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Dynamic transition in etching with poisoning

F. D. A. Aarão Reis
Instituto de Fı´sica, Universidade Federal Fluminense, Avenida Litoraˆnea s/n, 24210-340 Nitero´i, Rio de Janeiro, Brazil

~Received 19 March 2003; published 2 October 2003!

We study a lattice model for etching of a crystalline solid including the deposition of a poisoning species.
The model considers normal and lateral erosion of the columns of the solid by a flux of etching particles and
the blocking effects of impurities formed at the surface. As the probabilityp of formation of this poisoning
species increases, the etching rate decreases and a continuous transition to a pinned phase is observed. The
transition is in the directed percolation~DP! class, with the fraction of the exposed columns as the order
parameter. This interpretation is consistent with a mapping of the interface problem ind11 dimensions onto
a d-dimensional contact process, and is confirmed by numerical results ind51 andd52. In the etching phase,
the interface width scales with Kardar-Parisi-Zhang~KPZ! exponents, and shows a crossover from the critical
DP behavior (W;t) to KPZ near the critical point, at etching times of the order of (pc2p)2n i. Anomalous
roughening is observed at criticality, with the roughness exponent related to DP exponents asac5n i /n'

.1. The main differences from previously studied DP transitions in growth models and isotropic percolation
transitions in etching models are discussed. Investigations in real systems are suggested.

DOI: 10.1103/PhysRevE.68.041602 PACS number~s!: 05.50.1q, 64.60.Ht, 68.35.Ct, 68.55.Ln
in
a
ta
s
an

s
et
an
um
e
ac

b
ch
ro

i b
f
si
on
to
g
ha
w

io
er
ol-
hs

ti-

n

siv

ze

w-
lso

ys-
in

s of
f a
es.
of
s
ral
ng

e
mi-
may
pro-

an
ill

e-
ted

a
-
i-
ver

re-
dif-
and
in

ran-

he
P,
I. INTRODUCTION

The study of interface growth has attracted increasing
terest in the last years due to the potential technological
plications and to the fundamental role in nonequilibrium s
tistical physics@1–4#. One of the important problems in thi
field is the dynamics of solid surfaces in contact with
etching solution, which motivated various works@5–11#,
usually considering discrete atomistic models with the ba
mechanisms of the real processes represented by local
ing rates, accounting for the effects of binding energies,
isotropy, concentration of the solution, etc. In the continu
limit, the morphology of the resulting solid-liquid interfac
may be described by one of the existing theories for interf
growth @2–4#.

In some cases, the etching of a solid is accompanied
the precipitation of an inert product on its surface, whi
may form clusters that act as a mask for the corrosion p
cess. This is expected, for instance, in the etching of S
NaOH, as discussed in Refs.@12,13#. The presence o
blocked sites was also considered in a model for a pas
layer formation between solid lithium and an acid soluti
@14–16#. The growth followed stochastic rules similar
those of the Eden model@2,4#, the blocking species bein
produced at the interface. As the rate of formation of t
species was increased, a transition to a blocked phase
observed. That transition was in the isotropic percolat
class. On the other hand, Sapoval and co-workers consid
the etching of a disordered solid by a solution of finite v
ume @6–8#, in which the atoms exhibit random strengt
against corrosion. Connections to isotropic percolation@17#
and gradient percolation@18# processes were shown theore
cally @19#.

Anisotropic fluxes of etching particles are also importa
in many real processes. For instance, a recent work
Hwang and Redner have considered a bias in the diffu
motion of an acid during the dissolution of a solid@9#. Such
a bias may represent the effect of an electric field on ioni
1063-651X/2003/68~4!/041602~7!/$20.00 68 0416
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particles, a gravitational field or pressure gradient on a flo
ing fluid. In a simplified way, these mechanisms are a
represented in the model of Melloet al., which considers a
vertical flux of etching agents towards the surface of a cr
talline solid and the corrosion of highly exposed regions
the neighborhood of the collision points@11#.

This scenario motivates the present study of the effect
deposition of a poisoning species during the etching o
solid surface by a perpendicular flux of the etching particl
We will extend the model for etching of a crystalline solid
Ref. @11#, allowing for the formation of a poisoning specie
which locally blocks the erosion. The presence of late
growth indicates that the model is in the Kardar-Parisi-Zha
~KPZ! universality class of interface growth@20#, which was
confirmed numerically@11#. Here, the reactions between th
solute and the solid may lead to the formation of the che
cal species that blocks the etched column. This species
be removed only as a consequence of future etching
cesses at its neighborhood.

