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Phase-field approach for faceted solidification
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We extend the phase-field approach to model the solidification of faceted materials. Our approach consists of
using an approximate plot with rounded cusps that can approach arbitrarily closely thejtnpiet with sharp
cusps that correspond to faceted orientations. The phase-field equations are solved in the thin-interface limit
with local equilibrium at the solid-liquid interfaceA. Karma and W.-J. Rappel, Phys. Rev.58, R3017
(1996]. The convergence of our approach is first demonstrated for equilibrium shapes. The growth of faceted
needle crystals in an undercooled melt is then studied as a function of undercooling and the cusp aéplitude
for a y plot of the formy= y,[ 1+ &(|sin 6|+|cosé))]. The phase-field results are consistent with the scaling
law A ~V~*2 observed experimentally, where is the facet length an¥ is the growth rate. In addition, the
variation of V and A with § is found to be reasonably well predicted by an approximate sharp-interface
analytical theory that includes capillary effects and assumes circular and parabolic forms for the front and
trailing rough parts of the needle crystal, respectively.
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. INTRODUCTION weak anisotropy where the interface stiffness d?y/d6?,
and hence the square bracket in E), is everywhere posi-
Over the last decade, the phase-field apprddch] has tive. More recently, the phase-field approach has also been
been developed extensively to model the solidification ofsuccessfully extended to model strongly anisotropic equilib-
both pure materials and alloy8]. Most of the work to date rium crystal shapes where the stiffness becomes negative for
has focused on the case where the excess free energy of teeme range ob [10]. In this case, which occurs for example

solid-liquid interface whene>1/15 for form(2) of (), the slope of the interface
has discontinuities that must be present to eliminate thermo-
¥="7of(6) (1) dynamically unstable, and hence forbidden, orientations for
which the stiffness is negative.
is a smooth function of the angle between the direction In this paper, we extend the phase-field approach to model
normal to the interface and some fixed crystalline axis. Ing wide class of materials that form facets for a discrete set of
particular, the simple form orientations. The interfacial energy is generally nonanalytic

for orientations close to a facet. This nonanalyticity is re-
flected in the presence of cusps in thelot that are of the

. . . . . form
appropriate for a weakly anisotropic material with an under-

lying cubic symmetry, has been widely used in studies of

dendritic solidification4—9]. For a smoothy plot, the value ~14 —ols... g«

of the diffusion field(dimensionless undercooling or super- f(6)~1+5]0- 6 for |0=6c<1, (4
saturation at the interface is given by the standard Gibbs-
Thomson condition

f(#)=1+ecosdo+- -, (2

where 6= 6. is the orientation of a given facet. In the sim-

plest model where vicinal surfaces are assumed to consist of
P 3) straight ledges of heigtd separated by terraces of width

’ ~al|6— 6., the cusp amplitudé= vy, /(ay,) wherey, is

the ledge energy per unit length.
where dy is a microscopic capillary lengttithermal or To a good first approximation, the tendency of a material
chemica) that is proportional toy, and « is the interface to facet is described by Jackson’s well-knowrfactor [11]
curvature. Dendritic growth in pure materid®—8] and al-  that is the product of a dimensionless crystallographic factor
loys [9] has been modeled quantitatively with a thin- that depends on the crystal structure and the orientation of
interface limit[6] of the phase-field model that yields the the interface and the ratio of the latent heat per mole to the
boundary condition(3) and overcomes the stringent compu- rare gas constant. Jackson's theory predicts that materials
tational constraint associated with a finite interface thicknesswith =<2 (such as metals with low entropy of meltingill
These simulation studies modeled the common situation of have rough interfaces, while those witt=2 (such as non-

d?f

U:_do f+d_92
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metals and compoungwill form facets, consistent with ex- nonstationary. Treating separately the rough and faceted parts
perimental observations across a wide range of materialsf the interface appears to be difficult within a phase-field
[12]. formulation. To circumvent this difficulty, we follow a pro-
The growth of faceted dendrites has been studied botbedure that is similar in spirit, but different in details, to the
experimentally{13,14] and theoretically in the context of a one introduced by Adda Bedia and Ben Amh&r] in a sharp-
sharp-interface approa¢th5-17. Experimentally, facets are interface context. The basic idea is to use a regularized form
seen to appear near the tip of the needle crystal that neveof the v plot that can approximate arbitrarily closely the
theless retains a parabolic shape on the larger scale of thmot with sharp cusps. The discontinuity df/dé at a cusp
whole crystal that includes the trailing rough parts. From acan be viewed mathematically as the stiffness behaving as a
theoretical standpoint, a main difficulty to model facetedsharply peaked Diraé function até= 6.. Therefore, differ-
growth is that the standard Gibbs-Thomson relation can onlgnt regularizations of this discontinuity can be viewed as
be applied to rough parts of the interface. On a facet, thiglifferent regularizations of thi$ function peak that must
relation takes the form of an integral condition that is ob-satisfy the cusp condition
tained by making the substitution=d6é/ds, wheres de-
notes the arclength along the interface, and integrating both

sides of Eq.(3) from one extremity ¢_) of the facet to the b+ 0, d?f
other (s )q'l('h)is integration ieldsytﬁe)condition lim f do f+——>1=24, @
e 9 y 0p—0 Oc— 0o de
Js+d—d af df’ ——2dyé 5
s 1 as= =% gy .odel | o™ © imposed by form(4) of f near a cusp. Adda Bedia and Ben

