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Convective instabilities in two superposed horizontal liquid layers heated laterally
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This work is devoted to the theoretical study of the stability of two superposed horizontal liquid layers
bounded by two solid planes and subjected to a horizontal temperature gradient. The liquids are supposed to be
immiscible with a nondeformable interface. The forces acting on the system are buoyancy and interfacial
tension. Four different flow patterns and temperature profiles are found for the basic state. A linear perturbative
analysis with respect to two- and three-dimensional perturbations reveals the existence of three kinds of
patterns. Depending on the relative height of both liquids several situations are predicted: either wave propa-
gation from cold to the hot regions, or waves propagating in the opposite direction or still stationary longitu-
dinal rolls. The behavior of three different pairs of liquids which have been used in experiments on bilayers
under vertical gradient by other authors have been examined. The instability mechanisms are discussed and a
qualitative interpretation of the different behaviors exhibited by the system is provided. In some configurations
it is possible to find a codimension-two point created by the interaction of two Hopf modes with different
frequencies and wave numbers. These results suggest to consider two liquid layers as an interesting prototype
for the study of propagation and interaction of waves in the context of the Be´nard-Marangoni problem.
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I. INTRODUCTION

There has been recently an increasing interest in the s
of buoyant-thermocapillary flows induced by horizontal th
mal gradients@1#. Such situations occur in oceanograph
currents due to nonhomogeneous heating, and their inter
with the atmosphere gives rise to complex meteorolog
phenomena. They are also important in crystal growth. T
floating zone process generates thermocapillary convec
cells in the region of crystallization, which require bett
understanding and control.

When a horizontal temperature gradient is acting on
horizontal liquid layer enclosed between two horizon
walls, the problem is much more complicated than in
more classical case of vertical heating. First, the refere
state is no longer at rest, giving rise to a general flow an
nonlinear vertical temperature profile. A nontrivial proble
will therefore consist in determining the basic reference te
perature and velocity fields. Another peculiarity is that t
threshold of instability depends on the Prandtl number
The problem of thermocapillary instabilities induced by
lateral heating was first studied by Smith and Davis@2#. They
predicted the presence of hydrothermal waves and statio
rolls. More details are provided in a subsequent work
Smith@3#, who showed the existence of two different mech
nisms of instability depending on Pr. At low Pr, the ener
necessary to sustain the disturbances comes from the
zontal applied temperature field and the hydrothermal wa
propagate in a direction perpendicular to the horizontal te
perature gradient. At high Pr, the energy is extracted from
vertical temperature field by vertical convection and it giv
rise to hydrothermal waves propagating parallel to the te
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perature gradient. At intermediate Pr, the mechanism i
combination of the previous effects and leads to waves fo
ing an angle with the streamwise direction. Parmentieret al.
@4# studied the coupling of buoyant and thermocapilla
driven instabilities, in the case of systems with lower a
upper insulating bounding surfaces within a the thre
dimensional~3D! linear formulation. Their numerical result
display the three kinds of behaviors described above.
thermally conducting surfaces, Gershuniet al. @5# find sta-
tionary rolls for Pr.1. Other theoretical works have mainl
focused on comparison with experiments. Mercier and N
mand@6# performed a linear analysis to explain the expe
mental results by Daviaud and Vince@7# for a silicon oil with
Pr510. They notice that the transition between traveli
waves and stationary rolls observed when the liquid dept
increased depends on the heat transfer between the liquid
its environment. In their discussion about absolute, glob
and convective instabilities Priede and Gerbeth@8# show that
the threshold of absolute instability fits better the experim
tal data of 1 cS silicon oil (Pr513.9) @9# than the value
predicted from convective instability. A nonlinear analysis
stability for purely thermocapillary convection has been c
ried out by Smith@10#, who determines the range of exis
tence of the two oblique traveling waves predicted by
linear theory. More recently, new results have been repo
@11# on hydrothermal waves in different geometries, meas
ing their frequency, wave number, and angle of propagat

In the previous theoretical works a liquid layer su
mounted by a gas phase that remains passive~one-layer ap-
proximation! was considered. In some cases@6,8# the effect
of the adjacent gas is modeled by a Biot number, a phen
enological parameter that characterizes the heat transfe
tween liquid and gas. The Biot number was originally d
fined for steady conditions; however, when convection ta
place, the dynamics of thermal and mechanical perturbat
©2003 The American Physical Society07-1
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in the gas may have a strong influence on the convec
inside the liquid. In such a case, the introduction of a B
number becomes questionable and the one-layer approx
tion should be revised. In the general case, a full two-la
hydrodynamical description is required. Furthermore, w
controlled experiments involve always two fluid layers@12#.
Such systems are typical of many practical situations suc
Earth’s mantle convection or encapsulated crystal growth

In the past, most theoretical@13# and experimental studie
@12,14–16# about Rayleigh-Be´nard convection in two im-
miscible liquids have been devoted to vertical heating. O
few contributions are found dealing with a horizontal te
perature gradient. To our knowledge the first work on
subject is by Villers and Platten@17#; they measured the ve
locity profiles in each layer as a function of the height in
system formed by water and heptanol. They also develop
simple theoretical model to calculate the horizontal veloc
profile as a function of the ratio of viscosities, expansi
coefficients, and thicknesses of both layers. Later on,
and Koster @18# studied theoretically the thermocapillar
convection under microgravity conditions in two immiscib
liquid layers with a free upper surface, in 2D geometri
They determine under which conditions the lower layer
mains at rest. Moreover, they carry out numerical simu
tions in a box of aspect ratio 4 in order to analyze the eff
of the vertical walls. Numerical simulations in cavities
different aspect ratios for coupled thermocapillary a
buoyancy-driven convection were performed by Liuet al.
@19#, and an asymptotic solution for the velocity in the lim
of infinite aspect ratio has also been derived@20#.

