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Hydrodynamics of isotropic ferrogels

E. Jarkova, H. Pleinert* H.-W. Muller,! and H. R. Brand
IMax Planck Institute for Polymer Research, 55021 Mainz, Germany
Theoretische Physik Ill, Universitaayreuth, 95440 Bayreuth, Germany
(Received 24 April 2003; published 27 October 2D03

We derive the complete set of macroscopic dynamic equations for ferrogels under an external magnetic field,
including the magnetization as an independent dynamic degree of freedom. The magnetoelasticity comes in the
form of magnetostriction and through the magnetic part of the Maxwell stress. Various dynamic couplings of
the elastic degree of freedom with the magnetization and the magnetic field are found. We discuss static
elongation, shear deformations, and the modified sound spectrum in the presence of an external magnetic field.
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I. INTRODUCTION erated by such a magnetic gradient field drives the magnetic
grains in the direction of the gradient, thus deforming the
Ferrogels belong to a new class of magnetocontrollechetwork, if there is a coupling between the magnetic par-
elastic materials, which are chemically cross-linked polymetticles and the network. In these experiments this seems to be
networks swollen with a ferrofluid. Coupling the elastic me-the case. Therefore, we assume in our model that the mag-
dium with the magnetic properties of the particles allows usnetic particles are “attached” to the network, although the
to manipulate the elastic behavior of ferrogels by externaprecise meaning of this statement is unclear on the molecular
magnetic fields and/or field gradients. This feature offers optevel. On the macroscopic level this leads to a coupling of
portunities for various applications as, e.g., soft actuatorsiotations of the magnetization as well as changes of its ab-
micromanipulators, and artificial musclg¢4]. Heating of  solute value with the elastic strains or stresses. In particular,
these materials in alternating magnetic fields is a promisingve will discuss static elongation, shear deformations, and the
approach in cancer therapg]. Since the magnetic rubber is modified sound spectrum in a homogeneous magnetic field
soft, inexpensive, and controlled in its properties by the magby solving the appropriate generalized hydrodynamic equa-
netic field, it can also be used in an apparatus for immunotions.
blotting [3]. To derive the macroscopic dynamic equations we use the
The properties of ferrogels depend on the preparation corhydrodynamic method. Hydrodynamics describes a system
ditions (solvent, concentration of cross linking, concentrationin the long wavelength limit and for long time scales. The
of magnetic particles Preparing ferrogels in an external hydrodynamic equations are derived by means of symmetry
magnetic field one can obtain large columns of magneticand thermodynamic arguments. The main advantage of the
particles, the length of which is much larger than the mesthydrodynamic method lies in its generality, which allows its
size of the network. In this case the clusters are fixed in thepplication to very different systems. However, the occur-
network[4]. As a result the ferrogel is strongly anisotropic rence of phenomenological parameters in the static and dy-
[5]. namic expansions are the price one has to pay for this gen-
Here we consider isotropic ferrogels. The typical size oferality. Therefore coefficients turning up in the equations
the magnetic particles is 10 nm. The bare particles tend to below have to be determined by microscopic models or by
coagulate. To prevent this, magnetic grains are chdeat  experiments.
coated by polymer§7]. The magnetic gels are usually only  There are cases, where nonhydrodynamic, relaxing pro-
weakly cross linked, so that the size of the magnetic particlesesses become so slow that their dynamics takes place on a
is much smaller than the mesh size of the network. Howevemacroscopic time scale as well. Then it is appropriate to also
still some coagulation takes place resulting in magnetic clusinclude nonhydrodynamic, but slowly relaxing variables in
ters comparable in size to that of the m¢8h Without ex-  the dynamic description of such a system. In ferrofluids the
ternal field no remnant magnetization is found. An externaimagnetization(its orientation as well as its absolute value
field easily magnetizes the samplsuperparamagnetigm relaxes to the equilibrium value set by the external field. The
Outside equilibrium the magnetization relaxes to its equilib-appropriate relaxation time is much larger than all micro-
rium value and orientation set by the external field. Thisscopic time scales and can be relevant for the macroscopic
relaxation is rather slow compared to tmany micro-  dynamics[9,16]. In this case one should treat the magneti-
scopic relaxation processes and it is therefore reasonable ration as an additional dynamic variable with its own dy-
keep the magnetizations as a macroscopic, slowly relaxingamical(relaxation equation.
variable. Here we generalize the set of hydrodynamic equations for
In inhomogeneous magnetic fields an abrupt shape transordinary gels to those for ferrogels by including the magne-
tion of isotropic ferrogels was observé8]. The force gen- tization as an additional, slowly relaxing variable. Special
emphasis is laid on the magnetomechanical cross couplings
between elasticity and the magnetic degree of freedom. As
*Email address: pleiner@mpip-mainz.mpg.de an application for these equations we discuss the spectrum of
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longitudinal and transverse sound in the presence of an exfected here. The magnetoelastic coupling is clib®] and
ternal magnetic field. In the low frequency limit a compari- the M* contribution is kept in order to guarantee the thermo-
son with static elastic measurements is made. A possible wagynamic stability. The tensorg;, and v, take the

