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Hexatic-herringbone coupling at the hexatic transition in smectic liquid crystals:
4-e renormalization group calculations revisited
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Simple symmetry considerations would suggest that the transition from the smectic-A phase to the long-
range bond-orientationally ordered hexatic smectic-B phase should belong to theXY universality class. How-
ever, a number of experimental studies have reported over the past twenty years ‘‘novel’’ critical behavior with
non-XY critical exponents for this transition. Bruinsma and Aeppli argued@Phys. Rev. Lett.48, 1625~1982!#,
using a 4-e renormalization-group calculation, that short-range molecular herringbone correlations coupled to
the hexatic ordering drive this transition first order via thermal fluctuations, and that the critical behavior
observed in real systems is controlled by a ‘‘nearby’’ tricritical point. We have revisited the model of Bruinsma
and Aeppli and present here the results of our study. We have found two nontrivial strongly coupled
herringbone-hexatic fixed points apparently missed by these authors. Yet, these two nontrivial fixed points are
unstable, and we obtain the same final conclusion as the one reached by Bruinsma and Aeppli, namely that of
a fluctuation-driven first-order transition. We also discuss the effect of local twofold distortion of the bond
order as a possible ‘‘extra’’ order parameter in the Hamiltonian.
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I. INTRODUCTION

The nature of phase transitions in two dimensional~2D!
systems has been the subject of numerous investigations
the past three decades. According to the Mermin-Wag
Hohenberg theorem@1#, the continuous symmetry of theXY
and Heisenberg models cannot be spontaneously broke
finite temperature, and there can be no long-range magn
order. However, Kosterlitz and Thouless~KT! @2# argued that
there is a new type of phase transition from a high tempe
ture phase with exponential decay of the correlations t
low temperature phase with power law decay of the corre
tions. The idea of KT has been extended by Halperin a
Nelson@3# and Young@4# ~HNY! to the 2D melting problem.
One of the main results of the KTHNY theory is the pred
tion of an intermediate 2D phase called the hexatic phase
systems that have a sixfold~hexagonal! symmetry in their
crystalline ground state. This hexatic phase displays sh
range positional order, but quasi-long-range bon
orientational order, which is different from the true lon
range bond-orientational and quasi-long-range translatio
order of a 2D solid phase@3,5#. The hexatic phase can b
characterized by a bond-orientational order parameter
fined byC65uC6uexp(i6c6). Assuming that the hexatic stat
exists and is not preempted by a direct first-order melt
transition from the solid to the isotropic liquid phase, t
system should, in the simplest scenario for 2D, display eit
a KT transition or a first-order transition from the hexa
state to the isotropic liquid phase@5#.

It was soon realized after the proposal of the KTHN
theory that novel hexaticlike phases with short-range p
tional order but true long-range bond-orientational ord
might exist in highly anisotropic three-dimensional~3D! sys-
tems. Specifically, Birgeneau and Lister@6# applied the no-
tion of a hexatic state of the 2D melting theory to 3D liqu
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crystal phases consisting of stacked 2D liquid layers. Th
proposed that some of the experimentally observed sme
liquid crystal phases could be physical realization of 3
hexatics. Birgeneau and Lister suggested that the~weak! in-
terlayer interaction could promote the quasi-long-range or
of 2D hexatic layers to true long-range bond-orientatio
order in 3D.

