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Phase-field approach for faceted solidification
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We extend the phase-field approach to model the solidification of faceted materials. Our approach consists of
using an approximateg plot with rounded cusps that can approach arbitrarily closely the trueg plot with sharp
cusps that correspond to faceted orientations. The phase-field equations are solved in the thin-interface limit
with local equilibrium at the solid-liquid interface@A. Karma and W.-J. Rappel, Phys. Rev. E53, R3017
~1996!#. The convergence of our approach is first demonstrated for equilibrium shapes. The growth of faceted
needle crystals in an undercooled melt is then studied as a function of undercooling and the cusp amplituded
for a g plot of the formg5g0@11d(usinuu1ucosuu)#. The phase-field results are consistent with the scaling
law L;V21/2 observed experimentally, whereL is the facet length andV is the growth rate. In addition, the
variation of V and L with d is found to be reasonably well predicted by an approximate sharp-interface
analytical theory that includes capillary effects and assumes circular and parabolic forms for the front and
trailing rough parts of the needle crystal, respectively.
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I. INTRODUCTION

Over the last decade, the phase-field approach@1,2# has
been developed extensively to model the solidification
both pure materials and alloys@3#. Most of the work to date
has focused on the case where the excess free energy o
solid-liquid interface

g[g0f ~u! ~1!

is a smooth function of the angleu between the direction
normal to the interface and some fixed crystalline axis.
particular, the simple form

f ~u!511e cos 4u1•••, ~2!

appropriate for a weakly anisotropic material with an und
lying cubic symmetry, has been widely used in studies
dendritic solidification@4–9#. For a smoothg plot, the value
of the diffusion field~dimensionless undercooling or supe
saturation! at the interface is given by the standard Gibb
Thomson condition

u52d0F f 1
d2f

du2Gk, ~3!

where d0 is a microscopic capillary length~thermal or
chemical! that is proportional tog0 and k is the interface
curvature. Dendritic growth in pure materials@6–8# and al-
loys @9# has been modeled quantitatively with a thi
interface limit @6# of the phase-field model that yields th
boundary condition~3! and overcomes the stringent comp
tational constraint associated with a finite interface thickne
These simulation studies modeled the common situation
1063-651X/2003/68~4!/041604~13!/$20.00 68 0416
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weak anisotropy where the interface stiffnessg1d2g/du2,
and hence the square bracket in Eq.~3!, is everywhere posi-
tive. More recently, the phase-field approach has also b
successfully extended to model strongly anisotropic equi
rium crystal shapes where the stiffness becomes negativ
some range ofu @10#. In this case, which occurs for examp
whene.1/15 for form~2! of f (u), the slope of the interface
has discontinuities that must be present to eliminate ther
dynamically unstable, and hence forbidden, orientations
which the stiffness is negative.

In this paper, we extend the phase-field approach to mo
a wide class of materials that form facets for a discrete se
orientations. The interfacial energy is generally nonanaly
for orientations close to a facet. This nonanalyticity is r
flected in the presence of cusps in theg plot that are of the
form

f ~u!'11d uu2ucu1••• for uu2ucu!1, ~4!

whereu5uc is the orientation of a given facet. In the sim
plest model where vicinal surfaces are assumed to consi
straight ledges of heighta separated by terraces of widthl
'a/uu2ucu, the cusp amplituded5gL /(ag0) wheregL is
the ledge energy per unit length.

To a good first approximation, the tendency of a mate
to facet is described by Jackson’s well-knowna factor @11#
that is the product of a dimensionless crystallographic fac
that depends on the crystal structure and the orientatio
the interface and the ratio of the latent heat per mole to
rare gas constant. Jackson’s theory predicts that mate
with a<2 ~such as metals with low entropy of melting! will
have rough interfaces, while those witha>2 ~such as non-
©2003 The American Physical Society04-1
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DEBIERREet al. PHYSICAL REVIEW E 68, 041604 ~2003!
metals and compounds! will form facets, consistent with ex
perimental observations across a wide range of mate
@12#.

The growth of faceted dendrites has been studied b
experimentally@13,14# and theoretically in the context of
sharp-interface approach@15–17#. Experimentally, facets are
seen to appear near the tip of the needle crystal that ne
theless retains a parabolic shape on the larger scale o
whole crystal that includes the trailing rough parts. From
theoretical standpoint, a main difficulty to model facet
growth is that the standard Gibbs-Thomson relation can o
be applied to rough parts of the interface. On a facet,
relation takes the form of an integral condition that is o
tained by making the substitutionk5du/ds, where s de-
notes the arclength along the interface, and integrating b
sides of Eq.~3! from one extremity (s2) of the facet to the
other (s1). This integration yields the condition

E
s2

s1

u ds52d0S d f

du U
1

2
d f

duU
2
D 522 d0 d, ~5!

whered f /duu6 denotes the limiting values ofd f /du on each
side of the cusp (u2uc→06).

For an equilibrium crystal with a constant undercooling
supersaturation (u,0) along the interface, the above cond
tion implies that the lengthL of the facet is simply propor-
tional to the amplitude of the cusp

L52
d0

2u
d. ~6!

