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4-€ renormalization group calculations revisited

Mohammad KohandélMichel J. P. Gingras;? and Josh P. Kenlp
lDepartment of Physics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
2Canadian Institute for Advanced Research, 180 Dundas Street West, Toronto, Ontario, Canada M5G 178
(Received 11 April 2002; revised manuscript received 25 July 2003; published 3 October 2003

Simple symmetry considerations would suggest that the transition from the srAepliase to the long-
range bond-orientationally ordered hexatic smeBtiphase should belong to th€Y universality class. How-
ever, a number of experimental studies have reported over the past twenty years “novel” critical behavior with
non-XY critical exponents for this transition. Bruinsma and Aeppli argiiuys. Rev. Lett48, 1625(1982],
using a 4e renormalization-group calculation, that short-range molecular herringbone correlations coupled to
the hexatic ordering drive this transition first order via thermal fluctuations, and that the critical behavior
observed in real systems is controlled by a “nearby” tricritical point. We have revisited the model of Bruinsma
and Aeppli and present here the results of our study. We have found two nontrivial strongly coupled
herringbone-hexatic fixed points apparently missed by these authors. Yet, these two nontrivial fixed points are
unstable, and we obtain the same final conclusion as the one reached by Bruinsma and Aeppli, namely that of
a fluctuation-driven first-order transition. We also discuss the effect of local twofold distortion of the bond
order as a possible “extra” order parameter in the Hamiltonian.
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[. INTRODUCTION crystal phases consisting of stacked 2D liquid layers. They
proposed that some of the experimentally observed smectic
The nature of phase transitions in two dimensio{2i) liquid crystal phases could be physical realization of 3D

systems has been the subject of numerous investigations ovieexatics. Birgeneau and Lister suggested that(weak in-
the past three decades. According to the Mermin-Wagnetterlayer interaction could promote the quasi-long-range order
Hohenberg theorerfl], the continuous symmetry of the€Y  of 2D hexatic layers to true long-range bond-orientational
and Heisenberg models cannot be spontaneously broken atder in 3D.
finite temperature, and there can be no long-range magnetic Stimulated by these theoretical advances, numerous ex-
order. However, Kosterlitz and Thoule@€T) [2] argued that  perimental efforts have been undertaken to test theoretical
there is a new type of phase transition from a high temperapredictions in different liquid crystal materials candidate for
ture phase with exponential decay of the correlations to alisplaying hexatic phasd§]. An x-ray study of the liquid
low temperature phase with power law decay of the correlaerystal compound 650BC(n-alkyl-4'-m-alkoxybiphenyl-
tions. The idea of KT has been extended by Halperin and-carboxylatey=6m=5) [8] provided the first indication of
Nelson[3] and Young 4] (HNY) to the 2D melting problem. the existence of the 3D analog of the 2D hexatic phase. It
One of the main results of the KTHNY theory is the predic-was also found that in addition to the hexagonal pattern of
tion of an intermediate 2D phase called the hexatic phase fatiffuse spots of scattered intensity, which is the signature of
systems that have a sixfolghexagonal symmetry in their the hexatic phase, there are some broader peaks correspond-
crystalline ground state. This hexatic phase displays shoring to correlations in the molecular orientations about their
range positional order, but quasi-long-range bonddong axed8]. The positions of these peaks show that, locally,
orientational order, which is different from the true long- the molecules are packed according to a herringbone pattern
range bond-orientational and quasi-long-range translationgderpendicular to the smectic layer stacking directisee
order of a 2D solid phasg3,5]. The hexatic phase can be Fig. 1). Despite the indication of short-range herringbone
characterized by a bond-orientational order parameter desorrelations, this phase is simply denoted as the hefatic-
fined byW ¢=|W4|exp(6y). Assuming that the hexatic state (HexB) phase. Upon increasing temperature, this phase loses
exists and is not preempted by a direct first-order meltingts long-range bond-orientational order and undergoes a tran-
transition from the solid to the isotropic liquid phase, thesition to the smectiéx (SmA) phase, which essentially con-
system should, in the simplest scenario for 2D, display eithesists of a stack of 2D liquid layers. Upon cooling, the Bex
a KT transition or a first-order transition from the hexatic phase transforms via a first-order phase transition into the
state to the isotropic liquid pha$g]. crystalE (CryE) phase, which exhibits both long-range
It was soon realized after the proposal of the KTHNY translational order and long-range herringbone orientational
theory that novel hexaticlike phases with short-range posierder in the orientations of the molecular axes.
tional order but true long-range bond-orientational order According to the Wl) symmetry of the Vg bond-
might exist in highly anisotropic three-dimensiori@D) sys-  orientational order parameter, one would naively expect to
tems. Specifically, Birgeneau and Lis{&] applied the no- find XY-like critical exponents at the SiHexB transition
tion of a hexatic state of the 2D melting theory to 3D liquid in 3D. However, heat-capacity investigations near the
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@ QQ In light of the existence of the short-range herringbone
fluctuations, detected in the x-ray diffraction studi&k Bru-
(a) % @ insma and Aeppl(BA) [12] formulated a Ginzburg-Landau
%@&& theory that includes both the hexatic and the herringbone
order. Because the HBxphase exhibits only short-range po-