Amar have introduced regularizations in which all deriva-
wheredf/d#|. denotes the limiting values aff/d# on each tives of the stiffness and henéare continuous. In a phase-
side of the cusp — 6.—07). field context, we have found it more convenient to use a

For an equilibrium crystal with a constant undercooling orregularization where only and its first derivative are con-
supersaturationu<0) along the interface, the above condi- tinuous and the dimensionless stiffndssd?f/d6? is a step
tion implies that the lengttA of the facet is simply propor- function regularization of thed function, f+d?f/dé?
tional to the amplitude of the cusp ~ 6l 0y for 6.— 6y=<60<06.+ 6. In practice, computations

for small 6, turn out to be more costly because the larger

A:Zd—5 ©) stiffness & 6/ 6,) requires a smaller time step. As we shall
—u see, however, an accurate extrapolation toéfe 0 limit is
nevertheless possible.

For growth outside of equilibrium, the determination of the It is important to emphasize that this paper only repre-
facet length and the shape of the rough parts requires isents a first step in the extension of the phase-field approach
general a self-consistent solution of the free-boundary probto faceted materials. In this first step, we focus on capillary
lem defined by the appropriate diffusion equationsddn  effects and purposely neglect the kinetic undercooling of the
solid and liquid, the standard Stefan condition of heat ofinterface in order to relate quantitatively the phase-field re-
mass conservation on the interface, and the local equilibriursults to sharp-interface theory in a well-studied lifdi6,17].
conditions(3) and(5) on rough parts and facets, respectively. Coping with the presence of cusps in thelot, which is the

An analytical solution to this problem was obtained for main difference between faceted and nonfaceted growth as
steady-state growth by Adda-Bedia and HaKit®] in the far as capillary effects are concerned, already represents a
small Pelet number limit neglecting capillary effects on the nontrivial task that is best handled separately. In future work,
rough parts. They concluded from this analysis that it is notwe plan to build on the methodology developed in this paper
possible to require both tangential matching of the rough antb model different nonlinear relationships between a finite
faceted parts of the interface and the equilibrium conditiorinterface undercooling and the interface velocity, which are
(u=0) on the front and trailing rough parts. Furthermore,known to be associated with different crystal growth mecha-
they proposed an approximate solution to the full problermisms(such as island nucleation and spiral growi]).
that includes capillary effects on the rough parts in the large The phase-field model and the details of this smoothing
6 limit. In this solution, the facets are assumed to matchprocedure are described in the following section. The nu-
tangentially to a small quasicircular tip that is significantly merical implementation of the equations is then presented in
more undercooled than the rough trailing parts. A numericaBSec. Ill. The convergence of our numerical approach is dem-
solution of the steady-state growth problem was later obenstrated in Sec. IV by a detailed comparison of diffuse-
tained for arbitraryé by Adda-Bedia and Ben Amdr7] interface and sharp-interface equilibrium crystal shapes. Re-
using a boundary integral method. This calculation gave results concerning the steady-state growth of faceted needle
sults that are consistent with the approximate solution otrystals in a pure undercooled melt are then presented in Sec.
Adda Bedia and Hakim for largé. V. These results are then compared in Sec. VI to the predic-

At present, a phase-field approach for faceted growthions of an approximate sharp-interface theory that assumes
would be highly desirable to study the stability of needlesimple forms for the front and trailing rough parts as an
crystal solutions as well as to explore the full dynamicalextension of the solution proposed in REE6]. Concluding
range of morphological evolution when the interface shape isemarks and future prospects are then discussed in Sec. VI.
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Il. PHASE-FIELD MODEL T

We consider the growth of a crystal from a pure under- 4
cooled melt with the thermal diffusivity being the same in
the solid and liquid. We follow the phase-field approach de-

veloped by Karma and Rappd] that has proven successful 3k -
to model efficiently nonfaceted dendritic growth. We briefly

recall the basic features of the phase-field model and of the [~ o~ e~ ]
thin-interface limit used to relate the phase-field and sharp- N4 N A4 N\ 3

interface models.

The dimensionless temperature field is definediagT
—Twm)/(L/cp), whereT is the temperatureT, is the melting
temperaturel is the latent heat per unit volume, ang is
the specific heat at constant pressure per unit volume. The P P S R SR
phase fieldy is taken to be equal te-1 (—1) in the solid
(liquid) phase and varies continuously across the diffuse in- 0
terface. In two dimensions, the time evolution of both fields
is governed by the equations FIG. 1. Three functions of the interface orientation anglep-

2 1 resented for a cusp amplitude=1.0. Solid line: anisotropy func-
du=DVeu+zoy 8 tion with sharp cuspsf(#). Dashed line: smoothed anisotropy
function, f(6). Dotted line: dimensionless stiffnessiy(6)
+12(6). A large smoothing angl@,= 7/10 is used here to make
the difference betweehandf visible.

and

7(0)dp=[ = u(1— ¢ 1(1—¢?) +V - [W()?V ¢]
— [ W(O)W'(6)dy ]+ d[ W(O)W' () dyip], f(0)=1+ &(|sing|+|cosb)). (14