The model presents a continuous transition between
etching regime and a regime with blocked surfaces. We w
study this transition numerically in two- and thre
dimensional solids, showing that it belongs to the direc
percolation ~DP! universality class@22–25#. This is con-
firmed by the mapping of the etching process of
(d11)-dimensional solid onto ad-dimensional contact pro
cess~CP!. It contrasts with the isotropic percolation trans
tion observed in the models for passive layer formation o
lithium films by Badiali and co-workers@14–16#, although
those systems were also in the KPZ class in the growth
gimes. As will be discussed below, there are also many
ferences between the DP transition of the present model
directed percolation depinning of interfaces growing
quenched disordered media@26,27#. One particularly impor-
tant difference is that the present model also shows DP t
sitions in 211 dimensions.

From the theoretical point of view, this work extends t
discussion of a new type of pinning transition related to D
©2003 The American Physical Society02-1
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F. D. A. AARÃO REIS PHYSICAL REVIEW E68, 041602 ~2003!
introduced in a recent study of a ballisticlike depositi
model with an inactive species@21#. The observation of criti-
cal anomalous roughening extends the conclusions of
work concerning interface width scaling. Although o
model was not proposed to represent any particular exp
mental process, it shows some differences between the
system’s and the critical system’s behavior which may
investigated experimentally. One possibility is the critic
anomalous roughening and the consequent time depend
of the local interface width. In view of the absence of cle
experimental realizations of DP transitions, we believe t
the present work will motivate investigations in etching pr
cesses and related problems. To our knowledge, this is
first work that suggests a DP transition in etching proces

The rest of this work is organized as follows. In Sec.
we will present our model, discuss the related theory,
mapping onto a contact process, and the relations with o
roughening transitions in growth models. In Sec. III, we w
present numerical results for a two-dimensional solid,
cluding the discussion on the critical anomalous roughen
Although this case is not realistic, it is much better for n
merical studies, providing accurate estimates of critical
ponents and giving support to our interpretation of the tr
sition. In Sec. IV, we will present some results for a thre
dimensional solid. In Sec. V, we will summarize our resu
and present our conclusions.

II. MODEL AND RELATED THEORY

The original model for etching of a crystalline solid@11#
is illustrated in Fig. 1. The solid is assumed to have a squ
lattice structure in the (111)-dimensional version of the
model and a simple cubic structure in 211 dimensions. At
each etching attempt, a columni of the solid, with current
heighth( i )[h0, is randomly chosen. Then its heighth( i ) is
decreased by one unit~supposing etching in the downwar

FIG. 1. ~a! Examples of etching attempts of the original mod
~Ref. @11#! in d51, in which the selected columns are indicated
arrows.~b! The solid after normal erosion at the top of the selec
columns and lateral erosion of higher neighboring columns. T
positions of removed atoms are indicated by crosses.
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direction!: h( i )→h021. This process will be called norma
or vertical erosion. Finally, any neighboring column who
height is larger thanh0 is eroded until its height becomesh0.
This process will be called lateral erosion and represents
etching of regions of the interface which were exposed
fore the normal erosion process. Notice that lateral erosio
always induced by normal erosion.

The rules of the extended model studied in the pres
work are illustrated in Fig. 2 for a two-dimensional soli
This solid contains a single chemical speciesA, similarly to
the original model, and any column with a topA is said to be
exposed. An erosion process~normal or lateral! at a certain
column may leave an inactive particleB at the top of that
column, with probabilityp. Any attempt of normal erosion a
a column with a topB is rejected, i.e., speciesB blocks the
interface for this process. However, a column with a topB
will be subject to lateral erosion if there is a particleA with
an empty neighbor below the topB. Thus, lateral erosion o
a column with a topB occurs after normal erosion of
neighboring column with a topA and with smaller height.
For instance, normal erosion at the column withi 58 in Fig.
2 leads to lateral erosion at the blocked column withi 57
and at the exposed column withi 59. In this model, one
time unit corresponds to one attempt of normal erosion
column.