Stimulated by these theoretical advances, numerous
perimental efforts have been undertaken to test theore
predictions in different liquid crystal materials candidate f
displaying hexatic phases@7#. An x-ray study of the liquid
crystal compound 65OBC~n-alkyl-48-m-alkoxybiphenyl-
4-carboxylate,n56,m55! @8# provided the first indication of
the existence of the 3D analog of the 2D hexatic phase
was also found that in addition to the hexagonal pattern
diffuse spots of scattered intensity, which is the signature
the hexatic phase, there are some broader peaks corresp
ing to correlations in the molecular orientations about th
long axes@8#. The positions of these peaks show that, loca
the molecules are packed according to a herringbone pa
perpendicular to the smectic layer stacking direction~see
Fig. 1!. Despite the indication of short-range herringbo
correlations, this phase is simply denoted as the hexatB
(HexB) phase. Upon increasing temperature, this phase lo
its long-range bond-orientational order and undergoes a t
sition to the smectic-A (SmA) phase, which essentially con
sists of a stack of 2D liquid layers. Upon cooling, the HexB
phase transforms via a first-order phase transition into
crystal-E (CryE) phase, which exhibits both long-rang
translational order and long-range herringbone orientatio
order in the orientations of the molecular axes.

According to the U~1! symmetry of the C6 bond-
orientational order parameter, one would naively expec
find XY-like critical exponents at the SmA-HexB transition
in 3D. However, heat-capacity investigations near
©2003 The American Physical Society01-1
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SmA-HexB transition of 65OBC@7–9# and subsequent calo
rimetric studies on many other components in thenmOBC
homologous series@7,10# have been reporting continuou
~second-order! SmA-HexB transitions with very large value
for the heat-capacity critical exponent,a'0.6. This is
drastically different from the 3D XY critical exponen
a520.007@11#. As well, thermal conductivity and birefrin
gence experiments have allowed the determination of o
static critical exponents, all of which differ systematica
from the 3DXY value, while they, together, obey the sta
dard scaling relationships expected for a genuine seco
order phase transition@7#.

FIG. 1. Local hexagonal coordination of the molecules ‘‘
seen’’ along the stacking direction of the smectic layers. The el
tical shape of the molecules as seen along the stacking directi
meant to represent the ‘‘wide’’ benzene rings present on most t
motropic liquid crystal molecules.~a! With local hexagonal
~hexatic! correlations, but without herringbone correlations.~b!
With both local hexagonal and herringbone correlations.~c! shows
the orientation of the molecular axis within a smectic layer as s
along the stacking direction of the smectic layers.~d! In a hexatic
phase, there are three possible orientations of only short-rang
dered herringbone domains. The anglef2 used to parametrize th
complex herringbone order parameterF25uF2uexp(i2f2) is the
angle between a fixed axisx in the laboratory frame and the direc
tion in real space along which the molecular axes are parallel@see
domain I in ~d!, for example#.
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In light of the existence of the short-range herringbo
fluctuations, detected in the x-ray diffraction studies@8#, Bru-
insma and Aeppli~BA! @12# formulated a Ginzburg-Landau
theory that includes both the hexatic and the herringb
order. Because the HexB phase exhibits only short-range po
sitional order, BA suggested that the herringbone order
also be represented by anXY order parameter described b
F25uF2uexp(i2f2) ~see Fig. 1!. At the microscopic level, it
is the molecular anisotropy and the resulting anisotropy
the intermolecular pair potential that creates a coupling
tween the hexatic bond order and the herringbone molec
order @13,14#. At the phenomenological Ginzburg-Landa
level, this coupling is minimally described by a hexati
herringbone interaction termVhex-her5hRe(C6* F2

3).
BA constructed an appropriate free energy density ba

on symmetry considerations and investigated the effects
fluctuation corrections to the mean-field behavior for 3D s
tems. In the mean-field approach, their results indicate
the SmA-HexB transition should be continuous. Howeve
4-e renormalization-group~RG! calculations, which include
thermal fluctuations and the coupling termhRe(C6* F2

3),
show that short-range molecular herringbone correlati
coupled to the hexatic ordering drive this transition first o
der, which becomes second order at a tricritical point@12#.

