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Wetting under nonequilibrium conditions
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We report a detailed account of the phase diagram of a recently introduced model for nonequilibrium wetting
in (1+1) dimensiongH. Hinrichsen, R. Livi, D. Mukamel, and A. Politi, Phys. Rev. L€t8, 2710(1997)].
A mean-field approximation is shown to reproduce the main features of the phase diagram, while providing
indications for the behavior of the wetting transition in higher dimensions. The mean-field phase diagram is
found to exhibit an extra transition line which does not exist ir-@1) dimensions. The line separates a phase
in which the interface height distribution decays exponentially at large heights from a superexponentially
decaying phase. Implications to wetting in dimensions higher thanl()lare discussed.
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I. INTRODUCTION whereao is the effective surface tension of theg interface,

. . . . V(h) is a potential accounting for the interaction between the
Wetting phenomena occur in a large variety of experi gll and the interface, and—1 is the interface dimension.

ments, where a planar substrate is exposed to a gas pt]a]\% the nonwet phase the potentidlcontains an attractive

under thermal equilibrium conditions. Generally, “wetting’ : : . ;
e e component which binds the interface to the wall. Assuming
refers to a situation where a bulk phags (n contact with a thermal equilibrium, the probability of finding the interface

substrate coexists with a layer of a different phg8e\Which . : ) L d . o
is preferentially attracted to the surface of the substrate. B;(%baugggaln configuration is then given by the canonical dis

changing physical parameters such as temperature an
chemical potential, the system may undergo a wetting tran- P[h]~exp(— BH[h]). (2)
sition from a nonwet phase, where the thickness of the layer o .

stays finite, to a wet phase, where the layer becomes macrés the parameters describing the system are varied, the at-

scopic. tractive component of the potential may become weaker so
The phase diagram associated with the surface layer couff#at it is no longer able to bind the interface, leading to a
be rather complex exhibiting a variety of surface phase tranwetting transition. _ _
sitions, prewetting phenomena, and multicritical behavior In order to study wetting phenomena under thermal equi-
[1,2]. For example, by increasing the temperatiirevhile  librium conditions, one usually introduces a stochastic
moving along thex-B coexistence curve, a wetting transition Langevin equation corresponding to the effective Hamil-
may take place at a temperatufg,, beyond which the tonian(l). This Langevin dynamics should reproduce equi-
thickness of the layer becomes infinite. Usually this transilibrium distribution(2) in the limitt—cc. Since many differ-
tion is of first order, although in certain models the transition€nt dynamical rules may approach the same stationary state,
is continuous, and is then referred to as continuous Wettin%;h'S condition does not fully determine the form of the
On the other hand, when the chemical potential differencé-angevin equation. However, assuming short-range interac-
between the two phases is varied, moving towards the coeXlons and keeping only the most relevant terms in the renor-
istence curve aT>Ty,, a different type of transition takes Malization group sense, one is led to the Edwards-Wilkinson
place in which the thickness of the layer diverges. This pheequation with a potentigh]
nomenon is known as complete wetting. oh(x.)
In many experimental situations, it is reasonable to as- '
sume that a wetting stationary layer is in thermal equilib- at
rium. In fact, methods of equilibrium statistical mechanics . . L :
turned out to be very successful in a large variety of theoretVN€re £(x,t) is a zero-average Gaussian noise field with a
ical and experimental studiggor a review, see Ref{1]). Varnance
Within this approach, a wetting transition is usually consid- (DX 1)) =2T 89 L(x—x") 8(t—t"), (4)
ered as the unbinding of an interface from a wall. The inter-
face configuration is described by a functitiix) which  and a noise amplitudE=kgT. This Langevin equation has
gives the height of the interface at poinbn the substrate. the same symmetry properties as Hamiltori@n namely, it
One then introduces an effective Hamiltonian of the f¢&h  is invariant under translations, rotations, and reflections in
space. Apart from the potential term, the equation is also
(1) invariant under shiftsh—h+a and reflectionsh— —h.
Moreover, it can be shown that this type of Langevin dynam-

dV(h(x,t))
~oh(x,t)

=aV2h(x,t) +Z(x,1), (3

H= f dd-1x

o
§(Vh)2+V(h(X)) :
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ics obeysdetailed balanceand relaxes towards equilibrium q q

distribution (2) in the bound phase. o IL - —— g
Wetting phenomena may also take place in many system: r r

under nonequilibrium conditions. For example, in growth

processes such as molecular beam epitaxy or others, a lay™] = i» T i i» L

is grown on a substrate, whose properties depend on th - D

. . - p
growth conditions. By varying these conditions, one expects d

wetting phenomena to take place. Here, unlike the equilib- FIG. 1. Deposition and evaporation processes in the bulk. At the

rium case, the dynamics does not obey detailed balancéard-core wall at zero heiglihot shown herg evaporation is for-

leading to a rather different class of wetting phenomena. bidden and the deposition ratgis replaced by a modified deposi-
The simplest way to study nonequilibrium wetting on thetion rated, in order to take the interaction between substrate and

level of the Langevin equation is to introduce a nonlinearsurface layer into account.

term in Eq. (3), leading to a Kardar-Parisi-Zhan@<PZ2)

equation with a potentigdhb] namical behavior of the interface. It is found that the mean-
field approximation reproduces the main qualitative features
ah(x,t) aV(h(x,t)) of the phase diagram obtained ir-1 dimensions. In addi-

P oV?h(x,t ") +A[Vh(x,H)]*+(x,t).  tion, a new feature is found in the pinned phase. By studying
’ (5) the height distribution of the pinned interface, two distinct
types of behavior are discovered upon varying the dynamical

It is important to note that this nonlinear term is a relevant®@rameters of the model: in one regime the distribution de-
perturbation of the underlying field theory, i.e., evenifs ~ CayS superexponentially with the height, while in the other
very small, it will be amplified under renormalization group € decay is exponential. The two regimes are separated by a

transformations, driving the system away from thermal equiprewetting transition line. Relevance of this phase diagram to
librium. wetting phenomena in dimensions higher thar-@1) is con-

