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Hydrodynamics of isotropic ferrogels
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We derive the complete set of macroscopic dynamic equations for ferrogels under an external magnetic field,
including the magnetization as an independent dynamic degree of freedom. The magnetoelasticity comes in the
form of magnetostriction and through the magnetic part of the Maxwell stress. Various dynamic couplings of
the elastic degree of freedom with the magnetization and the magnetic field are found. We discuss static
elongation, shear deformations, and the modified sound spectrum in the presence of an external magnetic field.

DOI: 10.1103/PhysRevE.68.041706 PACS number~s!: 61.30.2v, 75.50.Mm, 05.70.Ln
lle
e

e
u
na
op
or

in
s
ag
no

o
on
al
et
s
th
ic

o
o

ly
le

ve
lu

na

lib
hi

le
in

n

etic
he
ar-
o be
ag-

he
ular
of
ab-
lar,
the
eld
ua-

the
tem
he
etry
the

its
ur-
dy-
en-
ns
by

ro-
on a
lso
in
the
e
he

ro-
opic
ti-
y-

for
e-

ial
ings
As

m of
I. INTRODUCTION

Ferrogels belong to a new class of magnetocontro
elastic materials, which are chemically cross-linked polym
networks swollen with a ferrofluid. Coupling the elastic m
dium with the magnetic properties of the particles allows
to manipulate the elastic behavior of ferrogels by exter
magnetic fields and/or field gradients. This feature offers
portunities for various applications as, e.g., soft actuat
micromanipulators, and artificial muscles@1#. Heating of
these materials in alternating magnetic fields is a promis
approach in cancer therapy@2#. Since the magnetic rubber i
soft, inexpensive, and controlled in its properties by the m
netic field, it can also be used in an apparatus for immu
blotting @3#.

The properties of ferrogels depend on the preparation c
ditions~solvent, concentration of cross linking, concentrati
of magnetic particles!. Preparing ferrogels in an extern
magnetic field one can obtain large columns of magn
particles, the length of which is much larger than the me
size of the network. In this case the clusters are fixed in
network @4#. As a result the ferrogel is strongly anisotrop
@5#.

Here we consider isotropic ferrogels. The typical size
the magnetic particles is;10 nm. The bare particles tend t
coagulate. To prevent this, magnetic grains are charged@6# or
coated by polymers@7#. The magnetic gels are usually on
weakly cross linked, so that the size of the magnetic partic
is much smaller than the mesh size of the network. Howe
still some coagulation takes place resulting in magnetic c
ters comparable in size to that of the mesh@8#. Without ex-
ternal field no remnant magnetization is found. An exter
field easily magnetizes the sample~superparamagnetism!.
Outside equilibrium the magnetization relaxes to its equi
rium value and orientation set by the external field. T
relaxation is rather slow compared to the~many! micro-
scopic relaxation processes and it is therefore reasonab
keep the magnetizations as a macroscopic, slowly relax
variable.

In inhomogeneous magnetic fields an abrupt shape tra
tion of isotropic ferrogels was observed@8#. The force gen-
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erated by such a magnetic gradient field drives the magn
grains in the direction of the gradient, thus deforming t
network, if there is a coupling between the magnetic p
ticles and the network. In these experiments this seems t
the case. Therefore, we assume in our model that the m
netic particles are ‘‘attached’’ to the network, although t
precise meaning of this statement is unclear on the molec
level. On the macroscopic level this leads to a coupling
rotations of the magnetization as well as changes of its
solute value with the elastic strains or stresses. In particu
we will discuss static elongation, shear deformations, and
modified sound spectrum in a homogeneous magnetic fi
by solving the appropriate generalized hydrodynamic eq
tions.

To derive the macroscopic dynamic equations we use
hydrodynamic method. Hydrodynamics describes a sys
in the long wavelength limit and for long time scales. T
hydrodynamic equations are derived by means of symm
and thermodynamic arguments. The main advantage of
hydrodynamic method lies in its generality, which allows
application to very different systems. However, the occ
rence of phenomenological parameters in the static and
namic expansions are the price one has to pay for this g
erality. Therefore coefficients turning up in the equatio
below have to be determined by microscopic models or
experiments.