Interestingly, heat-capacity measurement studies of~truly
two-dimensional! two-layer free standing films of differen
nmOBC compounds yield very sharp heat-capacity pe
near the SmA-HexB transition which can be parametrized b
a critical exponenta'0.3 @7,15#. This is in sharp contras
with the usual broad and nonsingular specific heat hump
sociated with the KT transition in the 2DXY model, or yet
the first-order transition that could occur in a physical syst
where the vortex core energy is less than some critical va
@5,16#. This a'0.3 result in 2D films further suggests th
the SmA-HexB cannot be described by a simple model w
a unique~critical! XY-like order parameter. In this contex
there have been some numerical simulations aimed at ob
ing more insight into the nature of the SmA-HexB transition
in 2D systems. The model used in the simulations@17,18#
consists of a 2D lattice of coupledXY spins based on the BA
Hamiltonian. The simulation results suggest the existenc
a new type of phase transition in which the two differe
orderings are simultaneously established through a cont
ous transition. It is interesting to note here that, in a see
ingly different context, there have also been numerous th
retical and numerical attempts to identify ‘‘novel chira
universality classes for systems such as frustratedXY model
and Ising-XY coupled model@19#.

Certainly, for three dimensions, the scenario of
fluctuation-driven first-order SmA-HexB transition due to
hexatic-herringbone coupling would appear reasonable
the SmA-HexB transition in 65OBC which, upon furthe
cooling, undergoes a HexB-CryE transition that establishe
long-range herringbone and positional order. Howev
the mixture of 3~10!OBC and 4-propionyl-48-n-
heptanoyloxy-azobenzene~PHOAB! exhibits a very large
temperature range for the HexB phase above the crystalliza
tion temperature to the CryE phase. If there were herring
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bone fluctuations near the SmA-HexB transition in that mix-
ture, one could expect them to be quite small because o
large temperature range over which liquid crystalline HeB
exists before long-range herringbone order develops at
HexB-CryE transition. In such a case, the SmA-HexB tran-
sition could then possibly be continuous, and belong to
~then naively expected! XY universality class. However, th
fact that the SmA-HexB transition in the 3~10!OBC-PHOAB
mixture is first order does not support this simple mind
argument@7#. Following the same type of reasoning, rece
x-ray diffraction studies on 75OBC@7# show that the inten-
sity of the herringbone peaks is weaker than those
65OBC. In principle, if one assumes that 65OBC is nea
tricritical point, 75OBC should therefore be further remov
from such a tricritical point~due to the weaker herringbon
diffraction peaks, and consequently, weaker hexa
herringbone couplingVhex-her), with again the possibility to
recover 3DXY critical behavior. Yet, the same~unconven-
tional! heat-capacity critical exponents are found for the
two materials.

The experimental results above could be interpreted a
possible indication of an underlying~non-XY) stable fixed
point that controls the SmA-HexB transition when herring-
bone correlations are present, however small they might
The apparent lack of progress on the theoretical side of
SmA-HexB problem has led us to reinvestigate the model
BA and to, specifically, look for a possible calculation err
First, it is important to note that the conclusion of
fluctuation-driven first order transition within a 4-e calcula-
tion is acutely depending on numerics and not constrained
symmetry consideration: a small error~such as a factor 2
instead of 4 here or there! can change the renormalization
group flow and the conclusion of a fluctuation-driven fi
order transition. Second, and more specific to the BA pr
lem, we show in the following section, when describing t
Ginzburg-Landau free energy density for the SmA-HexB
transition, that some terms in the RG equations, to first or
in e, were missed in the work of BA. Third, based on our R
equations, we find two nontrivial strongly couple
herringbone-hexatic fixed points, apparently missed by th
authors. However, these two nontrivial fixed points are
stable, and we reach the same final conclusion as the
found by BA, namely that of a fluctuation-driven first-ord
transition. We also discuss the possibility of a third a
a priori possibly physically pertinent order parameter in t
Hamiltonian model of the SmA-HexB transition. Because o
local distortion of the bond-orientational order induced
the anisotropy of the intermolecular potential@13,14# and the
herringbone correlations, one may generalize the Ham
tonian to the case with three XY-like order parameters,
which two of them are twofold symmetric, one for the he
ringbone correlations,F2, and one for the local twofold dis
tortion, C2, and a third-order parameter with sixfold sym
metry, C6, related to hexatic ordering. We discuss bo
mean-field and RG calculations for this new three order
rameter model.

