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Absorption effects in liquid crystal waveguides

J. A. Reyes and R. F. Rodrı´guez*
Departamento de Fı´sica Quı´mica, Instituto de Fı´sica, UNAM, Apartado Postal 20-364, 01000 Me´xico D.F., Mexico

~Received 30 May 2003; published 27 October 2003!

An analytical and numerical study of the propagation of optical fields through a nematic hybrid slab is
developed. We take into account explicitly the absorption of radiation by the liquid crystal by introducing a
complex dielectric tensor. For a low intensity beam we first derive the eikonal equation and from it we
calculate the ray trajectories in the optical limit. We show that in the presence of absorption, there are no
caustics within the slab. Then we consider the WKB limit and calculate the field transverse magnetic modes,
their number and their cutoff frequencies. We show that for both limits the agreement between our analytical
and numerical results for the propagation constants is excellent, while there are larger differences in the
analytically and numerically calculated field amplitudes. These differences show that absorption effects are
important for this quantity and have their origin in the fact that the chosen parameter values in our exact
numerical calculations, strictly speaking, do not lie within the limits of validity of the WKB approximation.
Although a more precise comparison between these approaches requires the use of different sets of values of
the relevant parameters, our analysis shows the effects and complications arising from the inclusion of absorp-
tion. Finally, we discuss the scope and limitations of our approach.

DOI: 10.1103/PhysRevE.68.041707 PACS number~s!: 42.65.Jx, 78.20.Jq, 78.20.Ci
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I. INTRODUCTION

The huge optical response of liquid crystalline materi
has made possible the production of gigantic optical non
earities@1# and strong nonlinear effects by using lasers w
moderate intensity (kW/cm2) @2#. This high sensitivity of
liquid crystals~LCs! has allowed us to use them to contr
the light output of optical devices such as waveguides@3–6#
or optical fibers@7,8#.

The phenomenon of light-induced molecular reorientat
is at the basis of the high nonlinear response of liquid cr
tals and has been a subject of intense research activity in
last decade@9,10#. However, in spite of these features whic
make their use so attractive in the design of optical devic
liquid crystals also show important limitations which mig
be related to the characteristics of light absorption in th
systems. Some of them are, for instance, their slow respo
times ~milliseconds! or the strong absorption and scatteri
losses (20 dB cm21) they exhibit@11#. These effects due to
absorption are greatly enhanced when small traces of l
absorbing molecules~less than 1%! are added to the system
Their presence can strongly alter the character of their in
action with light and may reduce the threshold intensity
the optical Freedericksz transition by two orders of mag
tude, giving rise to the so called Ja´nossy effect@12–14#.

In recent works different nonlinear optical phenomena
dye-doped LC waveguides have been studied theoretic
and experimentally. These include the nonlinear beam s
ting activated above certain light intensity threshold@15#, the
nonlinear mode coupling mismatch between the sections
three-section guiding device and the decreasing output po
versus increasing input power@16#. Although LC optical de-
vices are carefully designed to work in the wavelength ra
for which the absorption effect is practically negligible, he
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we are interested in studying those ranges where this effe
noticeable. Particularly, we shall analyze this effect for dy
doped nematics that have been experimentally shown to h
a wavelength range around the dye color where absorptio
considerable@17,18#.

More specifically, in this work the propagation of an ele
tromagnetic wave through an absorbing doped, hybrid, p
nar, nematic cell is studied analytically and numerically. T
absorption effects in the propagation of radiation throug
nematic are taken into account by assuming a complex n
atic dielectric tensor, whose imaginary part is due to the
sorbing dye doping. However, the strong orientational n
linearity is not considered and the nematic’s orientation
assumed to remain constant, that is, our analysis is restri
to analyze the linear propagation regime. We generaliz
previously developed formalism@6–8# to include the propa-
gation of optical fields in absorbing media. This generaliz
tion consists of performing a systematic analysis in powe
the dimensionless parameterk0l , which measures the ratio
between the thickness slabl and the wavelength of the opti
cal field. By varyingk0l from very large values to values o
the order of 10, the electromagnetic fields are suitable to
described by rays or quasiplanar waves corresponding,
spectively, to the so called optical limit~OL! and the WKB
limit. In the OL we find and solve a complex eikonal equ
tion and calculate the ray trajectories, whereas for the W
approximation we obtain the field amplitudes. We discus
generalization of Fermat’s principle for a lossy, anisotrop
inhomogeneous medium and give an interpretation of
complex ray trajectories. By using experimental values
the refractive indices of the doped nematic, we compare
analytical and numerical results for the propagation cons
with absorption, with previously derived analytical and n
merical results without absorption@19#. This comparison
shows that absorption effects for this model calculation m
be quite large for some properties and play an important
in this propagation process. More specifically, for the prox
©2003 The American Physical Society07-1
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gation constant with and without absorption, we get an
cellent agreement, which indicates that for this property
sorption effects are small. In contrast, a comparison of
field amplitudes for the absorption and absorptionless si
tions, show that absorption effects may be quite large
should be taken into account in the dynamic description.