There are cases, where nonhydrodynamic, relaxing p
cesses become so slow that their dynamics takes place
macroscopic time scale as well. Then it is appropriate to a
include nonhydrodynamic, but slowly relaxing variables
the dynamic description of such a system. In ferrofluids
magnetization~its orientation as well as its absolute valu!
relaxes to the equilibrium value set by the external field. T
appropriate relaxation time is much larger than all mic
scopic time scales and can be relevant for the macrosc
dynamics@9,16#. In this case one should treat the magne
zation as an additional dynamic variable with its own d
namical~relaxation! equation.

Here we generalize the set of hydrodynamic equations
ordinary gels to those for ferrogels by including the magn
tization as an additional, slowly relaxing variable. Spec
emphasis is laid on the magnetomechanical cross coupl
between elasticity and the magnetic degree of freedom.
an application for these equations we discuss the spectru
©2003 The American Physical Society06-1
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longitudinal and transverse sound in the presence of an
ternal magnetic field. In the low frequency limit a compa
son with static elastic measurements is made. A possible
of exciting shear waves by oscillating temperature gradie
in the presence of a gradient field is outlined.

II. STATICS AND THERMODYNAMICS

The macroscopic description of a system starts with
identification of the relevant variables. Apart from the qua
tities that are related to local conservation laws, such as m
densityr, momentum densityg, energy density«, and con-
centrationc of the swelling fluid~and/or that of the magneti
particles!, we consider the elastic strainui j and the magne-
tization M as additional variables. In a crystal the former
related to the broken translational symmetry due the lo
range positional order, which gives rise to the displacem
vectoruW as a hydrodynamic symmetry variable. Since neit
solid body translations nor rigid rotations give rise to elas
deformations, the strain tensor is used as a variable, w
reads in linearized versionui j 5

1
2 (“ iuj1“ jui). In amor-

phous solids, such as rubbers, gels, etc., linear elastici
still described by a second-rank, symmetric strain tensor.
a proper description of nonlinear elasticity cf.@10#. For the
purpose of this work, however, linear elasticity is sufficie
As discussed in the Introduction, the magnetizationM is a
slowly relaxing variable in the superparamagnetic case.

Assuming local thermodynamic equilibrium, i.e., all m
croscopic, fast relaxing quantities are already in equilibriu
we have the Gibbs relation

d«5Tds1mdr1mcdc1v idgi1HidBi1hi
MdMi

1C i j dui j ~1!

relating all macroscopically relevant variables discus
above to the entropy densitys. B is the magnetic induction
field included here in order to accommodate the static M
well equations. In Eq.~1! the thermodynamic quantities
chemical potentialm, temperatureT, relative chemical po-
tentialmc , velocityv i , elastic stressC i j , magnetic fieldHi ,
and the magnetic molecular fieldhi

M , are defined as partia
derivatives of the energy density with the respect to the
propriate variables@11#.

To determine these thermodynamic forces and thus
static properties of magnetic elastomers one provides an
pression of the energy density in terms of the variables

«5«01
B2

2
2B•M1

m i jkl

2
ui j ukl2

g i jkl

2
MiM jukl1

a

2
Mi

2

1
b

4
~Mi

2!21uii ~xrdr1xsds1xcdc!, ~2!

where «0 is the energy density of a fluid binary mixture
Equation~2! explicitly contains the elastic and the magne
energy, their cross coupling~the magnetoelastic energy! and
bilinear couplings of compression with the scalar variabl
To discuss large elastic deformations~rubber elasticity! one
should keep terms of higher order ofui j , which are ne-
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glected here. The magnetoelastic coupling is cubic@12# and
theM4 contribution is kept in order to guarantee the therm
dynamic stability. The tensorsm i jkl and g i jkl take the
isotropic formai jkl 5a1d i j dkl1a2(d ikd j l 1d i l d jk2 2

3 d i j dkl),
wherem1 is the compressibility andm2 the shear modulus
The magnetoelastic energy is similar to that for ferroma
netic materials, where, however, the compressional magn
striction is neglected (g150) @12#. We will not take this
approximation for magnetic gels and keepg1Þ0, in order to
explore effects due to a nonzerog1 and how they can be
measured. Whileg1 describes the elastic response to cha
ing the field strength~or vice versa compression or dilatio
due to changes inuMu), g2 is related to elastic shear and
rotations ofM. Depending on how the ‘‘attachment’’ of th
magnetic clusters to the network actually is realized in
sample, this interaction may be large or small. Thus mea
ing g ’s by their effects described below, may give some hi
on the microscopic structures. All static susceptibilities, su
as the elastic and magnetoelastic moduli as well as th
describing cross couplings between compression and
density, entropy density, and concentrations variations (xr,
xs, and xc, respectively! can depend onM2 and thus on
magnetic-field strength.