Recently, a simple solid-on-soli€SOS model for non-  Sidered. _ _
equilibrium wetting in (1) dimensions was introduced | N€ paper is organized as follows. In Sec. II, we recall the
[6,7]. The model is controlled by an adsorption ratand a definition of the SOS model and summarize its properties.

desorption rat@ and exhibits a continuous wetting transition | "€ Special casp=1, where the model is exactly solvable,
at a critical growth ratey,(p). The wetting transition is re- is discussed in detail in Sec. lll. The mean-field approxima-

lated to the unpinning process of an interface from a subtion, which is the main focus of the present work, is pre-
strate and may be described by the KPZ equatn The sented and analyzed in Sec. IV. The paper ends with conclud-
model has then been generalized to include a short-rang89 remarks in Sec. V.
interaction between the interface and the subs{i@feThis
was done by introducing a modified growth ratg at the Il. DEFINITION AND PROPERTIES OF THE MODEL
substrate level. This results in a contact interaction between . . . .

The SOS model defined in Rdf7] is probably the sim-

the interface and the substrate, which is attractive der plest model which follows the spirit of Ed5). It is defined

<q and repulsive fogy>q. It was found that sufficiently . : : o o
strong attractive interaction modifies the nature of the wetPn 2 one_-(_lllmensmnal lattice \.N.'m sites _and per_lodlc t_)ound-
ary conditions, where each sités associated with an integer

ting transition, making it first order. In addition, it has been® 7. . . .
demonstrated that there exists an extended region in thggriableh; describing the local height of the interface. The

phase diagram, where the pinned and the moving phases repulsive part of the po'Fentia\V(h). is_, impleme.nted as a
existin the sense that the transition time from the pinned tohard-core _vvaII at zero height, restricting the heightso t?e
the moving phase grows exponentially with the system siz&°n-negative. Thu;=0,1,2 ... . Moreover, an effective
so that the two phases become stable in the thermodynamfdlface tension is introduced by imposing the restricted
limit. It should be emphasized that this kind of phase coexS°lid-0n-solid(RSOS condition
istence, which has also been observed in the past in other
models[9-12], can only occur in nonequilibrium systems.
Some of these results have been confirmed by numerical ] .
and mean-field studies of KPZ type modfl8,14. In par-  The model evolves randomsequentially by choosing a ran-
ticular, by adding a repulsive interaction between the interdom site and carrying out one of the following procedses
face and the substrate, a crossover from a continuous to F9- -
first-order wetting transition was found. Nonequilibrium wet- ~ (8) Deposition of an atom on the substrate with rae
ting phenomena have also been studied recently in models of
growing magnetic domaing5). hij=0—h;=1. (7)
In this paper, we present a detailed account of the phase
diagram of the SOS model in (11) dimensions. In order to (b) Deposition of an atom on top of already deposited
get some indication on the behavior of the model in higheiislands with rateq:
dimensions, we introduce a mean-field approximation for the
model and study the resulting phase diagram and the dy- hj—h;+1 if hy=1. (8

|hi—hi.q|<1. (6)
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0.5 . FIG. 3. Example of a closed cycle of deposition and evaporation
x<0//x>0 bound phase processes, showing that detailed balance can only be established if
/ p=1.
/l
0.0 r' s s . cal threshold depending dw. We note that fop=0, where
0.0 05 1.0 L5 20 evaporation from the middle of plateaus is forbidden, the
p interface velocity in the bulk cannot be negative so that in

FIG. 2. Phase diagram of the wetting model fy=g. The this case the transitiqn relies on a Qiﬁerent mechaniBn
second-order wetting transition is represented as a solid line. The One can eaSIIy Verlfy that dynamical ru_l@é—(lO) do not .
dashed line indicates where the coefficianof the nonlinear term generally satisfy detailed _palance. To this ?nd we consider
in the KPZ equation effectively vanishes. For=1 the dynamical the cloged pycle of depOS't'O,n _and ev_aporauon processes, as
rules obey detailed balancsee text shown in Fig. 3. Let the statistical weights of these configu-

rations in the steady state bB&,,Pg,Pc, and Pp. Obvi-

(c) Evaporation of an atom at the edge of a terrace withPusly detailed balance implies

rater: q o
2Pp=qPg=Pc=—Pp=—P,. 11
hy—min(h,_ 3, hy o). © AraT AT e T A +
(d) Evaporation of an atom in the middle of a plateau with These equations can only be satisfiecpi 1 (as already
rate p: anticipatedy is assumed to be equal to 1 without any loss of
generality. This special case will be discussed in more detail
hi—>hi_1 if hi—lzhi:hi+l>0' (10) in Sec. lll.

The two parameteng andq can be used to contréV/dh

If the selected process would violate the restrictibns and\ in the KPZ equation5). In the case of detailed bal-
=0 or |h;—h;.,|<1, the attempted move is abandoned andance, where a bound interface is thermally equilibrated, the
a new sitei is selected. Each attempted update correspondsoefficient\ is expected to vanish. This can be verified by
to a time incremeniAt=1/N. Since one of the four rates can comparing the propagation velocities of a horizontal and an
be chosen freely by rescaling time, we setl. Thus the artificially tilted interface far away from the wall. The line,
model is controlled by three parameters, namely, a growthvhere both velocities coincide, is shown as a dashed line in
rateq, a desorption ratp, and a special growth ratg atthe  Fig. 2. As expected, it crosses the phase transition line ex-
substrate which accounts for an additional short-range intemctly at the poinpp=q=1, where detailed balance is satis-
action between the substrate and the wetting layer. fied.