The rest of this paper is organized as follows. In Sec. II
we reintroduce the BA model and present the result of
RG calculations. In Sec. II B, we generalize the Hamilton
04170
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to the case of three order parameters and discuss the m
field theory and RG results. The discussions and conclus
appear in Sec. III.

II. MODELS AND RG CALCULATIONS

A. BA Hamiltonian

To formulate the Ginzburg-Landau~GL! free energy,
which describes both the hexatic and the herringbone or
one recalls that the hexatic order is sixfold symmetric, wh
rotating a herringbone pattern by 180° leaves it unchang
Consequently, the appropriate GL free energy ought to
invariant with respect to the transformationf2(r )→f2(r )
1np and c6(r )→c6(r )1m(2p/6) wheren and m are in-
tegers. Thus to lowest order inC6 andF2, the BA Hamil-
tonian @12# is

bF5E d3xF r 6

2
uC6u21

1

2
u“C6u21

r 2

2
uF2u21

1

2
u“F2u2

1u6uC6u41u2uF2u41wuF2u2uC6u21hRe~C6* F2
3!G .
~2.1!

The condition for thermodynamic stability ofF for w50 is
h4/3,(44/3/3)u2u6

1/3 @12#. This condition can be obtained b
minimizing the free energy density on the critical isotherm
line r 25r 650 and requesting thatbF.0. As discussed in
Ref. @12#, in the mean-field approximation, forw50 andh
50 the phase diagram in ther 2-r 6 plane includes four dis-
tinct phases and phase transitions: an isotropic (SmA) phase
with C65F250, a hexatic (HexB) phase with no herring-
bone order withC6Þ0,F250, a ‘‘putative’’ herringbone~or
nematic! liquid crystal phase withC650,F2Þ0 @20#, and a
fully ordered state withF2Þ0,C6Þ0 @21#. Beyond mean-
field level, and forh50 andw50, all these transitions are
in the XY universality class. ForhÞ0, the transition from
HexB to the fully ordered phase with bothC6 andF2 order
belongs to the three-states clock~Potts! universality class
and is first order in three dimensions. IfhÞ0, the herring-
bone liquid crystal state with no hexatic order (F2Þ0,C6
50) is eliminated becauseF2 acts as a symmetry-breakin
field on C6. Within mean-field theory, the transition line
between the isotropic SmA and ordered phases rema
second-order forhÞ0, and terminate together with the firs
order line separating the HexB and the fully ordered phase a
a multicritical point@12#.

We now discuss the RG flow equations and the stability
the fixed points~FPs!. Our calculations show that the RG
equations to first order ine542d are

dr2

dl
52r 21

16K4u2

11r 2
1

4K4w

11r 6
,

dr6

dl
52r 61

16K4u6

11r 6
1

4K4w

11r 2
,

1-3
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du2

dl
5eu2240K4u2

222K4w229K4h2,

~2.2!
du6

dl
5eu6240K4u6

222K4w2,

dw

dl
5ew216K4wu2216K4wu628K4w2218K4h2,

dh

dl
5eh224K4hu2212K4hw,

where K451/8p2. The above RG equations differ from
those found by BA in Ref.@12# in two important ways

~1! The first set of differences are the 4K4w/(11r 6) and
4K4w/(11r 2) terms in the first and second equations, wh
BA have 2K4w/(11r 6) and 2K4w/(11r 6). The extra fac-
tor 2 comes from the fact that the fieldsC6 and F2 are
complex and the related correlations have two-compon
For h50, Eq.~2.2! ~with factors 4K4w) reproduces the RG
equations of coupled two component two-vector model a
previous studies@23,24#. We therefore believe that the abov
RG equations fordr2 /dl anddr6 /dl are correct.