Using Eqs.~1! and ~2!, the magnetic Maxwell fieldHi is
defined in the usual way

Hi5S ]«

]Bi
D

M,ui j , . . .

5Bi2Mi , ~3!

while the magnetic molecular fieldhi
M reads

hi
M5S ]«

]Mi
D

B,ui j , . . .

52Bi2g i jkl M jukl1aMi1bM2Mi .

~4!

Note that because of definition~3!, it is not possible to have
a direct coupling between the external fieldB and the strain;
the deformation of the network is mediated by the magn
zation via the coupling terms;g i jkl .

The elastic stressC i j has the following form:

C i j 5S ]«

]ui j
D

M,B, . . .

5m i jkl ukl2
g i jkl

2
MkMl1d i j ~xrdr1xsds1xcdc!

~5!

and depends on the magnetization.

III. EQUILIBRIUM

In equilibrium, both the elastic strain Eq.~5! and the mag-
netic molecular field Eq.~4! have to be zero. Without an
external field or external strain there is no magnetization
no strain in equilibrium. A finite external field, taken alon
the z axis, B5B0ez , induces an equilibrium magnetizatio
(M05M0ez) and a nonzero strainui j

0 due to the magneto
6-2
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striction effect. Neglecting the couplings of density@18#, en-
tropy, and concentration to the strain tensor, we have

C i j 5F S m12
2

3
m2Dukk

0 2S g1

2
2

g2

3 D M0
2Gd i j 2g2Mi

0M j
0

12m2ui j
0 50, ~6!

hi
M52B0d iz2S g12

2

3
g2D Mi

0ukk
0 22g2M j

0ui j
0 1aMi

0

1bM0
2Mi

050. ~7!

From hx
M50, hy

M50, andCxy50 it follows that uxz
0 50,

uyz
0 50, anduxy

0 50 accordingly. The remaining condition
give

uxx
0 5uyy

0 5
m2g12m1g2

6m1m2
M0

2 , ~8!

uzz
0 5

m2g112m1g2

6m1m2
M0

2 , ~9!

leading to the volume changeU0[uxx
0 1uyy

0 1uzz
0

5(g1/2m1)M0
2 . The magnetostrictive volume change of t

ferrogel is determined by the bulk modulusm1 and by the
coefficientg1, which couples the trace of the stress tenso
the magnitude of the magnetization.

From hz
M50 we get implicitly the equilibrium magneti

zation as a function of the fieldB05M0@a1bM0
2

2(3g1
2m214g2

2m1)M0
2/(6m1m2)#. Writing this relation in

the form xB05(11x)M0, a field-dependent magnetic su
ceptibility x results with

11x

x
5a1S b2

3g1
2m214g2

2m1

6m1m2
D S xB0

11x D 2

. ~10!

The explicit form of Eq.~10! follows from the ~truncated!
expansion~2! and is suitable for small external fields onl
For high field intensities, when the magnetization reaches
saturation value,x in Eq. ~10! has to be replaced by a mor
complicated functionx05x(B0), either measured@13,14# or
calculated from reliable microscopic models. For the sm
deviations from equilibrium, which we are dealing with
the following, the simple formxB05M0 is sufficient for any
field strength, when forx the appropriate equilibrium valu
x0 is taken.

Magnetostriction is a well-known phenomenon in sing
or polycrystalline ferromagnetic solids@19#. A complicated
interaction between the crystalline and domain structure w
the magnetic moments of the atoms leads to a connec
between elasticity and magnetic moment, e.g., to a chang
volume or shape at the paramagnetic to ferromagnetic p
transition. Ferrogels, however, are isotropic and nonmagn
without an external magnetic field. Magnetostriction is the
nonlinear effect. Applying a field, on the other hand, t
induced magnetostriction can be considerably large du
the superparamagnetic response and the soft rubber elas
The induced deformations, Eqs.~8! and ~9!, are of uniaxial
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symmetry and in this state the ferrogel behaves more lik
uniaxial ferromagnet than an isotropic one.