The model can be easily generalized to higher dimen- Moving away from this point, we can therefore study the
sions. Note that in this case it is possible to introduce differcrossover from equilibrium to nonequilibrium wetting. Nu-
ent evaporation rates for various types of edge sites, e.gmerical simulations suggested that the transitionspferl
linear edges and corner sites. For simplicity, we will assumeandp>1 are associated with different sets of critical expo-
that all rates for evaporation at edges are equal to 1. In thisents[7]. These findings are in accordance with results ob-
case, the model can simply be generalized to higher dimertained by MUz and Hwg 5], who showed that the scaling
sions by including all nearest neighbors in E.and(10).  properties of a KPZ interface interacting with a wall depend

on the sign ofA.

A. Properties for qo=q

Let us first consider the case without interactions between B. Properties for do<<q

substrate and wetting layer, i.¢g=q. In this case, the pres- In most experimental applications the wetting layer inter-
ence of a hard-core wall at zero height leads tmatinuous acts with the substrate, giving rise to an additional short-
phase transition between a bound and a moving pfeee range force at the bottom layer which may be either attrac-
Fig. 2. The phase transition ling.(p) is determined by a tive or repulsive. In the present model such a force can be
vanishing propagation velocity of a freely evolving interface.taken into account by introducing a different growth rgte
For g<q. the interface moves downward until it fluctuates for deposition at zero height. The influence of this parameter
close to the wall, while fog>q, the propagation velocity is was studied in detail in Ref8]. Sinceqg does not influence
positive and the interface detaches from the wall. Obviouslythe propagation velocity of the interface far away from the
this transition takes place even in finite systems with a criti-wall, the location of the transition line, along which the mov-
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1.5 T T T V(h)
phase coexistence
10 bound phase
q9<q.
q detailed balance
0— critical
05 —— phase transition line 9=q.
——— q,=0.2
................ qz 0 growing phase
—In q/q0 _ 9>9.
0.0 L L L | h
0.0 0.5 1.0 1.5 2.0 0
p

. o ) FIG. 5. Schematic drawing &f(h) with a potential well at zero
FIG. 4. Phase coexistence region in the phase diagram for Smarllleight.

values ofqg.

ing phase is stable, remains unchanged. Howeveyy ifs
smaller than a certain threshalg , the attractive interaction

is so strong as to stabilize the bound phase even when the
free interface would grow. In other words, for very low val- runs over all interface configurations obeying RSOS con-
ues ofqg, there exists an extended region in the phase diastraint(6). The energyH is given by

gram where the bound and the moving phasexistin the

zN:h > exd —H(hy, ... .hy] (13

sense that the transition time from the bound to the moving N
phase grows exponentially with the systems size. The upper H(hy, ... ’hN):iZl V(hi), (14)
boundary of the coexistence region dependsg|gras shown
in Fig. 4. _ _ whereV(h) is a potential of the form
A thermodynamically stable coexistence of the bound and
the moving phase requires a robust mechanism which elimi- o if h<O

nates large protruding islands in the bound phase. In the . _
present model, this mechanism works as follows. Once an V(h)=4 ~In(a/qo) if  h=0 (15)
island has been formed by fluctuations, the detached part of —hin(q) if h>0

the interface quickly grows sinag>q.. In the phase coex- o )

istence region, where the coefficientn the KPZ equation is @S Sketched in Fig. 5. Therefore, Efj2) may be rewritten as
negative, the island will grow until the slope at the edges N N

exceeds a critical value, where the growth is compensated by~ P(h1, ... .hn) =2y qM5=1")(g/qo) Fi=1%n0.  (16)

the nonlinear term. Afterwards, the pyramidal island shrinks o ) )
linearly with time until it is eliminated. Therefore, phase co- NOte that in this expression g plays the role of the chemi-
existence can only occur under nonequilibrium conditions ir¢@l potential differencel u/kgT between the wetting layer
those regions of the phase diagram wheie negative. Very and the gas phase. Obviously, the transition takes place at
recently, the tricritical point and the critical behavior at dc= 1. ) o ) S

the upper boundary of the phase coexistence region has To verify the validity of this probability distribution, it is

been investigated in a discretized KPZ equation with aSufficient to demonstrate that the dynamical rules obey de-
potential[16]. tailed balance with respect to it. In fact, deposition process

(8) reduces the probabiliti? by a factor ofg, while evapo-
ration processe®) and(10), which both take place with the
same rate, increade by a factor of 1¢. Consequently, the

A. Detailed balance and transfer matrix approach probability currents between pairs of configurations compen-
We first consider the special cape=1, where detailed sate each other so that detailed balance is satisfied, proving

balance is satisfied. In this case, the stationary probabilitf€ validity of the equilibrium ensembld6). Similarly one
distribution of the bound interface configurations can show that detailed balance is also satisfied at the bottom

{hy, ... hy} is given by the canonical ensemble expressioHayer' We note that these considerati_o_ns are _only va!id in the

corresponding to an energy functiorta! b_ound phasg <1, where the probability d!str|but|on is sta-
tionary. Once the system enters the moving phase, the pro-
cess is out of equilibrium.

