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Dynamic transition in etching with poisoning
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We study a lattice model for etching of a crystalline solid including the deposition of a poisoning species.
The model considers normal and lateral erosion of the columns of the solid by a flux of etching particles and
the blocking effects of impurities formed at the surface. As the probalglity formation of this poisoning
species increases, the etching rate decreases and a continuous transition to a pinned phase is observed. The
transition is in the directed percolatiqibP) class, with the fraction of the exposed columns as the order
parameter. This interpretation is consistent with a mapping of the interface problémlindimensions onto
ad-dimensional contact process, and is confirmed by numerical results iInandd= 2. In the etching phase,
the interface width scales with Kardar-Parisi-ZhdK@Z) exponents, and shows a crossover from the critical
DP behavior W~t) to KPZ near the critical point, at etching times of the order pf-( p) ~"I. Anomalous
roughening is observed at criticality, with the roughness exponent related to DP exponents g v,
>1. The main differences from previously studied DP transitions in growth models and isotropic percolation
transitions in etching models are discussed. Investigations in real systems are suggested.
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[. INTRODUCTION particles, a gravitational field or pressure gradient on a flow-
ing fluid. In a simplified way, these mechanisms are also
The study of interface growth has attracted increasing infrepresented in the model of Melkt al,, which considers a
terest in the last years due to the potential technological aprertical flux of etching agents towards the surface of a crys-
plications and to the fundamental role in nonequilibrium sta-talline solid and the corrosion of highly exposed regions in
tistical physicd1-4]. One of the important problems in this the neighborhood of the collision point$1].
field is the dynamics of solid surfaces in contact with an  This scenario motivates the present study of the effects of
etching solution, which motivated various work§-11], deposition of a poisoning species during the etching of a
usually considering discrete atomistic models with the basisolid surface by a perpendicular flux of the etching particles.
mechanisms of the real processes represented by local etcdie will extend the model for etching of a crystalline solid of
ing rates, accounting for the effects of binding energies, anRef.[11], allowing for the formation of a poisoning species
isotropy, concentration of the solution, etc. In the continuumwhich locally blocks the erosion. The presence of lateral
limit, the morphology of the resulting solid-liquid interface growth indicates that the model is in the Kardar-Parisi-Zhang
may be described by one of the existing theories for interfacéKPZ) universality class of interface growf0], which was
growth [2—4]. confirmed numerically11]. Here, the reactions between the
In some cases, the etching of a solid is accompanied bgolute and the solid may lead to the formation of the chemi-
the precipitation of an inert product on its surface, whichcal species that blocks the etched column. This species may
may form clusters that act as a mask for the corrosion probe removed only as a consequence of future etching pro-
cess. This is expected, for instance, in the etching of Si bgesses at its neighborhood.
NaOH, as discussed in Ref$12,13. The presence of The model presents a continuous transition between an
blocked sites was also considered in a model for a passivetching regime and a regime with blocked surfaces. We will
layer formation between solid lithium and an acid solutionstudy this transition numerically in two- and three-
[14-16. The growth followed stochastic rules similar to dimensional solids, showing that it belongs to the directed
those of the Eden mod¢PR,4], the blocking species being percolation (DP) universality class[22—25. This is con-
produced at the interface. As the rate of formation of thafirmed by the mapping of the etching process of a
species was increased, a transition to a blocked phase wéd+ 1)-dimensional solid onto d-dimensional contact pro-
observed. That transition was in the isotropic percolatiorcess(CP). It contrasts with the isotropic percolation transi-
class. On the other hand, Sapoval and co-workers considerdidn observed in the models for passive layer formation over
the etching of a disordered solid by a solution of finite vol- lithium films by Badiali and co-worker§l4—16, although
ume [6-8], in which the atoms exhibit random strengths those systems were also in the KPZ class in the growth re-
against corrosion. Connections to isotropic percolafibfi  gimes. As will be discussed below, there are also many dif-
and gradient percolatigri8] processes were shown theoreti- ferences between the DP transition of the present model and
cally [19]. directed percolation depinning of interfaces growing in
Anisotropic fluxes of etching particles are also importantquenched disordered medi26,27). One particularly impor-
in many real processes. For instance, a recent work dfant difference is that the present model also shows DP tran-
Hwang and Redner have considered a bias in the diffusiveitions in 2+ 1 dimensions.
motion of an acid during the dissolution of a soJ@]. Such From the theoretical point of view, this work extends the
a bias may represent the effect of an electric field on ionizedliscussion of a new type of pinning transition related to DP,
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FIG. 1. (a) Examples of etching attempts of the original model 0 5 10 1
(Ref.[11]) in d=1, in which the selected columns are indicated by | ‘ hi ¢ |
arrows.(b) The solid after normal erosion at the top of the selected FIG. 2. (a) Examples of etching attempts of our modeldn