IV. DYNAMICS

The hydrodynamic equations for conserved and slow
relaxing variables as well as for those associated with sp
taneously broken continuous symmetries are

]

]t
r1div rv50, ~11!

]

]t
s1div sv1div js5

R

T
, ~12!

]

]t
gi1“ j~v jgi1d i j @p01B•H#1s i j

th1s i j !50, ~13!

S ]

]t
1vk“kDui j 1Yi j 50, ~14!

rS ]

]t
1v j“ j D c1div jc50, ~15!

S ]

]t
1v j“ j D Mi1~M3v! i1Xi50, ~16!

wherev i5
1
2 e i jk“ jvk is the vorticity and

s i j
th52BjHi2

1
2 ~M jhi

M2Mihj
M !1C jkuki . ~17!

Using the fact that the energy density, Eq.~1!, has to be
invariant under constant rotation@11#, Eq. ~17! can be sim-
plified as

s i j
th52 1

2 ~BiH j1BjHi !1 1
2 ~C jkuki1C ikuk j!. ~18!

The last term in Eq.~18! is nonlinear, but since there is
finite strain in an external field, it will enter linear deviation
from that constrained equilibrium. The thermodynamic pr
surep0’s given by

p052«1Ts1mr1g•v. ~19!

j s is the entropy current, in Eqs.~14!–~16! Yi j andXi are the
quasicurrents of the variables associated with broken tra
lational symmetry~network! and slowly relaxing magnetiza
tion. To guarantee rotational invariance of the dynami
equation for the strain field, one must requireYi j 5Yji . The
source termR/T in the dynamic equation for the entrop
density is the entropy production. The second law of therm
dynamics readsR>0 for dissipative and reversible proces
respectively.

Since we are not dealing with electromagnetic effects,
can use the static Maxwell equations to determineB

curlH5curl~B2M!50, divB50. ~20!

All the currents can be split into dissipative and into r
versible (R50) and irreversible (R>0) parts. Using genera
6-3
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symmetry and invariance arguments and the fact that a m
netic field changes sign under time reversal, we obtain
linear currents

j i
sR52k i j

R~M !“ jT2Di j
TR~M !“ jmc1j i j

TR~M !C j ,
~21!

j i
cR52Di j

R~M !“ jmc1Di j
TR~M !“ jT1j i j

cR~M !C j ,
~22!

s i j
R52C i j 2cki j

R ~M !hk
M2n i jkl

R ~M !Akl , ~23!

Yi j
R52Ai j 1

1
2 lM@“ i~“3hM ! j1“ j~“3hM ! i #

2 1
2 @“ i$j jk

R ~M !Ck1j jk
TR~M !“kT1j jk

cR~M !“kmc%

1~ i↔ j !#, ~24!

Xi
R5bi j

R~M !hj
M1lM~“3C! i2ci jk

R ~M !Ajk , ~25!

with Ai j 5
1
2 (“ iv j1“ jv i) and C i5“ jC i j 5“ jC j i . Again,

nonlinear elastic contributions have been neglected. Du
the new degree of freedom~magnetization! there is an addi-
tional term in the stress quasicurrent, Eq.~24!, and a counter
term in Xi

R , which describes a dynamic cross coupling b
tween magnetization and the network. It does not exis
ordinary elastomers nor in isotropic ferrofluids. Its impact
the sound spectrum will be explored in Sec. V B. The n
coefficient lM ~reversible dynamic coupling between th
magnetization and the strain tensor! gives a small effect in
the dynamics of order;k4. The magnetization-depende
tensors k i j

R(M ), Di j
R(M ), Di j

TR(M ), n i jkl
R (M ), ci jk

R (M ),
j i j

TR(M ), j i j
cR(M ), j i j

R(M ), bi j
R(M ) are all odd functions of

the magnetization and are listed to linear order inM0 in the
Appendix.

To derive the dissipative contributions to the currents i
most convenient to start with the expression for dissipat
function R. The dissipative currents are then obtained
taking variational derivatives with respect to one thermo
namic conjugate while keeping all others fixed. Expand
the dissipation functionR up to second order in the thermo
dynamic forces we obtain

R5
1

2
k~“ iT!21

1

2
n i jkl Ai j Akl1

1

2
D~“ imc!

21
b

2
~hi

M !2

1
1

2
j~C i !