IIl. EXACTLY SOLUBLE CASE: p=1

P(hy, ... hy)=o—exgd —H(hy, ... .hy)]. (12) The canonical ensemble can be used to compute the den-
N sity profile of a bound interface in the case of detailed bal-
The partition sum ance. To this end, we use a transfer matrix formalism intro-
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duced in Refs[17,18, writing the Boltzmann factor exp the stationary state. Close to criticality we can carry out the

(—H) in Egs.(12) and(16) as a product continuum limit ¢,— &(h), replacing discrete heights by
LN real-valued heightd. In this limit, the above eigenvalue
P(h,, )= — T , 1 problem turns into a differential equation which, to leading
(hy N=7Z H hj .h S order ine=1—q>0, is given by
whereZy=Tr(TV) and 92 N
=5 T (3=A)—3eh | $(h)=0. (24
. qth2(glge)Phot o 02 if |h—h'|<1 h
h,h’ — .
0 otherwise. 18 This differential equation is solved by an Airy function
The transfer matrixXT is infinite dimensional, acts in spatial H(h)=Ai 3eh+A—3 (25)
direction, and yields the contribution to the Boltzmann factor (3¢)?3

between adjacent sites with the heightandh’. Because of
RSOS condition(6), it has a tridiagonal structure and reads Sinceq&(ﬁ) has to vanish foh<0, we obtain the eigenvalue

aae /g A =3 so thatp(h) = Ai([3¢]Y%). Therefore, the heights, in
0 0 particular the average height and the interface width, scale as

a/gg?  q o
q¥2 2 2 (ﬁ)~w~ e B (26)
T= 52 3 712 '

a a aq Next, we determine the density of exposed sites at the sub-
strate p(0). In the continuum limit of Eq.(22), (0|¢) is
proportional to¢' (0), hence

(19 1 ,
Using the transfer matrix formalism, the stationary density p(0)= jT/“b (O, @7
p(h) of sites at heighh can be expressed as
_ where V= [5dh¢?(h) is a normalization factor. Since
p(h)=ZyY(h|TN[h), (20) 9

¢'(0)~ e and NV~ e 13 one obtains a linear scaling law

where{|h)}, {(h|} denote canonical basis vectors in height
space. FoON— o, this expression is governed by the largest
eigenvalueA of the transfer matrix

p(0)~e. (28)

Thus the density of exposed sites at the bottom layer scales
_ linearly with the distance from criticality, proving that the
T|p)=A|d), 21 . o . -
|6)=Al®) @D wetting transition ap=q.=1 is continuous.
where|$) denotes the corresponding eigenvector. Thus, in  IMposing fixed boundary conditiorig =hy=0, itis also
an infinite system, the stationary densities may also be writPossible to study finite-size scaling at the critical paigt

ten as =qg=1. At criticality the transfer matrix has a simple struc-
ture and can be thought of as generating a simple random
[(h| )2 walk near a wall so that the mean height and the bottom
p(h)= —<¢| by (22) layer density scale as
Note that the numerator in this expression is quadratic in (hy~NY2 p(0)~N~3%2 (29

| ), just as in a quantum-mechanical problem.
The transfer matrix does not provide any information regard-
B. The caseqy=(q ing dynamical properties. Numerical simulatiofwghose de-

. tails are not shown heresuggest that an initially flat inter-
In order to understand how the interface detaches fro”?ace at zero height roughens with tirffer t<N2) as

the wall, it is useful to study the scaling behavior of the
density of sites at the bottom layer close to the transition
point. Let us first consider the cagg= g, where interactions
between substrate and bottom layer are absenthBdr the
eigenvalue problem reads

q" Y21+ pn+ g by 1= Ay, (23

whereA is the largest eigenvalue dfand ¢, are the com-
ponents of the corresponding eigenvedte) representing po(€,N,t)=N"32g(t/N?, eN?), (31

(hy~t¥4  p(0)~t~34 (30)

Assuming standard power law scaling, we can combine Egs.
(26), (28), (29), and(30) in the scaling forms,

(h(e,N,t))=NY2f(t/N2,eN%?),
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50

FIG. 6. (1+1)-dimensional interface with island sizes i;«_
€1,€,,S;. 5

where f and g are scaling functions with an appropriate
asymptotic behavior. As expected these scaling forms are
consistent with the critical exponenis=2,a=1/2 of the
Edwards-Wilkinson universality clagd].

Another interesting aspect is the stationary distribution 1
P(¢) of island size€ in the bound phasesee Fig. 6. In the
case of detailed balance, this distribution can be computeu
exactly. To this end, we introduce the projection oper&tor FIG. 7. Numerically determined stationary interface profile of
=1-0)(0[ which projects onto states with nonzero height.the full model in (1+ 1) (lower data pointsand (2+ 1) dimensions
Moreover, letQ=PTP be a transfer matrix describing an (upper data poinisor different values op slightly below the criti-
interface that does not touch the bottom layer. Obviously theal threshold. The bold lines indicate the slopes 2 and 3, respec-
distribution P(€), which may be interpreted as a first-return tively.
probability of the interface to the bottom layer, is given by

(0[TQ"?T[0) (0]TQ'"*T|0)
©o(oToy  AC

N W A
T

the entire bound phase is characterized by Gaussian density
(32) profiles.

P(£)

C. First-order phase transition for small values ofqq
Note that the leftmost column and the topmost row of the ) ] )
restricted transfer matriQ are zero, while all other matrix L€t us now consider the influence of an attractive force

elements are the same as in Etp). Because of this simple between substrate and wetting layer by takig-q. Obvi-
eigenvalue o, which dominates the matrix product in Eq. that the critical poing.=1 remains unchanged. However, if
(32), is gA. In the limit €—c, we therefore obtain an ex- o iS decreased below a certain threshgfd, the attraction

ponential distribution of the form is sufficiently strong such that the transition becomes first
order.
P(£)~q". (33 To demonstrate the crossover to a discontinuous transition

in the case of detailed balance, we look for a localized
pinned interface solution at the transition pogt1l. As-
suming an exponential interface profile