sitional order, BA suggested that the herringbone order can
also be represented by atY order parameter described by

@ @ » ®,=|D,|exp(24,) (see Fig. L At the microscopic level, it
Q ( E - ’; ) ;"’6, N is the molecular anisotropy and the resulting anisotropy of
(b) the intermolecular pair potential that creates a coupling be-

tween the hexatic bond order and the herringbone molecular
order [13,14. At the phenomenological Ginzburg-Landau
level, this coupling is minimally described by a hexatic-

%%%% % herringbone interaction teriipe,.ne= hRe(W g CI)E’).
BA constructed an appropriate free energy density based
ﬂ yyw on symmetry considerations and investigated the effects of
(c) . ; ) .
%%Q%% fluctuation corrections to the mean-field behavior for 3D sys-
tems. In the mean-field approach, their results indicate that

the SmA-HexB transition should be continuous. However,
4-e renormalization-grougRG) calculations, which include
: 1 thermal fluctuations and the coupling temRe(\Ifgqbg),
. show that short-range molecular herringbone correlations
. I coupled to the hexatic ordering drive this transition first or-
. SNNNNC e YA T der, which becomes second order at a tricritical pplr.
@ /7 ) e e Y Interestingly, heat-capacity measurement studie@roly
SAYAS NN two-dimensional two-layer free standing films of different
nmOBC compounds yield very sharp heat-capacity peaks
I -~ Q near the SrA-HexB transition which can be parametrized by
a critical exponentv~0.3[7,15]. This is in sharp contrast
with the usual broad and nonsingular specific heat hump as-
sociated with the KT transition in the 2RY model, or yet
FIG. 1. Local hexagonal coordination of the molecules “asthe first-order transition that could occur in a physical system
seen” along the Sta.Cking direction of the smectic Iayers. The e”ipwhere the vortex core energy is less than some critical value
tical shape of the molecules as seen along the stacking direction [%,16]. This a~0.3 result in 2D films further suggests that
meant to represent the “wide” benzene rings present on most thele Sya-HexB cannot be described by a simple model with
motropic_ liquid crystal molecules(a) With local hexagonal , \nique(critical) X Y-like order parameter. In this context,
(hexatig correlations, but without herringbone correlatiortb) there have been some numerical simulations aimed at obtain-

With b.Oth l(.)cal hexagonal and her_rmg_bo_ne CorrelaF'QDBShows ing more insight into the nature of the @rHexB transition
the orientation of the molecular axis within a smectic layer as seen