II. MODEL AND BASIC EQUATIONS

Consider a dye-doped nematic crystal layer of thicknel
contained between two parallel isotropic dielectric media
shown in Fig. 1. The transverse dimensions along thex andy
directions are large compared tol, but the cell has a finite
volumeV5L l. In the absence of external optical fields, t
nematic will retain its initial orientationn̂. However, if it is
excited by an obliquely applied laser beam in thex-z plane,
the orientation of the director inside the cell will change w
position and time. If the polarization of the beam alwa
remains in the plane of incidence, in the absence of ba
flows the reorientation ofn̂ will also take place in thex-z
plane and

n̂5„sinu~x,t !,0,cosu~x,t !…, ~1!

whereu is the reorientation angle defined with respect to
z axis in Fig. 1. An initially hybrid configuration of the di
rector field which is parallel to the boundary atx50 and
perpendicular to it onx51 is assumed. The correspondin
boundary conditions onu are then

u~x50!50, u~x51!5p/2. ~2!

In previous works we have described the propagation
electromagnetic waves within planar and cylindrical nema
cells in terms of the dynamics of the complete representa
provided by the transverse magnetic~TM! modes,Ex(x,k0),

FIG. 1. Schematics of a hybrid slab waveguide.
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Ez(x,k0), and Hy(x,k0), wherek05v/c is the free space
wave number,v the frequency of the field, andc the speed
of light in vacuum@6,23,24#. These modes are the only one
that couple to the reorientational dynamics ofn̂. As will be
seen below, the inclusion of absorption of the incident opti
field by the dye-doped nematic liquid crystal preserves t
description in terms of TM modes. For this purpose we u
the same constitutive relation

Di5e i j Ej , ~3!

but with a uniaxial dielectric tensore i j 5e'd i j 1eaninj ,
which is now a complex quantity. This means that the diel
tric constants perpendicular and parallel to the long axis
the molecules, namely,e'[e'

r 1 i e'
i and e i[e i

r1 i e i
i , are

also complex numbers whose imaginary parts describe
absorption of the dyed nematic. The dielectric anisotropy
ea[e i2e' and, as usual,i[A21 denotes the imaginary
unit. In terms of the dimensionless variablez[x/ l and for
the geometry in Fig. 1, the components ofe i j are the follow-
ing explicit functions ofu, ezz5e'1ea cos2u(z), exx5e'

1ea sin2u(z), andexz5ea sinu (z) cosu (z).
As for the case without absorption, we use Maxwel

equations without sources to describe the optical field wit
the liquid crystal@24# and we arrive at the following genera
set of equations for the amplitudes of the TM modes, u
coupled to the corresponding transverse electric~TE! modes,
namely,

ezz

d2Hy

dz2
1F2ik0lpexz1

dezz

dz GdHy

dz

1k0l Fk0l ~e ie'2p2ezz!1 ip
dezz

dz GHy50, ~4!

Ez5
1

e ie'
H 2exxpHy1

i

k0l
exz

dHy

dz J , ~5!

Ex5
1

e ie'
H pezzHy2

i

k0l
exz

dHy

dz J . ~6!

Herep[b/k0, whereb denotes the propagation constant
the mode andz[x/ l . As a consequence of the complex cha
acter ofe i j , b is also a complex quantity,b5b r1 ib i . Its
real partb r describes the propagation of the optical fie
along the waveguide and its imaginary partb i is inversely
proportional to the penetration length due to absorption
fects.

As usual, the stationary orientational configurations
determined by minimizing the Helmholtz free energy fun
tional of the model@6,19#. In this work we shall only con-
sider the final stationary orientational state after reorienta
has occurred. This state is defined by the correspond
Euler-Lagrange equation, which in dimensionless form re

d2u

dz2
1q@sin 2u~ uĒxu22uĒzu2!1~ĒxĒz* 1ĒzĒx* !cos 2u#50.

~7!
7-2
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ABSORPTION EFFECTS IN LIQUID CRYSTAL WAVEGUIDES PHYSICAL REVIEW E68, 041707 ~2003!
Here Ēx[Ex /E0 , Ēz[Ez /E0, and I[cE0
2/8p is the inten-

sity of the incident field;* indicates complex conjugate. Th
parameterq[cE2l 2/8pK, whereK is the elastic constant in
the equal constant approximation, is proportional to the ra
between the electric energy of the beam to the elastic en
of the nematic and, therefore, measures the strength o
coupling between the optical field and the orientational c
figuration of the nematic. Clearly, to close the orientatio
equation~7! it is necessary to determine first the TM mode
Although this may be accomplished to different orders
approximation in the parameterk0l , here we only conside
the OL and the WKB limit which are defined, respective
by the conditionsk0l @1 andk0l .1 @25#. For the OL we can
neglect the wavelike behavior of the optical field and to d
scribe it, it is enough to consider the locus traced by the fi
amplitude maximum, which is referred to as the ray traj
tory, On the other hand, for the WKB limit in whichk0l is
not so large, not only the phase of the wave has spatial va
tions but the field amplitude as well.