In the limit of large substrates and long times, the origin
etching model of a (d11)-dimensional solid belongs to th

l

d
e

FIG. 2. ~a! Examples of etching attempts of our model ind
51, with selected columns indicated by arrows,A particles in gray
and B particles in black. The corresponding configuration of t
associated one-dimensional particle-hole problem is shown be
the solid, with particles~circles! corresponding to topA and holes
corresponding to topB. ~b! The solid after the etching at the se
lected columns, with positions of removed atoms indicated
crosses. Normal erosion at column 2 and lateral erosion at colu
9 and 12 leftB particles at those columns. In column 7, aB particle
was removed by lateral erosion. The configuration of the associ
particle-hole problem is also shown.
2-2
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DYNAMIC TRANSITION IN ETCHING WITH POISONING PHYSICAL REVIEW E68, 041602 ~2003!
KPZ class of interface growth ind11 dimensions@11#. This
theory proposes the Langevin-type equation@20#

]h

]t
5n¹2h1

l

2
~“h!21h~xW ,t !, ~1!

known as KPZ equation, as a hydrodynamic description
kinetic surface roughening. In Eq.~1!, h is the height at the
positionxW in a d-dimensional substrate at timet, n represents
a surface tension,l represents the excess velocity, andh is a
Gaussian noise.

In discrete models, the interface width, which charact
izes the roughness of the interface, is defined as

W~L,t !5F K 1

Ld (
i

~hi2h̄!2L G1/2

~2!

for deposition~or erosion! on a d-dimensional substrate o
lengthL (hi is the height of columni at time t, the bar inh̄
denotes a spatial average, and the angular brackets den
configurational average!. For short times it scales as

W;tbK, ~3!

and for long times, in the steady state regime, it saturate

Wsat;LaK. ~4!

In Eqs. ~3! and ~4!, index K refers to KPZ theory, which
represents our discrete models in the continuum limit~below
the transition points!. In d51, the exact KPZ exponents ar
bK51/3 andaK51/2 @2,20#.

For sufficiently high values of the probabilityp and after
a sufficiently large etching time, the interface gets co
pletely blocked byB particles and, consequently, the etchi
process stops. This dynamic transition between an etc
~or growth! phase and a blocked phase is indeed observe
our simulations~Secs. III and IV!. Similar transition was
recently found in a ballisticlike growth model with an ina
tive species@21#. In that case, the deposition model in
d-dimensional substrate could be mapped onto a CP id
dimensions, suggesting that the transition was in the uni
sality class of DP@24,25#.

It is possible to define an analogous mapping for
present model. First, any column of the solid with a topA is
associated to a particle in ad-dimensional lattice, while a
column with a topB is associated to a vacant site. Th
relation is also illustrated in Fig. 2. Normal and lateral e
sion in the etching model give rise to particle annihilati
and offspring production in this particle-hole system. T
deposition of a particleB after normal erosion corresponds
the annihilation of a particle in the CP. On the other ha
normal erosion may be followed by lateral erosion of
neighboring column with a topB, which leaves a topA there
~with probability 12p). It corresponds to offspring genera
tion in the CP process. One difference between the CP a
ciated to the ballisticlike deposition model@21# and to the
present etching model is that, in the present case, the ge
tion of two or more offspring is possible. This is the ca
when normal erosion is followed by lateral erosion of two
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more blocked columns and leaves those columns expo
This CP may also include particle diffusion, since norm
erosion may form a top particleB while subsequent latera
erosion of blocked columns leave them exposed. Finally,
tice that the blocked state, in which all columns have a topB,
corresponds to the absorbing state of the CP.

It is not possible to obtain an analytical relation betwe
the probabilityp and the rates of annihilation and offsprin
production in the CP because they depend on the height
tributions of the interface problem. However, despite the p
ticular features of this CP, it has no additional symme
@24,25# that could suggest a universality class of the tran
tion different from DP, as will be confirmed by our numeric
results. This shows again the robustness of the DP class

Here it is important to stress the differences between
transition and those of related growth models in the DP cl
@2,26–29# or in the isotropic percolation class@6–8,14–16#.