The objective of the present work is to study coupl
thermocapillary and buoyancy convection in a two-layer s
tem of infinite horizontal extension subject to lateral heat
and to find out the regimes occurring in this configuration
linear approach to the problem is carried out, showing
kind of oscillatory and stationary behaviors that occur in t
system.

The paper is organized as follows: In Sec. II, the gene
equations governing the problem are established. Sectio
is devoted to the derivation of the temperature and velo
profiles of the basic flow, the explicit expressions are
ported in the Appendix. In Sec. IV is carried out a line
stability analysis of the basic state towards bidimensio
and three-dimensional perturbations. Conclusions are dr
in Sec. VI.

II. PROBLEM FORMULATION

We consider a system of two horizontal superimposed
miscible liquid layers of thicknessh( i ), densitiesr ( i ), kine-
matic viscositiesn ( i ), coefficients of volume expansio
(a ( i )), thermal conductivitiesl ( i ), and thermal diffusivities
k ( i ), superscripti 51,2 refers to the lower and upper flui
respectively. The system is infinite in the horizontal exte
sion and is limited in the vertical direction by two horizont
rigid and thermally conductive walls~see Fig. 1!. The inter-
face between both liquids is assumed to be horizontal
nondeformable. The origin of the Cartesian reference sys
is fixed at the interface.
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The system is heated, with a constant temperature gr
ent b imposed along the horizontal direction, which pr
duces a conducting temperature profile given byT5T2

1bx, where T2 is the temperature of the cold side. Th
Boussinesq approximation is taken for granted in both lay
The system is subject to the gravity field and its density
given by the state equationr ( i )5r0

( i )@12a ( i )(T2T2)#. The
interfacial tension which acts at the interface admits a te
perature variation approximated by the linear equation
state s5s02g(T2T2) where g52]s/]T is a positive
constant~at least for the pairs of liquids considered in th
work!.

The governing equations expressing the balance of m
momentum, and energy in the Boussinesq approximation
given by

“•u( i )50, ~1a!

]u( i )

]t
1~u( i )

•“ !u( i )52
“p( i )

r0
( i )

2g@12a~T( i )2T2!# ẑ

1n ( i )¹2u( i ), ~1b!

]T( i )

]t
1~u( i )

•“ !T( i )5k ( i )¹2T( i ), ~1c!

wherein u( i )5(u( i ),v ( i ),w( i )) is the velocity field,p( i ) the
pressure,g the acceleration of the gravity, andẑ the unit
vector in the vertical direction. The boundary conditions
the rigid and thermally conductive bottom and upper wa
are

z52h(1)→u(1)50; T(1)5Tw~Tw5T21bx!, ~2a!

z5h(2)→u(2)50; T(2)5Tw~Tw5T21bx!. ~2b!

Furthermore, one must include the conditions of continu
of the temperature, heat flow, and velocity at the interfa
~the normal velocity component is zero because the interf
is supposed to be nondeformable!,

z50→uh
(1)5uh

(2) , w(1)5w(2)50, T(1)5T(2),

l (1)]zT
(1)5l (2)]zT

(2), ]zuh
(2)2]zuh

(1)52
ds

dT
“hT(1),

~3!

FIG. 1. Diagram of the two-layer system under study. Two s
perposed immiscible liquids bounded horizontally by conduct
rigid walls are subject to a horizontal gradient of temperature. T
interface is supposed to be nondeformable. The gravity and inte
cial tension are the forces acting on the system.
7-2



th
e
es

i-

rs

d

s

r

di-
-

ns
c-

te

-
ro-
rm
le

ro-
e

tios
ven
e of
era-

nd-

e to
is

he
ach
of
hird
ll in
ated
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the last relation in Eq.~3! expresses the balance between
tangential stresses at the interface. To transform the gov
ing equations and boundary conditions in dimensionl
form, the following scales are selected: for lengthh(1), time
h(1)2/k (1), velocity k (1)/h(1), pressurer (1)n (1)k (1)/h(1)2,
and temperaturebh(1). In terms of nondimensional quant
ties, the balance Eqs.~1! for the lower liquid read as

“•u(1)50, ~4a!

Pr21F]u(1)

]t
1~u(1)

•“ !u(1)G
52“p(1)2F ~h(1)!3g

n (1)k (1)
2Ra~T(1)2T2!G ẑ1¹2u(1),

~4b!

]T(1)

]t
1~u(1)

•“ !T(1)5¹2T(1), ~4c!

while for the upper liquid

“•u(2)50, ~5a!

Pr21F]u(2)

]t
1~u(2)

•“ !u(2)G
52

1

r
“p(2)2F ~h(1)!3g

n (1)k (1)
2a Ra~T(2)2T2!G ẑ

1n¹2u(2), ~5b!

]T(2)

]t
1~u(2)

•“ !T(2)5k¹2T(2). ~5c!