III. OPTICAL FIELD DYNAMICS

Now, since the concept of ray trajectory is defined only
the OL, and the TM modes will be required in the WKB lim
later on, following the usual procedure of geometrical opti
we assume that the TM modes may be written in the for

Ej~rW,t !5E0 j~rW !exp@ i $k0lW~rW !2vt%#, j 5x,z, ~8!

Hy~rW,t !5H0y~rW !exp@ i $k0lW~rW !2vt%#, ~9!

where the Hamilton’s characteristic functionW is now a
complex quantity,W5Wr1 iWi . This generalizes the idea o
optical path in such a way that its real partWr describes the
usual optical path between two fixed points of a mediu
whereas its imaginary componentWi measures the absorp
tion of the electromagnetic wave when it propagates thro
the liquid crystal. If Eqs.~8! and~9! are substituted into Eqs
~4!–~6! and the resulting equations are solved up to terms
order zero and one in the parameter (k0l )21, we arrive at the
following eikonal equation:

exxS ]W

]x D 2

1ezzS ]W

]z D 2

12exzS ]W

]x D S ]W

]z D5e ie' ,

~10!

with x[z/ l . As for the case whereW is real, we solve this
equation by using the following canonical transformation

W~z,x!5px1S~z!, ~11!

but whereW, p, andS(z) are all complex quantities. Subst
tution of Eq.~11! into Eq. ~10! yields the following ordinary
differential equation forS(z):

ezzFdS~z!

dz G2

12pexz

dS~z!

dz
1p2exx2e ie'50, ~12!

whose general solution for a given initial conditionS0 reads
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S6~z!5E
0

z

dz8
2pezx6@e ie'~ezz2p2!#1/2

ezz
1S0 . ~13!

Thus, from Eq.~11! we arrive at

W~z,x!5px1E
0

z

dz8
2pezx6@e ie'~ezz2p2!#1/2

ezz
1S0 .

~14!

By using the general theory of the Hamilton-Jacobi eq
tion @26#, we derive the following equation for the ray tra
jectories:

g5x2E
0

z

dhF exz

ezz
1

p

ezz
A e'e i

ezz2p2G , ~15!

whereg is the invariant generalized coordinate conjugated
p. It should be stressed thatx is also complex,x5x r
1 ix i . As usual, its real partx r gives the path along which
the intensity of the field is maximum, that is, it defines t
ray trajectory. However, it is modified by the imaginary pa
x i , which represents the path along which dissipation i
minimum, as will be shown in the following section. In th
sense, it defines a dissipation function depending onz. Fur-
thermore, in contrast to the absorptionless case@7#, here it is
not obvious that there is a singularity in the trajectory~caus-
tic! when ezz5p2, as suggested by Eq.~15!, because this
condition is now complex. Actually, it will be shown below
for a specific dyed-doped nematic that indeed there are
caustics when absorption is present.

The propagation constantp may be expressed in terms o
the propagation anglea, defined in Fig. 1, by evaluating
dx/dz at z50 from Eq.~15!. This leads to

p5 ē

tana2
ea

2

AS tana2
ea

2
D 2

1
e'e i

ē

, ~16!

where ē[(e'1e i)/2. However, to calculate the trajector
explicitly, it is necessary to know the functionse i j (u). In this
work we shall only consider the case in which the dynam
of the field is completely decoupled to the orientational d
namics, i.e.,q50. Then, from Eq.~7! the stationary configu-
rational state turns out to be

u5
p

2
z. ~17!

With this result the components ofe i j in Eq. ~15! can be
determined as explicit functions ofz. To calculate the rea
and imaginary parts of two ray trajectories for two inciden
angles, we take the material parameters of the nematic p
of ZhKM21277 with small additions~1 wt %! of dye I @17#.
This substance possesses a nematic phase in the tempe
range220 °C,T,60 °C and it is characterized by a pos
tive low-frequency dielectric anisotropyDe512.2. Dye I ex-
7-3
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J. A. REYES AND R. F. RODRI´GUEZ PHYSICAL REVIEW E68, 041707 ~2003!
hibits positive dichroism. From their measurements of
polarization absorption spectra of the dyes as a function
the wavelength of the light~see Fig. 1 in Ref.@17#!, for a
concentration;1% and l;640 nm, one gets thate'