© This form is directly adapted from the broken-bond model
whereD is the thermal diffusivityg is the angle between the which describes satisfactorily faceted solid-gas interfaces
normal to the interface and theaxis, \ is a dimensionless [18]. The same form was used in previous sharp-interface
coupling constant between the temperature and phase fieldglculationg 16,17

and Furthermore, in order to model the limit with local equi-
librium at the interface, i.e., vanishing interface kinetics
W(8)=W,f(0) (100 B(#)=0, we impos€6]
is the diffuse-interface thickness. In the thin-interface limit 7(6)=1of(0)? (15)

whereW, is much smaller than the mesoscale of the growing
crystal [6], the above phase-field equations reduce to thea nd
standard sharp-interface model of diffusion-limited growth
with the velocity-dependent form of the Gibbs-Thomson

. 1 DT
condition - - -0
A a W2 (16)
d?f(6)
u=—do| f(6)+ d62 k= B(O)vy, (1) which makesB(6) vanish for all values of.
For the above choice of plot, the dimensionless stiffness
where defined by
_aWo d?f(0)
do=—3 (12 SO=f(0)+ = (17)
and

is constant except at the cuspgss 6, ,=nw/2 (with n an
W(6)? integed, where it diverges. The discontinuities in the first
& D0 | (13 derivative of the interfacial energy need to be regularized,
sincef’(6) is not defined forg= 6. ,. A simple strategy to
In addition,a; anda, are constants that depend generally oncircumvent this problem is to smooth out the cusps by re-
the choice of the double-well potential and other functions inplacing f(#) with a smooth function sucha as a sine in a
the phase-field model. For the present choices that are themall range of¢ values around the cusgfig. 1). For the

a; 7(0)
BO= W)

same as in Ref§6], a;,=0.88® ... anda,=0.626 .. .. sake of clarity, we restrict our discussion to the first quadrant,
To model faceted growth, we use the simplest form of thed e[ 0,7/2], since the problem has a natural fourfold sym-
v plot, metry. The smoothed anisotropy functibg(#) then reads
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1+ 5(sing+cosd) if  By< a<g ~ 6,

f(9)=¢ B—Acoso if  6<6,
. o
B—Asing if 025—00,
(18)
and its derivative
. 7T
5(0030_5"'] 0) if 00< 9<§— 00
fi(9)=1 Asiné if 0<6, (19
o
—Acosé if 025—00.

The two constant®\ and B are obtained by expressing the
continuity of fs and f, at 6= 6y,
A=5(cotfy—1) (20
and
B=1+ 6/sinb,. (21

Now fZ(0)=f(m/2)=0 andW(6) is no more singular in
the cusp directions. Note, however, tidtis not continuous

at 6= 0,. Consequently, the dimensionless stiffness is a step

function of 6 (see Fig. ],

. T
1 if  6p< 6<E—60
S(0)= _
1+dlsindy if 6<6, or 025—00.

(22

IIl. NUMERICAL IMPLEMENTATION

We now briefly describe how Eq$8) and (9) are dis-
cretized in our code. The interface is represented byithe
=0 contour, so thaﬁw is by construction collinear to the

unit vector along the normal to the interface, If |V |
#0, the two components of this vector are given by

Ny=cosO=— dyil |V ] (23)
and
ny=sing=—a,yl|Vy|, (24)

andfg andf, are computed according to Eq48) and(19).
Conversely, whenV 4| =0, one sets

fs(0)=1 (25)
and

f2(6)=0. (26)
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Equations(25) and (26) are imposed in places where the
phase-field gradient vanishes because the unit vector normal
to the interface loses its meaning far from the interface. With
this choice, the phase-field simply relaxes to a local mini-
mum of the free-energy density=(1) deep inside the liquid
or solid phase, where the temperature field obeys a simple
diffusion equation. Numerical simulations of E¢8) and(9)
are performed by implementing a finite-difference scheme on
a regular square mesh with mesh stze 0.4W,. The do-
main considered is the quadran=@=<Nh and O<y=<Nh,
with N an integer. A standard first order in time Euler scheme
with a time stepAt and a second order in space discretiza-
tion of the spatial derivatives are used.

Let u;; and ¢ ;, respectively, denote the discretized re-
duced temperature and phase field at poitih,y=jh).
In a first step, one compute¥?u, V24, dyh, dyih,
W(O)W'(6), andW(6) for each point of the extended do-
main,i andj e[ — 1N+ 1], and the results are stored in six
intermediate arrays. Reflecting conditions are imposed on
and ¢ at all the domain boundaries (or j=—2,—1N
+1,N+2), and using centered differencing approximations,
we have

2, _ 2
Veui j=[UjyqjtUi—qj Ui j 1t U = 4u; ;]/h%,

(27)

Ve =iyt iay+ et i j—1— 4 102,

(29)
Oxthi == ¥i—1j11(2h), (29
Aybi ;=i j+1— ¥ij-11/(2h). (30

The two remaining arraysWW'); ; and W; ; are given by
Eq. (10) into whichf is replaced withf .

In the second step, one solves E(R). and (9) on the
inner points of the domain,andj €[O,N]. To do so, the last
three terms in Eq(9) are written in a slightly different form,

W( )2V 24+ 2W(0) VW(8) -V oh— (9,4) 3,L W( O W' (6)]

+(dxth) AL W(OW' ()], (3D

so that each new term can be computed with the help of the
intermediate arrays. For instance, the last term is discretized
as

(Oxhi PLIWW), 11— (WW); 54 1/(2h). (32

IV. EQUILIBRIUM SHAPES

A. Comparison between analytical and phase-field results

We first check our code by computing the equilibrium
shape of the crystal. In thermal equilibriumn= —A every-
where, and the evolution equation for the phase field reduces
to
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25——F——F——F———

132

2.5

FIG. 2. Analytical equilibrium shape for anisotro@= 1.0 and
smoothing anglef,= 7/200. P, is the rightmost point of the
“facet,” P, is the intersection point with the=y line, andP. is the
center of the arc circl®, P,.