The nondimensional boundary conditions are

z521→u(1)50, T(1)5Tw~Tw5T21x!; ~6a!

z5a→u(2)50, T(2)5Tw~Tw5T21x!; ~6b!

z50→u(1)5u(2), w(1)5w(2)50, T(1)5T(2); ~6c!

]zT
(1)5l]zT

(2), m]zuh
(2)2]zuh

(1)5Ma“hT(1).

In Eqs. ~4!–~6! the following nondimensional paramete
have been introduced:a5a (2)/a (1), k5k (2)/k (1), n
5n (2)/n (1), l5l (2)/l (1), a5h(2)/h(1), r5r (2)/r (1), and
m5r (2)n (2)/r (1)n (1)5rn. The Prandtl number is define
with respect to the liquid 1, i.e., Pr5n (1)/k (1), as well as the
Rayleigh number Ra5a (1)bg(h(1))4/n (1)k (1) and the Ma-
rangoni number Ma52(ds/dT)@b(h(1))2/r (1)n (1)k (1)#.

III. THE BASIC STATE

When a horizontal gradient is imposed, a stationary ba
flow sets in each liquid@2# with a horizontal velocity com-
ponent depending on the vertical coordinateu( i )

5@u0
( i )(z),0,0#. On the other hand, the basic temperatu
04160
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s

ic

e

profile is the superposition of the imposed horizontal gra
ent and the vertical profilet ( i )(z) generated by the fluid mo
tion: T( i )5T21x1t ( i )(z) ~in nondimensional form!. To cal-
culateu0

( i )(z), andt ( i )(z), we replace

u( i )5@u0
( i )~z!,0,0#, T( i )2T25x1t ( i )~z!, ~7!

in Eqs.~4! and ~5! and eliminating the pressure one obtai
the following equations governing the behavior of the velo
ity and temperature fields in both liquids:

]z3u0
(1)5Ra, ]z2t (1)5u0

(1) ; ~8a!

n]z3u0
(2)5aRa, k]z2t (2)5u0

(2) , ~8b!

with the corresponding boundary conditions

z521→u0
(1)50, t (1)50; ~9a!

z5a→u0
(2)50, t (2)50; ~9b!

z50→t (1)5t (2), u0
(1)5u0

(2) ; ~9c!

]zt
(1)5l]zt

(2), m]zu0
(2)2]zu0

(1)5Ma.

The return flow condition@2# which requires that the net flow
through a vertical plane must vanish in each layer, i.e.,

E
21

0

u0
(1)50, E

0

a

u0
(2)50, ~10!

provides two additional conditions that allow us to calcula
explicitly the velocity and temperature fieldsu0

( i ) and t ( i ),
whose expressions in terms ofz are found in the Appendix.

As shown in Eqs.~A1!–~A4! the basic velocity and tem
perature profiles are the sum of a thermocapillary term p
portional to the Marangoni number Ma and a buoyancy te
proportional to the Rayleigh number Ra. The velocity profi
is a second-order polynomial inz in the interfacial term and
of third order in the buoyancy, whereas the temperature p
file is fourth order in the interfacial term and fifth in th
buoyancy.

The velocity and temperature profiles depend on the ra
of the various transport coefficients and depths. For a gi
experimental setup the heating does not affect the shap
the basic velocity and temperature profiles since the temp
ture gradient appears as a constant factor inu0

( i ) and t ( i )

through the Rayleigh and Marangoni numbers.
Each velocity profile has a root located at its correspo

ing rigid wall @as imposed by the boundary conditions~6a!
and~6b!#. There is also a second root inside each layer du
the return flow condition. In absence of gravity, this root
located atz521/3 in the lower layer and atz5a/3 in the
upper fluid, i.e., one-third of the depth counted from t
interface, and the flow consists of one convective cell in e
layer. When gravity is taken into account, the positions
these roots depend on the properties of the fluids and a t
root can be present, allowing for a second convective ce
each layer. The temperature profiles also have a root loc
7-3
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MADRUGA, PÉREZ-GARCÍA, AND LEBON PHYSICAL REVIEW E 68, 041607 ~2003!
at the bounding horizontal walls. In presence of gravity it
possible to find up to five roots in each layer.

Velocity and temperature profiles

The flow is driven by interfacial tension gradients, and
density differences when the gravity is acting. As usually
is assumed that the surface tension decreases with tem
ture (g.0), so that a horizontal temperature gradient giv
rise to tangential forces that drive the fluid from hot to co
regions. Therefore, with only thermocapillary effects prese
a general circulation around the interface is establish
which will drag the fluid from the hot to the cold side. In
finite container, by continuity, the fluid in the upper lay
rises near the cold side and falls down near the hot one
the contrary, in the lower layer it falls along the cold side a
raises up at the hot one. One would therefore observe
counterrotating cells. Buoyancy forces also drive the fl
from hot ~lower density! to cold regions~higher density!.
Since the fluid rises along the hot side and falls at the co
one, in both cells, the buoyancy will favor the formation
two corotating cells. In coupled thermocapillary-buoyan
convection, buoyancy and interfacial forces are acting in
same direction in the lower layer, just like in one-liquid sy
tems withg.0. However, they act in opposite directions
the upper layer, where the forces are competing~see Fig. 2!.
Thus the liquid 2 exhibits a scenario similar to that of

FIG. 2. Driving forces: gravity~left! and interfacial tension
~right!. The buoyancy and thermocapillary forces act in the sa
direction in the lower layer, and in opposite direction in the upp
layer where they are competing.
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one-liquid system withg,0 . ~This occurs in some ceramic
and liquid alloys such as Ag Pb,@21#.!