~2! Compared to the BA equations, we also obtain t
extra and important terms,218K4h2, in the fifth equation
and 212K4hw in the sixth equation, which can be easi
checked using Feynman diagram technique. Specific
these two terms come from the connected diagrams in
second-order perturbative RG obtained by multiplication
the relevant diagrams ofhC6* F2

3 with hC6F2*
3 for the RG

equation fordw/dl, and ofwuF2u2uC6u2 with hRe(C6* F2
3)

for the RG equation fordh/dl, respectively.
Because of the two extra terms in the RG equatio

for dw/dl and dh/dl, we obtain, in addition to the simpl
decoupled FP „r 6* 5r 2* 52e/5, u6* 5u2* 5e/(40K4),
w* 5h* 50…, two fixed points such that (w* Þ0, h* 50)
and (w* Þ0, h* Þ0). The first nontrivial FP is given
by h* 50, r 6* 5r 2* 52e/4, u6* 5u2* 5e/(48K4), and
w* 5e/(24K4). This FP, akin to the one found in minimall
coupled two-component two-vector model@23,24#, was not
discussed by BA.

However, and most interestingly, we find another no
trivial mixed herringbone-hexatic FP with all the couplin
being nonzero:

r 6* 520.248 455 66e,

r 2* 520.240 189 95e,

u6* 50.019 414 03e/K4 ,
~2.3!

u2* 50.018 380 82e/K4 ,

w* 50.046 571 69e/K4 ,

h* 560.007 665 19e/K4 .

Therefore, based on our RG calculations, there is a FP
h* Þ0, which was not found in the previous work of BA
04170
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Linearizing the recursion relations in the vicinity of the FP
yields the following for the FP with (w* Þ0, h* 50): y1
522e/2, y2522e/6, y352e, y4522e/3, y55y650.
Thus, two eigenvalues are marginal, compatible with w
has been found in similar minimally coupled two-compone
two-vector model@23#. The eigenvalues for the FP wit
(h* Þ0, w* Þ0) above are

y15220.488 829e,

y25220.115 889e,

y3520.997 894e,
~2.4!

y4520.537 266e,

y5510.121 467e,

y6510.040 239 2e.

These results show that there are four positive eigenval
and the above nontrivial FP with (h* Þ0, wÞ0) is therefore
unstable. The two largest~most positive! eigenvalues,y1 and
y2 correspond, respectively, to the thermal eigenvalue
the ‘‘relative’’ coupling strength that places the system
coupling parameter space and determines what sequen
phase transition occurs; namely, isotropic→(hexatic
1herringbone) via a unique phase transition or isotro
→hexatic→(hexatic1herringbone) via two distinct phas
transitions. The four eigenvaluesy3 , y4 , y5, andy6 essen-
tially control the flow in thew-h-u2-u6 plane.y5 andy6 are
positive, rendering the above nontrivial mixed herringbon
hexatic FP unstable. We have further confirmed explic
that the new FP is unstable by direct numerical integration
the RG equations. We found that the RG flow goes to
unstable region identified above, which we interpret as
transition being driven first-order by fluctuations~see discus-
sion for fluctuation-driven first-order transitions in Chap. II
of Ref. @22#!. Therefore, while we have indeed found som
discrepancies between our RG equations and those of
and recovered two extra coupled fixed points, we at the
still reach the same physical conclusion of BA, namely th
of a fluctuation-driven first-order SmA-HexB transition.
Consequently, in ther 2-r 6 plane, the overall phase diagra
that emerges is the same as that of Bruinsma and Aeppli@Fig.
2~b! of Ref. @12## where thermal fluctuations close to th
mean-field multicritical point drive the SmA to HexB transi-
tion first order.