For growth outside of equilibrium, the determination of t
facet length and the shape of the rough parts require
general a self-consistent solution of the free-boundary pr
lem defined by the appropriate diffusion equations foru in
solid and liquid, the standard Stefan condition of heat
mass conservation on the interface, and the local equilibr
conditions~3! and~5! on rough parts and facets, respective

An analytical solution to this problem was obtained f
steady-state growth by Adda-Bedia and Hakim@16# in the
small Péclet number limit neglecting capillary effects on th
rough parts. They concluded from this analysis that it is
possible to require both tangential matching of the rough
faceted parts of the interface and the equilibrium condit
(u'0) on the front and trailing rough parts. Furthermo
they proposed an approximate solution to the full probl
that includes capillary effects on the rough parts in the la
d limit. In this solution, the facets are assumed to ma
tangentially to a small quasicircular tip that is significan
more undercooled than the rough trailing parts. A numer
solution of the steady-state growth problem was later
tained for arbitraryd by Adda-Bedia and Ben Amar@17#
using a boundary integral method. This calculation gave
sults that are consistent with the approximate solution
Adda Bedia and Hakim for larged.

At present, a phase-field approach for faceted gro
would be highly desirable to study the stability of need
crystal solutions as well as to explore the full dynamic
range of morphological evolution when the interface shap
04160
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nonstationary. Treating separately the rough and faceted p
of the interface appears to be difficult within a phase-fie
formulation. To circumvent this difficulty, we follow a pro
cedure that is similar in spirit, but different in details, to th
one introduced by Adda Bedia and Ben Amar@17# in a sharp-
interface context. The basic idea is to use a regularized f
of the g plot that can approximate arbitrarily closely theg
plot with sharp cusps. The discontinuity ofd f /du at a cusp
can be viewed mathematically as the stiffness behaving
sharply peaked Diracd function atu5uc . Therefore, differ-
ent regularizations of this discontinuity can be viewed
different regularizations of thisd function peak that mus
satisfy the cusp condition

lim
u0→0

E
uc2u0

uc1u0
duF f 1

d2f

du2G52d, ~7!

imposed by form~4! of f near a cusp. Adda Bedia and Be
Amar have introduced regularizations in which all deriv
tives of the stiffness and hencef are continuous. In a phase
field context, we have found it more convenient to use
regularization where onlyf and its first derivative are con
tinuous and the dimensionless stiffnessf 1d2f /du2 is a step
function regularization of thed function, f 1d2f /du2

'd/u0 for uc2u0<u<uc1u0. In practice, computations
for small u0 turn out to be more costly because the larg
stiffness ('d/u0) requires a smaller time step. As we sha
see, however, an accurate extrapolation to theu0→0 limit is
nevertheless possible.

It is important to emphasize that this paper only rep
sents a first step in the extension of the phase-field appro
to faceted materials. In this first step, we focus on capill
effects and purposely neglect the kinetic undercooling of
interface in order to relate quantitatively the phase-field
sults to sharp-interface theory in a well-studied limit@16,17#.
Coping with the presence of cusps in theg plot, which is the
main difference between faceted and nonfaceted growth
far as capillary effects are concerned, already represen
nontrivial task that is best handled separately. In future wo
we plan to build on the methodology developed in this pa
to model different nonlinear relationships between a fin
interface undercooling and the interface velocity, which a
known to be associated with different crystal growth mec
nisms~such as island nucleation and spiral growth@12#!.

The phase-field model and the details of this smooth
procedure are described in the following section. The
merical implementation of the equations is then presente
Sec. III. The convergence of our numerical approach is de
onstrated in Sec. IV by a detailed comparison of diffus
interface and sharp-interface equilibrium crystal shapes.
sults concerning the steady-state growth of faceted ne
crystals in a pure undercooled melt are then presented in
V. These results are then compared in Sec. VI to the pre
tions of an approximate sharp-interface theory that assu
simple forms for the front and trailing rough parts as
extension of the solution proposed in Ref.@16#. Concluding
remarks and future prospects are then discussed in Sec
4-2



er
in
e

ul
fly
th
rp

T

in
lds

e

el

i
in
th
th

on

on
i
t

th

el
ces
ace

i-
cs

s

st
ed,

re-
a

nt,
-

y

PHASE-FIELD APPROACH FOR FACETED SOLIDIFICATION PHYSICAL REVIEW E68, 041604 ~2003!
II. PHASE-FIELD MODEL

We consider the growth of a crystal from a pure und
cooled melt with the thermal diffusivity being the same
the solid and liquid. We follow the phase-field approach d
veloped by Karma and Rappel@6# that has proven successf
to model efficiently nonfaceted dendritic growth. We brie
recall the basic features of the phase-field model and of
thin-interface limit used to relate the phase-field and sha
interface models.

The dimensionless temperature field is defined asu5(T
2TM)/(L/cp), whereT is the temperature,TM is the melting
temperature,L is the latent heat per unit volume, andcp is
the specific heat at constant pressure per unit volume.
phase fieldc is taken to be equal to11 (21) in the solid
~liquid! phase and varies continuously across the diffuse
terface. In two dimensions, the time evolution of both fie
is governed by the equations

] tu5D¹2u1 1
2 ] tc ~8!

and

t~u!] tc5@c2lu~12c2!#~12c2!1¹W •@W~u!2¹W c#

2]x@W~u!W8~u!]yc#1]y@W~u!W8~u!]xc#,

~9!

whereD is the thermal diffusivity,u is the angle between th
normal to the interface and thex axis, l is a dimensionless
coupling constant between the temperature and phase fi
and

W~u![W0f ~u! ~10!

is the diffuse-interface thickness. In the thin-interface lim
whereW0 is much smaller than the mesoscale of the grow
crystal @6#, the above phase-field equations reduce to
standard sharp-interface model of diffusion-limited grow
with the velocity-dependent form of the Gibbs-Thoms
condition

u52d0F f ~u!1
d2f ~u!

du2 Gk2b~u!vn , ~11!

where

d05
a1W0

l
~12!

and

b~u!5
a1

l

t~u!