7(0)dp=[ ¢+ NA(L—¢A)](1— ¢*) +W( )V
+2W(0) VW(8) - Vih— (3,4) L W( O W' (6)]

+ (i) [ W(O)W'(6)]. (33

Initially, the solid is given a circulafor a squargshape and
the undercooling is set tdA =A,. Time integration of Eq.
(33) is performed and the interface velocity along thaxis,
V,, is computed at regular time intervals. \,>0, A is
decreased and it is increasedvif<0. The incremen®A is
divided by a constara>1 each timeV, changes sign. This
procedure is repeated as long 84 is larger than some

prescribed valuedA ,;,. This scheme is known to converge

to an equilibrium stat¢6].
The analytical equilibrium shape is given by

X=x(0)/Ry=f4(0)coso—f.(6)sina,

y=y(60)/Ry="f40)sino+f.(6)cosd, (34)

where Ry=dy/A [19]. Let us consider one-eighth of this

interface corresponding < [ 7w/4,7/2] (Fig. 2). In the cusp
region 6 e [ w/2— 6y, 7/2], one has

X(6)=B cos6,
YV(6)=(Bsing—A), (35)

so that the interface is the circle of center{®) and radius

PHYSICAL REVIEW &8, 041604 (2003

[

FIG. 3. Comparison of the analytical equilibrium shaftiae)
with the phase-field solid-liquid interfadgloty for §=0.2,0.5,1.0
(from left to right and 6= 7/200.

where the local slope is

(37

On the other hand, foMW e[ w/4,7/2— 64] the crystal is
bounded by the circle centered at poy(s,d) (i.e., x=y
=) of rescaled radius unity, for which

v (%)= —tan6,.

R=(X—X)\V2=1— 2 sing, (38)
is a good first-order approximation whelg<1 (Fig. 2.

Note that, asf,— 0, one recovers the equilibrium shape

for the sharp cusp, with a horizontal facet of length
A=2x,—26 (39
matching tangentially a circle of rescaled radius unity.

As shown in Fig. 3, the whole crystal shape is well repro-
duced by the phase-field equilibrium code. A close examina-
tion of the numerical data points reveals that the imposed
anisotropy is underestimated by about 0.2% in the numerics,
independently of,.

B. Numerical estimates for the facet ends

The knowledge of the analytical equilibrium shape guides
us to define a numerical procedure to extract estimates of the
facet lengthA and corner radiuf from discrete interfaces
obtained with the phase-field code. On the square mesh, the
interface consists in a list of point®;(x;,y;). According to
Eq. (37), the two facet ends are located at the poidtsand

B. Since the smoothed cusps are very narrow in practic®, where the absolute value of the local slope rapidly in-
(6,<<1) this circle arc is very flat; it tends to the straight creases beyond ta#l (Fig. 4. The method used to compute
horizontal facet asl,—0. The right end of this interface the two end points is thus to compare the derivative of the

portion lies at
X, =xX(7/2— 6y)=Bsinb,,

Y, =Y(/2— 6y) =B cosf,— A, (36)

equilibrium curved,y with tané,. Using centered differ-
ences,

axyi:yiu_yi—l (40)

Xi+1—Xj—1
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with
1+ 8(3|cosh| —|cos 6|+ |sin*g|) + 62

A%+ B2— AB|cosé|(2+sir6)
B2—AB|sir’),

Cux= (44)

25(00S 0+ 0 SIT0)+ 28200,
—2ABosirtd
—2ABo0S 6,

(45

Xy

and

1+ 8(3|sin 6| —|sin6| + |cos d|) + 62
B2— AB|cos’d|

A”+B2—AB|sin 6| (2+cos6)

Cyy= (46)

FIG. 4. Closeup of the phase-field equilibrium shape in the refor g < < /2— 6,, 6<6,, and 6= m/2— 6,, respectively.
gion Of the SmOOth facet&: 10, 0027/200) Dots represent the The Symbol&rs ando-c represent the Slgni(l) Of Slnaand

interface pointsP; .

cosé.
The time stepAt must be sufficiently small to ensure

gives an error of about 5% on both measures. On the othelynergence of the finite-difference scheme, the most strin-

hand, using the one-sided approximations

:)’i_yi—l

‘9xyi| Xi—Xi_1 (41)
to computeP, and
Yie17Yi
. + =
2 M (42)

to computeP,, estimates ofA\ andR are only 0.5% off the

gent constraint ot arising for 6= 6y:

7o h? f2(6o)
At —p — s } 47)
Wo 2 Cxx(00)+cyy(0o)
As 0,<<1, this approximates to
Az O h?(1+6 ) 18
w2zl e % “9

It is thus always possible to redu@g provided thatAt is

exact valuegsee Table)l This last estimation procedure is decreased in proportion. Althought depends on the cusp
thus more precise and it is readily extended to the case gmplituded, the time step can still be kept constant while

growth shapes in what follows.

