path(r,dr/d7); over C. This yields
. dr P dx; dx; f UdT—f Udr—j XY 7 Xy2)
il CAEA | = Yz xy,z)dw>0, (42
U<r’dr> fpldT V €i'dr dr S c c
where 7 is an arbitrary but monotonous parameter. Ifwhere
U(r.dr/d7) is now minimized by applying the Euler- £ Y 7 Xy ZUy g lly)
Lagrange equations we arrive at the expression
=Ux',y’",z’",x,y,z)—U(uq,Us,Us,X,y,2)
dx;
— —(X{ —upUy, (ug,uy,Uz,X,y,2). 43
U d Ede (X{ —ui)Uy (ug,Uz,U3,X,Y,2) (43)
0= ox,  dr dx dx This function is called the excess function of Weiestf&.
G'm_] _m Itis seen that vanishes on any portion & which coincides
Mdr dr with a field extremal. Then we construct a special cuBe

such that betweeR; and a pointA, the curve coincides with
dxs dx, 4 €sn a field extremal. FronA to a pointB on the given extremal,

Cdr dr a_xk dx dx.. B8 itisa straight line, and fronB to P,, it coincides with the
e M given extremal. Thed vanishes on the par3;A andBP,,
Mdr dr but
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B 2 2¢, +
[“ear=0 (44 detu,, )= 2Ve et e
A v (€at ej_)llz

Byl Ietting.g} agproachB, its is seen that this inequality is Therefore, to satisfy this inequality both the real and imagi-
only possible | nary parts ofe, should be positive, Re ~Ime, >0. This
- — provides for a criterion that assures that the extremal is in-
&xy",z',x,y,2) >0, 45 deed a minimum.

wherex, v, z refer to a typical poin{B) on the given ex-
X, ¥, z refer to. B) of =h € VI. RESULTS
tremalC andx’, y’, z’ refer to the directiorAB which is

quite arbitrary. This is the Weiestrass necessary condition for In the absence of absorption, the analytical expressions
a strong minimum. Assuming thaf is continuous in all its  for the TM modes in terms gf or « for the different regions

six arguments, it follows that inequalit@5) must hold for  of the cell are given by Eq$20)—(22) in Ref.[19]. Note that
any neighboring curv€ of arbitrary directions in a certain the analytical solutions foH'y'(g,kO) and H?({,ko) valid in
region surrounding. Hence this condition is also sufficient the cladding and given by Eqg1) and(33), have the same
for a strong minimum. If, however, E@45) holds only for ~ form as in the case without absorption, but in the present
small intervals ofg:;r X, 772? _; and,u:? —7 there Casee|, €, e, and p are complex quantities. With the

is a weak minimum. In_ this case we may expahid powers ~ PUrPose of evaluating th_e validity of ounr analg/rycal res_ults for
of & 7, andu to obtain the analytical propagation constanfz" or p?", and field

amplitudesH{"(£,ko), obtained above in the WKB limit, in
EX' Y 7 Xy 2)=Use &2+ (Uso + Uos (U this section we calculate numerically the exatt™ and gen-
(Y ¥:2)=2lUxie &4 (Usy y)emt (Uzy eral solution,Hy"™({ ko), of Egs.(31)—(33), and compare
+Uyz) ppt (U + Uz ) ép them withH3"(Z, ko).
2 i —— 0 27a To this end the analytical expressions for the amplitudes
Uy Ut (46) Hy(£.ko) andH{(Z,ko), Eqgs.(31) and(32), for the isotropic
cladding may be used as a starting point to calculate

Since this quadratic form should be positive for a minimum - © - num .
Hy "(¢,ko) and dH""/d¢ on the left interphase between

Uxio>0, UyioUyiyi—Usyi Uy >0, _cladding and nematic, by ysipg th(_a so called modified shoot-
ing method[35]. The basic idea is to use a Runge-Kutta
v Uyn Uzg routine to calculate these quantities on the right interphase by
T varying the real and imaginary parts 8f until Hy"™(,ko)
Uyy Uyy Uz | >0. (47 and dHy"" 3¢ take the values given by E¢B0). This leads
Uyz Uyz Uzp to a trascendental equation of the form
These are the Legendre’s conditiofreecessary and suffi- dH)""M({=0.5p)
ciend for a weak minimum. EEErHEi:d—g
BecausdJ is in general a complex quantity, we shall ap-
ply these criteria separately to characterize the extremals of +kol \/ﬁH;‘,”m@:O.Sp”“"‘) =0. (50)

the real and imaginary parts &f. Hence, from Eq(47) the

real and. imaginary parts d-ﬂxi’xj' are to be real or, in (?ther Again, it should be emphasized that the solutld@“m(g

words, its complex phase has to belong to the intervak g 5p"™ gndp™™ are complex quantities. In Fig. 5 we

pression(47) yields the same range~(0.001,0.001) used before and fpr=p"
+ip' in the intervals E=p"<1.5 and B<p'<0.3, as shown