W~u!F12a2l
W~u!2

Dt~u!G . ~13!

In addition,a1 anda2 are constants that depend generally
the choice of the double-well potential and other functions
the phase-field model. For the present choices that are
same as in Refs.@6#, a150.8839 . . . anda250.6267 . . . .

To model faceted growth, we use the simplest form of
g plot,
04160
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f ~u!511d~ usinuu1ucosuu!. ~14!

This form is directly adapted from the broken-bond mod
which describes satisfactorily faceted solid-gas interfa
@18#. The same form was used in previous sharp-interf
calculations@16,17#.

Furthermore, in order to model the limit with local equ
librium at the interface, i.e., vanishing interface kineti
b(u)50, we impose@6#

t~u!5t0f ~u!2 ~15!

and

l5
1

a2

Dt0

W0
2 , ~16!

which makesb(u) vanish for all values ofu.
For the above choice ofg plot, the dimensionless stiffnes

defined by

S~u![ f ~u!1
d2f ~u!

du2
~17!

is constant except at the cusps,u5uc,n5np/2 ~with n an
integer!, where it diverges. The discontinuities in the fir
derivative of the interfacial energy need to be regulariz
since f 8(u) is not defined foru5uc,n . A simple strategy to
circumvent this problem is to smooth out the cusps by
placing f (u) with a smooth function sucha as a sine in
small range ofu values around the cusps~Fig. 1!. For the
sake of clarity, we restrict our discussion to the first quadra
uP@0,p/2#, since the problem has a natural fourfold sym
metry. The smoothed anisotropy functionf s(u) then reads

FIG. 1. Three functions of the interface orientation angleu rep-
resented for a cusp amplituded51.0. Solid line: anisotropy func-
tion with sharp cusps,f (u). Dashed line: smoothed anisotrop
function, f s(u). Dotted line: dimensionless stiffness,f s(u)
1 f s9(u). A large smoothing angleu05p/10 is used here to make
the difference betweenf and f s visible.
4-3
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f s~u!55
11d~sinu1cosu! if u0,u,

p

2
2u0

B2A cosu if u<u0

B2A sinu if u>
p

2
2u0 ,

~18!

and its derivative

f s8~u!55
d~cosu2sinu! if u0,u,

p

2
2u0

A sinu if u<u0

2A cosu if u>
p

2
2u0 .

~19!

The two constantsA and B are obtained by expressing th
continuity of f s and f s8 at u5u0,

A5d~cotu021! ~20!

and

B511d/sinu0 . ~21!

Now f s8(0)5 f s8(p/2)50 andW(u) is no more singular in
the cusp directions. Note, however, thatf s9 is not continuous
at u5u0. Consequently, the dimensionless stiffness is a s
function of u ~see Fig. 1!,

S~u!5H 1 if u0,u,
p

2
2u0

11d/sinu0 if u<u0 or u>
p

2
2u0 .

~22!

III. NUMERICAL IMPLEMENTATION

We now briefly describe how Eqs.~8! and ~9! are dis-
cretized in our code. The interface is represented by thc

50 contour, so that¹W c is by construction collinear to the
unit vector along the normal to the interface,n. If u¹W cu
Þ0, the two components of this vector are given by

nx5cosu52]xc/u¹W cu ~23!

and

ny5sinu52]yc/u¹W cu, ~24!

and f s and f s8 are computed according to Eqs.~18! and~19!.

Conversely, whenu¹W cu50, one sets

f s~u!51 ~25!

and

f s8~u!50. ~26!
04160
p

Equations~25! and ~26! are imposed in places where th
phase-field gradient vanishes because the unit vector no
to the interface loses its meaning far from the interface. W
this choice, the phase-field simply relaxes to a local mi
mum of the free-energy density (61) deep inside the liquid
or solid phase, where the temperature field obeys a sim
diffusion equation. Numerical simulations of Eqs.~8! and~9!
are performed by implementing a finite-difference scheme
a regular square mesh with mesh sizeh50.4W0. The do-
main considered is the quadrant 0<x<Nh and 0<y<Nh,
with N an integer. A standard first order in time Euler sche
with a time stepDt and a second order in space discretiz
tion of the spatial derivatives are used.

Let ui , j and c i , j , respectively, denote the discretized r
duced temperature and phase field at point (x5 ih,y5 jh).
In a first step, one computes¹2u, ¹2c, ]xc, ]yc,
W(u)W8(u), andW(u) for each point of the extended do
main, i and j P@21,N11#, and the results are stored in s
intermediate arrays. Reflecting conditions are imposed ou
and c at all the domain boundaries (i or j 522,21,N
11,N12), and using centered differencing approximatio
we have

¹2ui , j5@ui 11,j1ui 21,j1ui , j 111ui , j 2124ui , j #/h
2,

~27!

¹2c i , j5@c i 11,j1c i 21,j1c i , j 111c i , j 2124c i , j #/h
2,

~28!

]xc i , j5@c i 11,j2c i 21,j #/~2h!, ~29!

]yc i , j5@c i , j 112c i , j 21#/~2h!. ~30!

The two remaining arrays (WW8) i , j and Wi , j are given by
Eq. ~10! into which f is replaced withf s .