Therefore, the average island size scales as

€2—m2; (34 ¢p=2" forh=1, (37)

and diverges at the transition. Sing€0)=1/¢, this resultis with somez<1, the eigenvalue problem then reduces to

in agreement with Eq28). three independent equations
In order to determine the stationary interface profi(&)
in the limit h—o, let us go back to Eq23). By assuming o tdo+ay Yz=A g,
that the second and the third term on the left hand side can be
neglected, one finds that Ao Yot z+22=Az,
b= %qh—1/2¢hil’ (35) Z 14+1+z=A, (38

which have thgun-normalized non-negatiyeolution

V1+2g9-3g3 1 z+1
=G 2= g A=
, , _ 2(1-qo) 2 0
Therefore, in the case of detailed balance, the profile of a (39
bound interface decays as a Gaussian for large valués of
Even forp+# 1, where detailed balance is violated, numericalConsequently, the stationary density of exposed sites at the
simulations(see Fig. 7 suggest that in (+1) dimensions bottom layer is

with the corresponding asymptotic solution

b~ A g2, (36)
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2 T T T T T

$o Jo
p(0)= Ex: ) - 72 moving phase
+
“ $h o 172
1+qp— 6q(2)+ V1+299— 3q(2) 40 1 discontinuous f " continuous |
= , 40 I
2+4q9— GqS d tricritical
point
while the densities at higher levels are given by
bound phase
h 22"
p(h)=———= T (4D)
2 ¢ﬁ Qo+ 2 05— ' ' ' 015 ' ' ' ' 1
h=0 1— Z qo
It turns out that the bottom layer densjty0) is positive for FIG. 8. Phase diagram fqr=1 in the @,q,) plane.

0o<<2/3 and vanishes af,=2/3. Forgy>2/3, however, one
hasz>1, so that the exponential ansatz=2z" is no longer  havior along the second-order transition line is always the
physically meaningful. Hence, in the case of detailed balsame as the one discussed in Sec. Il B. However, in the
ance, the transition becomes first order at the tricritical poinvicinity of the tricritical point the scaling properties are dif-
ferent. Moreover, they depend on the direction from which
the tricritical point is approached.

Let us first consider the cagg=1, approaching the tric-
ritical point horizontally from the left along the first-order

For qo<3, the potential well is deep enough to bind the phase transition line. Using expressio@®) and (41), one
critical interface to the wall, leading to an exponentially de- .5, compute the interface height

caying interface profile. Fay,>3, such a localized solution
does not exist and the transition becomes continuous.

2
P=0.=1, q5=3 (42)

200

h=2 hp(h)= 43
e e

D. Scaling properties near the tricritical point

The phase diagram fgr=1 is shown in Fig. 8. Using the
transfer matrix approach, we can show that the critical beand the squared interface width

2(1+4do— 303+ (95— 30o— 1)1+ 2do—305)
93(1+ 30— 3/1+2q,—30)? '

WZ:hZO (h—h)2p(h)= (44)

Approaching the tricritical point from the left by increasing p(0)~€?,
do, these quantities scale to lowest ordersia g3 — g as
where e=1—q. Moreover, by keeping the boundary sites

_ 1 fixed at zero height, we can study finite-size scaling at the
h=w= 65" tricritical point. Evaluating products of the transfer matrix
numerically, we find that
p(0)=456. (45) h~N2
On the other hand, if the tricritical point is approached ver- p(0)~N~2, (47

tically keepingdo=qg =2/3 fixed, a numerical diagonaliza-  Finally, numerical Monte Carlo simulations at the tricriti-
tion of the transfer matrix suggests that the asymptotic interca| point (see Fig. 9 suggest that an initially flat interface
face profile crosses over from an exponential to a Gaussiafughens in such a way that

decay. In this case the height, the width, and the bottom layer

density are found to scale as h~tV4

h~w~e 13 (46) p(0)~t~ Y4 (48)
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1

tailed information on the structure of the interface than pre-
vious mean-field theories.

A. Mean-field equations

In order to construct the mean-field equations for the
height distribution, let us first consider the case of a freely
P T evolving interface without a wall. The rate equations describ-
s 1 o e ing the temporal change af,, consist of several terms cor-
¢ IMCS) responding to different processes. Let us, for example, con-
sider the probability that an attempted update leads to the
desorption of an atom from the interior of a plateau at level
n. This probability is proportional t@,,, which is the prob-

8 ability to find a randomly selected site at heightMoreover,

el it depends on the heights of the nearest neighbors, which are
10 10 tu{}[)cs] 10 10 restricted to take the valugs—1,n,n+1}. For simplicity,

we assume that each site has two nearest neighbor sites.

FIG. 9. Decay of the density of sites at zero height at theClearly one can generalize it to the case where each site has
tricritical pointg=p=1, go=2/3 as a function of time measured in 2(d—1) nearest neighbors. In this case one may have sev-
Monte Carlo steps(MCS). The slope of the curve tends to eral types of edges of corner sites, requiring a larger number
—0.241), leading to the conjecture tha{0)~t~ Y4 of growth rate parameters. To avoid this complication, we

restrict ourselves to the case of two nearest neighbors. Thus,
Assuming standard power law scaling, all these results caneglecting spatial correlations, the probability to find the two

p®

0.1

be combined in the scaling forms, nearest neighbor sites at the heighise {n—1,n,n+1} is
_ assumed to be proportional i, divided by @1+ ¥,
h(e,8,N,t)=NY2F (t/N2,eN®2 5NY2), + n+1)%. For example, for evaporation from a plateau we
haven=1=m and thus the contribution of proce&k0) to
pol€,8,N,t)=N"Y2G(t/N? eN3? 5NY?), (49)  the dynamical equation af,, is
where F and G are scaling functions with an appropriate lpﬁ
asymptotic behavior. Again these scaling forms are consis- -p > (50)
tent with the critical exponents=2,a=1/2 of the Edwards- (fn—1+ Ynt ihnsa)

Wilkinson universality class. Similarly the loss of probability due to evaporation at edges

(9) is given by
IV. MEAN-FIELD THEORY FOR NONEQUILIBRIUM , ,
WETTING _ 2ndn-at dndng

, 51

Mean-field theories describe a system in an approximate (Yn-1F nt hns1)? &Y
way by ignoring spatial correlations. For a given model there
are many possible types of mean-field theories, depending g
the microscopic level one is trying to describe. Previous

hile the depositon proces8) leads to a loss term of the
orm

mean-field approaches to nonequilibrium wetting considered G 2030+ g
the average height as the dynamical variable and studied the g nfn+l TnPntl (52)
mean-field approximation of its dynamics. For example, in a (Yn-1F ¥nt ns1)?