of exciting shear waves by oscillating temperature gradientgsotropic forma;, =a ;; 6+ ax( 6k 6j + & 6jk—§5ij ) s

in the presence of a gradient field is outlined. where w4 is the compressibility ange, the shear modulus.
The magnetoelastic energy is similar to that for ferromag-
Il. STATICS AND THERMODYNAMICS netic materials, where, however, the compressional magneto-

striction is neglected ;=0) [12]. We will not take this

_ Th_e_ mc_acroscopic description_ of a system starts with th%\pproximation for magnetic gels and kegp# 0, in order to
identification of the relevant variables. Apart from the qua”'explore effects due to a nonzesg and how they can be
tities that are related to local conservation laws, such as masgaasured Whiley, describes the elastic response to chang-
densityp, momentum densitg, energy density, and con- .4 +he field strengthor vice versa compression or dilation
centrationc of the swelling fluid(and/or that of the magnetic due to changes itM|), 7y, is related to elastic shear and to

particleg, we consider the elastic strain; and the magne- rotations ofM. Depending on how the “attachment” of the
tization M as additional variables. In a crystal the former is magnetic clusters to the network actually is realized in a
related to the broken translational symmetry due the long., hje “this interaction may be large or small. Thus measur-
range E)osmonal order, which gives rise to the dlsplacemeni;1g y's by their effects described below, may give some hints
vectoru as a hydrodynamic symmetry variable. Since neithelon the microscopic structures. All static susceptibilities, such
solid body translations nor rigid rotations give rise to elasticas the elastic and magnetoelastic moduli as well as those
deformations, the strain tensor is used as a variable, whicfescribing cross couplings between compression and the
reads in linearized versiom;;=3(V;u;+V;u;). In amor-  density, entropy density, and concentrations variatiop (
phous solids, such as rubbers, gels, etc., linear elasticity i5* and ¢, respectively can depend oM? and thus on

still described by a second-rank, symmetric strain tensor. Famagnetic-field strength.

a proper description of nonlinear elasticity £10]. For the Using Egs.(1) and(2), the magnetic Maxwell fieldH; is
purpose of this work, however, linear elasticity is sufficient. defined in the usual way

As discussed in the Introduction, the magnetizatidris a

slowly relaxing variable in the superparamagnetic case. de
. . — . ;- Hi: - :Bi_Miv (3)
Assuming local thermodynamic equilibrium, i.e., all mi 9B,
croscopic, fast relaxing quantities are already in equilibrium, M.l -

we have the Gibbs relation . . ,
while the magnetic molecular fiek” reads

de=Tdo+ udp+ ucdc+v;dg+H;dB;+hMd M, 5
M_| %€ _ 2
+\Pijduij (1) hi _((7_|V|| __Bi_yijkleukl+aMi+BM Mi-

B,uij Ve
relating all macroscopically relevant variables discussed (4)

above to the entropy density. B is the magnetic induction Note that because of definitigB), it is not possible to have

field mcludgd here in order to accommodate 'the statlgz_Max:,i direct coupling between the external fiélcand the strain;
well equations. In Eq(1) the thermodynamic quantities,

; . . : the deformation of the network is mediated by the magneti-
chemical potentiaje, temperaturerl, relative chemical po- . . .
. X ) o zation via the coupling terms: y;, .

tential ., velocityv;, elastic stres¥;; , magnetic fieldH; , . ] . .