(i — e .)% ax; in Fig. 4. The intersection of these curves yields the value of
KkEij Sk g L gy p"U™ corresponding to the lowest order mode, namely
Uyrw = T (48)  (p;'M=1.404,p""™=0.244), see inset in Fig. 5. Upon sub-
: [ dXs dXpy stitution of this complex eigenvalup™'™ into the Runge-
Csmys dr Kutta routine we get ReHy""(¢,ko)] and InfHJ"™({ ko) ]

plotted in Fig. 6 as functions adf.

and thus, for a nematic liquid crystal for which =€, §;; Let us now compare the analytical resuit¥’, with the

+e,nin;, we have numerical one$)”‘fm. If the relative error between the ana-
lytical and numerical calculations fqr is measured by the
€kEij — Exi€k;=(2€, + €, €,) 8+ € €nin;.  (49)  ratio A=[p?"—p"M/[p"“", from the above given values

of these quantities we g&t=9.92x 104, which amounts to
Inserting this into Eq.(47) and taking the determinant, it a relative error of 0.1%. This shows that the analytical cal-
leads to culation of the propagation constanfs pky, in the WKB
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FIG. 5. Analytical real(—) and imaginary(- - -) parts of 1.0 12 4 P
H;‘,‘”(g,ko) for the lowest order mode in the presence of absorption. FIG. 7. Numerical solution of Eq1.4) for =, and Z, in the
range (0.001,0.001) and for the intervals<ip’'<1.5 and G<p'
<0.3. The inset shows in more detail solutiénfor the moden
approximation is in excellent agreement with their numerical=1.
exact values. Thus, the WKB limit is a good approximation
for these quantities. were already calculated before in Rgt9], Figs. Ga) and
If we now compare the real part pf either analytical or  6(b), but they were not expressed in terms of the behavior of
numerical,p’=1.404, with its magnitude in the absence of their real and imaginary parts. So, from Eq80)—(22) in
absorption calculated in Ref19], namely,p"¥=1.35, we Ref.[19], we get the curves in Fig. 8. They show that before
get p“¥p'~4%. Thus, the effect of absorption on the entering the cell both parts are in phase. Inside the cell the
propagation constant is small. phase of the field decreases, so that its imaginary part tends
To compare the analytical and numerical estimates of théo zero and vanishes at the edge of the cefl-afl. Note that
field amplitudeH,(¢,t) in the presence of absorption, with within the cell, 0<{<1, the imaginary part lfrH,({,ko)] is
its values when there is no absorption, we consider Figs. Tuch smaller than the real part[Rg,({,ko)]. Also, a large
and 6. These curves clearly show that these amplitudes apart of R¢H,({,ko)] propagates to the cladding, so that a
different in regard to the position of their maxima and large portion of the field energy is not contained in the cell.
minima, as well as in the magnitude of the discontinuities ofThe inset confirms this behavior and shows that it slowly
dHJ"a¢ and 9HY "/ 9¢ at the boundaries. Actually, these vanishes in the cladding. It should be pointed out that in this
latter differences should be expected, since the WKB apcase the imaginary part [H,({,ko)] arises from the anisot-
proximation only keeps up to second-order derivatives, whilgopy of the nematic and not from absorption effects, as
in the numerical calculation higher order derivatives areshown explicitly in Eq.(11) in Ref.[19].
kept. In contrast, our Fig. 7 shows that in the presence of ab-
In order to quantify these differences in more detail, wesorption the real, R&y"({,ko)], and imaginary,
first calculate the real, REIJ*({,ko)], and imaginary parts,

IM[HY®(¢,ko)], of the field amplitude in the case without 08

absorption. Actually, this amplitudey*({,ko) and its phase =5 go (4
3o .
N
i 0.0
£ 08 l‘z-e\/ 20 50
§ 04 0.4
=
o
& 021

RefH (G kL. Im{H, (G k)]

0.4

FIG. 8. Analytical real(—) and imaginary(- - -) parts of
H,(¢,Kkp) in the absorptionless case with=1, as a function of.