First we notice that KPZ scaling in the growth regime
also observed in the models for passive layer growth o
lithium films @14–16#, since lateral growth is allowed. The
were extensions of the Eden growth model, where any ac
particle of the cluster may grow in any direction with equ
probability. At criticality, the blocking particles form an iso
tropic percolation cluster, which was confirmed numerica
@14,15#. This illustrates the fact that KPZ scaling in th
growth regime does not necessarily lead to DP transition

Another important type of transition is the so-called d
rected percolation depinning~DPD! @2,26,27#, in which KPZ
growth occurs in a disordered medium. The interface g
pinned if the impurity concentration exceeds the DP thre
old, generating a blocking cluster perpendicular to t
growth direction. The relation to DP is restricted to 111
dimensions. At criticality, the growth is expected to be d
scribed by the quenched KPZ equation@28,29#, in which the
thermal noise in Eq.~1! is replaced by a quenched nois
Moreover, the active phase of DP corresponds to the pin
phase of the interface problem, while in the absorbing ph
of the impurity system the growth continues indefinite
Some models with competition between aggregation and
sorption also show transitions in which the regime of fi
growth corresponds to the absorbing DP phase@30,31#.

On the other hand, our model shows DP transitions in
spatial dimensions, with the pinned phase correspondin
the absorbing phase of DP and the etching phase corresp
ing to the active one. Consequently, very different critic
behavior of quantities such as etching rate and interf
width are observed. Many differences were already discus
in the work on the ballisticlike deposition model with a po
soning species@21#. Here we will also show that the critica
roughness exponent@Eq. ~4!# of our model is the reciproca
of the exponent in the DPD models~Sec. III!.

III. NUMERICAL RESULTS IN 1 ¿1 DIMENSIONS

We simulated the two-species etching model in squ
lattices with a large lateral lengthL5216 to avoid finite-size
effects. Simulations in relatively small lattices (L<2048),
until the steady state regions, were performed forp50.15
2-3
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F. D. A. AARÃO REIS PHYSICAL REVIEW E68, 041602 ~2003!
and at the critical point. The etching rates, the fractions
exposed columns, and the interface widths were typic
averaged over 103 different realizations (104 realizations in
small lattices! with p50.15.

First we consider the model at the etching phase w
relatively smallp. In order to estimate exponentaK in Eq.
~4! and confirm KPZ scaling, we defined the effective exp
nents

aK~L !5
ln@W`~L !/W`~L/2!#

ln 2
. ~5!

In Fig. 3 we showaK(L) versus 1/L1/2, which givesaK
50.5 ~the KPZ exact value! in the limit L→`. The 1/L1/2

correction was chosen among other correction terms in
form L2D, with D.0, and was the one that provided th
best linear fit of the data. This extrapolation procedure w
previously applied to the study of ballistic deposition@32#.
KPZ scaling was also obtained in the study of the ballis
like deposition model with an inactive species@21#, but with
stronger corrections to scaling. It is important to mention t
our results contrast with thep-dependent exponents found
previous works on related two-species models with inac
species@33#.

When p increases, the etching rate decreases due to
increase in the density of particlesB at the surface. This rate
decays as the fractionr of the surface exposed for etchin
i.e., the fraction of topA, which is the order parameter of th
etching-blocking transition.r is shown in Fig. 4~a! as a func-
tion of p and is expected to obey the scaling form

r;eb, e[pc2p. ~6!

In order to fit our data to Eq.~6!, we calculated a series o
effective exponents

b~p,p8![
ln@r~p!/r~p8!#

ln~e/e8!
. ~7!

It is expected that, with the correct choice ofpc , b(p,p8)
will converge to the asymptotic exponentb. In Fig. 4~b! we
showb(p,p8) versuspc2p, with pc50.303 18, considering

FIG. 3. Effective exponentsaK(L) vs 1/L1/2 for the
(111)-dimensional model withp50.15. The straight line is a leas
squares fit of the data.
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data in the range 0.28<p<0.3025. Linear fits ofb(p,p8)
versuse for other values ofpc were used to calculate th
error bars of pc and b. We obtained the estimatespc
50.303 1860.000 05 andb50.28360.010 under the condi-
tion of a linear correlation coefficient larger than 0.999
those fits. It confirms that the transition is in DP class. F
comparison, the best known estimate of exponentb for DP is
b50.276 48660.000 008@34#.

In the etching phase (p,pc), as the transition point is
approached, the interface width scaling shows DP and K
features in two characteristic time intervals. At short tim
W rapidly grows due to the increasing fraction of block
columns, which give rise to increasingly large height diffe
ences. This is typical of critical DP because the fraction
exposed columns decreases slowly~algebraically!. After a
characteristic time of the order of the longitudinal correlati
lengthe2n i, KPZ scaling is expected. Notice that the etchi
direction corresponds to the longitudinal direction of the C
~or DP! problem, while the directions parallel to the interfa
correspond to the transversal directions of the CP.