. ' : . The elastic stres¥;; has the following form:
and the magnetic molecular f|etd", are defined as partial
derivatives of the energy density with the respect to the ap- ( Je )

=
M,B

propriate variable$§11].
To determine these thermodynamic forces and thus the
static properties of magnetic elastomers one provides an ex-

l?Uij

Yijki

pression of the energy density in terms of the variables :/-Lijklukl_TM M, + 8 (x* 8p+ x7 Sa+ x°8c)
B? Mijkl Yijkl o
8:80+7_B'M+_; Uijuk|__; MiMjuk|+§Mi2 (5)
and depends on the magnetization.
B 12
+=(M?)2+ U (xPdp+ x“So+ x°8c), 2

7 (M) Fui(x"op+x x“éc) 2 1. EQUILIBRIUM

where g, is the energy density of a fluid binary mixture.  In equilibrium, both the elastic strain EG) and the mag-

Equation(2) explicitly contains the elastic and the magnetic netic molecular field Eq(4) have to be zero. Without an
energy, their cross couplinghe magnetoelastic enenggnd  external field or external strain there is no magnetization and
bilinear couplings of compression with the scalar variablesno strain in equilibrium. A finite external field, taken along
To discuss large elastic deformatioftabber elasticity one  the z axis, B=Bge,, induces an equilibrium magnetization
should keep terms of higher order afj, which are ne- (M°=Mge,) and a nonzero strair.lioj due to the magneto-
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striction effect. Neglecting the couplings of dendify8], en-  symmetry and in this state the ferrogel behaves more like a

tropy, and concentration to the strain tensor, we have uniaxial ferromagnet than an isotropic one.
2 0 Y1 Y2 2 Opg 0 . A
\Pij_ wi— 5 Mo |U _(___ M 6ij_7MiMj IV. DYNAMICS

The hydrodynamic equations for conserved and slowly
+2,u2uﬂ =0, (6)  relaxing variables as well as for those associated with spon-
taneously broken continuous symmetries are

2
i iz 3 i Ykk [l i Ep-i—dinU:O, (ll)
+BMgM?=0. (7)
] _ R
From hy'=0, h)'=0, and¥,,=0 it follows thatug,=0, ZotdivovtdiviT==, (12
up,=0, andup,=0 accordingly. The remaining conditions
give 9 "
Egi‘i‘vj'(ngi‘i'5ij[p0+B°H]+O'ij"r‘O'ij):O, (13)
0_,0 :szl_Mﬂ’z 2
Moy G, O ® 9
5 5+kak uij+Yij:01 (14)
o M2Yit2uiya
u),=———-Mg, 9
Zz Buimz 0 9
p(—+v]V] C‘i‘diVjC:O, (15)
leading to the volume changeU%=u,+uj +u, at

=(y1/2,u1)MS. The magnetostrictive volume change of the p

ferrogel is determined by the bulk modulys and by the (—+vjVj) M+ (MX w); +X;=0, (16)
coefficienty;, which couples the trace of the stress tensor to ot

the magnitude of the magnetization.

From hQ"zO we get implicitly the equilibrium magneti-
zation2 as a2 functizon of the f|§I.(jBo—ll\/|0[a+.,BM9 O'itjh:_BjHi_%(MjhiM_MthM)_F\ijuki- (17)
—(Byiuat+dyom )Mo/ (6 up)]. Writing this relation in
the form xBy=(1+ x)M,, a field-dependent magnetic sus-  Using the fact that the energy density, Ef), has to be

wherew; = ; €V vy is the vorticity and

ceptibility y results with invariant under constant rotatidd1], Eq. (17) can be sim-
plified as
T+x 3viuat4v5u1) [ xBo |2 i
X AT T e, \1ay) 0 10 olf'= = 3(BiH;+ BjH) + 3(Wjui + Wil).  (18)