In Figs. 3~a! and 3~b! are displayed the basic velocity an
temperature profiles. Along the horizontal axis is reported
total depthhT of the two superposed fluids while the vertic
axis gives the percentage of depth of the lower liquid w

respect to the total depth, i.e., the fractional bottom depthĥ1

@ ĥ15100/(11h(2)/h(1))#. The curves refer to a configura
tion formed by perfluorinated HT-70~Galden Heat Transfe
fluid HT 70! ~lower fluid! and 5 cS silicon oil~upper fluid!,
this pair of fluids has been used in a recent experiment w
vertical heating by Juelet al. @15#. ~The physical properties
of these liquids are listed in Table I.! In both figures, four
different regions denoted by~I!–~IV ! are distinguished. Let
us pay attention to Fig. 3~a!. The region~I! extends to allhT

and covers principally high values ofĥ1. The basic state
consists of a clockwise convective cell in liquid 2, and
counterclockwise cell in liquid 1; in this region the directio
of the general circulation is governed by the interfac
forces. In region~II !, the competition between buoyancy an
interfacial forces gives birth to two sublayers in liquid 2. Th
motion in the sublayer close to the interface is dominated
the interfacial forces, but near the top wall it is the buoyan
that contributes to create a second sublayer. In regions~I!
and~II !, the general flow structure in liquid 1 is not chang
by the motion of the upper liquid. However, for highhT and
small ĥ1 the motion in layer 1 is driven by the upper liquid
This is the case of regions~III ! and~IV !, where the direction
of circulation close to the interface changes its sign. This
so because the buoyancy force acting on liquid 2 is so str
that it does not only drive the motion in the upper layer b
it also modifies the flow direction near the interface. In~III !
two convection cells are found in liquid 1, but the one clo
to the lower surface is no longer driven by liquid 2. In regio
~IV ! one observes the scenario opposite to~I!, i.e., two con-
vection cells but with the liquid flowing from the cold to th
hot side near the interface.~The behavior of the lower liquid

e
r

FIG. 3. Velocity profiles~a! and temperature profiles~b! of the basic state for a system composed by perfluorinated HT-70~lower liquid!
and 5 cS silicon oil~upper liquid!. The dashed line gives the position ofM1 ~see the text!.
7-4
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TABLE I. Parameter values of the three pairs of liquids studied. The parameter ratio in each different configuration is also giv
Crispation number Cr is given for a depth ofh(1)53 mm.

r n l cp a g Pr Cr
Liquid (kg/m3) (1026 m2/s) ~J/m s K! ~J/kg K! (1023 K21) ~N/m K!

Silicon oil 5 cS 920 5 0.117 1590 1.05 62.512
HT-70 1680 0.5 0.07 962 1.1 11.54
Silicon oil 5 cS/HT-70 0.548 10 1.671 1.653 0.954 27.331025 2.131026

Water 997 0.893 0.609 4180 0.257 6.111
Fc-75 1760 0.945 0.063 1046 1.4 27.397
Water/Fc-75 0.566 0.945 9.59 3.996 0.183 24.731025 3.331027

n-Hexane 655 0.458 0.12 2270 1.41 5.675
Acetonitrile 776 0.476 0.118 2230 1.41 4.381
n-Hexane/Acetonitrile 0.844 0.962 1.017 1.018 1 2131024 7.831027
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is analogous to that of a single liquid withg,0 @21#.! Con-
trary to the zero-gravity problem@18#, states with one of the
two layers at rest are not found in the present problem.

Let us now examine the temperature field in the ba
state@Fig. 3~b!#. The four regions do not coincide with thes
velocity fields but they are related. Region~I! covers more
than half the surface of Fig. 3~b!. Liquid 2 is unstably strati-
fied ~temperature increases with depth!, in liquid 1 one finds
a lower layer close to the wall which is unstably stratifie
and above it one distinguishes a stably stratified subla
~temperature decreases with depth!. Region~II ! is the only
closed area: the lower liquid 1 is stably stratified whereas
upper liquid 2 is characterized by two stable stratified s
layers adjacent to the wall and the interface, in the mid
there is an unstable stratified region, giving rise to
S-shaped profile. Region~III ! shows the most complicate
temperature profile: liquid 2 exhibits two unstably stratifi
sublayers at the boundaries and a stable sublayer in th
termediate region, liquid 1 consists in three sublayers,
intermediate being stably stratified while the two others
unstably stratified. Zone~IV ! covers the lowĥ1 and almost
all hT values, the global profile is similar to that of region~I!,
with the interface located at smallerĥ1 so that liquid 1 is
unstably stratified.

IV. EVOLUTION EQUATIONS FOR THE PERTURBATIONS

As soon as a horizontal temperature differenceDT is ap-
plied, convective cells typical of the basic state set in, bu
further increase ofDT may destabilize this basic flow. T
analyze the stability of the reference state with respec
infinitesimally small perturbations, let us write the gene
solution of the problem under the formu( i )5(u0

( i )

1u8( i ),v8( i ),w8( i )), T( i )2T25x1t ( i )1u8( i ), p( i )5p0
( i )

1p8( i ), where (u8( i ),v8( i ),w8( i )), u8( i ) and p8( i ) denote the
perturbations of velocity, temperature, and pressure fie
respectively.