B. Generalized Hamiltonian

We expect physically the local molecular anisotropy~e.g.,
from the anisotropic nature of benzene rings found in m
thermotropic liquid crystal materials! present in the intermo-
lecular pair potential to couple to the local bond directio
and to create a local twofold distortion of the otherwise p
fect local sixfold symmetric nearest-neighbor bond ord
1-4
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@13,14#. Consequently, we now discuss the GL free ener
which describes both the hexatic and the herringbone or
as well as the local twofold distortion of the bond order.
we assume that the distortion of lattice has twofold symm
try, with the order parameterC25uC2uexp(i2c2), then the
resulting free energy is invariant under the transformat
f2(r )→f2(r )1np, c6(r )→c6(r )1m(2p/6), and c2(r )
→c2(r )1pp, wheren, m, andp are integers.

Aside from the above physical motivation, there is als
strictly theoretical motivation to includeC2 in the theory.
From an RG point of view, our motivation to expand th
symmetry of our Hamiltonian stems from the observat
that in N coupled two-vector models a stable fixed po
~called mixed fixed point@23,24#! appears in the coupling
parameter space~whenN.2). Thus, to lowest order inC6 ,
F2, and C2, we havebF5bF01U, where the Gaussian
part is given by

bF05
1

2E d3x@r 6uC6u21r 2uF2u21 r̃ 2uC2u212rRe~F2C2* !

1u“C6u21u“F2u21u“C2u212gRe~“F2“C2* !#,

~2.5!

and the perturbative Hamiltonian has the following for
@25#:

U5E d3x@u6uC6u41u2uF2u41ũ2uC2u41w1uC6u2uF2u2

1w2uC6u2uC2u21w3uF2u2uC2u21h1Re~C6* F2
3!

1h2Re~C6* C2
3!1h3Re~F2

2C2*
2!1v1Re~C6* F2C2

2!

1v2Re~C6* F2
2C2!1v3uC6u2Re~F2C2* !

1v4uF2u2Re~F2C2* !1v5uC2u2Re~F2C2* !#. ~2.6!

For the case thatr 25 r̃ 2, one can simply diagonalize th
Gaussian part of the Hamiltonian using the transformat
F25(F̃21C̃2)/A2 and C25(F̃22C̃2)/A2, and then do
the RG calculations. The RG calculations for the case
C650 were done by Yosefin and Domany@26# in the study
of the phase transitions in fully frustratedXY models.

In the mean-field approach, there are now four disti
phases for rÞ0 (C65F25C250;C650,F2Þ0,C2
Þ0;C6Þ0,C25F250;C6Þ0,C2Þ0,F2Þ0). One should
note that for the phases where bothF2 andC2 are nonzero,
we have the condition of local stability of the free energ
r 2r̃ 2,r 2. In addition, the singularity of the propagators
zero wave vector (q50) is for r 2r̃ 25r 2, which is the Gauss-
ian critical point of the theory.

To obtain further insight into the specific situation whe
both F2 and C2 go simultaneously critical~soft!, we per-
form a RG calculation. To simplify the calculations, we co
sider the case thatr 25 r̃ 2, so that the fieldsF2 andC2 are
simultaneously critical~soft!, and that they are equall
coupled to theC6 hexatic field (u25ũ2 , w15w2). We fur-
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ther need to require that the full theory, after diagonalizat
of the Gaussian part, is self-consistent with no new R
generated terms. This imposes thath15h2 andv15v2. Us-
ing the above mentioned transformation forF2 andC2 and
rescaling the fields, one can rewrite the Hamiltonian as

bF5E d3xF r 6

2
uC6u21

r 28

2
uF̃2u21

r̃ 28

2
uC̃2u21

1

2
u“F6u2

1
1

2
u“F̃2u21

1

2
u“C̃2u21u6uC6u41u28uF̃2u4

1ũ28uC̃2u41w18uC6u2uF̃2u21w28uC6u2uC̃2u2

1w38uF̃2u2uC̃2u21h18Re~C6* F̃2
3!1h38Re~F̃2

2C̃2*
2!