The explicit form of Eq.(10) follows from the (truncateg ~ The last term in Eq(18) is nonlinear, but since there is a
expansion(2) and is suitable for small external fields only. finite strain in an external field, it will enter linear deviations
For high field intensities, when the magnetization reaches it§0m that constrained equilibrium. The thermodynamic pres-
saturation valuey in Eq. (10) has to be replaced by a more Sureépo's given by

complicated functionyy= x(By), either measuredl 3,14 or
calculated from reliable microscopic models. For the small

deviations_ from equilibrium, which we are Q(_aaling with in j is the entropy current, in Eq614)—(16) Y;; andX; are the

the following, the simple formyBo=M is sufficient forany 4 asjcurrents of the variables associated with broken trans-

fieiq strength, when fox the appropriate equilibrium value |5tional symmetry(network and slowly relaxing magnetiza-

Xois taken. o tion. To guarantee rotational invariance of the dynamical
Magnetostriction is a weII—k_nown.phenomenon in S'”gle'equation for the strain field, one must requitg="Y;; . The

or polycrystalline ferromagnetic solidd.9]. A complicated 5 rce termR/T in the dynamic equation for the entropy

interaction between the crystalline and domain structure W'”Eiensity is the entropy production. The second law of thermo-

the magnetic moments of the_ atoms leads to a connectiofy namics read®=0 for dissipative and reversible process,

between elasticity and magnetic moment, e.g., to a change 9 spectively.

volume or shape at the paramagnetic to ferromagnetic phase Since we are not dealing with electromagnetic effects, we

transition. Ferrogels, however, are isotropic and nonmagnetigan use the static Maxwell equations to deternBne
without an external magnetic field. Magnetostriction is then a

nonlinear effect. Applying a field, on the other hand, the curlH=curl(B—M)=0, divB=0. (20)
induced magnetostriction can be considerably large due to

the superparamagnetic response and the soft rubber elasticity. All the currents can be split into dissipative and into re-
The induced deformations, Eg®) and (9), are of uniaxial versible R=0) and irreversibleR=0) parts. Using general

po=—e+To+up+g-v. (29

041706-3



JARKOVA et al. PHYSICAL REVIEW E 68, 041706 (2003

symmetry and invariance arguments and the fact that a mag- joP=—kV,T-D'V,u.— 367V, (27)
netic field changes sign under time reversal, we obtain the
linear currents jP=—DVu.— D'V, T— £, (28)
oR R TR TR
= —k3(M)V;T=D;;"(M)V i+ & (M)T
Ji |]( ) i ij ( ) jMc ‘fu ( ) i (21) Uﬁ:_vijkIAkla (29)
iff= =D M)V uc+ DIRM)V T+ &R M)W, Y= =3V +ETV THEV uo) +(i=))], (80
(22)
. i - XP=bh. (31)
oi;= = Vij = Ci(M)h = viji (M)A, (23

R o " " V. EXPERIMENTS
Yij:_Aij+§>\ [Vl(VXh )J+V](VXh ),] ) )
L R R R A. Static elongation and shear
~ 2L VAGM Wt &AMIVIT+ &5 (M) Viguel In preparation for, and for comparison with, the sound
+ (i), (24)  spectrum we first discuss static elongational and shear defor-
mations. We assume an external fiéddong thez axis) that
XiR:biFf(M)h,M+)\M(VX‘I’)i—Cﬁk(M)Ajk, (25) give_s_ a nonzero magn_etization as well as a deformation in
equilibrium. This state is then disturbed by an external de-
with A= %(Viijervi) and¥;=V,¥;;=V;¥; . Again, formati_on_Auij by some mechanical d_evice. Due to the mag-
nonlinear elastic contributions have been neglected. Due tBetostriction effect this gives also rise to a change in the
the new degree of freedofmagnetizationthere is an addi- magnetization. In the static limit the magnetic degree of free-
tional term in the stress quasicurrent, E24), and a counter dom is still in equilibrium and the change of the magnetiza-
term in X?, which describes a dynamic cross coupling be-tion can be obtained from the conditioif =0, Eq.(4). The
tween magnetization and the network. It does not exist irapplied deformation gives, directly by Hooke’s law and in-
ordinary elastomers nor in isotropic ferrofluids. Its impact ondirectly by the change of the magnetization, an elastic stress.
the sound spectrum will be explored in Sec. V B. The newFrom Eq.(5) we get
coefficient A\M (reversible dynamic coupling between the