study by Giada and Marsilf13] KPZ equation(5) was . . : I

mapped by a Hopf-Cole transformation to a Langevin equaln addition, there are corresponding gain contributions at the
tion with multiplicative noise, discretizing space and replac—ne'ghgogn?l Ieyels ﬁuch thath the tota]!. ;I)Criobabllle 'S con[;

ing nearest-neighbor interactions by global couplings. Using®'Ved- ~0 ecting all terms, the mean-field equations can be

a Morse potential with a potential well at zero height, theyV''t€n as
were able to reproduce second- and first-order transitions as dy,
well as phase coexistence. More recently, Saetca. [14] W=An—An, 1 (53
extended these studies, suggesting that the mean-field phase
diagram does not change if fluctuations are taken into acyhere
count. Moreover, they identified a narrow domain close to
the borderline between the phase coexistence region and the PYS 1+ 202+ Pt
wet phase, where the system exhibits spatiotemporal inter- An= P
mittency. (l//n+ ‘r/fn+1+ dfn+2)
In this section, we construct mean-field equations describ- G203 1+ g
ing the temporal evolution of the height distributig for —gn nTntl  PnPnrl (54)
heighth=n. This approach is expected to yield more de- (Un—1+ tnt hns1)?
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The superexponential behavior may be understood by
considering the equilibrium cagee., p=1) in which a @
—1)-dimensional manifold is attracted by a gravitational
force to a hard wall. The energy of a fluctuation reaching a
] heightn scales a®, leading to the height distribution

15

moving phase

10 q
i T lIIHN 87 ﬁn ’ (58)

] whereB>0 is a constant. This behavior seems to be valid in
] an extended nonequilibrium region of the phase diagram, as
shown in Fig. 7, where numerical simulations da=2+1
bound phase 1 dimensions are presented.
] Numerical attempts to find signatures of a possible expo-
nential phase in two and three dimensions failed since it is
o 1 very difficult to obtain a reliable statistics in the tail of the
0 10 20 30 40 50 60  height distribution, especially in higher dimensions, where
P finite-size effects become increasingly relevant. The conjec-
FIG. 10. Mean-field phase diagram fgg=q. The second-order ture that the exponential phase might be related to the rough-
phase transition line is represented as a solid line. The bound phag#ing transition of KPZ interfaces ih>2 could not be sub-
consists of two parts, where the interface profiig either decays  stantiated by numerical simulations.
exponentially(E) or superexponentiallySE) for largen.

C. Mean-field equations
The hard-core wall at the bottom layer can be taken into

account by formally settingy_,=A_,=0 and replacingy
with g in the expression foA,, which then can be written
as

In the stationary state, one hAg=0 andA,—A,_1=0
so thatA, vanishes for alln=0. Therefore, the stationary
mean-field equations read

3 o 0= Py + 240 + Yot~ dotho o+ Y1+ 12)%, (59)
_p¢1+2‘//o¢1+‘//o¢1_ (55
T et vt gt e 0=pis 1+ 20nWh 1t Yothn 1= An(Pin T 1)’
¢n+¢n+l+¢n+2)2
wn—1+'70n+(/fn+l ’

B. Mean-field phase diagram (60)

The main result of the calculations, which will be pre- B . , )
sented in detail below, is the mean-field phase diagrani’heren=1.2,...¢. In order to solve this equation by it-
shown in Fig. 10 for the caseqo=g. As in the eration, it is convenient to consider quotients of successive
(1+1)-dimensional model, there is a continuous phase trandensities,
sition from a bound to a moving phase. In calculating the
mean-field height distribution in the moving phase, it is _ﬂ

; ; . : . Xn - (61)
found that the interface is localized around its average height n-1
at any given time, representingsanoothgrowing interface. ) _ _
This is expected in high dimensions, for which mean-field!n terms of these variables, the stationary mean-field equa-
represents a reasonable approximation. Clearlg4ri+1  tions take the form
dimensions this is not the case as discussed before.

In the bound region, two types of phases were found. In 0=px3+2XT+ X1~ Go( L+ X1 +X;X;)?, (62)
the larger part of the,q plane(denoted as SE in Fig. 10
the height profile decays superexponentially at large height. 0=pPXys 12X 1T X1~ (1 + X1 1)
In particular, it is found that for larga the profile takes the

2
2 1+Xn+1+xn+1xn+2

form X X2
1+ X,+XeXne1

Yn~q "exp(—2"1), (56)

(63

Bulk equation(63) can be interpreted as an iterative map
where « is a constant. In addition, another region is found(Xn,Xn+1) = (Xn+1.Xn+2), Where
(denoted as E in Fig. 20where the height distribution de-
cays exponentially

Xn2=F(Xq, Xpy)=—1— Xo11
n+

Yo~e ", (57)
" 1+Xn+Xan+1\/1+2Xn+1+pxﬁ+1

64
OXn+1 ( )

wherea>0 is a constant. Xp(14Xn11)
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=0in region | and by the fixed poing in region Ill. Details

| of the analysis, which led to this result, are given in the
) Appendix.