52.251 i1.0, ea50.641 i0.02. Inserting these values int
Eq. ~15!, we plot the real and imaginary parts of the traje
tory for a540° anda570°, respectively, as shown in Fig
2 and 3. We have included as a reference the trajectory
the absorptionless case, as calculated in Ref.@24#. These
plots show that, indeed, there are no caustics even in
absorptionless limit, which corresponds to what we have
noted as the weak limit in Ref.@24#. The dissipation function
x i increases continuously as the ray moves towards the r
hand side end of the cell andx r is less deflected than th
trajectory without absorption. On the other hand,a570°
corresponds to the strong regime limit@24#, which exhibits a
caustic atzc50.48 when absorption is absent. The trajecto
is always real forz,zc and as a consequence, the field a
plitude oscillates. In contrast, forz.zc the trajectory is no
longer defined and the field amplitude is evanescent. Mo
over, the dissipation functionx i increases at a notoriousl
larger rate precisely atz5zc , indicating that the amplitude
of the propagating field will decrease forz.zc . Thus, the
field’s energy is more concentrated in the regionz,zc even

FIG. 2. Real~- - -! and imaginary (• • •) parts of the ray
trajectory for a540° for the nematic phase of doped ZhKM
21277. ~—! denotes the case without absorption.

FIG. 3. The same as in Fig. 2 fora570°.
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thoughx i is small and a description which totally neglec
absorption@20–22,7,27# is expected to be valid in this re
gion; but absorption effects cannot be ignored forz.zc .

IV. TM MODES

Consider now the TM modes. According to Eq.~8!, the
phase of the TM modes is determined in the OL. However
calculate the amplitudesE0 j (rW), H0y(rW) as a function of po-
sition within the cell, it is necessary to solve Eqs.~4!–~6! in
the WKB limit, since in the OL the field amplitudes ar
constant. For this purpose we assume that

S~z!5S6
(0)~z!1S(1)~z!, ~18!

where the superscript denotes the solutions of Eq.~12! up to
vanishing and first order in (k0l )21. Substitution of this form
of S(z) into Eq. ~12! leads to

dS(1)~z!

dz
56

i

2k0l

ezz

d2S6
(0)

dz2
1

dezz

dz

dS6
(0)

dz
1p

dexz

dz

Ae ie'~ezz2p2!
,

~19!

whose general solution is

S~z!5S6
(0)~z!1

i

2k0l
lnAe ie'~ezz2p2!1C6 . ~20!

Here C6 are integration constants that will be determin
from the boundary conditions for the TM modes. For a giv
k0, these conditions take the form@28#

Hy
Luz505Hyuz50 , ~21!

1

ec

dHy
L

dy Uz505
1

e i

dHy

dy U
z50

, ~22!

Hy
Ruz515Hyuz51 , ~23!

1

ec

dHy
R

dy Uz515
1

e'

dHy

dy U
z51

. ~24!

The superscriptsL andR identify the isotropic dielectric me-
dia to the left and right of the nematic layer andec denotes
the dielectric constant of the isotropic cladding.

Substitution of Eq.~20! into Eq. ~9! yields the two inde-
pendent solutions forHy(z,t) and their linear combination
gives the general solution

Hy~z,k0!5F e'e i

~e2p2!
G 1/4

eif(z,k0)FC cosS k0l E
0

z

f ~h,k0!dh D
1D sinS k0l E

0

z

f ~h,k0!dh D G , ~25!
7-4
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whereC andD are two arbitrary constants to be determin
also from the above boundary conditions. The functionsf
and f (h,k0) are defined, respectively, by

f~z,k0![2 ipk0l E
0

z

dh
exz

ezz
~26!

and

f ~h,k0![
Ae'e i~ezz2p2!

ezz
. ~27!

On the other hand, it is well known thatHy(z,k0) in the
isotropic dielectric claddings without absorption is govern
by the following equation@29#:

d2Hy

dz2
1~k0l !2~ec2p2!Hy50. ~28!

Solutions of Eq.~28! which vanish at infinity for the left,
Hy

L , and right,Hy
R , dielectric claddings are given by

Hy
L5Fek0lAp22ecz, ~29!

Hy
R5Ge2k0lAp22ecz, ~30!

whereG andF are also undetermined constants. To find
four constantsC, D, G, andF, it is necessary to impose th
boundary conditions~21!–~24!. If we insert Eqs.~25!, ~29!,
and ~30! into these boundary conditions, place the origin
the reference system at the left boundary of the slab,
solve the resulting system of equations, we arrive at the
lowing expressions for the TM modes in terms ofp or a for
the different regions of the cell:

Hy
L~z,k0!5

ec

Ap22ec

A4 e i2p2

e ie'

ek0lAp22ecz, ~31!

Hy~z,k0!5
eif(z,k0)

A4 e'e i~exx2pn
2!

F sinS k0l E
0

z

dh f ~h,k0! D
1ecA e i2p2

e'e i~p22ec!
cosS k0l E

0

z

dh f ~h,k0! D G ,

~32!