_ ”__ n2np 2
magnetization and the strain tensgives a small effect in W= (1" = x0y""M) AUz,
the dynamics of order-k*. The magnetization-dependent T — ' y"M2) (AUt Ayy) (32)
tensors x%(M), DR(M), DIR(M), 1Rq(M), cR (M), (7= x07"y M) (Athact Allyy),

&7 V), &Rv), Eﬁi(M), bj(M) are all odd functions of

P o= "__ /2M2 AU+ r_ /ZMZ Au
the magnetization and are listed to linear ordeMg in the 0= (7= X0y M) Aot (17 = xoy""Mo) Allyy

Appendix. + (1 = xo¥ Y'MG AU, (33)
To derive the dissipative contributions to the currents it is

most convenient to start with the expression for dissipation W, =2( = XoYaM3) Ay, (34)

function R. The dissipative currents are then obtained by

taking variational derivatives with respect to one thermody- W= 2p,AUy, (35)

namic conjugate while keeping all others fixed. Expanding
the dis§ipation functiorR_up to second order in the thermo- 5. the elastic stresses. Apart from the elastic mogplf
dynamic forces we obtain =y + (413)u, and ' = 1 — (2/3)u,], it containsM3 cor-
1 1 1 b rections due to magnetostrictigny’ = v, —(2/3)y, and y"
R= EK(Vi-|-)2+ §Vijk|AijAk|+ ED(ViMc)2+ E(hi’\")Z =vy,+(4/3)y,], except for deformations that do not affect
the magnetization. Note that, even if the deformation does
conserve the volumeAu,,+ Auy,+Au,,=0), the trace of

1
+§§(\Ifi)2+ DT(VjT)(VJ-,uC) the elastic sztress tensor is not zero, but givgn‘hmz
—6x0Y1Y2M§AU,,. Formulas(32)—(35) are applicable for
+ (Vi T+EV ). (26)  small strains only, since it is based on Hooke’s law, while for

larger strains deviations from this law due to rubber elasticity

Here v;y is the viscosity tensor and, D, and D' describe are to be expected.
heat conduction, diffusion, and thermodiffusion, respectively. The stress tensar;; not only contains the elastic stress
The quantityb is the inverse magnetization relaxation &hd V;;, but also the hydrostatic pressure and a nonlinear com-
the self-diffusion constant of the strain field. The range ofbination of elastic stress and strain, E48). The former
possible values of the coefficients in E86) is restricted by  couples to volume deformations via the compressibitity
the positivity of the entropy production. defined ascs= p?(d%e/dp?) 1. The latter gives rise to linear

We derive the dissipative parts of the currents by takingcontributions in the stress tensor, if an external field is
the variational derivative of the dissipation function with re- present, since then a finite deformatistrain is induced.
spect to the appropriate thermodynamic force This is seen in the sound spectrum discussed below.
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B. Propagation of sound
2pmoy1t pH1Y2 Pz

2
+ J—
1201, XoY2™ 5

Due to the presence of the permanent polymer network in wtzzg m2—Mg
ferrogels compared to ferrofluids, there are transverse as well

as longitudinal sound eigenmodes. In this section we derive

the longitudinal and the transverse sound of the system with —
an external magnetic field parallel to theaxis. We neglect
all diffusional processes connected, e.g., with viscosity an

heat cor)ductlon ag We”. as their reve_r5|ble counterpartsplane perpendicular to the magnetic field the two transverse
Terms with\ andb™ coefficients are omitted here as well. sounds have identical dispersion relations

The first one does not contribute to the sound velocity, be- Knowing the dispersion relations for the two geometries

g’;}“sﬁ.f'tt ;rs] of fourth t(_)rd?r n thle w?_ve \;gctek. g&;;gs W'tg one can study sound velocities. The relaxation time of the
shift the magnetization relaxation time by , an magnetizationry = xo/b is known for ferrofluids and is

. . . 4 _ h ’ ;