C. Sharp cusp limit
One may still wonder if the sharp cusp limigd—0) is

maintaining numerical stability by imposing

60= (49)

K1+5’

reachable within our numerical approach. To answer thiwith K some constant. In the numerical simulations, we typi-

question, it is better to develop E@33) in terms of the
second partial derivatives af. One then gets

7(0)dp=[y+NA(L— ) ](1— )
+ W[ Coxdnxth+ Cuydxyth+ Cyydyyth], (43)

TABLE |. Comparison of the facet lengttfirst column and
corner radius(second column of the equilibrium shape fors

=1.0 and 6,=w/200. Analytical values are compared with esti-
mates from phase-field data analyzed with two different interpola

tion methods.

;(r_;(l (}t_';(r) \/z

1.950 1.034 Centered diff. appropeEqg. (40)]
2.023 0.983 One-sided apprd¥gs.(41) and (42)]
2.031 0.978 Analytical

cally take K= /100, so thatAt/75<0.005.... In prac-
tice, we rather use the discretization scheme described in
Sec. Ill than the fully developed version given in EG83)—

(46). The former proves to be more precise and more stable
than the latter, so that a larger time steg 7o=0.008 can be
used.

V. FACETED NEEDLE GROWTH

We now turn to nonequilibrium growth shapes. The time
evolution of a needle dendrite is illustrated in Fig. 5 for a
cusp amplitudes=1, diffusion coefficienD TO/WS=4, and
undercoolingA=0.55. The size of the simulation box is
600V, X 600W,. For reasons of symmetry, it is sufficient to
grow one-half of the dendritéherey=x). We checked that
identical patterns are obtained when the whole quadrant is
used. The initial conditions for the phase field are 1 if
both 0=x=<20W, and Osy=<20W, and /= —1 otherwise.
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FIG. 5. Time evolution of a faceted dendrite for undercooling  FIG. 6. Enlargement of the foremost dendrite tip of Fig. 5. The
A=0.55, smoothing anglé,= 7/200, and anisotropy=1.0. The tip is further enlarged and shifted to the lower-left corfiarger
time interval between two successive curves is7400 dots.

that the results are reasonably well converged for the values

This square shape is imposed to the solid germ in order t® 7o/W5=4 andh/W,=0.4 used in our simulations.
get a dendrite with a single tip along the=y direction.
Conversely, rounded initial shapes, such as a circle, always
result into tip splitting along the growth direction, leading to
more complicated patterns which will be discussed later. The The steady-state interface shape can be divided into three
temperature fields is initially set to zero inside the solid distinct parts: a nearly circular tip of radil® a smooth
germ and to— A outside. Reflecting conditions are imposed “facet” of length A, and a trailing rough tai(Fig. 6). Esti-
at all the domain boundaries. mates ofR= (x,—x,)v2 andA =x,—x, are obtained by us-
We first focus on the influence of the anisotropy coeffi-ing the numerical interpolation method described in Sec.
cient 5 on the dynamics of the faceted needle dendrite. ThidV B. To smooth out temporal fluctuations, time averages of
coefficient is varied from 0.25 to 1.60 in the simulations. both quantities are performed over the whole stationary re-
After a transient, the dendrite reaches a stationary statgime. Obviously, the exact shape of the dendrite tip should
which is independent of the size of the initial germ. The tipdepend on the smoothing anglg. When 6, is sufficiently
then moves with a constant velociy and a rather large small this dependence is found to be linear, which allows us
portion behind the tip adopts a stable shape. A good test db unambiguously extrapolatR(6,) and A(6y) to =0
the thin-interface limit is to decrease independently the restFig. 7). Up to an overall scale factor, the dendrite tip shape
caled interface thicknes#/,/d, (or, equivalently, the diffu-
sion coefficientD 7o/W3) and the grid spacind/W, [6]. 19—
Convergence is achieved when the scaled tip velovity i
=Vdy/D is independent of both parameters. Table 1l shows

A. Steady-state shape

TABLE II. Convergence of the steady-state tip velocity with
decreasing ratidNO/dO:(Dro)/(alaZWS) and lattice parameter
h/W,. The other parameters are kept constant 0.55, 6=1.0,

6,= /200, and the kinetic coefficient is set to zero.
[ e ]
D7o/W3  Wyldy h/W, At/rg  V7o/W,  Vdy/D

3 5.42 0.4 0.008 0.158 0.0097 |
4 7.22 0.285 0.0098 12 L1 1 L
5 903 0.402 0.0089 () 0.01 0.02 0.03 0.04
4 7.22 0.2 0.002 0.285 0.0098 0
0.4 0.008 0.285 0.0098 0
0.6 0.018 0.284 0.0098 FIG. 7. Variations with the smoothing anglé, of R/d,

0.8 0.032 0.280 0.0096 (circles, 0.25(A/dg) (squareys and 50§ 74/W,) (diamond$ for
1.0 0.050 0.275 0.0094  anisotropyé=1.0. The continuous lines are linear fits to the data
points.
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80— 2 . . ——
60}

40

X

FIG. 8. Variations with the cusp amplitudeof R/d, (circles
and A/d, (squares The continuous lines are least-squares fits of FIG. 9. Same needle dendrite as in Fig. 5 after rotation, trans-
the data points to the laws given in EqS0) and (51). lation, and normalization bp=2Dp/V (solid line). Also shown is

the corresponding Ivantsov parabala —x?/2 (dashed ling Note

is very similar to the equilibrium shape, i.e., a quarter of athat here, as in Fig. 1z represents the main axis of the dendrie,
circle matching tangentially to two side facets. the axis perpendicular ta and that bothx and z coordinates are