The perturbations are decomposed into a sum of nor
modes (u8,u8,p8)5@u8(z),u8(z),p8(z)#expi(k•x1vt),
wherev denotes a complex frequency andk the wave num-
ber, with componentkx in the streamwise direction andky in
the spanwise direction. The primes will be dropped for cl
ity in the ensuing equations. After eliminating the pressure
04160
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the momentum equation and omitting nonlinear terms,
are left with the following equations for the perturbation
for the lower liquid 1,

]z2u(1)5L (1)u(1)1
ky

2

k2
Pr21]zu0

(1)w(1)

1 i
kx

k2
~]z3w(1)2L (1)]zw

(1)!, ~11a!

]z4w(1)5~L (1)1k2!]z2w(1)2L (1)k2w(1)1Rak2u (1)

2 ikxPr21w(1)]z2u0
(1) , ~11b!

]z2u (1)5@k21 i ~v1u0
(1)kx!#u

(1)1u(1)1]zt
(1)w(1),

~11c!

for the upper liquid 2,

n]z2u(2)5L (2)u(2)1
ky

2

k2
Pr21]zu0

(2)w(2)

1 i
kx

k2
~n]z3w(2)2L (2)]zw

(2)!, ~12a!

n]z4w(2)5~nk21L (2)!]z2w(2)2k2L (2)w(2)1Rak2au (2)

2 ikxPr21w(2)]z2u0
(2) , ~12b!

k]z2u (2)5@kk21 i ~v1u0
(2)kx!#u

(2)1u(2)1]zt
(2)w(2),

~12c!

wherein the following notation has been used:

L (1)5k21 i Pr21~v1u0
(1)kx!,

L (2)5nk21 i Pr21~v1u0
(2)kx!.

The corresponding boundary conditions are

z521→u(1)5w(1)5]zw
(1)5u (1)50; ~13a!

z5a→u(2)5w(2)5]zw
(2)5u (2)50; ~13b!

z50→u(1)5u(2), ]zw
(1)5]zw

(2), w(1)5w(2)50,
~13c!
7-5
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FIG. 4. Critical Marangoni~left! and critical wave number~right! for 2D longitudinal perturbations (kx50) as a function of the bottom
depth ratio, for three different values of the total depth. The results correspond to the pair HT-70~lower liquid! and 5 cS silicon oil~upper
liquid!.
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(1)5 ikxMau (1),
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We are faced with an eigenvalue problem which is solv
by means of a Tau-Chebyshev spectral method, by appr
mating the eigenfunctions with Chebyshev polynomials
order 16. The marginal curves are found by searching the
of valueskx ,ky ,Ma for which the rate of temporal growth i
zero.

V. RESULTS OF THE LINEAR ANALYSIS

Three mechanisms are able to destabilize the system
der study. Basic temperature profiles in Fig. 3~b! present un-
stably stratified zones~temperature increases with depth! and
other zones which are stably stratified~temperature decrease
with depth!, in the unstably stratified regions the Rayleig
Bénard instability may arise. A second mechanism is
usual Bénard-Marangoni instability when the interface
colder than the adjacent fluid. Finally, a third destabilizi
mechanism arises even when the core of the layers is co
than the interface, provided the velocity flow is stro
enough to overcome the stabilizing vertical temperature fi
@3#.

Owing to the great number of parameters involved in
two-layer configuration, the results will be discussed in
case of selected pairs of liquids used in experiments.
calculations have been made for the pair 5 cS silicon
~upper liquid! and perfluorinated HT-70~lower liquid!, but
later on we also consider the combinations: water~upper
fluid! with perfluorinated hydrocarbon Fc-75~3M Fluorinert
FC-75! ~lower liquid!, andn-hexane~upper liquid! with ac-
etonitrile ~lower liquid!. The parameter values of these flui
are gathered in Table I. Deformability is generally quantifi
by means of the so-called crispation number, defined as
5r (1)n (1)k (1)/s0h(1). As shown in Table I the values of C
are very small for the pairs of liquids examined in the pres
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work. Then the hypothesis of nondeformability of the inte
face is reasonable as it has been shown in earlier publicat
@22,23#. Moreover, we will not pay attention to the particula
ĥ1 values close to 0% or 100% because in these cases
film motions ~outside the scope of the present analys!
would appear.

A. Stationary longitudinal rolls

First, we consider 2D perturbations characterized bykx
50 and v50 ~longitudinal stationary rolls!. Our analysis
extends to two-layer systems the studies by Gershuniet al.
@5#, for a single-fluid layer bounded by horizontal rigid-fre
and perfectly thermal conductive surfaces, and by Merc
and Normand@6#, who considered the heat transfer at t
free surface by means of a Biot number.

Figure 4 displays the critical Marangoni and the critic
spanwise wave number versus the fractional bottom de
for several values of the total depthhT (3,6, and 9 mm!. For
total depths of 3 and 6 mm, one observes three station
branches, while forhT59 mm an additional branch is
clearly seen for lowĥ1. Figure 4~a! shows that the critical
Marangoni number decreases withhT . This is due to the
destabilizing effect of the increase of depth in Rayleig
Bénard instability. All the curves exhibit the most stable zo
for ĥ1'60%. The jump from one branch to another is bet
appreciated by the discontinuities inky in Fig. 4~b!. The
spanwise wave numberky for hT53 mm andhT56 mm
increases withĥ1 in the first branch, however, it decreases
the second one together with that ofhT59 mm, the depen-
dence withĥ1 in the third branch is more involved for th
three depths. In the branch jump the marginal Marang
curve is bimodal@6#, switching the absolute minimum be
tween two wave numbers. This modal change gives rise
different states in the two-layer system.