In the second step, one solves Eqs.~8! and ~9! on the
inner points of the domain,i and j P@0,N#. To do so, the last
three terms in Eq.~9! are written in a slightly different form,

W~u!2¹2c12W~u!¹W W~u!•¹W c2~]yc!]x@W~u!W8~u!#

1~]xc!]y@W~u!W8~u!#, ~31!

so that each new term can be computed with the help of
intermediate arrays. For instance, the last term is discret
as

~]xc i , j !@~WW8! i , j 112~WW8! i , j 21#/~2h!. ~32!

IV. EQUILIBRIUM SHAPES

A. Comparison between analytical and phase-field results

We first check our code by computing the equilibriu
shape of the crystal. In thermal equilibrium,u52D every-
where, and the evolution equation for the phase field redu
to
4-4
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t~u!] tc5@c1lD~12c2!#~12c2!1W~u!2¹2c

12W~u!¹W W~u!•¹W c2~]yc!]x@W~u!W8~u!#

1~]xc!]y@W~u!W8~u!#. ~33!

Initially, the solid is given a circular~or a square! shape and
the undercooling is set toD5D0. Time integration of Eq.
~33! is performed and the interface velocity along thex axis,
Vx , is computed at regular time intervals. IfVx.0, D is
decreased and it is increased ifVx,0. The incrementdD is
divided by a constanta.1 each timeVx changes sign. This
procedure is repeated as long asdD is larger than some
prescribed value,dDmin . This scheme is known to converg
to an equilibrium state@6#.

The analytical equilibrium shape is given by

x̃5x~u!/R05 f s~u!cosu2 f s8~u!sinu,

ỹ5y~u!/R05 f s~u!sinu1 f s8~u!cosu, ~34!

where R05d0 /D @19#. Let us consider one-eighth of thi
interface corresponding touP@p/4,p/2# ~Fig. 2!. In the cusp
regionuP@p/22u0 ,p/2#, one has

x̃~u!5B cosu,

ỹ~u!5~B sinu2A!, ~35!

so that the interface is the circle of center (0,2A) and radius
B. Since the smoothed cusps are very narrow in prac
(u0!1) this circle arc is very flat; it tends to the straig
horizontal facet asu0→0. The right end of this interface
portion lies at

x̃r5 x̃~p/22u0!5B sinu0 ,

ỹr5 ỹ~p/22u0!5B cosu02A, ~36!

FIG. 2. Analytical equilibrium shape for anisotropyd51.0 and
smoothing angleu05p/200. Pr is the rightmost point of the
‘‘facet,’’ Pt is the intersection point with thex5y line, andPc is the

center of the arc circlePr Pt
& .
04160
e

where the local slope is

ỹr8~ x̃r !52tanu0 . ~37!

On the other hand, foruP@p/4,p/22u0# the crystal is
bounded by the circle centered at pointPc(d,d) ~i.e., x5y
5d) of rescaled radius unity, for which

R̃5~ x̃t2 x̃r !A2512A2 sinu0 ~38!

is a good first-order approximation whenu0!1 ~Fig. 2!.
Note that, asu0→0, one recovers the equilibrium shap

for the sharp cusp, with a horizontal facet of length

L̃52x̃r→2d ~39!

matching tangentially a circle of rescaled radius unity.
As shown in Fig. 3, the whole crystal shape is well rep

duced by the phase-field equilibrium code. A close exami
tion of the numerical data points reveals that the impo
anisotropy is underestimated by about 0.2% in the numer
independently ofu0.

B. Numerical estimates for the facet ends

The knowledge of the analytical equilibrium shape guid
us to define a numerical procedure to extract estimates o
facet lengthL and corner radiusR from discrete interfaces
obtained with the phase-field code. On the square mesh
interface consists in a list of pointsPi(xi ,yi). According to
Eq. ~37!, the two facet ends are located at the pointsPr and
Pl where the absolute value of the local slope rapidly
creases beyond tanu0 ~Fig. 4!. The method used to comput
the two end points is thus to compare the derivative of
equilibrium curve]xy with tanu0. Using centered differ-
ences,

]xyi5
yi 112yi 21

xi 112xi 21
, ~40!

FIG. 3. Comparison of the analytical equilibrium shape~line!
with the phase-field solid-liquid interface~dots! for d50.2,0.5,1.0
~from left to right! andu05p/200.
4-5
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gives an error of about 5% on both measures. On the o
hand, using the one-sided approximations

]xyi u25
yi2yi 21

xi2xi 21
~41!

to computePr and

]xyi u15
yi 112yi

xi 112xi
~42!

to computePl , estimates ofL andR are only 0.5% off the
exact values~see Table I!. This last estimation procedure
thus more precise and it is readily extended to the cas
growth shapes in what follows.

C. Sharp cusp limit

One may still wonder if the sharp cusp limit (u0→0) is
reachable within our numerical approach. To answer
question, it is better to develop Eq.~33! in terms of the
second partial derivatives ofc. One then gets

t~u!] tc5@c1lD~12c2!#~12c2!

1W0
2@Cxx]xxc1Cxy]xyc1Cyy]yyc#, ~43!

TABLE I. Comparison of the facet length~first column! and
corner radius~second column! of the equilibrium shape ford
51.0 andu05p/200. Analytical values are compared with es
mates from phase-field data analyzed with two different interpo
tion methods.

x̃r2 x̃l ( x̃t2 x̃r)A2

1.950 1.034 Centered diff. approx.@Eq. ~40!#

2.023 0.983 One-sided approx.@Eqs.~41! and ~42!#

2.031 0.978 Analytical

FIG. 4. Closeup of the phase-field equilibrium shape in the
gion of the smooth facet (d51.0, u05p/200). Dots represent the
interface pointsPi .
04160
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Cxx5H 11d~3ucosuu2ucos3uu1usin3uu!1d2

A21B22ABucosuu~21sin2u!