This crossover is illustrated in the plot of Fig. 5~a!, in
which W is shown as a function of the scaling variablex
[en it, with n i51.733 847@34#. In Fig. 5~b!, we show the
linear growth ofW at criticality (pc50.303 18). Before the
crossover in Fig. 1~a!, the growth ofW is also approximately
linear, while for larger times it follows Eq.~3! with bK
;1/3.

FIG. 4. ~a! Fraction of exposed columns of the solid vs pro
ability p in one-dimensional substrates.~b! The corresponding ef-
fective exponentsb(p,p8) near the critical point, with pc

50.303 18. The dashed line is a least squares fit of the data.

FIG. 5. ~a! ln W vs lnx, with scaled timex[ten i, in d51, for
p50.24 ~solid line! and p50.27 ~dashed line! (L565 536). ~b!
Interface widthW vs time t at the critical point ind51, with pc

50.303 18.
2-4



he

tio
rn
om

e
e
-

m
t
on

u-

e

ni

is
us
st
re
tiv
t
th
ys

d

se
he
c

els

ked
In
ter-
te

r
so

ple

ver

ts

st

nsi-
of

in
es

ties
v-
r

e-

r

-

the

DYNAMIC TRANSITION IN ETCHING WITH POISONING PHYSICAL REVIEW E68, 041602 ~2003!
In a study of the dynamical phase transitions in t
Domany-Kinzel cellular automata, de Saleset al. @35# con-
sidered a related problem. They calculated the transi
points with accuracy by mapping cellular automata patte
onto an interface problem, which shows a crossover fr
random deposition behavior (b51/2) to critical DP behavior
(b51).

At the critical point in finite lattices, a finite fraction of th
samples are etched indefinitely, attaining the steady stat
gime. At certain probabilityp,pc , the transversal correla
tion lengthj';e2n' equals the lattice lengthL and saturates
at this value in the whole critical region, as expected fro
finite-size scaling theory@36,37#. On the other hand, heigh
fluctuations are of the order of the longitudinal correlati
length, thenW;e2n i. Thus, the saturation widths@Eq. ~4!#
at the critical point scale with a roughness exponent

ac5n i /n' . ~8!

In order to confirm this relation numerically, we calc
lated effective exponentsac(L) as in Eq.~5!. These expo-
nents are shown in Fig. 6 as a function of 1/L, with 256
<L<2048. They suggestac51.5760.03 as L→`, in
agreement with the value obtained from estimates of DP
ponents,n i /n''1.581@34#.

Sincen i.n' in any dimension,ac.1, which suggests
that the critical system has anomalous surface roughe
~see Ref.@38#, and references therein!. However, at the criti-
cal point, the fraction of surviving deposits in large lattices
very small and the width distributions are very broad. Th
much longer simulation times would be necessary to e
mate the local roughness exponent of this system with
sonable accuracy. On the other hand, important qualita
features of the local interface width nearpc are observed, bu
their discussion will be postponed to Sec. IV because
(211)-dimensional system is more interesting for real s
tems’ applications.

Note that the above value ofac is the reciprocal of the
critical roughness exponent of models which describe
rected percolation depinning in (111)-dimensional disor-
dered media@26,27#. This is expected because, in that ca
the DP critical cluster runs in the direction parallel to t
surface, while in our model it runs along the growth dire

FIG. 6. Effective exponents ac(L) vs 1/L for the
(111)-dimensional model at criticality (pc50.303 18).
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tion, which is perpendicular to the surface. The DPD mod
do not show anomalous roughening.

For completeness, we mention that results in the bloc
phase (p.pc) confirmed the DP class of the transition.
this regime, the etching process fails when the whole in
face is covered withB. The average depth after comple
poisoning attains a limiting valueHs which is of the order of
the absorption time in the CP. Thus it scales as

Hs;~2e!2n i. ~9!

Our numerical estimaten i51.7560.02, obtained with the
above estimate ofpc , is also consistent with DP within erro
bars@34#. The interface width of the blocked interfaces al
scales as Eq.~9!.

IV. NUMERICAL RESULTS IN 2 ¿1 DIMENSIONS

We simulated the two-species etching model in sim
cubic lattices with lateral lengths ranging fromL5256 to
L51024. Average quantities were typically measured o
100 different realizations.