Hyn
R 5

D

A4 e ie'~e i2pn
2!

efc1Apn
2
2eck0l (12z)

3F sinfc1ecA e'2pn
2

e ie'~pn
22ec!

cosfcG , ~33!

wherefc[k0l *0
1dh f (h,k0). The remaining TM mode com

ponentsEx(z,k0) and Ez(z,k0) are obtained from Eqs.~6!
and ~5!, respectively. However, not all the values ofa gen-
04170
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erate a propagation TM mode. The discrete values that d
will be denoted bypn , where the subindexn identifies the
corresponding mode. From Eqs.~25!, ~29!, and ~30!, it fol-
lows that the allowed values ofpn are given by the solution
of the complex transcendental equation

Ae ie'~pn
22ec!

e i2pn
2

2

tanfc1Ae ie'~pn
22ec!

e'2pn
2

12tanfcAe ie'~pn
22ec!

e'2pn
2

[Y r1 iY i

50. ~34!

The real and imaginary parts of the difference between
right and left hand sides of Eq.~34! are plotted in Fig. 4 as
functions of the parameterpn5pn

r 1 ipn
i , for the same mate-

rial parameters used in Fig. 2. Note that bothY r andY i are
surfaces in the complex plane and the roots of Eq.~34! are
determined by the intersection of these surfaces. For
reason in Fig. 4 only those sections of these surfaces tha
in the range (20.001,0.001) are plotted as functions ofpr

and pi in the intervals 1<pr<1.5 and 0<pi<0.3, respec-
tively. Although their intersection appears as an extend
area in Fig. 4, it is always possible to reduce this area t
single point, which represents the solution of Eq.~34!. This
is shown in the inset of Fig. 4. Actually, only two of th
several possible solutions,A and B, are shown; they corre
spond, respectively, to the lowest order modesn51,2. The
eigenvalue corresponding toA, sn51, is given by the coor-
dinates of the point (pn51

r 51.403, pn51
i 50.243), namely,

pA51.4031 i0.243, see inset in Fig. 4. Similarly, the eige
value associated withB is pB51.18921 i0.575.

Let us now derive an expression for the cutoff frequen
vcn

for the TM mode of ordern. This is accomplished by

setting pn
25ec in Eq. ~34!. Sinceec is real, this condition

yields the minimum value ofpn in order to have a propagat
ing TM mode in the slab. Then, from Eq.~34! we get

FIG. 4. Graphic solution of the trascendental equation~34! as a
function of the propagation constantp5pr1 ipi for the range
~20.001,0.001! for Y r andY i , and for the intervals 1<pr<1.5 and
0<pi<0.3. The inset shows in more detail solutionA for the mode
n51.
7-5



f
e

th

th

o-
li
u
n
by
th
t

s
ra

th

ha

I
-

c-
wn

,

r
x-
-

ov-
sor.
ing

eg-
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vcn
5

ncp

l

1

D
, ~35!

with

1

D
[

2

p
A e ie'

e i2ec
FKS ea

e i2ec
D2

ec

e i
PS ea

e i
,

ea

e i2ec
D G ,

~36!

and whereK andP denote the complete elliptic functions o
first and third classes, respectively. For the nematic phas
doped ZhKM21277 we getD50.8521 i0.602. Upon sub-
stitution into Eq. ~35! we get for n51 and l 51025 m,
Re@vcn

#57.34631013 Hz and Im@vcn
#525.201

31013 Hz. As usual, Re@vcn
# gives the minimum frequency

for which the mode propagates. On the other hand, note
when Im@vcn

# is inserted into Eqs.~8! and~9! the field has a

damped contribution. Therefore, Im@vcn
# denotes the mini-

mum frequency of a damped wave that remains inside
waveguide.

V. GENERALIZED FERMAT’S PRINCIPLE

To justify the interpretation of the complex ray traject
ries used in the last section, here we discuss the genera
tion of Fermat’s principle for an anisotropic inhomogeneo
medium. Recall that Fermat’s principle for an isotropic no
absorbing medium, establishes that the trajectory traced
ray between two fixed points of the medium is such that
optical pathl 5*P1

P2Aeds, wheree is the dielectric constan

of the medium ands is the arc length of the trajectory, i
minimized. To extend this principle to the case of a gene
lossy, anisotropic inhomogeneous medium we follow
procedure introduced by Born and Wolf@30#. Consider a
tensore i j (rW) depending on the dielectric tensor and note t
the only scalar proportional toe i j (rW) and quadratic indxi
which can be constructed ise i j dxidxj . Thus, we propose the
following generalization for the optical pathU(rW,drW/dt);

US rW,
drW

dt
D 5E

P1

P2
dtAe i j

dxi

dt

dxj

dt
, ~37!

where t is an arbitrary but monotonous parameter.
U(rW,drW/dt) is now minimized by applying the Euler
Lagrange equations we arrive at the expression

05
dU

dxk

5
d

dt

ek

dxi

dt

Ae jm

dxj

dt

dxm

dt

2
dxs

dt

dxn

dt

]

]xk

esn

Ae jm

dxj

dt

dxm

dt

, ~38!
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which allows us to determine parametrically the ray traje
tories. From this equation the Hamiltonian variables kno
as the ray components are given by

pj5

e i j

dxi

dt

Aekm

dxk

dt

dxm

dt

, ~39!

and from here the invariantpjdxj /dt equals the Lagrangian
Eq. ~37!. Thus, Eq.~39! leads exactly to

pie i j
21pj51 ~40!

and proves that Eq.~37! is, indeed, a Lagrangian density o
extended optical path. It is interesting to note that this ‘‘e
tended’’ Fermat’s principle is similar to the variational prin
ciple for geodesics in gravitation@31#, where in this case
e i j (rW) plays the role of the metric tensorgi j 52e i j (rW). In
this sense the optical trajectory is equivalent to a beam m
ing through a curved space imposed by the dielectric ten
This type of analogies have been used recently for analyz
the behavior of anisotropic nonabsorbing media@32#.