1v18Re~C6* F̃2C̃2
2!G , ~2.7!

where the new~primed! coefficients can be written in term
of old ~unprimed! coefficients. To first order ofe, the RG
equations are given by

dr6

dl
52r 61

16K4u6

11r 6
1

4K4w18

11r 28
1

4K4w28

11 r̃ 28
, ~2.8!

dr28

dl
52r 281

16K4u28

11r 28
1

4K4w18

11r 6
1

4K4w38

11 r̃ 28
,

dr̃28

dl
52r̃ 281

16K4ũ28

11 r̃ 28
1

4K4w28

11r 6
1

4K4w38

11r 28
,

du6

dl
5eu6240K4u6

222K4w18
222K4w28

2 ,

du28

dl
5eu28240K4u28

222K4w18
222K4w38

229K4h18
2

22K4h38
2 ,

dũ28

dl
5eũ28240K4ũ28

222K4w28
222K4w38

222K4h38
2

2K4v18
2 ,

dw18

dl
5ew18216K4u6w18216K4u28w1828K4w18

224K4w28w38

218K4h18
222K4v18

2 ,

dw28

dl
5ew28216K4u6w28216K4ũ28w2828K4w28

224K4w18w38

24K4v18
2 ,
1-5
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TABLE I. The FPs of RG equations for the generalized Hamiltonian.

r 68* /e 21/5 23/11 22/7 0 20.2761944898 20.2583527792 20.2727272730
r 28* /e 21/5 23/11 22/7 21/5 20.2761944898 20.2756996328 20.2727272730

r̃ 28* /e 21/5 23/11 22/7 21/5 20.2566490108 20.2756996328 20.2727272724

u6
( K4 /e 1/40 1/44 1/56 0 0.0202792491 0.0237809941 0.0227272727

u28* (K4 /e) 1/40 1/44 1/56 0.0125 0.0202792491 0.0194412033 0.0170454546

ũ28* (K4 /e) 1/40 1/44 1/56 0.0125 0.0238702512 0.0194412033 0.0170454546

w18* (K4 /e) 0 1/44 1/28 0 0.0405584982 0.0170262066 0.0227272727
w28* (K4 /e) 0 1/44 1/28 0 0.0164217503 0.0170262066 0.0227272727
w38* (K4 /e) 0 1/44 1/28 0.05 0.0164217503 0.0430587966 0.0454545454
h18* (K4 /e) 0 1/44 0 0 0 0 0
h38* (K4 /e) 0 1/44 0 6 0.025 0 60.0041763898 60.0113636364
v18* (K4 /e) 0 1/44 0 0 0 0 0
u
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dw38

dl
5ew38216K4u28w38216K4ũ28w3828K4w38

224K4w18w28

216K4~h38!224K4v18
2 ,

dh18

dl
5eh18224K4h18u28212K4w18h1824K4v18h38 ,

dh38

dl
5eh3828K4u28h3828K4ũ28h38216K4w38h3826K4h18v18 ,

dv18

dl
5ev1828K4v18ũ2824K4w18v1828K4w28v1828K4w38v18

212K4h18h38 .

We have found a number of FPs for the above RG eq
tions that fulfill the above condition (r 28* 5 r̃ 28* , and for