columns and lateral erosion of higher neighboring columns. The:l’ with selected columns indicated by arrovisparticles in gray

positions of removed atoms are indicated by crosses and B particles in black. The corresponding configuration of the
' associated one-dimensional particle-hole problem is shown below

the solid, with particlegcircles corresponding to top\ and holes
corresponding to toB. (b) The solid after the etching at the se-
{Jll%cted columns, with positions of removed atoms indicated by

. . . . crosses. Normal erosion at column 2 and lateral erosion at columns
work concerning interface width scaling. Alt.hOUQh our 9 and 12 leftB particles at those columns. In column 7B particle
model was not proposed to reP“?Se”t any particular EXPeN5as removed by lateral erosion. The configuration of the associated
mental process, it sh_qws some dlfference_s betw_een the PUrticle-hole problem is also shown.
system’s and the critical system’s behavior which may be
investigated experimentally. One possibility is the critical =~ ) ) )
anomalous roughening and the consequent time dependeng@iection: h(i)—ho—1. This process will be called normal
of the local interface width. In view of the absence of clearOr vertical erosion. Finally, any neighboring column whose
experimental realizations of DP transitions, we believe thaheight is larger thahy is eroded until its height becomas.
the present work will motivate investigations in etching pro- This process will be called lateral erosion and represents the
cesses and related problems. To our knowledge, this is thetching of regions of the interface which were exposed be-
first work that suggests a DP transition in etching processegore the normal erosion process. Notice that lateral erosion is

The rest of this work is organized as follows. In Sec. Il, always induced by normal erosion.
we will present our model, discuss the related theory, the The rules of the extended model studied in the present
mapping onto a contact process, and the relations with oth&gork are illustrated in Fig. 2 for a two-dimensional solid.
roughening transitions in growth models. In Sec. lll, we will This solid contains a sing|e chemical Speo{ésim”aﬂy to
present numerical results for a two-dimensional solid, in-the original model, and any column with a téys said to be
cluding the discussion on the critical anomalous rougheningexposed. An erosion procegsormal or laterdl at a certain
Although this case is not realistic, it is much better for nu-.qumn may leave an inactive particat the top of that

merical studies_,_providing accurate estimate_s of critical €Xzolumn, with probabilityp. Any attempt of normal erosion at
p_o_nents and giving sup_port to our interpretation of the tran<, column with a tofB is rejected, i.e., specie® blocks the
sition. In Sec. IV, we will present some results for a three-

dimensional solid. In Sec. V, we will summarize our resultsimerfalce for this process. However, a column with a Bp
: o will be subject to lateral erosion if there is a partidevith
and present our conclusions.

an empty neighbor below the tdp Thus, lateral erosion of

a column with a topB occurs after normal erosion of a

neighboring column with a tof\ and with smaller height.
The original model for etching of a crystalline solidl1] For instance, normal erosion at the column with8 in Fig.

is illustrated in Fig. 1. The solid is assumed to have a squaré leads to lateral erosion at the blocked column with7

lattice structure in the (£1)-dimensional version of the and at the exposed column witk=9. In this model, one

model and a simple cubic structure in-4 dimensions. At time unit corresponds to one attempt of normal erosion per

each etching attempt, a columrof the solid, with current column.

heighth(i)=h,, is randomly chosen. Then its heidii) is In the limit of large substrates and long times, the original

decreased by one unisupposing etching in the downward etching model of ad+ 1)-dimensional solid belongs to the

introduced in a recent study of a ballisticlike deposition
model with an inactive speci¢&1]. The observation of criti-
cal anomalous roughening extends the conclusions of th