We now study the stationary height profile in the two
. regions. In region | the map flows to the hyperbolic fixed
- point x5 =0 along its stable trajectory. Expanding the map
. for small values of to lowest order, this stable manifold is

0
TT T
—
=
[T

o 4P o
S

"N

l

10—

q T described by the nonlinear relation

7 Xn+1:qxﬁ (67)

5 —
E in the limit x— 0. Along this manifold, the map approaches
7 the fixed pointxj =0 superexponentially as

I | ! | 1 | ! | 4 ! | ! | Xp= Eexq—zn_a) (68)
00 10 20 30 40 50 60 n q
P

FIG. 11. Classification of fixed points dependingmandg. In yielding t'he height p.roflle n ch.56)'
region | (Il), there exists only one real fixed poimt <1 (x* . In reglon*lll, stationary solutions are cgntrolled by the
>1), while in region Il there are three real fixed points. Regions |f|xed pom_t XZ_ >0 (sge the Appe_nd)x Linearizing _the map .
and I are separated by the straight dotted kipe(p+3)/4. The  around this fixed point one obtains an exponential behavior,
phase transition linésolid line) crosses from region | to region Il _an 69

and back into region |, as illustrated in the upper inset. The lower Xn~€ 7 (69

g‘izitlﬁooms the area where the both lines enter wedge-shaped (&, o 1~ is a constant, leading to the exponential height

profile (57).

To complete the analysis of the phase diagram, one has to
locate the wetting transition line. This is done by simulating
the dynamical mean-field equatiot®3) and determining the

point from where on the interface detaches. This analysis
Xo=—1— i+ \/w, (65 leads to the transition line shown in Fig. 10.
X1 QoX1 So far all mean-field results were obtained fge=q, i.e.,
without an attractive force between the substrate and wetting
D. Stationary solutions layer. Loweringqg, changes the bottom layer equati(6b)
and thereby the possible starting points of the iteration. As
shown in the Appendix, the mean-field approximation repro-
duces the phenomenon of phase coexistence. However, un-
like in the model in (& 1) dimensions, it emerges every-
where along the phase transition line as soonqgsq;
hence, there is no tricritical point. Moreover, in the limy
—0 the threshold for the growth ratg where the interface
detaches, tends to infinity. Therefore, the region of phase
x[ax*+ (29— p)x*+(q—2)x—1]=0 (66)  coexistence is not bounded from above as in the-{})
dimensional model.

for n=1,2,...,. In addition, the initial condition for
X1,X, IS given by the bottom layer equation

In order to evaluate the stationary height distribution for
given p and g, one has to look for a point on the line of
possible initial condition$65) and iterate ma64) such that
it reaches a real fixed point witk <1. This trajectory then
corresponds to a physical height distribution.

To proceed, we first analyze the fixed points of the map
The fixed point equation

has four solutions. Two of the solutiong =0 andx} are
real in the entire, g plane, while other two solutions} ,x3 V. CONCLUSIONS
may either be both real or complex conjugate to each other.

We denote the region in the q plane, wherect ,x? are real, In this paper we have given a detailed account of a re-

by region 1l (see Fig. 11 We further divide the complemen- cently introduced solid-on-solid model for nonequilibrium
i ion 11l into t ions: | where* <1 q il wetting, which is defined in the spirit of a KPZ equation in a
ary re%{"’” Into two regions, 1, whereg =L, and 1, potential. Introducing a hard-core wall at zero height, the
wherexy >1. .S.mce the brgcket |n.Eg66) is equal tO—_l at  model exhibits a continuous wetting transition from a bound
x=0 afd positive fog>0 in the limit of largex, the fixed {5 3 moving phase. The model is controlled by two param-
pointx; has to be positive. N _ etersp and g, which effectively determine the asymptotic
Analyzing map(64) with initial condition (65), we find  sjope of the potential and the coefficient of the nonlinear
that the only fixed points, which correspond to physicalierm in the KPZ equation.
height distributions, are eithef; or x5 when it is real. Here For p=1 the dynamical rules of the model obey detailed
X5 is the solution of Eq(66) which satisfies<; <1<x3 in  balance. In this case, the stationary distribution of a bound
region Ill. In particular, we find that below the transition line, interface is given by a Boltzmann ensemble, which allows
the height distribution is controlled by the fixed poix§ one to derive various quantities exactly. Moving away from
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this line, the model crosses over to a nonequilibrium behav- * a<a,| o] ° a0,

ior, which is characterized by different critical properties. e #

The model can be generalized further by including an attrac-& t 7 e a4 i e

tive interaction between the substrate and the wetting layer g ’ .

If this force is strong enough it may turn the continuous Lo A PN

transition into a discontinuous one. Moreover, the bound anc X, X, X,

the moving phase may coexist in regions where the coeffi- ) ) ) ) )

cient of the nonlinear term in the KPZ equation is negative. "'G- 12. Stationary solutions in region I. Superstable manifold
In order to assess the behavior of the model in highef! e fixed pointxg =0 for p=2 and different values of in

. . P .~ regions | and Il. Fog<gq,, the manifold(bold line) intersects the
dimensions, we have proposed a mean-field appmx'matlorﬁ{ashed line of possible initial conditio{65), representing a sta-

which is based on rate equations for the densities at differeq . _
heiahts. The ph di i t1o b isinaly ri h|onary solution in the bound phase, where the bottom layer density
eights. The phase diagram tums out to be surprisingly ric Vo is positive. Approachingy., this intersection point moves to

It turns out that the mgan-field approximation.reproduces., th finity and i, tends to zero. Fog>q,, the superstable manifold
propertles.of the ongma} model. Howg\{er, in the moving originates in the other real fixed point so that no stationary solution
phase the interface remains smooth as it is expected for KPZyits. Similar graphs are also obtained for other valuep of
type growth in higher dimensions. regions | and II.

As a new feature, the mean-field approximation predicts
the existence of two different regions in the bound phase. Ifthe triple point f,q)=(8,28), where Eq(Al) has a three-
one of these regions the inteface profile decays superexpéeld degenerate fixed point* =1/2. . o
nentially with increasing height while in the other region an  Physically meaningful stationary solutions of the iterative
exponential decay is observed. This can be explained bjpap must start from a point on the line given by E&p) and
classifying the fixed points of an iterative map for quotientshave to flow towards a real fixed point with<(k* <1. For
of the densities. The question to what extent this crossovehis reason, we divided the complement of region Il into two
from superexponential to exponential profiles can be obparts, namely, region | wittxy >1 and region Il withxy
served in the full model is still open. <1. Both regions are separated by a straight lipe(p

+3)/4, wherex} =1.
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We first show that in regions | and Il a physically mean-
gful stationary solution always flows to the fixed point
?(3 =0. To this end we show that the other real fixed paiht
is either larger than 1 or unstable.