21DT~“ jT!~“ jmc!

1C i~jT
“ iT1jc

“ imc!. ~26!

Heren i jkl is the viscosity tensor andk, D, andDT describe
heat conduction, diffusion, and thermodiffusion, respective
The quantityb is the inverse magnetization relaxation andj
the self-diffusion constant of the strain field. The range
possible values of the coefficients in Eq.~26! is restricted by
the positivity of the entropy production.

We derive the dissipative parts of the currents by tak
the variational derivative of the dissipation function with r
spect to the appropriate thermodynamic force
04170
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j i
sD52k“ iT2DT

“ imc2 1
2 jTC i , ~27!

j i
cD52D“ imc2DT

“ iT2 1
2 jcC i , ~28!

s i j
D52n i jkl Akl , ~29!

Yi j
D52 1

2 @“ i~jC j1jT
“ jT1jc

“ jmc!1~ i↔ j !#, ~30!

Xi
D5bhi

M . ~31!

V. EXPERIMENTS

A. Static elongation and shear

In preparation for, and for comparison with, the sou
spectrum we first discuss static elongational and shear de
mations. We assume an external field~along thez axis! that
gives a nonzero magnetization as well as a deformation
equilibrium. This state is then disturbed by an external
formationDui j by some mechanical device. Due to the ma
netostriction effect this gives also rise to a change in
magnetization. In the static limit the magnetic degree of fr
dom is still in equilibrium and the change of the magnetiz
tion can be obtained from the conditionhi

M50, Eq.~4!. The
applied deformation gives, directly by Hooke’s law and i
directly by the change of the magnetization, an elastic str
From Eq.~5! we get

Czz5~m92x0g92M0
2!Duzz

1~m82x0g8g9M0
2!~Duxx1Duyy!, ~32!

Cxx5~m92x0g82M0
2!Duxx1~m82x0g82M0

2!Duyy

1~m82x0g8g9M0
2!Duzz, ~33!

Czx52~m22x0g2
2M0

2!Duzx , ~34!

Cxy52m2Duxy ~35!

for the elastic stresses. Apart from the elastic moduli@m9
5m11(4/3)m2 andm85m12(2/3)m2], it containsM0

2 cor-
rections due to magnetostriction@g85g12(2/3)g2 and g9
5g11(4/3)g2], except for deformations that do not affe
the magnetization. Note that, even if the deformation d
conserve the volume (Duxx1Duyy1Duzz50), the trace of
the elastic stress tensor is not zero, but given byCkk5
26x0g1g2M0

2Duzz. Formulas~32!–~35! are applicable for
small strains only, since it is based on Hooke’s law, while
larger strains deviations from this law due to rubber elastic
are to be expected.

The stress tensors i j not only contains the elastic stres
C i j , but also the hydrostatic pressure and a nonlinear c
bination of elastic stress and strain, Eq.~18!. The former
couples to volume deformations via the compressibilityks ,
defined asks5r2(]2«/]r2)21. The latter gives rise to linea
contributions in the stress tensor, if an external field
present, since then a finite deformation~strain! is induced.
This is seen in the sound spectrum discussed below.
6-4
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B. Propagation of sound

Due to the presence of the permanent polymer networ
ferrogels compared to ferrofluids, there are transverse as
as longitudinal sound eigenmodes. In this section we de
the longitudinal and the transverse sound of the system
an external magnetic field parallel to thez axis. We neglect
all diffusional processes connected, e.g., with viscosity
heat conduction as well as their reversible counterpa
Terms withl and bR coefficients are omitted here as we
The first one does not contribute to the sound velocity,
cause it is of fourth order in the wave vector;k. Terms with
bR shift the magnetization relaxation time by;bRM2, and
thus give higher order corrections;M4 to the sound spec
trum, in which we are not interested here. Only the rel
ation of the magnetization in the field is kept.