Il. MODEL AND RELATED THEORY
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KPZ class of interface growth id+ 1 dimensiong11]. This  more blocked columns and leaves those columns exposed.
theory proposes the Langevin-type equatiaf] This CP may also include particle diffusion, since normal
erosion may form a top particlB while subsequent lateral
erosion of blocked columns leave them exposed. Finally, no-
tice that the blocked state, in which all columns have aBpp
corresponds to the absorbing state of the CP.

known as KPZ equation, as a hydrodynamic description of |t js not possible to obtain an analytical relation between
kinetic surface roughening. In E(L), h is the height at the  the probabilityp and the rates of annihilation and offspring
positionx in a d-dimensional substrate at tinber represents  production in the CP because they depend on the height dis-
a surface tensiom represents the excess velocity, apts a  tributions of the interface problem. However, despite the par-

h_ V2h+)\ Vh)2+ p(x 1

Gaussian noise. ticular features of this CP, it has no additional symmetry
In discrete models, the interface width, which character{24,25 that could suggest a universality class of the transi-
izes the roughness of the interface, is defined as tion different from DP, as will be confirmed by our numerical

results. This shows again the robustness of the DP class.
WL t):Kid E (h-—F)2> He_r_e it is important to stress the difference_s between this
' LY 5 : transition and those of related growth models in the DP class
[2,26-29 or in the isotropic percolation clagé—8,14—18.
for deposition(or erosion on ad-dimensional substrate of First we notice that KPZ scaling in the growth regime is
lengthL (h; is the height of column at timet, the bar inh also observed in the models for passive layer growth over
denotes a spatial average, and the angular brackets denotétaium films [14-18, since lateral growth is allowed. They

1/2

)

configurational averageFor short times it scales as were extensions of the Eden growth model, where any active
particle of the cluster may grow in any direction with equal
W~ thk, () probability. At criticality, the blocking particles form an iso-

, ) . . tropic percolation cluster, which was confirmed numerically
and for long times, in the steady state regime, it saturates ?14,13_ This illustrates the fact that KPZ scaling in the
W K (4) growth regime does not necessarily lead to DP transitions.
sat ' Another important type of transition is the so-called di-
In Egs. (3) and (4), index K refers to KPZ theory, which rected percolation depinnin@®PD) [2,26,21, in which KPZ
represents our discrete models in the continuum ligtow ~ 9rowth occurs in a disordered medium. The interface gets
the transition points In d=1, the exact KPZ exponents are pinned if the.|mpur|ty con_centratlon exceeds the DP thresh-
By =1/3 anday,=1/2[2,20]. old, generating a bIockln_g cluster perpenc_hcular to the
For sufficiently high values of the probabilifyand after ~9rowth direction. The relation to DP is restricted ta-1
a sufficiently large etching time, the interface gets Com_dlmensmns. At criticality, the growth is expgcted_to be de-
pletely blocked by particles and, consequently, the etching Scribed by the quenched KPZ equat{@8,29, in which the
process stops. This dynamic transition between an etchingj€mal noise in Eq(1) is replaced by a quenched noise.

(or growth phase and a blocked phase is indeed observed ifloreover, the active phase of DP corresponds to the pinned
our simulations(Secs. Ill and IV. Similar transition was Phase of the interface problem, while in the absorbing phase

recently found in a ballisticlike growth model with an inac- Of the impurity system the growth continues indefinitely.
tive species[21]. In that case, the deposition model in a Some models with competition betWQen aggregation and de-
d-dimensional substrate could be mapped onto a CH in SOrption also show transitions in which the regime of film

dimensions, suggesting that the transition was in the unive/@rowth corresponds to the absorbing DP phae31l.
sality class of DH24,25. On the other hand, our model shows DP transitions in all