The variations of\ (0) andR(0) with cusp amplitude are hormalized byp.
displayed in Fig. 8. The results are well fitted by the two
simple relations =2Dp/V to calculatep in all results reported thereafter. It
should be emphasized that the tip radiusf this imaginary
parabola that matches exactly the asymptotic needle crystal
shape and the true tip radiB&sare quite different as shown in
the plot of R/p versusé in Fig. 10. In particularR/p is seen
and to decrease sharply with increasifgwhile A/p approaches
a constant. These plots reflect the fact that side facets be-

A=A, (50

142
BN

R=Ry| 1+ ﬁ . (51) come elongated and extend closer to the tip that becomes
) more pointed a® increases.
The asymptotic shape of the trailing rough part away from .
the facet is well fitted by a parabola that satisfies the Ilvantsov B. Steady-state operating state
relation[20] As in previous sharp-interface calculatiofs6,17, we
define the dimensionless tip selection parameter
A=\mp & erfe(\p) (52 P P

with the Pelet number 15—
pV

Note that the reason why the asymptotic tail is a parabola
whose tip radius is predicted exactly by the Ivantsov relation
is the same as for nonfaceted groy#i,22. Namely, in a
frame that is stationary with respect to the melt, the trailing 051
rough part grows as a planar interface whose positidn
perpendicular to the growth axist'? and the Pelet number
p=x(t)[dx(t)/dt]/2D obeys the same relation as E§2),
as shown independently of lvantsov by Zeh28]. . . . .

We checked in a few simulations tha¥ is well predicted 0 0.5 1 15 2
by the Ivantsov relation, as illustrated in Fig. 9 where we
compare the phase-field interface to the lvantsov parabola
with the same tip velocity, i.e., the parabola wiih FIG. 10. Plots ofA/p and R/p for A=0.55, obtained from
=2Dp/V, wherep is the Ivantsov Pelet number and/ is  phase-field simulationésquares and circles, respectivend pre-
the steady-state tip velocity in the phase-field simulationdicted by the sharp-interface theory of Sec. (¢blid and dashed
Given this agreement, we use directly the formyla lines, respectively
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FIG. 12. Log-log plot of the dimensionless facet lendtid, as
a function of the dimensionless tip veloctd, /D for a cusp am-
plitude 6=1.0. The straight line is a linear fit to the data points
giving a slope—0.54+0.04.

FIG. 11. Tip selection paramet&=4p?V/Dd, vs cusp ampli-
tude 6 for A=0.55, extracted from the phase-field simulations
(solid circles and predicted by the approximate sharp-interface ana
lytical theory of Sec. VI(solid line).

4p2V C. Transients
C= Dd. (54 When growth is started from a circular germ, a double
0 needle is systematically observéeg. 13, independently of
the germ shape, fo$6<0.20. Initially, the two tips move
whereV is the tip velocity andp is the tip radius of the away from each other. Our simulations show that these
parabola that exactly matches the asymptotic tail of the facneedles ultimately grow practically parallel to each other at
eted needle crystal. Note thatC=8/c where o  verylongtimes, when they are separated from each other by
=2Dd,/p?V is the selection parameter that is also oftenseveral diffusion lengthé&Fig. 13.

used in dendrite growth studies. At long times, the tip of the double needle becomes com-
Eliminating p in favor of the Pelet number using the parable in shape to that of the single-needle dendFig.
relationp=2Dp/V, we can rewriteC in the form 14). Of course, the former is thinner on one side because the

latent heat accumulates in the channel between the two tips.

This similarity in shape suggests that the double-needle pat-

16D 55 tern is governed by the same operating state as the needle
Vd, (59 dendrite. Verifying this point with a sufficient accuracy is not

easy because of a still longer transient for the double-needle

A plot of C versusé with V corresponding to the steady-state
tip velocity in the phase-field simulations apdcomputed
from the Ivantsov relation for the value @f corresponding

to the simulations is shown in Fig. 11. Note tl@&¢s) has a
minimum that corresponds to a maximum of tip velocity as a
function of 8.

In experiments, the growth rate of a single material is
usually studied as a function of undercooling. Additional
simulations are thus performed for other valueaofAll the
other parameters are kept constant, except for the total time
which is increased to 706§ for A=0.45, 300G, for A
=0.50, and reduced to 1569 for A=0.60. We do not ex-
trapolateV to §,— 0 here because the computing time be-
comes prohibitively large foA <0.55. However, from the
previous results foA =0.55, we do not anticipate deviations
in the tip velocity by more than a few percefsee Fig. 7.

The plot of tip velocity versus facet length shown in Fig. 12
shows that our numerical results are consistent with the scal- F|G. 13. Time evolution of a double-needle dendrite for under-
ing law A~V~%% which was found experimentally for coolingA=0.60 and anisotropy= 1.0 (time interval between two
NH,Br needle crystal§14]. contours: 108,).

4000

y/d,

4000
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4000 the two tips remain much closer than one diffusion length
and are thus highly interdependent, which is not true for the
double faceted needle dendrite observed in the present simu-
lations.