Assuming a one-dimensional plane wave with space-t
dependence;expi(2vt1k•r) for all deviationsdui j , dMi ,
v i , dr from the equilibrium values determined in Sec. III th
linearized set of dynamic equations becomes an algeb
one. Let us consider sound in the two cases, where the
ternal magnetic field and the equilibrium magnetization
either perpendicular or parallel to the wave vector. Fi
fluctuationsdBi are fixed by the static Maxwell equation
~20! to dBi5dM j (d i j 2kikjk

22).
In the case where an external field is perpendicular to

wave vector the sound dispersion relations for longitudi
and for transverse modes, respectively, read, up to o
O(M2) from here on all oldm8 are calledm̃

v l
25

k2

r F m̃2M0
2S m̃

m2g12m1g2

6m2m1
1x0~g8!2

2
ıv~x0g82c2

R!2

ıvx02b D G , ~36!

v t1
2 5

k2

r Fm22M0
2m2g12m1g2

6m1
G , ~37!

v t2
2 5

k2

r
Fm22M0

2S 2m2g11m1g2

12m1
1x0g2

21
g2

2

2
ıv~x0g22c1

R1 1
2 !2

ıvx02b
D G , ~38!

wherem̃51/(rks)1m11 4
3 m2 andg85g12 2

3 g2. Generally,
x0(B0) brings in an additional dependence onM0, which
however can be neglected inO(M2).

If an external field is parallel to the wave vector we ha
the following longitudinal and transverse dispersion re
tions:

v l
25

k2

r F m̃2M0
2S m̃

m2g112m1g2

6m2m1
1x0~g9!2

2
ıv@x0g92~2c1

R1c2
R!#2

ıvx02b D G , ~39!
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v t
25

k2

r
Fm22M0

2S 2m2g11m1g2

12m1
1x0g2

22
g2

2

2
ıv~x0g22c1

R2 1
2 !2

ıvx02b
D G , ~40!

where g95g11 4
3 g2. As the problem is symmetric in the

plane perpendicular to the magnetic field the two transve
sounds have identical dispersion relations.

Knowing the dispersion relations for the two geometr
one can study sound velocities. The relaxation time of
magnetizationtM5x0 /b is known for ferrofluids and is
typically of order 1024. Our approach allows us to invest
gate two frequency regimes: forv,1/tM the low frequency
limit and for v.1/tM the high frequency regime. There
no frequency dependence for the transverse sound m
where the magnetic field, the wave vector, and the velo
are mutually perpendicular, Eq.~37!.

Let us first investigate low frequencies (v,1/tM). The
frequency-dependent parts in the square brackets of the
persion relations~36!–~40! become dissipative and do no
contribute to the sound velocities. In the case of the exte
field being perpendicular to the wave vector the velocities
the longitudinalcl and the transverse soundsct1 , ct2 read

cl
25

m̃

r
2S m̃

m2g12m1g2

6rm2m1
1

x0~g8!2

r D M0
2 , ~41!

ct1
2 5

m2

r
2S m2g12m1g2

6rm1
D M0

2 , ~42!

ct2
2 5

m2

r
2S 2m2g11m1g2

12rm1
1

2x0g2
21g2

2r D M0
2 , ~43!

while for a parallel field we have

cl
25

m̃

r
2S m̃

m2g112m1g2

6rm1m2
1

x0~g9!2

r D M0
2 , ~44!

ct
25

m2

r
2S 2m2g11m1g2

12rm1
1

2x0g2
22g2

2r D M0
2 . ~45!

The sound speeds at low frequencies and zero field give
formation about the compressibility and the elastic mod
~bulk and shear!. The dependence onM0

2 is due to magneto-
strictive effect and completely absent forg1505g2. Mag-
netostriction enters the sound speed in different ways. Th
is a direct static coupling of magnetization and stress in
~5! and the strain dependence of the magnetic molecular fi
~4!, which give rise to terms linear and quadratic ing1 and
g2. A similar term emerges indirectly via the Maxwell stres
The second route is dynamic, given by the nonlinear ela
stress contribution to the stress tensor in Eq.~18!, which,
however, is effectively linear due to the nonzero equilibriu
strains. In the sound speeds these contributions are of
bilinear gm type. In an external field the effective modu
measured by sound propagation are therefore different f
6-5
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those given by the static elastic stressC i j discussed in the
preceding section. The coincidence of static linear elasti
and low frequency sound speed is restored in the limit
vanishing magnetic field, when no magnetostrictive deform
tion is present and the additional contribution in the str
tensors i j ~18! is nonlinear and absent in the sound spec
Of course, in this limit the sound spectra are isotropic a
the ferrogel.