along the stacking direction of the smectic laydr. In a hexatic n 2[_) systems. The_ model used in the simulatigh?, 1§
phase, there are three possible orientations of only short-range Oy_ons!sts 9f a2b Iat_t|ce Of_COUPlédY spins based on _the BA
dered herringbone domains. The angie used to parametrize the Hamiltonian. The simulation results suggest the existence of
complex herringbone order paramet®n=|®,|exp(24,) is the & NEW type of _phase transition in \{vh|ch the two d|ffere.nt
angle between a fixed axisin the laboratory frame and the direc- Orderings are simultaneously established through a continu-
tion in real space along which the molecular axes are pafaéel  OUS transition. It is interesting to note here that, in a seem-
domain | in(d), for exampl@. ingly different context, there have also been numerous theo-
retical and numerical attempts to identify “novel chiral”
SmA-HexB transition of 650B(7—9] and subsequent calo- universality classes for systems such as frustratéanodel
rimetric studies on many other components in theOBC  and IsingXY coupled mode[19].
homologous serie§7,10] have been reporting continuous ~ Certainly, for three dimensions, the scenario of a
(second-ordgrSmA-HexB transitions with very large values fluctuation-driven first-order SAtHexB transition due to
for the heat-capacity critical exponenty~0.6. This is hexatic-herringbone coupling would appear reasonable for
drastically different from the 3D XY critical exponent the SmA-HexB transition in 650BC which, upon further
a=—0.007[11]. As well, thermal conductivity and birefrin- cooling, undergoes a HBxCryE transition that establishes
gence experiments have allowed the determination of othdpng-range herringbone and positional order. However,
static critical exponents, all of which differ systematically the mixture of 3100OBC and 4-propionyl-4-n-
from the 3D XY value, while they, together, obey the stan- heptanoyloxy-azobenzend@HOAB) exhibits a very large
dard scaling relationships expected for a genuine secondemperature range for the He»phase above the crystalliza-
order phase transitiofv]. tion temperature to the CEyphase. If there were herring-
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bone fluctuations near the 2HexB transition in that mix- to the case of three order parameters and discuss the mean-
ture, one could expect them to be quite small because of thiégeld thepry and RG results. The discussions and conclusions
large temperature range over which liquid crystalline Blex appear in Sec. IIl.

exists before long-range herringbone order develops at the
HexB-CryE transition. In such a case, the 8naHexB tran-
sition could then possibly be continuous, and belong to the
(then naively expectedXY universality class. However, the A. BA Hamiltonian
fact that the SA-HexB transition in the 8L0)OBC-PHOAB
mixture is first order does not support this simple mindeqN
argument 7]. Following the same type of reasoning, recent
x-ray diffraction studies on 750B{7] show that the inten-

IIl. MODELS AND RG CALCULATIONS

To formulate the Ginzburg-LandalGL) free energy,
hich describes both the hexatic and the herringbone order,
one recalls that the hexatic order is sixfold symmetric, while

sity of the herringbone peaks is weaker than those o otating a herringbone pattern by 180° leaves it unchanged.
650BC. In principle, if one assumes that 650BC is near a onsequently, the appropriate GL free energy ought to be

S ! invariant with respect to the transformati@y(r)— ¢(r)
';rlcrmcal point, 750BC s_hould therefore be further_removed+mT and yg(r) — (1) + M(27/6) wheren andm are in-
rom such a tricritical poin{due to the weaker herringbone tegers. Thus to lowest order ¥~ and®.. the BA Hamil-
diffraction peaks, and consequently, weaker hexaticio%iantlZ] is 6 2
herringbone couplind/hex.ne),» With again the possibility to
recover 3DXY critical behavior. Yet, the sam@nconven-
tional) heat-capacity critical exponents are found for these BF= f d®x
two materials.

The experimental results above could be interpreted as a
possible indication of an underlyinghon-XY) stable fixed
point that controls the SAxHexB transition when herring-
bone correlations are present, however small they might be.
The apparent lack of progress on the theoretical side of the
SmA-HexB problem has led us to reinvestigate the model ofThe condition for thermodynamic stability & for w=0 is
BA and to, specifically, look for a possible calculation error. h4’3<(44’3/3)u2u(,13/3 [12]. This condition can be obtained by
First, it is important to note that the conclusion of aminimizing the free energy density on the critical isothermal
fluctuation-driven first order transition within adealcula-  |ine r,=r,=0 and requesting thg8F>0. As discussed in
tion is acutely depending on numerics and not constrained bref. [12], in the mean-field approximation, fov=0 andh
symmetry consideration: a small err@uch as a factor 2 =0 the phase diagram in the-rg plane includes four dis-
group flow and the conclusion of a fluctuation-driven first\yith W, = d,=0, a hexatic (HeB) phase with no herring-
order transition. Second, and more specific to the BA probyone order withl 4+ 0,d,=0, a “putative” herringboneor
lem, we show in the following section, when describing thenematio liquid crystal phase withl s=0,®,+ 0 [20], and a