:?J’ri gilxewrr]:%?]e\r,vgrg?é %%:r?r?tt(leorgzg d thoe:ge S?]bn?threeﬁax typically of order 104. Our approach allows us to investi-
. S o ' “gate two frequency regimes: far<1/ry, the low frequenc

ation of the magnetization in the field is kept. g q yreg ™ q Y

Assuming a one-dimensional plane wave with space-tim%rnit and for »=>1/z the high frequency regime. There is
dependence- ex(—ot-+k- r) for all deviationsu,; , oM, o frequency dependence for the transverse sound mode,

I . . where the magnetic field, the wave vector, and the velocity
v;, 6p from the equilibrium values determined in Sec. Il the are mutually perpendicular, E(7)
linearized set of dynamic equations becomes an algebraic Let us first investigate I,ow frequencies) € 1/7,). The

one. Let us cqns!der sound in the_ wo cases, wh_ere_ the eH‘r'equency-dependent parts in the square brackets of the dis-

tgrnal magnetic field and the equilibrium magnetization are . - relationg36)—(40) become dissipative and do not

ﬁ'thfr tp.)erpeﬁrédmularf.ordpgrallﬁl t?{ E['heMwave l\I’eCtor't.F'eldcontribute to the sound velocities. In the case of the external
uctuationsob; are fixed by the stalic Viaxwell equations a1y being perpendicular to the wave vector the velocities of

(20) to 6B;= oM (5 —kikjk?). the lonaitudinal the t
In the case where an external field is perpendicular to the & longitudinalc, and the transverse sounds, ¢, read

wave vector the sound dispersion relations for longitudinal ~ N2
- o M [~p2viTp1Y2e  Xo(¥Y)T o,
and for transverse modes, respectively, read, up to order ci :;_ + M2, (41)

O(M32) from here on all oldu’ are calledu 6puaps P

R_ 1,2
lo(XoY2—C1— 32

lwxo—b

L w

Hhere Y'=7y1+%7v,. As the problem is symmetric in the

k2|~ ~M2Y1™ M1Y2 2 _ M2 [M2Y1™ H1Y2| 1o
A M_MS(M bz XYY u 6oz |0 42
lo(xoy' —€5)° 245y, + 2x0¥2+
_ 0 2 7 (36) CtZZI&_ H271 M172+ XoY2T 72 M2, (43)
loxo—b P 12ppq 2p
while for a parallel field we have
2 _k2 oM2Y1™ M1Y2 P
S e 37 - ) (2
~ + !
Clzzﬁ_( M2Y1 M172+Xo Y )M(Z): (44)
" X p Bpmimz p
2 o ZM2Y1H m1Y2 7
[ — S — + —
wiz=" | k2~ Mo 12u, XoY2™ 7 » M2 [2mavitpays | 2X0Yv2)
Cr=—-— + Mg. (49
o CFi 12 p 12pp4 2p
W XoY2— (1732
- lwxo—D } (38 The sound speeds at low frequencies and zero field give in-

formation about the compressibility and the elastic moduli
(bulk and shear The dependence dmé is due to magneto-
strictive effect and completely absent fpy=0=vy,. Mag-
netostriction enters the sound speed in different ways. There
is a direct static coupling of magnetization and stress in Eq.
(5) and the strain dependence of the magnetic molecular field
(4), which give rise to terms linear and quadraticyip and
v». A similar term emerges indirectly via the Maxwell stress.
The second route is dynamic, given by the nonlinear elastic
stress contribution to the stress tensor in EB), which,
however, is effectively linear due to the nonzero equilibrium
, R1 _Ry12 strains. In the sound speeds these contributions are of the
lolxoy"—(2¢1+¢3)] ) (39  Dbilinear yu type. In an external field the effective moduli
lwyxo—b ' measured by sound propagation are therefore different from

wheren=1/(pxs) + w1+ % up andy' =y, — 2y,. Generally,
xo(Bp) brings in an additional dependence bty, which
however can be neglected ®(M?).

If an external field is parallel to the wave vector we have
the following longitudinal and transverse dispersion rela-
tions:

k2|~ ~M2Y1T 2117,
wlzz_[:“_ M%( —+XO(')’")Z

Sy
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those given by the static elastic streBg discussed in the
preceding section. The coincidence of static linear elasticity
and low frequency sound speed is restored in the limit of
vanishing magnetic field, when no magnetostrictive deforma-
tion is present and the additional contribution in the stress
tensoraj; (18) is nonlinear and absent in the sound spectra.
Of course, in this limit the sound spectra are isotropic as is
the ferrogel.