In Fig. 5 are represented the isotherms and the velo
fields in thez-y plane as observed at the critical threshold.
small fractional bottom depths@ ĥ1514% in Fig. 5~a!# strong
temperature gradients are found in the bulk of liquid
whereas in liquid 2 they are concentrated near the interf
7-6
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FIG. 5. Isotherms~above! and velocity fields~below! in the planez-y are represented at critical thresholds for 5 cS silicon oil/HT-

system andhT59 mm, for two bottom depth ratios corresponding to different branches:ĥ1514% ~right! and ĥ1580% ~left!.
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z50, where they are less important. A similar behavior
exhibited by the velocity fields. For large fractional botto
depths@ ĥ1580% in Fig. 5~b!# located at the other branch th
temperature gradients are concentrated in liquid 1 near
interface and do not penetrate into the bulk of the low
liquid, and the velocity field is the largest in the lower liqu
and is felt roughly at the same depth than the tempera
gradients. Other stationary branches exhibit different kind
behaviors.

B. Three-dimensional perturbations

However, one cannot exclude the possibility that the m
unstable disturbances are three dimensional. It follows th
minimization process with respect tokx andky is required to
find the critical parameters. A typical stability surface
shown in Fig. 6. In the presence of lateral heating the refl
04160
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FIG. 6. Surface of neutral stability for three-dimensional pert

bations. In this examplehT56 mm, andĥ1578%. The breaking of
kx , ky symmetry is clearly appreciated. The stability threshold
located atk5(4.2,7).
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tion symmetry in the directionx is broken. Hence the mar
ginal surface is only symmetrical under the changesky→
2ky . The marginal surface is, in general, more complica
because several intermingled branches arise. The positio
the minimum is given by thekx and ky components of the
critical wave number, which in the case of oscillatory ins
bility also determine the direction of propagationw of the
waves. Recalling that the positivex axis is directed from the
cold to hot side according to Eq.~7!, the hydrothermal waves
will propagate from cold to hot forwP@0°,90°#, in contrast
for wP@90°,180°# the direction of propagation is the oppo
site. Note that the symmetry (y→2y) of the linear problem
makes that the waves with wave number (kx ,6ky) become
unstable simultaneously. From now on, we will restrict
wP@0°,180°# without the loss of generality.

In Fig. 7 are represented the critical Marangoni numb
frequency, angle, and modulus of the wave number for
system HT-70~lower liquid! and 5 cS silicon oil~upper liq-
uid! with hT59 mm. The critical Marangoni curve exhibit

a local maximumM1 and a local minimum atĥ1531%.
The Marangoni number reaches its maximum value inM2,
which is a crossing point between two branches.

FIG. 7. Critical parameters for the system 5 cS silicon oil~upper
liquid! and HT-70~lower liquid! with total depth 9 mm.~a! Critical
Marangoni, ~b! critical frequency,~c! angle of the critical wave
vector, and~d! modulus of the critical wave vector. Solid line: os
cillatory behavior, dashed line: stationary behavior. In the po
where there is an interaction between two branches, their exten
in the Marangoni curve are displayed. Different characteristic p
terns are obtained in regionsA, B, andC ~see the text!.
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BeyondM2, the behavior of the critical Marangoni curv
is the same as in a one-layer system filled by the lower flu
In such a case the critical Marangoni number also decre
and the spanwise wave number increases with the depth@5#.

The position ofM2 depends on the physical properties
both fluids. To study the effect of the transport coefficien
i.e., viscosityn and thermal diffusivityk on the position of
M2, we have considered an ideal system formed by t
layers of 5 cS silicon oil, which differ only by their values o
n andk. In Table II are given the positions ofM2 for dif-
ferent values of the transport coefficients. By increasing
thermal diffusivity and viscosity of the lower liquid, the po
sition of M2 is shifted towards higher values ofĥ1; on the
contrary, ifn andk are increased in the upper liquid the sh
is towards lower values ofĥ1. The location ofM2 depends
also on the geometry of the system: an increase ofhT pro-
duces a shift towards a greaterĥ1, however, for highhT
values the shift becomes saturated, as shown by the
rangoni curves of Figs. 7 and 8.

Examination of the vertical profile of temperature of th
basic state allows us to determine the positions of the lo
maximum M1 at 21% and of the local minimum at abo
31%. Figure 3~b! displays the vertical profile of temperatur
it is seen that, forhT59 mm, starting from the region~I! and
decreasingĥ1 up to 31% the unstable vertical profile of th
upper fluid splits in two smaller unstable sublayers and
third one in the middle, which is stable. The shape of
temperature profile remains unchanged in liquid 1.