It is possible to define an analogous mapping for thespatial dim_ensions, with the pinned phgse corresponding to
present model. First, any column of the solid with a fops ~ the absorbing phase of DP and the etching phase correspond-
associated to a particle in ddimensional lattice, while a N9 to the active one. Consequently, very different critical
column with a topB is associated to a vacant site. This be_zhawor of quantities such as etching rate and |_nterface
relation is also illustrated in Fig. 2. Normal and lateral ero-Width are observed. Many differences were already discussed
sion in the etching model give rise to particle annihilationi" the work on the ballisticlike deposition model with a poi-
and offspring production in this particle-hole system. TheSONINg speciep21]. Here we will also shovy that the.crltlcal
deposition of a particl® after normal erosion corresponds to foughness exponefEq. (4)] of our model is the reciprocal
the annihilation of a particle in the CP. On the other hand©f the exponent in the DPD mode(Sec. Il).
normal erosion may be followed by lateral erosion of a
neighboring column with a toB, which leaves a top there

(with probability 1—p). It corresponds to offspring genera- Hl. NUMERICAL RESULTS IN 1 +1 DIMENSIONS
tion in the CP process. One difference between the CP asso-
ciated to the ballisticlike deposition modg21] and to the We simulated the two-species etching model in square

present etching model is that, in the present case, the genefattices with a large lateral length=2° to avoid finite-size
tion of two or more offspring is possible. This is the caseeffects. Simulations in relatively small latticet €2048),
when normal erosion is followed by lateral erosion of two oruntil the steady state regions, were performed ger0.15
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fective exponentsB(p,p’) near the critical point, withp.

=0.303 18. The dashed line is a least squares fit of the data.
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FIG. 3. Effective exponentsay(L) vs 1LY? for the
(1+1)-dimensional model witpp=0.15. The straight line is a least
squares fit of the data. data in the range 0.28p=<0.3025. Linear fits ofg(p,p’)

- ) ) . versuse for other values ofp, were used to calculate the
and at the critical point. The etching rates, the fractions ofrror pars of p. and 8. We obtained the estimates,
exposed columns, and the interface widths were typically— g 303 18- 0.000 05 ang=0.283+0.010 under the condi-
averaged over Todifferent realizations (10realizations in  ion of a linear correlation coefficient larger than 0.999 in
small latticeg with p=0.15. _ _those fits. It confirms that the transition is in DP class. For

First we consider the model at the etching phase W'”tomparison, the best known estimate of expoyg@fdr DP is
relatively smallp. In order to estimate exponenic in EQq.  5—0.276 486-0.000 008[34].

(4) and confirm KPZ scaling, we defined the effective expo- | the etching phasepp,), as the transition point is

nents approached, the interface width scaling shows DP and KPZ
features in two characteristic time intervals. At short times,
In[Wm(L)/Ww(L/Z)]_ (5) W rapidly grows due to the increasing fraction of blocked
In2 columns, which give rise to increasingly large height differ-
) 2 ) ) ences. This is typical of critical DP because the fraction of
In Fig. 3 we showay(L) versus 1™ which gvesax  exposed columns decreases slowdygebraically. After a
=0.5 (the KPZ exact valuein the limit L—o. The 1L7°  characteristic time of the order of the longitudinal correlation
correctLoAn was chosen among other correction terms in thgyngthe~71, KPZ scaling is expected. Notice that the etching
form L™, with A>0, and was the one that provided the gjrection corresponds to the longitudinal direction of the CP
best linear fit of the data. This extrapolation procedure wagqr pp) problem, while the directions parallel to the interface
previously applied to the study of ballistic depositi82].  correspond to the transversal directions of the CP.
KPZ scaling was also obtained in the study of the ballistic-  Tnis crossover is illustrated in the plot of Fig(as in

like deposition model with an inactive speci@d], but with \\hich W is shown as a function of the scaling variable
stronger corrections to scaling. It is important to mention thatz vt \with v=1.733847[34]. In Fig. 5b), we show the
our results contrast with the-dependent exponents found in |inear growth ofW at criticality (p.=0.303 18). Before the
previous works on related two-species models with inactive,ossover in Fig. &), the growth oMW is also approximately

specieq 33]. _ linear, while for larger times it follows Eq(3) with B¢
When p increases, the etching rate decreases due to the 1/3

increase in the density of particl&at the surface. This rate

ag(L)=

decays as the fractiop of the surface exposed for etching, In(W) W(pc)

i.e., the fraction of topA, which is the order parameter of the Emans o ARRRRRRE
etching-blocking transitiorp is shown in Fig. 4a) as a func- 4 & 2x100 -
tion of p and is expected to obey the scaling form . ] - -
p~e’, e=p.—p. (6) ] A ]
0 L1 )1 | L1 )1 I_ 0 L0008 11 I I
In order to fit our data to Eq6), we calculated a series of -5 0 5 Y 10°

effective exponents ln(x) t

,_In[p(p)/p(p")] a b

B(p.p")= Tintele) (7 ( ) ( )