The sound velocities change with an external magnetic
field basically with the second power of the field, whichisin £ 1. shear excitation,, in a ferrogel due to applied tem-
accordance with experiments on longitudinal sound]. erature oscillations along thedirection, in the presence of a con-
There iS, however, an additional field dependence throug tant or gradient magnetic field indirection.

Xxo- Whether the sound velocities are decreased or increased

signs of y; , are not fixed and can be material dependent.

Measurements of transverse and longitudinal sound veloci- ~ )

ties in the different geometries will provide information on szﬁ_(N’ml—m

the magnitude and sign of the magnetostrictive and elastic P Buam1p

moduli. As a first approximation the magnetostrictive vol- . (20?+c§)[2)(0y”—(201R+c§)]) ,

ume change € ylMﬁ/,ul) can be neglected in those rubbers M2, (50)
and only shape changes remain. Xop

Damping of sound waves generally is rather weak and
given by the imaginary part of the dispersion relation. In
addition to the usual magnetic-field-independent sound

) : . i M2 2pmy1t pm1y2
damping due to viscosity and other diffusional processes ct2=—— —_—

there is a field-dependent sound damping in ferrogels. This is P 12usp

an effect of the reversible, dynamic coupling of the magne- 1 1\2

tization to flow, either phenomenologic@tf}k(M) in Eqg. 2X072| S5+ Z)—(C?sz

(25)] or kinematic €;xM;wy in Eq. (16)] and its counter- + M3, (51)
parts in the Navier-Stokes equation. For example, when the Xop

magnetic field is paralleperpendicularto the wave vector a

field-dependent damping of longitudindransversgsound ~ The field dependence of the sound velocities contains the
Eq. (39) [Eq. (38)] reads, respectively, magnetostrictive contributions already present in the low fre-

quency limit, but in addition also the reversible, dynamic

1 [xo¥'—(2cf+c5)T? cross couplings @i,cy) between magnetization and flow

— 21,2
Im(w)=— 2 pb Mok, (46) (which in the low frequency limit contributed to the sound
damping. Of course, most interesting experimentally is the
1 (Xo?’z_C?"‘ 1y2 transition regionwry~1, where the sound velocities make
IM(wy) = — > —ngkz, (47 steps and the damping is enhanced.
p
the first of which can be related to the observed increase of C. Shear excitation by temperature oscillations

the apparent viscosity due to the magnetic figllé]. In all
cases I 0, as it should be according to the second law of
thermodynamics.

Let us now investigate the high frequency limit far
>1/7y . In the case where an external field is perpendicula
to the wave vector the velocities of the longitudircaland
the transverse sounds, read (;, is as in the low frequency

In ferrogels there are several reversible cross couplings
mediated by material tensors that are linear in the external
magnetic field. They belong to the same type of effects as the
Hall and the Righi-Leduc effect. In Eq24) there is such a
E:oupling, described bﬁkaR(M), between a temperature gra-
dient and the dynamics of the elastic degree of freedom.
From the form ofgﬁR (A1) one can conclude that an applied

limit) oscillating temperatureT=Ty+ T,exdi(kz—wt)], in the
2_; oY1= 1 Ya c?(wa'—c?) , presence of a homogeneous or grad-lent magn.euc [fead
Ci=—- 6 + MG, (48  H=g/(Ho+H;2), leads to an oscillating shear in the plane

p PH2 Xop perpendicular to the magnetic fiel@ig. 1), since Y,,~a
) N =1xo€ ", (H;+ikH,). Oscillating shearu,, is part of the

o=tz | fHariT Y2 transverse sound discussed in the preceding section. After the

“ op 12ppy initial transients have died out the excited shear wave travels

with the frequency and wave vector of the applied tempera-

2x0Y2(CF—7)—(cF—3)? : : -
N XoY2(C3—3% 172) 2 (49) ture, uy,= Up exfi(kz— wt)], with the complex amplitude
XoP 0 given by
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c2 K2 the sound spectrum. The contribution to the transverse sound
—iw—LJrngz Up=ika, (520 modes depends on the relative angle between an external
iw_sz field and the wave vector. From the low frequency limit of