Ginzburg-Landau free energy density for the S#exB )iy ordered state withb,+0,W¢#0 [21]. Beyond mean-
transition, that some terms in the RG equations, to first ordefig|q level. and forh=0 andw=0. all these transitions are

in €, were missed in the work of BA. Third, based on our RGj, the XY universality class. Foh#0, the transition from
equations, we find two nontrivial strongly coupled ye,g 1o the fully ordered phase with botig and®, order

herringbone-hexatic fixed points, apparently missed by thosge|ongs to the three-states clo@Rotty universality class
authors. However, these two nontrivial fixed points are un-nq is first order in three dimensions.H# 0, the herring-

stable, and we reach the same final conclusion as the ong)ne liquid crystal state with no hexatic ordeb{+ 0¥

found by BA, namely that of a fluctuation-driven first-order =0) is eliminated becaus®, acts as a symmetry-breaking
transition. We also discuss the possibility of a third andgqq on W,. Within mean-field theory, the transition lines
a priori possibly physically pertinent order parameter in they .. ean the isotropic S and ordered phases remain

:—Ian:il(tjqnian_ mod]?l ﬁf tge Sdm I—_IexB t_ranslitior(lj. Be_cguse dOfb second-order foh# 0, and terminate together with the first-
ocal distortion of the bond-orientational order induced by ;o jine separating the HBxand the fully ordered phase at
the anisotropy of the intermolecular potenfiaB,14] and the a multicritical point[ 12]

herringbone correlations, one may generalize the Hamil- We now discuss the RG flow equations and the stability of

tonian to the case with three XY-like order parameters, inthe fixed points(FPS. Our calculations show that the RG
which two of them are twofold symmetric, one for the her- equations to first order ia=4—d are

ringbone correlationsp,, and one for the local twofold dis-
tortion, ¥,, and a third-order parameter with sixfold sym-
metry, Wg, related to hexatic ordering. We discuss both %:Zr 16K4qu;  4K4w
mean-field and RG calculations for this new three order pa- dl 20 141,  1+rg’
rameter model.

The rest of this paper is organized as follows. In Sec. Il A,
we reintroduce the BA model and present the result of our
RG calculations. In Sec. Il B, we generalize the Hamiltonian dl

[ 1 ro 1
§|‘I'6|2+ §|V‘1’6|2WL E|‘I)2|2+ §|V¢’z|2

+Ug| W+ Uy Do+ W| D[ We| 2+ R WE DY) |

(2.1

drg 16K, ug 4K, w
—=2rgt+ —— ,
1+rg 141,
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du, 5 ) ) Linearizing the recursion relations in the vicinity of the FPs
gr €Uz~ 40K Uz~ 2K W 9K, yields the following for the FP withw* #0, h*=0): y;
(2 2) :2_6/2, y2:2_6/6, y3: — €, y4: _26/3, YSZYGZO-
Ug 5 5 ' Thus, two eigenvalues are marginal, compatible with what
oI €U 40K, Ug— 2K w7, has been found in similar minimally coupled two-component
two-vector model[23]. The eigenvalues for the FP with

dw (h*#0, w* #0) above are
o7 = €W 16K W, — 16K ;W — 8K w2 — 18K 4h?,

y,=2—0.488 829,
dh
— =¢eh— 24K4hU2_ 12|<4hW,

dl y,=2—0.11588¢,
where K,=1/872. The above RG equations differ from
those found by BA in Ref{12] in two important ways y3=—0.997 894,
(1) The first set of differences are th&4w/(1+rg) and (2.9

4K ,w/(1+r,) terms in the first and second equations, while
BA have X, w/(1+rg) and K, w/(1+rg). The extra fac-
tor 2 comes from the fact that the fieldsg and ®, are
complex and the related correlations have two-component. y5=+0.121 46%,
Forh=0, Eq.(2.2 (with factors &K ,w) reproduces the RG
equations of coupled two component two-vector model as in
previous studie$23,24]. We therefore believe that the above