VI. COMPARISON WITH SHARP-INTERFACE
ANALYTICAL THEORY

y/d,

A precise quantitative comparison of the phase-field re-
sults of the last section with previous sharp-interface calcu-
lations[16,17] cannot be carried out because these calcula-
tions considered the one-sided model with zero diffusivity in
the solid phase while we simulated here a symmetric model
0 "Too0 2000 3000 4000 with eq_ual diffusivitie_s _in solid and liquid. In addition, our
simulations are for finite Réet number while the sharp-
interface calculations of Ref$16,17] are restricted to the
small Pelet number limit —0). Nonetheless, the phase-

FIG. 14. Comparison between one branch of a double-needl&eld results reproduce several key features of faceted needle
dendrite (thick line) and a single-needle dendritehin line). The  growth that were predicted in the sharp-interface studies.
first curve is shifted to superimpose the two tips. Titrel500r, (1) The ratioA/p of the facet length to the tip radius of
undercoolingA =0.60, and anisotropy=1.0. the parabola that matches the asymptotic rough tail increases

with the cusp amplitude& and saturates to a value order of
dendrite. For this reason, we compare the patterns obtainaghity for large é.
for a larger undercoolingA =0.60, for which the simula- (2) The tip selection constan® has a minimum for a
tions are still quantitative but the relaxation time muchvalue of § of the order of unity. The value of that corre-
shorter than withPA=0.55. After a timet=2000r;, the tip  sponds to this minimum is large<100).
velocity of the double-needle pattern has not yet fully con- (3) For large 5, the needle shape consists of two long
verged but it tends slowly to a limit near 0.38%/7, (Fig.  facets joined by a nearly circular tip that match on to trailing
15). This is precisely the value found for the single-tip den-rough parts that become parabolic far from the tip. This is
drite, which confirms that the two asymptotic states are idenprecisely the shape proposed by Adda Bedia and Hakéh
tical. Thus, the double-needle dendrite is merely just a tip- In the remainder of this section, we develop a simple
splitting evolution of the single-tip dendrite. This splitting is analytical theory of faceted needle growth that is based on
often preferred by the system because it allows for a morghe approximate shape proposed by Adda Bedia and Hakim
efficient occupation of the available room. [16] for large &, where facets are joined by a small circular

Let us finally remark that the double needle found here igip of radiusR. We take this approximation further by assum-
not a faceted version of the generic nonfaceted growth strudng that(i) it remains valid fors of the order of unity, andi)
ture that has been termed doubl@#]. Doublons also are the trailing rough parts remain parabolic all the way to the
symmetry-broken growth shapes with a double tip. Howeverpoints at which they match tangentially the facets, as op-
posed to being parabolic only asymptotically far from the tip
[16]. These simplifications allow us to obtain a simple physi-
cal picture of faceted needle growth as well as explicit ana-

x/d

0

0.5 lytical predictions of the shape paramet&sA, andp and
the velocityV for arbitrary Pelet number, without necessi-
04 tating the numerical solution of an integral equation as in
= : Refs.[16,17]. As we shall see below, these predictions agree
i 0.3 reasonably well with our phase-field results despite our
; L simple parametrization of the steady-state shape.
02l The complete determination of the needle shaRe A,

andp) and the growth velocity for fixed A and § requires
four independent relations. The first is the Ivantsov relation
(52) that fixes the produghV. A second relation betwedR,

. . . . A, andp is simply obtained by imposing that the circular tip
0 500 1000 1500 2000 and parabolic tails match tangentially the front and trailing
ends of the facets, respectively, which yields at the relation

0.1

FIG. 15. Tip velocity as a function of time for the double-needle p=(A+R)/ \/E (56)
dendrite shown in Fig. 13. The dashed horizontal line gives the
stationary velocity obtained for the single-needle dendrite with the/Ve can check this relation by comparing the tip velocity in
same parameters. the phase-field simulations with the velocity=2Dp/p,
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FIG. 16. Variation of dimensionless tip velociyd,/D with FIG. 17. Comparison of the phase-field needle dendrite of Fig. 9

cusp amplitudes obtained from the phase-field simulations r  (solid line) with the faceted needle crystal shape assumed in the
=0.55 (solid circles and using the equatiok'=2Dp/p, where  analytical theory with a circular tip and a parabolic tédashed
p(A) is the Pelet number predicted by the Ivantsov relation, and jine). Both curves are for the same parameter vaRi¢\2p)
p=(A+R)/\2, whereA andR are the facet length and tip radius =0.25.

obtained from the phase-field shagempty circles.

wherep is the Pelet number predicted by the Ivantsov rela- ==, X|=1. (60)
tion andp is computed using Ed56) together with values of

A andRin the simulations. Figure 16 shows that these tWOThese equations describe rather accurately the phase-field
velocities are in reasonably good quantitative agreement. Thgaedle dendrite€Fig. 17). Since the isothermal lvantsov pa-
systematic deviation is most likely due to the fact that the;zpola is an exact solution of the steady-state growth prob-
crystal tail is not exactly parabolic very close to the facet. |em without capillarity, the integral relatiof67) is exactly