In the configuration represented by region~III !, there is a
greater extension of the stable regions than in~I!, thus the
scenario in~III ! consists in an increase of Ma due to th
progressive stabilization of the upper layer whenĥ1 de-
creases. The border between regions~I! and ~III ! gives the
position of the local minimum of Fig. 7~a!. However, when
region~IV ! is attained, the stratification in liquid 1 become
unstable and the whole system is more and more unsta
with a decrease of Ma. This finds its roots in the two drivi
forces ~thermocapillary and buoyancy!, which are both de-
stabilizing and cooperatives for the perturbations underg
by the lower liquid. As a consequence, the border betw
regions~III ! and~IV ! of Fig. 3~b! gives the position ofM1.
Inside ~IV ! the decrease of Ma whenĥ1 is lowered reflects
the greater importance of the destabilizing effect of the
terfacial tension. The position ofM1 is predicted by the
vertical temperature profile of the basic state and it will n
be influenced by the Prandtl number.

s
ns
t-

TABLE II. Position of M2 as a function of the viscosity ratio
~left! and thermal viscosity ratio~right! of the two liquids. The case
n51, k51 corresponds to an ideal configuration formed by tw
layers of the same fluid~5 cS silicon oil!.

n ĥ1 (%) k ĥ1 (%)

0.1 84 0.1 90
1 81 1 81
10 68 10 62
7-8
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FIG. 8. Critical parameters for the system HT-70~lower liquid! and 5 cS silicon oil~upper liquid! with total depths 6 mm~a! and 3 mm
~b! Solid line: oscillatory behavior, dashed line: stationary behavior.
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One distinguishes three main regionsA, B, andC, in the
curves of Figs. 7 and 8 giving the critical parameters a
function of the relative depth of the liquids.

1. Region A

The first regionA extends from the lowest value ofĥ1
until M2. The critical Marangoni number increases with t
drop of the depth of the upper liquid because of the decre
of the buoyancy effects in it, indicating that the upper liqu
dominates the dynamics inA. The pattern in this region con
sists of hydrothermal waves with zero or small angles
propagation. They propagate from cold to hot regions w
an angle parallel to the gradient of temperature forhT56
and 9 mm; deviating to greater angles when the thermoc
illary effects are relatively more important, as forhT
53 mm. Concerning the oscillatory modes, the angle
propagation is similar to single liquids with a high Pr@3#. As
seen in Fig. 7~d!, regionA is characterized by an increase
uku with ĥ1, with a small dependence ofuku on hT . At hT
59 mm, where the buoyancy effects are more importa
one finds a range of depth ratios 6%,ĥ1,16% where the
critical modes take the form of stationary rolls. At the bo
ders of this window, there is a codimension-two~cod-2!
point formed by the interaction between a Hopf mode an
stationary mode of different wave numbers. Such co
points were also found in two-liquid layers heated from b
low @24#.

2. Region B

Region B is characterized by a strong jump of the fr
quency atM2 for hT56 and 9 mm, and weakly shifted b
Dĥ154 for hT53 mm. ForhT56 and 9 mm,M2 is char-
acterized by a pair of Hopf modes with finite and differe
wave numbers and frequencies which are simultaneo
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critical. At this point of cod-2 the configuration is the mo
stable with the greatest Ma. The difference between the w
numbers of the two Hopf modes is due to the occurrence
a large spanwise component forhT59 mm, while for hT
56 mm there exists only a jump in the streamwise com
nent. To our knowledge, this kind of interaction between t
oscillatory modes has not yet received attention in Be´nard-
Marangoni problems. ForhT53 mm, the presence of a
small stationary branch near M2 prevents the existence
this kind of interaction, and the cod-2 point is generated b
stationary mode and a Hopf mode. Concerning the hyd
thermal waves, the corresponding angles of propagation
greater than the angles of propagation in regionA. The di-
rection of propagation of the hydrothermal waves in this
gion is reversed, propagating from the hot to the cold si
The width of regionB decreases withhT , from Dĥ1518%
for hT59 mm to Dĥ1514% for hT53 mm. The modulus
of the wave number varies in a more complicated way th
in the regionA, and is more sensitive to the total depth.
region B, the strong competition between the two layers
responsible for the oscillatory convection.

3. Region C

The transition from the second regionB to the third region
C is smooth with a monotonous decrease of the frequenc
the oscillatory branch. The third region is characterized
stationary longitudinal rolls and extends up to the highestĥ1.
It spreads towards lowerĥ1 when the total depth is in-
creased. The dynamics of this region is dominated by
lower layer. The qualitative behavior of the modulusk of the
wave number is practically unaffected by the overall dep

In Fig. 9~a! are shown the critical parameters for the b
layer formed by perfluorinated hydrocarbon Fc-75~lower
liquid! and water~upper fluid!, whereas in Fig. 9~b! are re-
produced the results for the couple acetonitrile~lower liquid!
and n-hexane~upper liquid!. Both setups have been exper
7-9
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FIG. 9. Critical parameters for the pair Fc-75~lower liquid! and water~upper liquid! ~a! and for the pair acetonitrile~lower liquid! and
n-hexane~upper liquid! ~b!. The total depth for both configurations ishT56 mm.
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mentally studied in the case of a vertical heating@13–15#.
The instability thresholds are evaluated for a total depth o
mm in both configurations. The critical Marangoni curv
exhibit maxima atM1 andM2 as discussed above. In th
case Fc-75/water, hydrothermal waves which propagate f
cold to hot in the region located betweenM1 andM2 are
found, for the other values of the fractional bottom dep
stationary longitudinal rolls are forecast. The syste
acetonitrile/n-hexane presents the same three regions a
hibited by the pair 5 cS silicon oil/HT-70 with a cod-2 poi
created by two oscillatory modes with different frequenc
and wave numbers. The general features discussed earl
this section remain valid for all the cases which have b
examined.