B22ABusin3uu,
~44!

Cxy5H 2d~sscos3u1scsin3u!12d2sssc

22ABscsin3u

22ABsscos3u,

~45!

and

Cyy5H 11d~3usinuu2usin3uu1ucos3uu!1d2

B22ABucos3uu

A21B22ABusinuu~21cos2u!

~46!

for u0,u,p/22u0 , u<u0, andu>p/22u0, respectively.
The symbolsss andsc represent the signs (61) of sinu and
cosu.

The time stepDt must be sufficiently small to ensur
convergence of the finite-difference scheme, the most st
gent constraint onDt arising foru5u0:

Dt<
t0

W0
2

h2

2 F f s
2~u0!

Cxx~u0!1Cyy~u0!
G . ~47!

As u0!1, this approximates to

Dt<
t0

W0
2

h2

2 S 11d

d D u0 . ~48!

It is thus always possible to reduceu0 provided thatDt is
decreased in proportion. AlthoughDt depends on the cus
amplituded, the time step can still be kept constant wh
maintaining numerical stability by imposing

u05K
d

11d
, ~49!

with K some constant. In the numerical simulations, we ty
cally take K5p/100, so thatDt/t0<0.0025 . . . . In prac-
tice, we rather use the discretization scheme describe
Sec. III than the fully developed version given in Eqs.~43!–
~46!. The former proves to be more precise and more sta
than the latter, so that a larger time stepDt/t050.008 can be
used.

V. FACETED NEEDLE GROWTH

We now turn to nonequilibrium growth shapes. The tim
evolution of a needle dendrite is illustrated in Fig. 5 for
cusp amplituded51, diffusion coefficientDt0 /W0

254, and
undercoolingD50.55. The size of the simulation box i
600W03600W0. For reasons of symmetry, it is sufficient t
grow one-half of the dendrite~herey>x). We checked that
identical patterns are obtained when the whole quadran
used. The initial conditions for the phase field arec51 if
both 0<x<20W0 and 0<y<20W0 andc521 otherwise.

-

-
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This square shape is imposed to the solid germ in orde
get a dendrite with a single tip along thex5y direction.
Conversely, rounded initial shapes, such as a circle, alw
result into tip splitting along the growth direction, leading
more complicated patterns which will be discussed later. T
temperature fieldu is initially set to zero inside the solid
germ and to2D outside. Reflecting conditions are impos
at all the domain boundaries.

We first focus on the influence of the anisotropy coe
cient d on the dynamics of the faceted needle dendrite. T
coefficient is varied from 0.25 to 1.60 in the simulation
After a transient, the dendrite reaches a stationary s
which is independent of the size of the initial germ. The
then moves with a constant velocityV and a rather large
portion behind the tip adopts a stable shape. A good tes
the thin-interface limit is to decrease independently the r
caled interface thicknessW0 /d0 ~or, equivalently, the diffu-
sion coefficientDt0 /W0

2) and the grid spacingh/W0 @6#.

Convergence is achieved when the scaled tip velocityṼ
5Vd0 /D is independent of both parameters. Table II sho

TABLE II. Convergence of the steady-state tip velocity wi
decreasing ratioW0 /d05(Dt0)/(a1a2W0

2) and lattice paramete
h/W0. The other parameters are kept constant,D50.55, d51.0,
u05p/200, and the kinetic coefficient is set to zero.

Dt0 /W0
2 W0 /d0 h/W0 Dt/t0 Vt0 /W0 Vd0 /D

3 5.42 0.4 0.008 0.158 0.0097
4 7.22 0.285 0.0098
5 9.03 0.402 0.0089
4 7.22 0.2 0.002 0.285 0.0098

0.4 0.008 0.285 0.0098
0.6 0.018 0.284 0.0098
0.8 0.032 0.280 0.0096
1.0 0.050 0.275 0.0094

FIG. 5. Time evolution of a faceted dendrite for undercooli
D50.55, smoothing angleu05p/200, and anisotropyd51.0. The
time interval between two successive curves is 100t0.
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that the results are reasonably well converged for the va
Dt0 /W0

254 andh/W050.4 used in our simulations.

A. Steady-state shape

The steady-state interface shape can be divided into t
distinct parts: a nearly circular tip of radiusR, a smooth
‘‘facet’’ of length L, and a trailing rough tail~Fig. 6!. Esti-
mates ofR5(xt2xr)A2 andL5xr2xl are obtained by us-
ing the numerical interpolation method described in S
IV B. To smooth out temporal fluctuations, time averages
both quantities are performed over the whole stationary
gime. Obviously, the exact shape of the dendrite tip sho
depend on the smoothing angleu0. Whenu0 is sufficiently
small this dependence is found to be linear, which allows
to unambiguously extrapolateR(u0) and L(u0) to u050
~Fig. 7!. Up to an overall scale factor, the dendrite tip sha

FIG. 6. Enlargement of the foremost dendrite tip of Fig. 5. T
tip is further enlarged and shifted to the lower-left corner~larger
dots!.

FIG. 7. Variations with the smoothing angleu0 of R/d0

~circles!, 0.25(L/d0) ~squares!, and 50(Vt0 /W0) ~diamonds! for
anisotropyd51.0. The continuous lines are linear fits to the da
points.
4-7
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is very similar to the equilibrium shape, i.e., a quarter o
circle matching tangentially to two side facets.