So far, it has not been proven that the extremals ofU are
indeed minima. We shall now state the Weiestrass’ and L
endre’s conditions necessary for a real minimum. Letx̄(t),
ȳ(t), andz̄(t) be a fixed extremalC̄ embedded in a fieldu,
v, w, and letx(t), y(t), andz(t) be any neighboring curve
C also embedded in the field with the same end pointsP1

andP2 as C̄. Then, the extremum will be a real minima if

E
C
U~x8,y8,z8,x,y,z!dt2E

C̄
U~ x̄8,ȳ8,z̄8,x̄,ȳ,z̄!dt.0.

~41!

Using the Hilbert’s independence integral@33#, we may
replace the second integral by one extended not overC̄ but
over C. This yields

E
C
Udt2E

C̄
Udt5E E~ x̄8,ȳ8,z̄8,x̄,ȳ,z̄!dt.0, ~42!

where

E~ x̄8,ȳ8,z̄8,x̄,ȳ,z̄,u1 ,u2 ,u3!

5U~x8,y8,z8,x,y,z!2U~u1 ,u2 ,u3 ,x,y,z!

2~xi82ui !Uui
~u1 ,u2 ,u3 ,x,y,z!. ~43!

This function is called the excess function of Weiestrass@34#.
It is seen thatE vanishes on any portion ofC which coincides
with a field extremal. Then we construct a special curveC
such that betweenP1 and a pointA, the curve coincides with
a field extremal. FromA to a pointB on the given extremal,
it is a straight line, and fromB to P2, it coincides with the
given extremal. ThenE vanishes on the partsP1A andBP2,
but
7-6
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E
A

B

Edt.0. ~44!

By letting A approachB, its is seen that this inequality i
only possible if

E~ x̄8,ȳ8,z̄8,x̄,ȳ,z̄!.0, ~45!

where x̄, ȳ, z̄ refer to a typical point~B! on the given ex-
tremal C̄ and x̄8, ȳ8, z̄8 refer to the directionAB which is
quite arbitrary. This is the Weiestrass necessary condition
a strong minimum. Assuming thatV is continuous in all its
six arguments, it follows that inequality~45! must hold for
any neighboring curveC of arbitrary directions in a certain
region surroundingC̄. Hence this condition is also sufficien
for a strong minimum. If, however, Eq.~45! holds only for
small intervals ofj5 x̄82 x̄, h5 ȳ82 ȳ, andm5 z̄82 z̄, there
is a weak minimum. In this case we may expandE in powers
of j, h, andm to obtain

E~ x̄8,ȳ8,z̄8,x̄,ȳ,z̄!5 1
2 @Ux̄8x̄8j

21~Ux̄8 ȳ81Uȳ8x̄8!jh1~Uz̄8 ȳ8

1Uȳ8z̄8!hm1~Ux̄8z̄81Uz̄8x̄8!jm

1Uȳ8 ȳ8h
21Uz̄8z̄8m

2#1••• . ~46!

Since this quadratic form should be positive for a minimu

Ux̄8x̄8.0, Ux̄8x̄8Uȳ8 ȳ82Ux̄8 ȳ8Uȳ8x̄8.0,

UUx̄8x̄8 Uȳ8x̄8 Uz̄8x̄8

Ux̄8 ȳ8 Uȳ8 ȳ8 Uz̄8 ȳ8

Ux̄8z̄8 Uȳ8z̄8 Uz̄8z̄8

U.0. ~47!

These are the Legendre’s conditions~necessary and suffi
cient! for a weak minimum.

BecauseU is in general a complex quantity, we shall a
ply these criteria separately to characterize the extrema
the real and imaginary parts ofU. Hence, from Eq.~47! the
real and imaginary parts ofUx

i8x
j8

are to be real or, in othe

words, its complex phase has to belong to the inter
@0,p/2). Substitution of the constricted functional into e
pression~47! yields

Ux
i8x

j8
5

~ekke i j 2ekiek j!
dxi

dt

dxj

dt

SAesm

dxs

dt

dxm

dt
D 3 , ~48!

and thus, for a nematic liquid crystal for whiche i j 5e'd i j
1eaninj , we have

ekke i j 2ekiek j5~2e'1e'ea!d i j 1e'eaninj . ~49!