The fractionr of the surface exposed for etching~top A)
also decreases withp until the critical point at pc
50.621 65. In Fig. 7, we show the effective exponen
b(p,p8) @Eq. ~6!# versuse, using this value ofpc . The
asymptotic estimate isb'0.66, which is 13% above the be
known DP estimateb50.58460.004 @39#. It may be pos-
sible to improve this estimate by calculating accurate de
ties r nearerpc and by considering more general forms
scaling corrections, instead of the above linear correction
e. However, much longer simulations in very large lattic
would be necessary.

The interface width shows the same scaling proper
observed ind51: a crossover between DP and KPZ beha
iors at t;e2n i below the critical point, and DP behavio
~linear increase ofW) at pc .

Another interesting feature of this system is the time d
pendence of the local interface widthw near criticality. In
simulations on lattices withL52048, w was averaged ove
finite-size boxes of lateral lengths 2< l<512 spanning the
whole surface. In Fig. 8 we showw versus l for the original
etching model (p50) at t5200 andt52000. It illustrates
the typical behavior of that quantity: a growth re

FIG. 7. Effective exponentsb(p,p8) near the critical point in
d52, for pc50.621 65. The dashed line is a least squares fit of
data.
2-5
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F. D. A. AARÃO REIS PHYSICAL REVIEW E68, 041602 ~2003!
gion with w; l aK for small l and a crossover to a saturatio
value, which is the global interface widthW at timet. Notice
that, at small length scales, the local widthw is nearly the
same at both times, i.e., the height fluctuations have atta
approximately constant values, characteristic of the dyna
cal process. The time evolution ofw is restricted to large
length scales. This is expected because the relaxation tim
the structure factor increases with the wavelengthl, in the
form lz @2,3#.

We also show in Fig. 8 results forp50.62, which is very
near the critical point, also att5200 andt52000. Here we
note two remarkable features: the values ofw are much
higher, indicating large height fluctuations even at narr
observation windows, and the values at small length sc
still increase in time. It is explained by the decreasing nu
ber of exposed columns of the solid near criticality and
flects the anomalous roughening in this system.

The relevance of this qualitative analysis is that the lo
width is frequently measured in growth or etching expe
ments. If the above time dependence ofw were observed in
systems with one or more blocking species, they would s
gest anomalous scaling and investigations of a possible
namic transition.

V. CONCLUSION

We studied a model for etching of a solid~particlesA)
with formation of a blocking speciesB as a consequence o

FIG. 8. Local interface widthw as a function of box lengthl
measured in lattices with total lengthsL52048, forp50 ~no im-
purities! andp50.62 ~near criticality!, at two different times.
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reactions in a solid-liquid interface. The etching rate d
creases when the probability of creation ofB particles in-
creases and is zero after a certain critical probabilitypc . This
transition is continuous and is in the DP universality class
the etching phase, the interface width has an approxima
linear growth at small times and crosses over to KPZ sca
after a characteristic time of the order of the longitudin
correlation length of an associated contact process. The
gitudinal correlation exponentn i governs the divergence o
the height of blocked deposits abovepc . Anomalous rough-
ening is observed at criticality, with a global roughness e
ponentac.1 related to DP exponents@Eq. ~8!#. Thus, near
pc , the local widths at small length scales increase in tim
contrary to their behavior in the systems with normal roug
ening.

The DP transition in this model contrasts with the pre
ously studied isotropic percolation transitions in etchi
models of disordered solids@6–8,19#. The comparison with
growth models with production of poisoning species and i
tropic percolation transitions@14–16# show that KPZ scaling
in the growth regime is not a sufficient condition for the D
critical behavior. The transition in the present model also
remarkable differences from the depinning transitions
growing interfaces in disordered media@2,25–27# and in
some models with aggregation and desorption@30,31#. Here,
the etching~pinned! phase parallels the active~absorbing!
phase of DP, while the opposite relation was found in tho
systems. Previously, a DP transition similar to the pres
one was observed in a ballisticlike deposition model with
poisoning species@21#, for which a correspondence to a co
tact process was also proposed. Once again, it illustrates
robustness of the DP class@25,40#. For applications to rea
systems, this robustness suggests that DP transitions ma
observed in etching processes with formation of block
species even if the etching mechanisms are not represe
by our particular model, but with anisotropic flux of the etc
ing agents.
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