RG equations fodr,/dl anddrg/dl are correct. _ These results show that there are four positive eigenvalues,
(2) Compared to the BA equations, we also obtain twognd the above nontrivial FP wittht #0, w#0) is therefore
extra and important terms; 18K4h2, in the fifth equation  ynstable. The two largeémost positivée eigenvaluesy; and
and —12K4shw in the sixth equation, which can be easily y, correspond, respectively, to the thermal eigenvalue and
checked using Feynman diagram technique. Specificallfne “relative” coupling strength that places the system in
these two terms come from the connected diagrams in th@oupling parameter space and determines what sequence of
second-order perturbative RG obtained by multiplication Ofphase transition occurs; namely, isotropithexatic
the relevant diagrams ¢f¥ ¢ ®3 with hWs®3° for the RG  + herringbone) via a unique phase transition or isotropic
equation fordw/dl, and ofw|®,|?|W¢|? with hRe(W§P3)  — hexatic— (hexatict herringbone) via two distinct phase
for the RG equation fodh/dl, respectively. transitions. The four eigenvalugs, y,, Ys, andyg essen-
Because of the two extra terms in the RG equationsially control the flow in thew-h-u,-ug plane.ys andyg are
for dw/dl anddh/dl, we obtain, in addition to the simple positive, rendering the above nontrivial mixed herringbone-
decoupled FP (r§=r3=—¢€/5 ui=u}=¢€/(40K,), hexatic FP unstable. We have further confirmed explicitly
w* =h*=0), two fixed points such thatw* #0, h* =0) that the new FP is unstable by direct numerical integration of
and @W*#0, h*#0). The first nontrivial FP is given the RG equations. We found that the RG flow goes to the
by h*=0, rg=r3=—¢€l4, uf=u’=¢€/(48K,), and unstable region identified above, which we interpret as the
w* = ¢/(24K ,). This FP, akin to the one found in minimally transition being driven first-order by fluctuatiofsee discus-
coupled two-component two-vector mod@i3,24], was not  sion for fluctuation-driven first-order transitions in Chap. 1.4
discussed by BA. of Ref.[22]). Therefore, while we have indeed found some
However, and most interestingly, we find another non-discrepancies between our RG equations and those of BA,
trivial mixed herringbone-hexatic FP with all the couplings and recovered two extra coupled fixed points, we at the end

y4=—0.537 26,

Y= +0.040239 2.

being nonzero: still reach the same physical conclusion of BA, namely that
of a fluctuation-driven first-order StHexB transition.
rg = —0.248 455 66, Consequently, in the,-r4 plane, the overall phase diagram
that emerges is the same as that of Bruinsma and AHpigli
r =—0.240189 95, 2(b) of Ref.[12]] where thermal fluctuations close to the
mean-field multicritical point drive the Stto HexB transi-
ug =0.01941403/K,, tion first order.
. (2.3
uz =0.018 380 82/Ky, B. Generalized Hamiltonian
w* =0.046 571 68/K,, We expect physically the local molecular anisotrdpyg.,
from the anisotropic nature of benzene rings found in most
h* = +0.007 665 18/K,. thermotropic liquid crystal materiglpresent in the intermo-

lecular pair potential to couple to the local bond direction,
Therefore, based on our RG calculations, there is a FP witand to create a local twofold distortion of the otherwise per-
h* #0, which was not found in the previous work of BA. fect local sixfold symmetric nearest-neighbor bond order
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[13,14]. Consequently, we now discuss the GL free energyther need to require that the full theory, after diagonalization
which describes both the hexatic and the herringbone ordeof the Gaussian part, is self-consistent with no new RG-
as well as the local twofold distortion of the bond order. If generated terms. This imposes that=h, andv;=v,. Us-

we assume that the distortion of lattice has twofold symmeing the above mentioned transformation by and ¥, and

try, with the order paramete¥ ,=|W¥,|exp(2i»), then the rescaling the fields, one can rewrite the Hamiltonian as
resulting free energy is invariant under the transformation

$a2(r)— ¢o(r) +nm, Pg(r)— hs(r) + m(2m/6), and ()

—,(r)+pm, wheren, m, andp are integers. /BF:J’ d3x

r ry - Tho 1
S Wel2+ 1 Bs[2+ T2+ 5|V De|?
Aside from the above physical motivation, there is also a

strictly theoretical motivation to includ& , in the theory. 1 1 _

From an RG point of view, our motivation to expand the +§|V<I>2|2+§|V‘I’2|2+ ug| Wg|*+ug| Pyl
symmetry of our Hamiltonian stems from the observation

that in N coupled two-vector models a stable fixed point || 4 W W 2| D o 2+ W W 2| T 2
(called mixed fixed poinf23,24]) appears in the coupling

parameter spacd@vhenN>2). Thus, to lowest order i, +w§|<52|2|ﬁf2|2+ hiRe(\Ifgzl'Dg)+h§Re(<T>§\Tf’2‘ 2)

®,, and¥,, we haveBF=pBFy+U, where the Gaussian
part is given by

+uiRAWED, T2, 2.7

1 ~
_=| 43 2 2 2 *
’BFO_ZJ X[ We|* 41| P+ 12| Vo[ *+2rRe(D2W3) where the newprimed coefficients can be written in terms