Inserting this into Eq.~47! and taking the determinant,
leads to
04170
or
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det~Ux
i8x

j8
!5

2Ae'~2e'1ea!

~ea1e'!1/2
.0.

Therefore, to satisfy this inequality both the real and ima
nary parts ofe' should be positive, Ree';Ime'.0. This
provides for a criterion that assures that the extremal is
deed a minimum.

VI. RESULTS

In the absence of absorption, the analytical expressi
for the TM modes in terms ofp or a for the different regions
of the cell are given by Eqs.~20!–~22! in Ref. @19#. Note that
the analytical solutions forHy

L(z,k0) andHy
R(z,k0) valid in

the cladding and given by Eqs.~31! and~33!, have the same
form as in the case without absorption, but in the pres
casee i , e' , ec , and p are complex quantities. With the
purpose of evaluating the validity of our analytical results
the analytical propagation constants,ban or pan, and field
amplitudes,Hy

an(z,k0), obtained above in the WKB limit, in
this section we calculate numerically the exactpnum and gen-
eral solution,Hy

num(z,k0), of Eqs. ~31!–~33!, and compare
them withHy

an(z,k0).
To this end the analytical expressions for the amplitud

Hy
L(z,k0) andHy

R(z,k0), Eqs.~31! and~32!, for the isotropic
cladding may be used as a starting point to calcul
Hy

num(z,k0) and ]Hy
num/]z on the left interphase betwee

cladding and nematic, by using the so called modified sho
ing method@35#. The basic idea is to use a Runge-Kut
routine to calculate these quantities on the right interphase
varying the real and imaginary parts ofb, until Hy

num(z,k0)
and]Hy

num/]z take the values given by Eq.~30!. This leads
to a trascendental equation of the form

J[J r1 iJ i5
dHy

num~z50.5,p!

dz

1k0lAp22ecHy
num~z50.5,pnum!50. ~50!

Again, it should be emphasized that the solutionHy
num(z

50.5,pnum) and pnum are complex quantities. In Fig. 5 w
plot the real,J r , and imaginary,J i , parts of Eq.~50! for
the same range (20.001,0.001) used before and forp5pr

1 ipi in the intervals 1<pr<1.5 and 0<pi<0.3, as shown
in Fig. 4. The intersection of these curves yields the value
pnum corresponding to the lowest order mode, nam
(pr

num51.404, pi
num50.244), see inset in Fig. 5. Upon sub

stitution of this complex eigenvaluepnum into the Runge-
Kutta routine we get Re@Hy

num(z,k0)# and Im@Hy
num(z,k0)#

plotted in Fig. 6 as functions ofz.
Let us now compare the analytical resultspan, with the

numerical onespnum. If the relative error between the ana
lytical and numerical calculations forp is measured by the
ratio L[upan2pnumu/upnumu, from the above given value
of these quantities we getL59.9231024, which amounts to
a relative error of 0.1%. This shows that the analytical c
culation of the propagation constants,b5pk0, in the WKB
7-7
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approximation is in excellent agreement with their numeri
exact values. Thus, the WKB limit is a good approximati
for these quantities.

If we now compare the real part ofp, either analytical or
numerical,pr51.404, with its magnitude in the absence
absorption calculated in Ref.@19#, namely,pwa51.35, we
get pwa/pr;4%. Thus, the effect of absorption on th
propagation constant is small.

To compare the analytical and numerical estimates of
field amplitudeHy(z,t) in the presence of absorption, wit
its values when there is no absorption, we consider Fig
and 6. These curves clearly show that these amplitudes
different in regard to the position of their maxima an
minima, as well as in the magnitude of the discontinuities
]Hy

an/]z and ]Hy
num/]z at the boundaries. Actually, thes

latter differences should be expected, since the WKB
proximation only keeps up to second-order derivatives, wh
in the numerical calculation higher order derivatives a
kept.

In order to quantify these differences in more detail,
first calculate the real, Re@Hy

wa(z,k0)#, and imaginary parts
Im@Hy

wa(z,k0)#, of the field amplitude in the case withou
absorption. Actually, this amplitudeHy

wa(z,k0) and its phase

FIG. 5. Analytical real~—! and imaginary~- - -! parts of
Hy

an(z,k0) for the lowest order mode in the presence of absorpti

FIG. 6. Real~—! and imaginary~- - -! parts of the lowest orde
mode (n51) Hy

num(z,k0), as a function ofz.
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were already calculated before in Ref.@19#, Figs. 6~a! and
6~b!, but they were not expressed in terms of the behavio
their real and imaginary parts. So, from Eqs.~20!–~22! in
Ref. @19#, we get the curves in Fig. 8. They show that befo
entering the cell both parts are in phase. Inside the cell
phase of the field decreases, so that its imaginary part te
to zero and vanishes at the edge of the cell atz51. Note that
within the cell, 0<z<1, the imaginary part Im@Hy(z,k0)# is
much smaller than the real part Re@Hy(z,k0)#. Also, a large
part of Re@Hy(z,k0)# propagates to the cladding, so that
large portion of the field energy is not contained in the ce
The inset confirms this behavior and shows that it slow
vanishes in the cladding. It should be pointed out that in t
case the imaginary part Im@Hy(z,k0)# arises from the anisot
ropy of the nematic and not from absorption effects,
shown explicitly in Eq.~11! in Ref. @19#.