The two other relations needed to complete our theory argagisfied forz= — x%/2 andu=0. In contrast, as illustrated in
obtained by imposing the Gibbs-Thomson conditi@ at  Fig 9, the tip of the faceted needle crystal protrudes ahead of
the tip of the needle crystal and by using the integral form ofine tip of this parabola and hence is undercooled by a finite
this condition on the facdtEq. (5)]. For this, we need an “amountu(0). The Gibbs-Thomson conditiof) imposes a

expression for the undercooling along the interface that ige|ation between this tip undercooling and the tip radius that
obtained straightforwardly using the known boundary inte-jg simply

gral relation[25,26]

u(0)=—dq/R. (62)
+edx’ . . .
u(x)= —A+pf —exp{—p[z(x)—z(x")]} In turn, Eq.(5) provides us with a relation between the av-
e T erage undercooling on the facet and the cusp amplittide
X Ko(p\/(X_X’)Z‘F[Z(X)_Z(X,)]Z), (57) that takes the form here
1 do
whereK is the zeroth-order modified Bessel functignis V2 . dx u(x)= —2? S, (62)
V2p

given by the Ivantsov relatiotb2), andz(x) is the interface

shape with length in unit 0. For a circular tip and para- \yherex is in units ofp as above. The four relations defined
bolic tails matching tangentially side facets that make a 45%y Eqs.(52), (56), (61), and(62), together with the expres-
angle with respect to the growth axis, theoordinates of the  sjon for u on the interface defined by Eq&7)—(60), com-
front and trailing ends of the facets axe= +R/\2p andx  pletely determineR, A, p, andV. Since the producpV is

==*1, and exactly predicted by the Ivantsov relation, we only need to
compute three independent dimensionless combinations of

R2 12 PR 1 R the four above quantities to compare the predictions of the
7= ( — —x2> ——+-, 0s|xs—, (59 above theory with the phase-field results. The most meaning-

p? P 2 \/EP ful dimensionless combinations are the selection paranteter

and the two ratiosA/p and R/p. To compute those as a
function of 8, it is convenient to varfR/p and compute, 5,
7 , (59) and A/p using the following relations that are simple to de-
2 2p duce:
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o 1 with the phase-field results; this agreement is largely due to
o= —f X u(x), (64)  the fact that the needle shape assumed in the theory is a very
\/EU(O)R RI\2p good approximation to the actual growth shape observed in
the phase-field simulations. Furthermore, this theory predicts
A 1 R o5 that the scaling lawA ~V~ %2 observed both experimentally
p \/Ep ' (65) [14] and in the present phase-field simulations should hold in

the small Pelet number limit, consistent with the results of
The above predictions are compared with the phase-field rgrevious theoretical studi¢25-17.
sults in Figs. 10 and 11. The quantitative agreement between In the present study, we have established a quantitative
the two is reasonably good but not exact because the steadgemparison between phase-field and sharp-interface results
state shape that we have assumed here differs slightly frotnder the assumption that the variation of interface under-
the true shapéFig. 17 that is only exactly parabolic asymp- cooling is dominated by capillarity. Using scaling arguments,
totically far from the facet. Ben Amar and Pomealll5] have concluded that, under the
To conclude, we note that the expressiontd¢x) can be assumption that the growth of facets is dominated by a
simplified in the small Pdet number limit where Eq(57)  Franck-Read screw dislocation mechanism, theV~'2

reduces td27] scaling law still holds. While growth conditions where ki-
netic effects are negligible may exist, we suspect that such
) +oedx’ | (Xx—=x")2+[z(x)—2z(x")]? effects will generally be important in the presence of facets,
u(x)=— ——In . i i itative | -
p o 27 | (X=X )t (X 22— X212)?2 as widely believed. Therefore, a quantitative incorporation of

66) facet kinetics in a phase-field model remains an important
task for the future. The phase-field model as formulated thus
Therefore, bothu(0) and the integral ofi(x) along the facet far reproduces a linear relationship between the planar inter-
are simply proportional to the Blet number in this limit and  face velocity and interface undercooling appropriate for a
henceC, R/p, and A/p are only functions ofs. Further- rough interface. On facets, however, standard growth mecha-
more, it is straightforward to deduce thatp— 2, R/p  Nisms such as screw dislocations or ledge nucleation lead to
—0, andC~ & in the larges limit. Hence this theory pre- @ nonlinear relationship between velocity and undercooling.
dicts the scaling lawh ~V~ 12 that is a simple consequence These relationships could potentially be incorporated in the

of the fact thatA/p and C~ p2V are constants in the small phase-field model by letting the kinetic relaxation time
Peclet number limit. depend on temperature or supersaturation, in addition to ori-

entation.

Another interesting future prospect is to model the direc-
tional solidification of alloys with faceted interfacE28—3Q

In conclusion, we have shown that the phase-field apby combining the present methodology to handle cusped
proach can be successfully extended to model the solidificgplots with a recent thin-interface phase-field formulation of
tion of faceted materials. Our approach, which consists oflloy solidification[9].
rounding the cusps in the plot, converges well in the limit
of sharp cusps for both equilibrium and nonequilibrium
growth shapes with facets. Even though we have considered
a simple form of they plot, the method should be applicable  A.K. wishes to acknowledge the hospitality of the Lab-
to more complexy plots where the interface stiffness varies oratoire Mateiaux et Microdectronique de Provence, Uni-
on the rough parts. versited’Aix-Marseille Il where this work was initiated, as

In addition, we have developed an approximate analyticalvell as the support of the U.S. Department of Energy
theory of faceted needle growth that includes capillarity andhrough Grant No. DE-FG02-92ER45471. We also thank
assumes circular and parabolic forms for the front and trailVVincent Hakim and Klaus Kassner for valuable discussions.
ing rough parts of steady-state needle crystals, respectivelfhis research benefited from computer time allocation at the
This theory yields explicit predictions of tip velocity and Advanced Scientific Computation Center at Northeastern
facet length that are in good overall quantitative agreementniversity.

VII. CONCLUDING REMARKS
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