the sound spectrum one can obtain information about the
. . . effective, magnetic-field-dependent elastic moduli. However,
wherecy, is the shear wave velociti42), v the shear vis-  hese moduli are different from those measured by static
cosity, and¢ the self-diffusion of the strain fiel@30). The  g|ongations or shear deformations in an external field. The
former comprises of a field-dependent part, which is spaceason is that due to the finite magnetostriction the linear
dependent in a gradient field. However, that part is smallesponse theory is not applicable. Only in the limit of a van-
compared to the constant ong4/p) and can be approxi- jshing field are they equal and match the true elastic moduli.
mated _by its spatial mean or can be negl-ec'Fed at all here. |}, the high frequency limit one gets a shift in the sound
the ratiow/k for the applied temperature is in the range of yg|ocities proportional to the dynamic coupling between the
the transverse sound velocity, we hawe-(v/p)k? and@  flow and the magnetization. This reflects the fact that the
>£pok?, and Eq.(52) gives the amplitude of the excited magnetization is an independent variable. Finally, a shear
shear wave in the long time limit in the form of a response ofexcitation experiment in an oscillating temperature gradient

a damped harmonic oscillator plus a gradient of the magnetic field has been proposed.
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The real part of the strain tensor, which is the measurable APPENDIX: TENSORS LINEAR IN M

quantity, has the form _ _
Here we give the form of those tensors that do not exist

_ _ without a magnetic field and change sign when the magneti-
Re(Uxg) = A 208 kz= 0t + 619, 54 ation changes sign. For simplicity, we restrict ourselves to

where A, ,= al,zkw[(wﬁ—w2)2+4w21“2]’1’2 and 8,=, the case Iinzar irng. The _ rleversible se%ond-ra;]nk

8,= 6— /2 with tand=(w2— w2)/(2wT’) for the two cases magnetization-dependent material tensors, such as the re-

of a constant magnetic field,= 2 yoé™RT,kH, and a field veRrS|bIe analog. of ' heaﬁR conductlorfrf}.(M)., dlffusmp

gradienta; = 1 yo& RT,H,, respectively. This reduces to Di;(M), thermodiffusionDj;"(M), magnetization relaxation

biFf(M), and the reversible coupling terms between tempera-
ture, concentration, and elasticitf;", £, &R, are all of

_ak _ 2ok he form v
uxz—ﬁsm(kz— wot) or uxz—fcos(kz— wot) the

(55) K (M) = kRe My (A1)
in the resonant cases= wy. Of course, this coupling of ) R R ]
temperature to shear also works the other way round, and at€y are antisymmetrie;;(M) = — «;;(M) according to On-
imposed shear wave can excite a temperature wave in tHeger's relationx{(M)=«f(~M) and give zero entropy
presence of an appropriate magnetic figgdadieny. production[17].

Another possibility of shear excitation is the application  The third-rank tensociF}k describing a reversible dynamic
of concentration instead of a temperature oscillatipgee  cross coupling between flow and magnetization is symmetric
Eqg. (24)], although this might be more challenging experi- in the two last indices and reads
mentally.

Cﬁk(M):Cj}?(é‘iij‘F 5iij)+C§5jkMi' (AZ)
VI. CONCLUSION
The reversible analog of the viscosity tensor has one compo-

In this paper we have given the hydrodynamic equationsent for the isotropic casel7]
for magnetic elastomers including the magnetization as an
independent slowly relaxing variable, which allows us to R _ R
studS the system f>cl)r high frgequencies as well. Due to pres- Vijia (M) =7 €ikp 01+ €itp Sjs t €j1p ST €jcp i Mp('As)
ence of the permanent network the displacement iglans
out to be a truly hydrodynamic variable. The fact that mag-This fourth-order tensor is symmetriciif and ink,l, butis
netic grains are attached to the network is expressed by thentisymmetric under the exchange of the first pair of indices
static coupling of the magnetization and the strain tensomwith the second one, thus guaranteeing zero entropy produc-
This leads to an additional field-dependent contribution tcion.
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