In contrast, our Fig. 7 shows that in the presence of
sorption the real, Re@Hy

an(z,k0)#, and imaginary,

. FIG. 7. Numerical solution of Eq.~1.4! for J r and J i in the
range (20.001,0.001) and for the intervals 1<pr<1.5 and 0<pi

<0.3. The inset shows in more detail solutionA for the moden
51.

FIG. 8. Analytical real~—! and imaginary~- - -! parts of
Hy(z,k0) in the absorptionless case withn51, as a function ofz.
Obtained from Eqs.~31!–~33! with real dielectric tensor compo
nents.
7-8
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Im@Hy
an(z,k0)#, parts, as calculated from Eqs.~31!–~33!, are

not in phase when they enter the cell because, as sh
above, the propagation constant is imaginary in this ca
Furthermore, their amplitudes are comparable at every p
within the cell, showing that absorption is indeed a lar
effect. On the other hand, the energy propagated into
cladding is now much smaller than without absorption;
this sense, the presence of absorption confines the en
into the cell more efficiently, as confirmed by the curve in t
inset in Fig. 7.

Consider now the amplitudes of the fieldsHy
an(z,t) and

Hy
num(z,t). Their differences may be quantified by calcula

ing a sort of mean square error defined as

V r[E
2`

`

@Re~Hy
num!2Re~Hy

an!#2dz, ~51!

V i[E
2`

`

@ ImHy
num!2Im~Hy

an!] 2dz, ~52!

where each term has been normalized to unity. From Fig
and 6 we getV r50.43 andV i50.59. This result shows tha
in contrast to the difference found for the eigenvalues,
error between the numerical and the analytical calculation
the field amplitudes is larger. However, it should be stres
that both results have been derived on the basis of an
lytical approach which indeed takes into account the effe
due to absorption, but contains a restricting feature tha
largely responsible for this result. Indeed, recall that cho
ing the valuek0l 56.28 does not strictly speaking corre
sponds to the WKB limit, defined by the conditionk0l @1.
Although in the absorptionless case this value describe
waveguide with only two propagating modes, in the prese
of absorption many solutions of Eq.~34! are possible, apar
from the ones denoted byA and B in Fig. 4, implying the
presence of many propagating modes. In spite of this,
have only considered two propagating modes because it
plifies considerably the solution of the complex trascende
equation~34!. The consideration of a more suitable value
k0l consistent with the WKB limit, makes the calculation
the graphic solution of Eq.~34! a formidable problem. In this
sense we have carried out a first exploratory analytical
culation. Actually, similar differences between the field a
plitudes were found in the case without absorption, wh
calculated from a pure numerical approach@20–22# and on
the basis of an analytical approach@19,23#.
t.

m

r.
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VII. CONCLUDING REMARKS

Our model calculation shows, on the one hand, that
sorption effects in the propagation of an optical field throu
a liquid crystal may in fact be accounted for by generalizi
to lossy media a systematic formalism previously develop
and whose first terms of its asymptotic expansion lead to
OL and the WKB limit. Our extension of Fermat’s principl
to consider media with complex dielectric tensor is discus
in Sec. V. It leads to complex ray trajectories whose r
parts give the actual ray trajectory in the sense of ph
wave, whereas the imaginary part gives the path of minim
absorption. When we compare the analytical or numer
calculation of the propagation constant with and without a
sorption, we get an excellent agreement, which indicates
for this property absorption effects are small. In contras
comparison of the field amplitudes for the absorption a
absorptionless situations shows that absorption effects
be quite large and should be taken into account in the
namic description.

The experiments reported in the literature where wa
guide filled with dye-doped LC are involved@15,16# were
realized at a wavelength range for which the absorption
fect is small and performed for light intensities such that
nonlinear optical regime was developed. Thus, strictly spe
ing it is not correct to compare the system of the experim
of Ref. @15# with the one used in our calculation; howeve
we shall mention some ensuing similar qualitative featur
Indeed, our results shown in Fig. 5 present an amplitu
which contains the double of oscillations than those obtai
for the first mode of an absorptionless waveguide~Fig. 8!. In
this sense the energy distribution seems to be split into
regions. Nevertheless, here the energy distribution is due
larger magnitude of the wave vector caused by the imagin
part, which is not present in the absorptionless case; w
for that of Ref.@15# it stems by a nonlinear reorientation aft
the occurrence of an optical Fredericks transition.

In conclusion, if these absorption effects could find so
applications in fields like integrated nonlinear optics rema
to be assessed.
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