FIG. 5. (a) InW vs Inx, with scaled timex=te"l, in d=1, for
It is expected that, with the correct choice @f, 8(p,p’)  p=0.24 (solid line) and p=0.27 (dashed ling (L =65 536). (b)
will converge to the asymptotic exponeBt In Fig. 4b) we  Interface widthW vs timet at the critical point ind=1, with p;
showg(p,p’) versusp.—p, with p.=0.303 18, considering =0.30318.
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FIG. 7. Effective exponentB(p,p’) near the critical point in
d=2, for p,=0.621 65. The dashed line is a least squares fit of the
data.

FIG. 6. Effective exponentsac(L) vs 1L for the
(1+1)-dimensional model at criticalityp=0.303 18).

In a study of the dynamical phase transitions in thetion, which is perpendicular to the surface. The DPD models
Domany-Kinzel cellular automata, de Saletsal. [35] con-  do not show anomalous roughening.
sidered a related problem. They calculated the transition For completeness, we mention that results in the blocked
points with accuracy by mapping cellular automata patternghase p>p.) confirmed the DP class of the transition. In
onto an interface problem, which shows a crossover fromhis regime, the etching process fails when the whole inter-
random deposition behaviopE 1/2) to critical DP behavior  face is covered wittB. The average depth after complete
(B=1). poisoning attains a limiting valui ¢ which is of the order of

At the critical point in finite lattices, a finite fraction of the the absorption time in the CP. Thus it scales as
samples are etched indefinitely, attaining the steady state re-
gime. At certain probabilityp<<p., the transversal correla- H~(—¢€) "L 9
tion lengthé, ~ e~ "+ equals the lattice length and saturates
at this value in the whole critical region, as expected fromOur numerical estimate)=1.75=0.02, obtained with the
finite-size scaling theory36,37. On the other hand, height above estimate gf., is also consistent with DP within error
fluctuations are of the order of the longitudinal correlationbars[34]. The interface width of the blocked interfaces also
length, thenW~ e~ "I. Thus, the saturation widtH€q. (4]  scales as Eq9).
at the critical point scale with a roughness exponent

IV. NUMERICAL RESULTS IN 2 +1 DIMENSIONS

ac=v| /v, . ®) We simulated the two-species etching model in simple
cubic lattices with lateral lengths ranging frolm=256 to
In order to confirm this relation numerically, we calcu- L=1024. Average quantities were typically measured over
lated effective exponenta,(L) as in Eq.(5). These expo- 100 different realizations.
nents are shown in Fig. 6 as a function of. 1ivith 256 The fractionp of the surface exposed for etchifigp A)
<L=<2048. They suggesitr.=1.57+0.03 asL—, in also decreases withp until the critical point at p
agreement with the value obtained from estimates of DP ex=0.62165. In Fig. 7, we show the effective exponents
ponents,y| /v, ~1.581[34]. B(p,p’) [Eq. (6)] versuse, using this value ofp.. The
Since vj>v, in any dimensiona.>1, which suggests asymptotic estimate i§~0.66, which is 13% above the best
that the critical system has anomalous surface rougheningnown DP estimatgd=0.584+0.004[39]. It may be pos-
(see Ref[38], and references thergirHowever, at the criti-  sible to improve this estimate by calculating accurate densi-
cal point, the fraction of surviving deposits in large lattices isties p nearerp. and by considering more general forms of
very small and the width distributions are very broad. Thusscaling corrections, instead of the above linear correction in
much longer simulation times would be necessary to estie. However, much longer simulations in very large lattices
mate the local roughness exponent of this system with reawould be necessary.
sonable accuracy. On the other hand, important qualitative The interface width shows the same scaling properties
features of the local interface width ngayare observed, but observed ird=1: a crossover between DP and KPZ behav-
their discussion will be postponed to Sec. IV because théors att~e "I below the critical point, and DP behavior
(2+1)-dimensional system is more interesting for real sys<{linear increase o¥V) at p..
tems’ applications. Another interesting feature of this system is the time de-
Note that the above value af. is the reciprocal of the pendence of the local interface widtih near criticality. In
critical roughness exponent of models which describe disimulations on lattices with =2048, w was averaged over
rected percolation depinning in {11)-dimensional disor- finite-size boxes of lateral lengthssd<512 spanning the
dered medid26,27. This is expected because, in that casewhole surface. In Fig. 8 we show versusl for the original
the DP critical cluster runs in the direction parallel to theetching model f=0) att=200 andt=2000. It illustrates
surface, while in our model it runs along the growth direc-the typical behavior of that quantity: a growth re-
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SR IIRALLL IR IS reactions in a solid-liquid interface. The etching rate de-