The variations ofL(0) andR(0) with cusp amplitude are
displayed in Fig. 8. The results are well fitted by the tw
simple relations

L5L0F11
d

dL
G ~50!

and

R5R0F11
dR

d G . ~51!

The asymptotic shape of the trailing rough part away fr
the facet is well fitted by a parabola that satisfies the Ivant
relation @20#

D5ApAp ep erfc~Ap! ~52!

with the Péclet number

p[
rV

2D
. ~53!

Note that the reason why the asymptotic tail is a parab
whose tip radius is predicted exactly by the Ivantsov relat
is the same as for nonfaceted growth@21,22#. Namely, in a
frame that is stationary with respect to the melt, the trail
rough part grows as a planar interface whose positionx(t)
perpendicular to the growth axis;t1/2 and the Pe´clet number
p[x(t)@dx(t)/dt#/2D obeys the same relation as Eq.~52!,
as shown independently of Ivantsov by Zener@23#.

We checked in a few simulations thatrV is well predicted
by the Ivantsov relation, as illustrated in Fig. 9 where
compare the phase-field interface to the Ivantsov para
with the same tip velocity, i.e., the parabola withr
52Dp/V, wherep is the Ivantsov Pe´clet number andV is
the steady-state tip velocity in the phase-field simulati
Given this agreement, we use directly the formular

FIG. 8. Variations with the cusp amplituded of R/d0 ~circles!
and L/d0 ~squares!. The continuous lines are least-squares fits
the data points to the laws given in Eqs.~50! and ~51!.
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52Dp/V to calculater in all results reported thereafter.
should be emphasized that the tip radiusr of this imaginary
parabola that matches exactly the asymptotic needle cry
shape and the true tip radiusR are quite different as shown in
the plot ofR/r versusd in Fig. 10. In particular,R/r is seen
to decrease sharply with increasingd, while L/r approaches
a constant. These plots reflect the fact that side facets
come elongated and extend closer to the tip that beco
more pointed asd increases.

B. Steady-state operating state

As in previous sharp-interface calculations@16,17#, we
define the dimensionless tip selection parameter

f FIG. 9. Same needle dendrite as in Fig. 5 after rotation, tra
lation, and normalization byr52Dp/V ~solid line!. Also shown is
the corresponding Ivantsov parabolaz52x2/2 ~dashed line!. Note
that here, as in Fig. 17,z represents the main axis of the dendritex
the axis perpendicular toz, and that bothx and z coordinates are
normalized byr.

FIG. 10. Plots ofL/r and R/r for D50.55, obtained from
phase-field simulations~squares and circles, respectively! and pre-
dicted by the sharp-interface theory of Sec. VI~solid and dashed
lines, respectively!.
4-8



fa

en

te

s

i
a

tim

e

s

12
ca
r

le

se
at

r by

m-

the
tips.
pat-
edle
ot
edle

ns
na ts

er-
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C[
4r2V

Dd0
, ~54!

where V is the tip velocity andr is the tip radius of the
parabola that exactly matches the asymptotic tail of the
eted needle crystal. Note thatC58/s where s
52Dd0 /r2V is the selection parameter that is also oft
used in dendrite growth studies.

Eliminating r in favor of the Pe´clet number using the
relationr52Dp/V, we can rewriteC in the form

C5
16D

Vd0
p2. ~55!

A plot of C versusd with V corresponding to the steady-sta
tip velocity in the phase-field simulations andp computed
from the Ivantsov relation for the value ofD corresponding
to the simulations is shown in Fig. 11. Note thatC(d) has a
minimum that corresponds to a maximum of tip velocity a
function of d.

In experiments, the growth rate of a single material
usually studied as a function of undercooling. Addition
simulations are thus performed for other values ofD. All the
other parameters are kept constant, except for the total
which is increased to 7000t0 for D50.45, 3000t0 for D
50.50, and reduced to 1500t0 for D50.60. We do not ex-
trapolateV to u0→0 here because the computing time b
comes prohibitively large forD,0.55. However, from the
previous results forD50.55, we do not anticipate deviation
in the tip velocity by more than a few percent~see Fig. 7!.
The plot of tip velocity versus facet length shown in Fig.
shows that our numerical results are consistent with the s
ing law L;V20.5, which was found experimentally fo
NH4Br needle crystals@14#.

FIG. 11. Tip selection parameterC54r2V/Dd0 vs cusp ampli-
tude d for D50.55, extracted from the phase-field simulatio
~solid circles! and predicted by the approximate sharp-interface a
lytical theory of Sec. VI~solid line!.
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C. Transients

When growth is started from a circular germ, a doub
needle is systematically observed~Fig. 13!, independently of
the germ shape, ford<0.20. Initially, the two tips move
away from each other. Our simulations show that the
needles ultimately grow practically parallel to each other
very long times, when they are separated from each othe
several diffusion lengths~Fig. 13!.

At long times, the tip of the double needle becomes co
parable in shape to that of the single-needle dendrite~Fig.
14!. Of course, the former is thinner on one side because
latent heat accumulates in the channel between the two
This similarity in shape suggests that the double-needle
tern is governed by the same operating state as the ne
dendrite. Verifying this point with a sufficient accuracy is n
easy because of a still longer transient for the double-ne

-

FIG. 12. Log-log plot of the dimensionless facet lengthL/d0 as
a function of the dimensionless tip velocityVd0 /D for a cusp am-
plitude d51.0. The straight line is a linear fit to the data poin
giving a slope20.5460.04.