The sound velocities change with an external magn
field basically with the second power of the field, which is
accordance with experiments on longitudinal sound@14#.
There is, however, an additional field dependence thro
x0. Whether the sound velocities are decreased or incre
by the field cannot be established by general rules, since
signs of g1,2 are not fixed and can be material depende
Measurements of transverse and longitudinal sound vel
ties in the different geometries will provide information o
the magnitude and sign of the magnetostrictive and ela
moduli. As a first approximation the magnetostrictive vo
ume change (;g1M0

2/m1) can be neglected in those rubbe
and only shape changes remain.

Damping of sound waves generally is rather weak a
given by the imaginary part of the dispersion relation.
addition to the usual magnetic-field-independent sou
damping due to viscosity and other diffusional proces
there is a field-dependent sound damping in ferrogels. Th
an effect of the reversible, dynamic coupling of the mag
tization to flow, either phenomenological@ci jk

R (M ) in Eq.
~25!# or kinematic@e i jkM jvk in Eq. ~16!# and its counter-
parts in the Navier-Stokes equation. For example, when
magnetic field is parallel~perpendicular! to the wave vector a
field-dependent damping of longitudinal~transverse! sound
Eq. ~39! @Eq. ~38!# reads, respectively,

Im~v l !52
1

2

@x0g92~2c1
R1c2

R!#2

rb
M0

2k2, ~46!

Im~v t2!52
1

2

~x0g22c1
R1 1

2 !2

rb
M0

2k2, ~47!

the first of which can be related to the observed increas
the apparent viscosity due to the magnetic field@15#. In all
cases Im,0, as it should be according to the second law
thermodynamics.

Let us now investigate the high frequency limit forv
.1/tM . In the case where an external field is perpendicu
to the wave vector the velocities of the longitudinalcl and
the transverse soundsct2 read (ct1 is as in the low frequency
limit !

cl
25

m̃

r
2S m̃

m2g12m1g2

6rm2m1
1

c2
R~2x0g82c2

R!

x0r D M0
2 , ~48!

ct2
2 5

m2

r
2S 2m2g11m1g2

12rm1

1
2x0g2~c1

R2 1
4 !2~c1

R2 1
2 !2

x0r
D M0

2 . ~49!
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For an external field parallel to the wave vector we have

cl
25

m̃

r
2S m̃

m2g112m1g2

6m2m1r

1
~2c1

R1c2
R!@2x0g92~2c1

R1c2
R!#

x0r D M0
2 , ~50!

ct
25

m2

r
2S 2m2g11m1g2

12m1r

1

2x0g2S c1
R1

1

4D2S c1
R1

1

2D 2

x0r
D M0

2 . ~51!

The field dependence of the sound velocities contains
magnetostrictive contributions already present in the low f
quency limit, but in addition also the reversible, dynam
cross couplings (c1

R,c2
R) between magnetization and flow

~which in the low frequency limit contributed to the soun
damping!. Of course, most interesting experimentally is t
transition regionvtM'1, where the sound velocities mak
steps and the damping is enhanced.

C. Shear excitation by temperature oscillations

In ferrogels there are several reversible cross coupli
mediated by material tensors that are linear in the exte
magnetic field. They belong to the same type of effects as
Hall and the Righi-Leduc effect. In Eq.~24! there is such a
coupling, described byj jk

TR(M ), between a temperature gra
dient and the dynamics of the elastic degree of freedo
From the form ofj i j

TR ~A1! one can conclude that an applie
oscillating temperatureT5T01T1exp@i(kz2vt)#, in the
presence of a homogeneous or gradient magnetic field@20#

H5êy(H01H1z), leads to an oscillating shear in the plan
perpendicular to the magnetic field~Fig. 1!, since Yxz;a
[1

2x0j
TRT1(H11ikH0). Oscillating shearuxz is part of the

transverse sound discussed in the preceding section. Afte
initial transients have died out the excited shear wave tra
with the frequency and wave vector of the applied tempe
ture, uxz5u0 exp@i(kz2vt)#, with the complex amplitudeu0
given by

FIG. 1. Shear excitationuxz in a ferrogel due to applied tem
perature oscillations along thez direction, in the presence of a con
stant or gradient magnetic field iny direction.
6-6
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S 2 iv2
ct1

2 k2

iv2
n

r
k2

1jm2k2D u05 ika, ~52!