100 I /?ooo ] creases when the probability of creation Bfparticles in-
062 =200 creases and is zero after a certain critical probaljility This

= C /"0— ] transition is continuous and is in the DP universality class. In
10 é—%—g the etching phase, the interface width has an approximately
E p=0 =200 1 linear growth at small times and crosses over to KPZ scaling
) L _ after a characteristic time of the order of the longitudinal
o s s vl correlation length of an associated contact process. The lon-
1 10 100 1000 gitudinal correlation exponent, governs the divergence of
1 the height of blocked deposits abopg. Anomalous rough-

ening is observed at criticality, with a global roughness ex-

FIG. 8. Local interface widthw as a function of box length ponenta.>1 rglated to DP exponent&g. (8)_]' Thus, r_1ea_r
measured in lattices with total lengths=2048, forp=0 (no im-  Pc. the local widths at small length scales increase in time,
purities and p=0.62 (near criticality, at two different times. contrary to their behavior in the systems with normal rough-

ening.
gion with w~192K for smalll and a crossover to a saturation The DP transition in this model contrasts with the previ-
value, which is the global interface widW at timet. Notice ~ Ously studied isotropic percolation transitions in etching
that, at small length scales, the local widthis nearly the ~Models of disordered solid$—8,19. The comparison with
same at both times, i.e., the height fluctuations have attaine@rowth models with production of poisoning species and iso-
approximately constant values, characteristic of the dynamitropic percolation transitionsl4—16 show that KPZ scaling
cal process. The time evolution @f is restricted to large in the growth regime is not a sufficient condition for the DP
length scales. This is expected because the relaxation time ofitical behavior. The transition in the present model also has
the structure factor increases with the wavelengttin the  remarkable differences from the depinning transitions of
form A% [2,3]. growing interfaces in disordered media,25—-27 and in

We also show in Fig. 8 results far=0.62, which is very  some models with aggregation and desorpf®n,31]. Here,
near the critical point, also at=200 andt=2000. Here we the etching(pinned phase parallels the activ@bsorbing
note two remarkable features: the valuesvofare much phase of DP, while the opposite relation was found in those
higher, indicating large height fluctuations even at narrowsystems. Previously, a DP transition similar to the present
observation windows, and the values at small length scalesne was observed in a ballisticlike deposition model with a
still increase in time. It is explained by the decreasing num+poisoning specieg21], for which a correspondence to a con-
ber of exposed columns of the solid near criticality and re-tact process was also proposed. Once again, it illustrates the
flects the anomalous roughening in this system. robustness of the DP cla§25,4(. For applications to real

The relevance of this qualitative analysis is that the locakystems, this robustness suggests that DP transitions may be
width is frequently measured in growth or etching experi-observed in etching processes with formation of blocking
ments. If the above time dependencenoivere observed in  species even if the etching mechanisms are not represented
systems with one or more blocking species, they would sugby our particular model, but with anisotropic flux of the etch-
gest anomalous scaling and investigations of a possible dyng agents.
namic transition.
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