FIG. 13. Time evolution of a double-needle dendrite for und
cooling D50.60 and anisotropyd51.0 ~time interval between two
contours: 100t0).
4-9
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dendrite. For this reason, we compare the patterns obta
for a larger undercooling,D50.60, for which the simula-
tions are still quantitative but the relaxation time mu
shorter than withD50.55. After a timet52000t0, the tip
velocity of the double-needle pattern has not yet fully co
verged but it tends slowly to a limit near 0.397W0 /t0 ~Fig.
15!. This is precisely the value found for the single-tip de
drite, which confirms that the two asymptotic states are id
tical. Thus, the double-needle dendrite is merely just a
splitting evolution of the single-tip dendrite. This splitting
often preferred by the system because it allows for a m
efficient occupation of the available room.

Let us finally remark that the double needle found here
not a faceted version of the generic nonfaceted growth st
ture that has been termed doublon@24#. Doublons also are
symmetry-broken growth shapes with a double tip. Howev

FIG. 14. Comparison between one branch of a double-ne
dendrite~thick line! and a single-needle dendrite~thin line!. The
first curve is shifted to superimpose the two tips. Timet51500t0,
undercoolingD50.60, and anisotropyd51.0.

FIG. 15. Tip velocity as a function of time for the double-need
dendrite shown in Fig. 13. The dashed horizontal line gives
stationary velocity obtained for the single-needle dendrite with
same parameters.
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the two tips remain much closer than one diffusion leng
and are thus highly interdependent, which is not true for
double faceted needle dendrite observed in the present s
lations.

VI. COMPARISON WITH SHARP-INTERFACE
ANALYTICAL THEORY

A precise quantitative comparison of the phase-field
sults of the last section with previous sharp-interface cal
lations @16,17# cannot be carried out because these calcu
tions considered the one-sided model with zero diffusivity
the solid phase while we simulated here a symmetric mo
with equal diffusivities in solid and liquid. In addition, ou
simulations are for finite Pe´clet number while the sharp
interface calculations of Refs.@16,17# are restricted to the
small Péclet number limit (p→0). Nonetheless, the phase
field results reproduce several key features of faceted ne
growth that were predicted in the sharp-interface studies

~1! The ratioL/r of the facet length to the tip radius o
the parabola that matches the asymptotic rough tail incre
with the cusp amplituded and saturates to a value order
unity for larged.

~2! The tip selection constantC has a minimum for a
value ofd of the order of unity. The value ofC that corre-
sponds to this minimum is large (;100).

~3! For larged, the needle shape consists of two lon
facets joined by a nearly circular tip that match on to traili
rough parts that become parabolic far from the tip. This
precisely the shape proposed by Adda Bedia and Hakim@16#.

In the remainder of this section, we develop a simp
analytical theory of faceted needle growth that is based
the approximate shape proposed by Adda Bedia and Ha
@16# for larged, where facets are joined by a small circul
tip of radiusR. We take this approximation further by assum
ing that~i! it remains valid ford of the order of unity, and~ii !
the trailing rough parts remain parabolic all the way to t
points at which they match tangentially the facets, as
posed to being parabolic only asymptotically far from the
@16#. These simplifications allow us to obtain a simple phy
cal picture of faceted needle growth as well as explicit a
lytical predictions of the shape parametersR, L, andr and
the velocityV for arbitrary Pe´clet number, without necessi
tating the numerical solution of an integral equation as
Refs.@16,17#. As we shall see below, these predictions ag
reasonably well with our phase-field results despite
simple parametrization of the steady-state shape.

The complete determination of the needle shape (R, L,
andr) and the growth velocityV for fixed D andd requires
four independent relations. The first is the Ivantsov relat
~52! that fixes the productrV. A second relation betweenR,
L, andr is simply obtained by imposing that the circular t
and parabolic tails match tangentially the front and traili
ends of the facets, respectively, which yields at the relati

r5~L1R!/A2. ~56!

We can check this relation by comparing the tip velocity
the phase-field simulations with the velocityV52Dp/r,

le

e
e
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wherep is the Pe´clet number predicted by the Ivantsov rel
tion andr is computed using Eq.~56! together with values of
L andR in the simulations. Figure 16 shows that these t
velocities are in reasonably good quantitative agreement.
systematic deviation is most likely due to the fact that
crystal tail is not exactly parabolic very close to the face

The two other relations needed to complete our theory
obtained by imposing the Gibbs-Thomson condition~3! at
the tip of the needle crystal and by using the integral form
this condition on the facet@Eq. ~5!#. For this, we need an
expression for the undercooling along the interface tha
obtained straightforwardly using the known boundary in
gral relation@25,26#

u~x!52D1pE
2`

1`dx8

p
exp$2p @z~x!2z~x8!#%

3K0„pA~x2x8!21@z~x!2z~x8!#2
…, ~57!

whereK0 is the zeroth-order modified Bessel function,p is
given by the Ivantsov relation~52!, andz(x) is the interface
shape with length in unit ofr. For a circular tip and para
bolic tails matching tangentially side facets that make a 4
angle with respect to the growth axis, thex coordinates of the
front and trailing ends of the facets arex56R/A2r and x
561, and

z5S R2

r2
2x2D 1/2

2
A2R

r
1

1

2
, 0<uxu<

R

A2r
, ~58!

z52uxu1
1

2
,

R

A2r
<uxu<1, ~59!