5 5 5 . of old (unprimed coefficients. To first order ot, the RG
+ VW[ +|VD,|*+ VW, *+ 2gRE VD,V V3 ], equations are given by

(2.9
. . . . dl‘6 16K4U6 4K4Wi 4K4Wé
and the perturbative Hamiltonian has the following form —T=2rgt ~—+——, (29
[25] dl 1+r6 1+r2 1+r2
, . . . - drj ) 16K, U5 4K, Wy 4K,awy
- U —==2r)+ +
U= [ @orlugWel+ w4+ T+ ws R e Ea o
+Wo| We|?[Wo|?+Ws| 5| W,|*+ h Re(WE D) - ~
- o . ) dr; 5 16K,4u;  4K,aw, 4K wy
——=2r,+ +
+h,REWEWS) +hRe DIV E2) +0,RE(WED,V2) g =21 T T e
+vaREWE DIV )+ 03 Ve Re( D, ¥)
du
+04| Do’ Re(P,W3) +us| Vo °REP,V3)]. (2.6 —2 = eUg— 40K 4uZ— 2K ;W] % — 2K w2,

dl

For the case that,=T,, one can simply diagonalize the du!

: o : ; u
Gausslan [:lart of the HamlltODlan using the transformation 2 =6U£—40K4ué2—2K4W12—2K4Wé2—9K4hi2
O,=(D,+¥,)/\2 and ¥,=(P,—¥,)/\2, and then do dl

the RG calculations. The RG calculations for the case that

12
V=0 were done by Yosefin and Domafg6] in the study ~2Kqhg”,
of the phase transitions in fully frustratedy models. _

In the mean-field approach, there are now four distinct  du; ~, ~,2 ' ' '
phases for r#0 (Vg=0,=V¥,=0;V=0D,#0V, qr U2 40KUp" — 2Kawp" — 2K w5~ 2K ghg
#O,\P67‘: OYTZZCDZZO;\I,G# O,W2¢O,®2¢ 0) One Should
note that for the phases where bdbh andV, are nonzero, —Kyv 12,

we have the condition of local stability of the free energy,

r,r,<r2. In addition, the singularity of the propagators at dwy

zero wave vectord=0) is forr,r ,=r2, which is the Gauss- (]

ian critical point of the theory. I "
To obtain further insight into the specific situation where —18K4h; "= 2K0, ",

both ®, and ¥, go simultaneously critical{soft), we per-

form a RG calculation. To simplify the calculations, we con- gw;, _ )

sider the case thab=T,, so that the fieldsb, and W, are g~ €W2— 18KaUgW; = 16K, uzw; — 8K awp™ — 4K 4w Wy

simultaneously critical(soft), and that they are equally .

coupled to the¥ ¢ hexatic field (1,=U,, w;=w,). We fur- —4K41°,

= e} — 16K 4UgW} — 16K qusw] — 8K Wi 2 — 4K wiws
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TABLE I. The FPs of RG equations for the generalized Hamiltonian.

ri*le ~1/5 -3/11 —2/7 0 —0.2761944898  —0.2583527792  —0.2727272730
r*le -1/5 -3/11 —2/7 -1/5 —0.2761944898  —0.2756996328  —0.2727272730
Title ~1/5 -3/11 —2/7 -1/5 —0.2566490108  —0.2756996328  —0.2727272724
ulK, /e 1/40 1/44 1/56 0 0.0202792491 0.0237809941 0.0227272727
uy* (K, /€) 1/40 1/44 1/56 0.0125 0.0202792491 0.0194412033 0.0170454546
UW* (Kyle) 1/40 1/44 1/56 0.0125 0.0238702512 0.0194412033 0.0170454546
W* (Kyle) 0 1/44 1/28 0 0.0405584982 0.0170262066 0.0227272727
Wt (K, /€) 0 1/44 1/28 0 0.0164217503 0.0170262066 0.0227272727
Wi* (Kyle) 0 1/44 1/28 0.05 0.0164217503 0.0430587966 0.0454545454
hi* (Ky/le) 0 1/44 0 0 0 0 0

hi* (K, /€) 0 1/44 0 + 0.025 0 +0.0041763898  +0.0113636364
vI*(Kal€) 0 1/44 0 0 0 0 0