Tuning the relative depths of both layers, according to
theoretical study it would be possible to obtain in the sa
experimental configuration with a fixed pair of liquids all th
patterns observed in different single-layer systems: from l
gitudinal stationary rolls to hydrothermal waves with dire
tions of propagation ranging from small angles of propa
tion ~as in one-liquid systems with high Pr! to high angles~as
in one-liquid systems with small Pr!.

VI. CONCLUSIONS

We have investigated the onset of convection in syste
constituted by horizontal liquid layers subjected to a late
heating. The system is bounded by two rigid and therma
conductive horizontal walls and the interface is suppose
be nondeformable. The acting forces are the interfacial
sion and the gravity. They are cooperative in the lower la
and competitive in the upper one. The number of parame
is greatly enhanced with respect to the case of one-la
problems. We have considered three different combinati
of liquids, namely, bilayers of perfluorinated HT-70 and 5
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silicon oil, perfluorinated Fc-75 and water, and acetonitr
and n-hexane; these fluids have been considered bec
they have already been the subject of experiments involv
a vertical heating@15#. It is our hope that the results of th
present paper will motivate researchers to repeat these
periments with a lateral heating.

As soon as a horizontal temperature gradient is applie
global circulation takes place in each layer. The tempera
and velocity fields of the basic state have been derived
discussed. For a given experimental setup and a fixed h
ing, the two control parameters are the total depth and
depth ratio between the liquids. In a diagram representing
depth ratio versus the total depth, four regions for the te
perature and velocity profiles have been distinguished.
main information drawn from this diagram can be summ
rized as follows. The interaction between interfacial tens
and buoyancy can give rise to~1! a counterrotating cell in
each layer,~2! two counterrotating cells in the upper liqui
and one cell in the lower one, in both cases one observ
flow from hot to cold near the interface~3! two counterro-
tating cells in the lower liquid and a cell in the upper on
and ~4! a counter-rotating cell in each liquid, but with th
flow being dragged near the interface from cold to hot in
last two cases. We have also determined the different t
perature profiles that result from the interplay between th
mal diffusivity and fluid motion.

The linearized evolution equations for the perturbations
the basic state have been established and the ensuing e
value problem has been solved. Bidimensional and thr
dimensional perturbations have been respectively con
ered. A physical interpretation of the different regions fou
has been proposed. The interest of the present analysis
respect to a one-layer system is that it exhibits a great var
of behaviors depending on the nature of the liquids, the to
depth, and the relative depth between the layers. Among
7-10
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CONVECTIVE INSTABILITIES IN TWO SUPERPOSED . . . PHYSICAL REVIEW E68, 041607 ~2003!
most interesting results can be mentioned the occurrence
cod-2 point arising as a consequence of the interaction
tween two Hopf modes with different frequencies and wa
numbers. Furthermore, three different patterns are predic
~1! hydrothermal wavespropagating from cold to hot sid
with a small angle, which is typical of lateral heating
one-liquid systems with high Pr,~2! hydrothermal waves
propagating from hot to cold, and~3! longitudinalstationary
rolls.

A variety of results confirms that the problem of later
heating in two-layer systems is a promising and interes
area of research, both from the theoretical and experime
points of view. It would be specially interesting to study t
system close toM2 when we interplay between two oscilla
tory modes.
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APPENDIX

Expressions of the velocity and temperature profiles of
basic state in dimensionless units:

u0
(1)5

1

48~a1m!n
@212a Man~114z13z2!1Ra$a3am

2an14m~a3a1n!z13~a3am13an14mn!z2

18~a1m!nz3%#, ~A1!
as

.

E
.
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u0
(2)5

1

48a~a1m!n
@212Man~a224az13z2!1Ra$a4am

2a2n14a~a3a1n!z23~4a3a13a2am1n!z2

18aa~a1m!z3%#, ~A2!

t (1)5
1

2880~a1l!~a1m!nk
@60Ma$a2n~al1k!1aln~a2

2k!z26a~a1l!nkz228a~a1l!nkz323a~a

1l!nkz4%1Ra$an~5a2l19ak14mk!2a4a~4a2l

19alm15mk!2@n~25a319ak14mk!1a~4a6

19a5m25a3mk!#lz130a~a1l!~a2am2n!kz2

140~a1l!m~a3a1n!kz3115~a1l!~a3am13an

14mn!kz4124~a1l!~a1m!nkz5%#, ~A3!

t (2)5
21

2880a~a1l!~a1m!nk
@60Ma$2a3n~al1k!1a2n

~2a21k!z16a2~a1l!nz228a~a1l!nz3

13~a1l!nz4%1Ra$a2@2n~5a2l19ak14mk!

1a3a~4a2l19alm15mk!#1a@n~25a319ak

14mk!1a~4a619a5m25a3mk!#z230a2~a1l!

3~a2am2n!z2240a~a1l!~a3a1n!z3115~a1l!

3@a2a~4a13m!1n#z4224aa~a1l!~a1m!z5%#.

~A4!

Note that the lower fluid~superscript 1! is defined in the
interval zP@21,0# and the upper fluid~superscript 2! in the
interval zP@0,a#, according to the definitions given in
Sec. II.
v.
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