FIG. 16. Variation of dimensionless tip velocityVd0 /D with
cusp amplituded obtained from the phase-field simulations forD
50.55 ~solid circles! and using the equationV52Dp/r, where
p(D) is the Pe´clet number predicted by the Ivantsov relation, a
r5(L1R)/A2, whereL andR are the facet length and tip radiu
obtained from the phase-field shapes~empty circles!.
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z52
x2

2
, uxu>1. ~60!

These equations describe rather accurately the phase
needle dendrites~Fig. 17!. Since the isothermal Ivantsov pa
rabola is an exact solution of the steady-state growth pr
lem without capillarity, the integral relation~57! is exactly
satisfied forz52x2/2 andu50. In contrast, as illustrated in
Fig. 9, the tip of the faceted needle crystal protrudes ahea
the tip of this parabola and hence is undercooled by a fi
amountu(0). TheGibbs-Thomson condition~3! imposes a
relation between this tip undercooling and the tip radius t
is simply

u~0!52d0 /R. ~61!

In turn, Eq.~5! provides us with a relation between the a
erage undercooling on the facet and the cusp amplitudd
that takes the form here

A2E
R/A2r

1

dx u~x!522
d0

r
d, ~62!

wherex is in units ofr as above. The four relations define
by Eqs.~52!, ~56!, ~61!, and ~62!, together with the expres
sion for u on the interface defined by Eqs.~57!–~60!, com-
pletely determineR, L, r, andV. Since the productrV is
exactly predicted by the Ivantsov relation, we only need
compute three independent dimensionless combination
the four above quantities to compare the predictions of
above theory with the phase-field results. The most mean
ful dimensionless combinations are the selection parametC
and the two ratiosL/r and R/r. To compute those as
function ofd, it is convenient to varyR/r and computeC, d,
andL/r using the following relations that are simple to d
duce:

FIG. 17. Comparison of the phase-field needle dendrite of Fig
~solid line! with the faceted needle crystal shape assumed in
analytical theory with a circular tip and a parabolic tail~dashed
line!. Both curves are for the same parameter valueR/(A2r)
50.25.
4-11
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d5
r

A2u~0!R
E

R/A2r

1

dx u~x!, ~64!

L

r
5A2S 12

R

A2r
D . ~65!

The above predictions are compared with the phase-field
sults in Figs. 10 and 11. The quantitative agreement betw
the two is reasonably good but not exact because the ste
state shape that we have assumed here differs slightly f
the true shape~Fig. 17! that is only exactly parabolic asymp
totically far from the facet.

To conclude, we note that the expression foru(x) can be
simplified in the small Pe´clet number limit where Eq.~57!
reduces to@27#

u~x!52pE
2`

1`dx8

2p
lnF ~x2x8!21@z~x!2z~x8!#2

~x2x8!21~x82/22x2/2!2 G .

~66!

Therefore, bothu(0) and the integral ofu(x) along the facet
are simply proportional to the Pe´clet number in this limit and
henceC, R/r, and L/r are only functions ofd. Further-
more, it is straightforward to deduce thatL/r→A2, R/r
→0, andC;d in the larged limit. Hence this theory pre-
dicts the scaling lawL;V21/2 that is a simple consequenc
of the fact thatL/r andC;r2V are constants in the sma
Péclet number limit.

VII. CONCLUDING REMARKS

In conclusion, we have shown that the phase-field
proach can be successfully extended to model the solidifi
tion of faceted materials. Our approach, which consists
rounding the cusps in theg plot, converges well in the limit
of sharp cusps for both equilibrium and nonequilibriu
growth shapes with facets. Even though we have consid
a simple form of theg plot, the method should be applicab
to more complexg plots where the interface stiffness vari
on the rough parts.

In addition, we have developed an approximate analyt
theory of faceted needle growth that includes capillarity a
assumes circular and parabolic forms for the front and tr
ing rough parts of steady-state needle crystals, respecti
This theory yields explicit predictions of tip velocity an
facet length that are in good overall quantitative agreem
c

ol-
B

04160
e-
en
dy-
m

-
a-
f

ed

al
d
l-
ly.

nt

with the phase-field results; this agreement is largely due
the fact that the needle shape assumed in the theory is a
good approximation to the actual growth shape observe
the phase-field simulations. Furthermore, this theory pred
that the scaling lawL;V21/2 observed both experimentall
@14# and in the present phase-field simulations should hold
the small Pe´clet number limit, consistent with the results o
previous theoretical studies@15–17#.

In the present study, we have established a quantita
comparison between phase-field and sharp-interface re
under the assumption that the variation of interface und
cooling is dominated by capillarity. Using scaling argumen
Ben Amar and Pomeau@15# have concluded that, under th
assumption that the growth of facets is dominated by
Franck-Read screw dislocation mechanism, theL;V21/2

scaling law still holds. While growth conditions where k
netic effects are negligible may exist, we suspect that s
effects will generally be important in the presence of face
as widely believed. Therefore, a quantitative incorporation
facet kinetics in a phase-field model remains an import
task for the future. The phase-field model as formulated t
far reproduces a linear relationship between the planar in
face velocity and interface undercooling appropriate fo
rough interface. On facets, however, standard growth mec
nisms such as screw dislocations or ledge nucleation lea
a nonlinear relationship between velocity and undercooli
These relationships could potentially be incorporated in
phase-field model by letting the kinetic relaxation timet
depend on temperature or supersaturation, in addition to
entation.

Another interesting future prospect is to model the dire
tional solidification of alloys with faceted interfaces@28–30#
by combining the present methodology to handle cuspeg
plots with a recent thin-interface phase-field formulation
alloy solidification@9#.
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