As shown in the upper inset of Fig. 11, the phase transi-
tion line starts ap=0 in region I, crosses into region Il at
the pointg=p=1, and then crosses back into region | at the

APPENDIX: STATIONARY SOLUTIONS point (p,q)~(5.380,2.095). Obviously, the fixed point
OF THE MEAN-FIELD EQUATIONS can only be physically meaningful between these two cross-
1. Fixed points ing points, wherex} <1. However, in this intervaky turns

out to be unstable. To demonstrate this point we consider the
eigenvalues of the Jacobian of the map ,=f(Xy,X,+1) iN
1( af

Eqg. (64,
of )2 af )

As shown in Fig. 11, th@,q plane can be divided into three “ 2\ Xnya IXn+1 Xl ly —y
different regions. In regions | and Il, one fixed point is real none (A3)
and two of them are complex conjugate, while in region I
all fixed points are real. The boundary of region Il is char-Using Eq.(Al), the partial derivatives can be expressed as
acterized by the existence of a twofold degenerate fixed
point. Comparing Eq(Al) with a polynomial of the form 0_f
(x—a)2(x—b)=0, the boundary of region Il can be given IXn
in a parameter representation by

Besidesxg =0, Eq. (66) has three other fixed points
which are the roots of the polynomial equation

ax°+ (29— p)x?+(g—2)x—1=0. (A1)

= —x*
Xn=Xn41=X

af
2 _1+3at4a®  1-a X1 X
q_ a_aza p_ a2_a3 ’ b_ 2a ’ (AZ) Xn=Xp41=X
gx* 4+ 2gx*3+2(q—1)x*2+(3qg—2)x* — 2
where 0<a<1. The boundary has the form of a wedge, = a3 + 1 .
shown as a dashed line in Fig. 11. The lower branch for 0 ax*(x )
<a<1/2 and the upper branch for ¥A<1 terminate in (A4)
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FIG. 13. Fixed pointgbullets and possible stationary solutions
(bold lineg for p=60 inside for(a) q=12.0, (b) g=13.5, and(c)
q=9.=15.644. The figure is explained in the text.

Along the dotted line in Fig. 11, whene* =1, the two ei-
genvalues

1
)\1,2|x*=1=1_ﬁ(3t V9—24q) (A5)

are complex conjugate in the interval between the two cros
ing points 1<q<5.380. As can be verified numerically, they

are also complex conjugate in a neighborhood of this line
which includes the phase transition line. Since the determi

nant of the Jacobian

)\1)\2:)(*2

(AB)

is larger than 1 fox* <1, the fixed pointj is found to be
unstable. Thus we can conclude that physically meaningf

stationary solutions in regions | and Il are always controlled

by the fixed pointx§ =0.

Since forx* —0 the two eigenvalues tend t0,=0 and
\,= —, the fixed pointxg =0 is nonlinear and hyperbolic.
It has superstable manifold which in the limit &—0 is
given byxn+1=qxﬁ. This manifold is shown in Fig. 12 for
different values ofg below, at, and above the critical point.

PHYSICAL REVIEW E 68, 041606 (2003
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FIG. 14. Phase coexistence in the mean-field approximation for
p=0.8 (see text

be constructed in the same way as before. Entering region Il|
from below [panel (b)], two new real fixed pointx} <x3
<1 emerge, which are fully unstable and hyperbolic, respec-
tively. The superstable manifold of the fixed poix§=0
Jow originates irx} , while it is the linearly stable manifold
of the hyperbolic fixed poink} which intersects the dashed
line of possible initial condition$65). As before, the inter-
Section point moves continuously to infinity gapproaches
the critical point[panel(c)]. Thus the unbinding transition
manifests itself in the same way as in regions | and Il, the
only difference being that the physically relevant stable
manifold is now controlled by the hyperbolic fixed poiy
>0 instead ofx§ =0. The linear stability of} is respon-
sible for the purely exponential profile observed in region
ul 4. Phase coexistence in regions | and I

Lowering qo changes the line of possible initial condi-
tions (65), while the stable manifold of the fixed poir
=0 remains the same. The typical situation fo=0.8 is
shown in Fig. 14. The left panel shows the stable manifold
(solid line) and the bottom layer equatigdashed lingwith-
out attractive force at the critical poimfy=q=q,=0.943.

As it can be seen, a stationary solution exists if the manifold30th curves approach each other smoothly and intersect at

intersects the line of possible initial conditio(&5).

3. Stationary solutions in region Il

infinity so that the transition is continuous. The right panel
shows the same situation in the presence of an attractive
force for qo=0.5. Accordingly, the effect of loweringg is

to move the dashed line of possible initial conditions upward

In the wedge-shaped region IlI, there are three real fixed,ch that it intersects the critical stable manifold at a certain

pointsxj <x3 <x3 . The first one is smaller than 1 and un-

finite point. This means that the bottom layer densiyis

stable, while the second one is smaller than 1 and hypefinite at the critical point, making the transition first order.

bolic. The properties ok; depend orp and g. Below the

Moreover, a stationary solution still exists evengifis in-

dotted line in Fig. 11, it is larger than 1 and stable, while it iscreased, proving the possibility of phase coexistence in the

smaller than 1 and unstable above.

Figure 13 illustrates typical situationsat 60 for various
values ofq, crossing region Ill from bottom to top. Below
the wedge in region [[panel(a)], the stationary solution can

mean-field equations. Increasigbeyond a certain thresh-
old, a stationary solution no longer exists. This defines the
upper boundary of the phase coexistence region in the mean-
field phase diagram.
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