which u28* 5ũ28* , w18* 5w28* , h18* 5h28* , v18* 5v28* , and
v48* 5v58* ). Some of these are given in Table I, where ea
column corresponds to a different FP~the nontrivial mixed
herringbone-hexatic FP found in Sec. II A occurs here
well, but is again unstable!. As in the simplest case of Hamil
tonian~2.1!, none of the FPs correspond to a nontrivial sta
fixed point: each fixed point~column! shows more than two
positive eigenvalues. Given the complexity of those non
ear equations we cannot be 100% sure that we have foun
the ~unstable! FPs in the (u6 ,u28 ,ũ28 ,w18 ,w38 ,h18 ,h38 ,v18)
plane. However, a numerical investigation of the RG flow
that plane starting from a large number of initial values
the coupling parameters always failed to converge toward
stable and attractive fixed point. Therefore, we reach
same conclusion obtained in the preceding section, nam
that of a fluctuation-driven first-order transition for this e
panded symmetry Hamiltonian, and the stabilization of fix
point in N coupled two-vector models forN.2 does not
appear to occur in this generalized Hamiltonian due to
extra C2 order parameter and associated coupling par
etersh1 , h2, andh3.
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III. DISCUSSION

In Sec. II A, we found that there are two fixed poin
~FPs! in the minimal Ginzburg-Landau model of the smect
A to hexatic-B phase transition, which were missed in th
previous work of Bruinsma and Aeppli@12#. However, those
FPs are unstable, and we reach the same final conclusio
Bruinsma and Aeppli, namely that the SmA-HexB transition
is driven first order by fluctuations in the BA Hamiltonian
We also discussed a slightly modified simple model that c
siders not only the hexatic and the herringbone order,
also one that involves the local twofold deformation of t
bond correlations induced by the herringbone correlatio
We assumed that this deformation can be represented
twofold symmetry order parameter, as in the case of herri
bone order, and wrote the free energy based on symm
arguments. We were not able to find a stable FP which co
possibly result in unconventional~new! second order critical
exponents.

It is not clear to us in what directions to pursue the pa
doxical puzzle of ‘‘new universality’’~non 3DXY transition!
in hexatic liquid crystal materials. In the work present
here, we have found a ‘‘mixed’’ hexatic-herringbone fixe
point in the theory, but which is unstable to first order ine.
One notes that the two positives eigenvaluesy5 andy6 in Eq.
~2.4! are only very slightly positive fore51. This observa-
tion may open the possibility that in a calculation that i
cludes hexatic-herringbone coupling, there is no stable fi
point to lowest order ine, but that the fixed point may be
stabilized in a theory that goes beyond anO(e1) calculation.
This is what happens, for example, in the normal to sup
conducting phase transition where thee expansion to order
e1 predicts a fluctuation-driven first-order phase transit
@27# while theoretical arguments and Monte Carlo simu
tions strongly argue for a second-order~inverted 3DXY)
phase transition@28#.

Having said that, one should note that there are exp
ments on liquid crystal materials that do not display a
herringbone correlations@29,30# but still show a SmA-HexB
transition with exponents that differ from the critical beha
ior expected for a 2D@29# or 3D @30# XY critical behavior.
That may suggest that the whole idea of hexatic-herringb
1-6
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interactions is a red herring~no pun intended!. Another pos-
sibility is that a more subtle ‘‘hidden’’ order parameter di
tinct from the herringbone order characterizes
SmA-HexB transition in real materials, and that the coupli
between this hidden order parameter and the hexatic o
parameterC6 produces a stable fixed point. Clearly, mo
experimental studies are needed to shed light on this p
lem. In particular, high resolution scattering experime
would seem necessary to search for extended short-r
correlation in either molecular correlations or distortion
hexagonal coordination to shed some light on what such
den order parameter~s! may be.

We finally note that a related~unconventional critical be-
havior! situation arises in the context of layered systems
smectic liquid crystals studied by Defontaines and Prost@31#.
These authors have argued that critical points that do
involve any symmetry change can define a set of new u
q-
in

t.

on
am
en
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ge

f
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f

ot
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versality classes in layered systems. Possibly, considera
of some features of the Defontaines Prost theory may
useful in further investigations of the SmA-HexB problem.

We hope that our work and reinvestigation of the lo
standing SmA-Hex-B transition in smectic liquid crystal ma
terials will motivate further theoretical, numerical, and e
perimental investigations of this very interesting problem
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