wherect1 is the shear wave velocity~42!, n the shear vis-
cosity, andj the self-diffusion of the strain field~30!. The
former comprises of a field-dependent part, which is sp
dependent in a gradient field. However, that part is sm
compared to the constant one (m2 /r) and can be approxi
mated by its spatial mean or can be neglected at all her
the ratiov/k for the applied temperature is in the range
the transverse sound velocity, we havev@(n/r)k2 and v
@jm2k2, and Eq.~52! gives the amplitude of the excite
shear wave in the long time limit in the form of a response
a damped harmonic oscillator

u05
2akv

v0
22v212ivG

, ~53!

with eigenfrequencyv05ct1k and damping 2G5k2(jm2
1n/r).

The real part of the strain tensor, which is the measura
quantity, has the form

Re~uxz!5A1,2cos~kz2vt1d1,2!, ~54!

where A1,25a1,2kv@(v0
22v2)214v2G2#21/2 and d25d,

d15d2p/2 with tand5(v22v0
2)/(2vG) for the two cases

of a constant magnetic fielda25 1
2 x0jTRT1kH0 and a field

gradienta15 1
2 x0jTRT1H1, respectively. This reduces to

uxz5
a1k

2G
sin~kz2v0t ! or uxz5

a2k

2G
cos~kz2v0t !

~55!

in the resonant casesv5v0. Of course, this coupling o
temperature to shear also works the other way round, an
imposed shear wave can excite a temperature wave in
presence of an appropriate magnetic field~gradient!.

Another possibility of shear excitation is the applicati
of concentration instead of a temperature oscillations@see
Eq. ~24!#, although this might be more challenging expe
mentally.

VI. CONCLUSION

In this paper we have given the hydrodynamic equati
for magnetic elastomers including the magnetization as
independent slowly relaxing variable, which allows us
study the system for high frequencies as well. Due to pr
ence of the permanent network the displacement fieldu turns
out to be a truly hydrodynamic variable. The fact that ma
netic grains are attached to the network is expressed by
static coupling of the magnetization and the strain ten
This leads to an additional field-dependent contribution
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the sound spectrum. The contribution to the transverse so
modes depends on the relative angle between an exte
field and the wave vector. From the low frequency limit
the sound spectrum one can obtain information about
effective, magnetic-field-dependent elastic moduli. Howev
these moduli are different from those measured by st
elongations or shear deformations in an external field. T
reason is that due to the finite magnetostriction the lin
response theory is not applicable. Only in the limit of a va
ishing field are they equal and match the true elastic mod
In the high frequency limit one gets a shift in the sou
velocities proportional to the dynamic coupling between
flow and the magnetization. This reflects the fact that
magnetization is an independent variable. Finally, a sh
excitation experiment in an oscillating temperature gradi
plus a gradient of the magnetic field has been proposed.
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APPENDIX: TENSORS LINEAR IN M

Here we give the form of those tensors that do not ex
without a magnetic field and change sign when the magn
zation changes sign. For simplicity, we restrict ourselves
the case linear in M. The reversible second-ran
magnetization-dependent material tensors, such as the
versible analog of heat conductionk i j

R(M ), diffusion
Di j

R(M ), thermodiffusionDi j
TR(M ), magnetization relaxation

bi j
R(M ), and the reversible coupling terms between tempe

ture, concentration, and elasticity,j i j
TR , j i j

cR , j i j
R , are all of

the form

k i j
R~M !5kRe i jkMk . ~A1!

They are antisymmetrick i j
R(M )52k j i

R(M ) according to On-
sager’s relationk i j

R(M )5k j i
R(2M ) and give zero entropy

production@17#.
The third-rank tensorci jk

R describing a reversible dynami
cross coupling between flow and magnetization is symme
in the two last indices and reads

ci jk
R ~M !5c1

R~d i j Mk1d ikM j !1c2
Rd jkM i . ~A2!

The reversible analog of the viscosity tensor has one com
nent for the isotropic case@17#

n i jkl
R ~M !5nR@e ikpd j l 1e i lpd jk1e j lpd ik1e jkpd i l # M p .

~A3!

This fourth-order tensor is symmetric ini , j and ink,l , but is
antisymmetric under the exchange of the first pair of indic
with the second one, thus guaranteeing zero entropy pro
tion.
@1#6-7
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