dw IIl. DISCUSSION

’ Iins! T, 12 Iany!
ar  Wa 16KaUaWs — 10K, UaW5 — 8K W5~ 4K aWyw In Sec. IIA, we found that there are two fixed points
(FP9 in the minimal Ginzburg-Landau model of the smectic-
A to hexaticB phase transition, which were missed in the
previous work of Bruinsma and AepglL2]. However, those
dh; , o L L FPs are unstable, and we reach the same final conclusion as
a1~ €1~ 24Khyuz— 12Kwihy — 4K 0103, Bruinsma and Aeppli, namely that the 8rexB transition
is driven first order by fluctuations in the BA Hamiltonian.
, We also discussed a slightly modified simple model that con-
£=ehé—8K4uéhé—8K4ﬁéhé—16K4Wéhé—6K4hiv1, siders not only the hexatic and the herringbone_order, but
dl also one that involves the local twofold deformation of the
bond correlations induced by the herringbone correlations.

—16K4(h})? = 4K 57,

!

dv} _ We assumed that this deformation can be represented by a
- €v;— 8K, v us— 4K ,wiv ) — 8K, wiv ; — 8K Wi twofold symmetry order parameter, as in the case of herring-
bone order, and wrote the free energy based on symmetry
—12K4h1hj. arguments. We were not able to find a stable FP which could
possibly result in unconventionahew) second order critical

gexponents.

It is not clear to us in what directions to pursue the para-
. e ~1% Y e e e doxical puzzle of “new universality{non 3DXY transition
which u;™ =u™, wi*=w,", h;"=hy", v =v,", and iy pexatic liquid crystal materials. In the work presented
v," =vg"). Some of these are given in Table I, where eachhere, we have found a “mixed” hexatic-herringbone fixed
column corresponds to a different Kfe nontrivial mixed  point in the theory, but which is unstable to first orderein
herringbone-hexatic FP found in Sec. Il A occurs here ane notes that the two positives eigenva|y§andy6 in Eq.
well, but is again unstabJeAs in the simplest case of Hamil- (2.4) are only very slightly positive foe=1. This observa-
tonian(2.1), none of the FPs correspond to a nontrivial stabletjgn may open the possibility that in a calculation that in-
fixed point: each fixed poinfcolumn shows more than two  cludes hexatic-herringbone coupling, there is no stable fixed
positive eigenvalues. Given the complexity of those nonlin—poim to lowest order ire, but that the fixed point may be
ear equations we cannot be 100% sure that we have found &fapilized in a theory that goes beyond@ge) calculation.
the (unstabl¢ FPs in the (g,u;,us,w;,wg,hi,hs,v;)  This is what happens, for example, in the normal to super-
plane. However, a numerical investigation of the RG flow inconducting phase transition where thexpansion to order
that plane starting from a large number of initial values fore® predicts a fluctuation-driven first-order phase transition
the coupling parameters always failed to converge towards g27] while theoretical arguments and Monte Carlo simula-
stable and attractive fixed point. Therefore, we reach theions strongly argue for a second-ord@énverted 3D XY)
same conclusion obtained in the preceding section, namelyhase transitiof28].
that of a fluctuation-driven first-order transition for this ex-  Having said that, one should note that there are experi-
panded symmetry Hamiltonian, and the stabilization of fixedments on liquid crystal materials that do not display any
point in N coupled two-vector models fdN>2 does not herringbone correlatio®9,30 but still show a SA-HexB
appear to occur in this generalized Hamiltonian due to theransition with exponents that differ from the critical behav-
extra ¥, order parameter and associated coupling paramior expected for a 20)29] or 3D [30] XY critical behavior.
etershy, h,, andhs. That may suggest that the whole idea of hexatic-herringbone

We have found a number of FPs for the above RG equ
tions that fulfill the above conditionr{*=r,*, and for
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interactions is a red herringo pun intended Another pos-  versality classes in layered systems. Possibly, considerations
sibility is that a more subtle “hidden” order parameter dis- of some features of the Defontaines Prost theory may be
tinct from the herringbone order characterizes theuseful in further investigations of the SwHexB problem.
SmA-HexB transition in real materials, and that the coupling We hope that our work and reinvestigation of the long
between this hidden order parameter and the hexatic ordatanding SmMA-Hex-B transition in smectic liquid crystal ma-
parameterV ¢ produces a stable fixed point. Clearly, more terials will motivate further theoretical, numerical, and ex-
experimental studies are needed to shed light on this prolperimental investigations of this very interesting problem.
lem. In particular, high resolution scattering experiments
would seem necessary to search for_extended_ sho_rt-range ACKNOWLEDGMENTS
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