FIG. 6. Real(—) and imaginary(- - -) parts of the lowest order Obtained from Eqs(31)—(33) with real dielectric tensor compo-
mode i=1) HJ"™({ ko), as a function of. nents.
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IM[H3"(£,ko) ], parts, as calculated from Eq81)—(33), are VII. CONCLUDING REMARKS
not in phase when they enter the cell because, as shown o, model calculation shows, on the one hand, that ab-

above, the propagation constant is imaginary in this caseqption effects in the propagation of an optical field through
Furthermore, their amplitudes are comparable at every poiny jiquid crystal may in fact be accounted for by generalizing
within the cell, showing that absorption is indeed a largey, |ossy media a systematic formalism previously developed
effect. On the other hand, the energy propagated into thgng whose first terms of its asymptotic expansion lead to the
cladding is now much smaller than without absorption; ing| and the WKB limit. Our extension of Fermat's principle
this sense, the presence of absorption confines the energy consider media with complex dielectric tensor is discussed
!nto the cgll more efficiently, as confirmed by the curve inthej, sec. v It leads to complex ray trajectories whose real
inset in Fig. 7. _ _ parts give the actual ray trajectory in the sense of phase
Consider now the amplitudes of the fielti§"({,t) and  \ave, whereas the imaginary part gives the path of minimum
Hy“"({,t). Their differences may be quantified by calculat- absorption. When we compare the analytical or numerical

ing a sort of mean square error defined as calculation of the propagation constant with and without ab-
. sorption, we get an excellent agreement, which indicates that

QrEJ [Re(H]'™ — Re(H3")]2d¢, (57  for this property absorption effects are small. In contrast, a

— comparison of the field amplitudes for the absorption and

absorptionless situations shows that absorption effects may
be quite large and should be taken into account in the dy-
namic description.

The experiments reported in the literature where wave-
where each term has been normalized to unity. From Figs. guide filled with dye-doped LC are involvdd5,16 were
and 6 we gef), =0.43 and();=0.59. This result shows that realized at a wavelength range for which the absorption ef-
in contrast to the difference found for the eigenvalues, thdect is small and performed for light intensities such that the
error between the numerical and the analytical calculation ofonlinear optical regime was developed. Thus, strictly speak-
the field amplitudes is larger. However, it should be stressethg it is not correct to compare the system of the experiment
that both results have been derived on the basis of an anaf Ref.[15] with the one used in our calculation; however,
lytical approach which indeed takes into account the effectgve shall mention some ensuing similar qualitative features.
due to absorption, but contains a restricting feature that indeed, our results shown in Fig. 5 present an amplitude
largely responsible for this result. Indeed, recall that chooswhich contains the double of oscillations than those obtained
ing the valuekyl=6.28 does not strictly speaking corre- for the first mode of an absorptionless waveguiéig. 8). In
sponds to the WKB limit, defined by the conditidgl>1. this sense the energy distribution seems to be split into two
Although in the absorptionless case this value describes @gions. Nevertheless, here the energy distribution is due to a
waveguide with only two propagating modes, in the presencéarger magnitude of the wave vector caused by the imaginary
of absorption many solutions of E¢B4) are possible, apart part, which is not present in the absorptionless case; while
from the ones denoted b& and B in Fig. 4, implying the for that of Ref[15] it stems by a nonlinear reorientation after
presence of many propagating modes. In spite of this, wé#he occurrence of an optical Fredericks transition.
have only considered two propagating modes because it sim- In conclusion, if these absorption effects could find some
plifies considerably the solution of the complex trascendentaipplications in fields like integrated nonlinear optics remains
equation(34). The consideration of a more suitable value ofto be assessed.
kol consistent with the WKB limit, makes the calculation of
the graphic solution of Eq34) a formidable problem. In this
sense we have carried out a first exploratory analytical cal-
culation. Actually, similar differences between the field am- We are indebted to Professor P. Palffy-Muhoray for useful
plitudes were found in the case without absorption, whertdiscussions and we acknowledge partial financial support
calculated from a pure numerical approd@—-22 and on under Grant No. DGAPA-UNAM IN101999 and from

Qizjic[lmH;”m)—lm(H?,”)]zd{, (52
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