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Interfacial nonequilibrium and Be nard-Marangoni instability of a liquid-vapor system
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We study Beard-Marangoni instability in a system formed by a horizontal liquid layer and its overlying
vapor. The liquid is lying on a hot rigid plate and the vapor is bounded by a cold parallel plate. A pump
maintains a reduced pressure in the vapor layer and evacuates the vapor. This investigation is undertaken
within the classical quasisteady approximation for both the vapor and the liquid phases. The two layers are
separated by a deformable interface. Temporarily frozen temperature and velocity distributions are employed at
each instant for the stability analysis, limited to infinitesimal disturbasioesar regime. We use irreversible
thermodynamics to model the phase change under interfacial nonequilibrium. Within this description, the
interface appears as a barrier for transport of both heat and mass. Hence, in contrast with previous studies, we
consider the possibility of a temperature jump across the interface, as recently measured experimentally. The
stability analysis shows that the interfacial resistances to heat and mass transfer have a destabilizing influence
compared to an interface that is in thermodynamic equilibrium. The role of the fluctuations in the vapor phase
on the onset of instability is discussed. The conditions to reduce the system to a one phase model are also
established. Finally, the influence of the evaporation parameters and of the presence of an inert gas on the
marginal stability curves is discussed.
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I. INTRODUCTION librium effect is especially important for a liquid undergoing
rapid evaporation at reduced pressiiée-8]. Moreover, a
Evaporative convectiofl] is of particular interest in temperature discontinuity at the liquid-vapor interface has
chemical engineering because of its importance in heat exseen measured at reduced pressure by Shankar and Desh-
changers, distillation columns, and drying technologies. Thepande[9]. Recently, Fang and Ward 0] have experimen-
driving mechanism of evaporation can be provided by theally confirmed the existence of such a temperature disconti-
heating of a liquid layer from below or by maintaining a nuity at the interface during steady-state liquid evaporation.
small vapor pressure gradient in a nonsaturated gas when tiiuang and JosepFll] have proposed interfacial relations
liquid is open to ambient air. During evaporation, an essenthat account for this interfacial jump of temperature but their
tial mechanism is latent heat consumption that leads to inrelations have been postulated without firm kinetic or ther-
tensive cooling of the liquid-vapor interface. This is equiva-modynamic bases and, in addition, they disregarded Hertz-
lent to consider a liquid layer cooled from above. TheKnudsen’s relation.
reduction of temperature near the free surface makes the lig- A more systematic and general thermodynamical model-
uid layer more unstable. In turn, the onset of instability leadsng of heat and mass transfer through interfaces during phase
to an enhancement of evaporation rate. changes under conditions of interfacial nonequilibrium was
To model interfacial heat and mass transfer, it is convenproposed by Bedeayd2]. In this approach, based on clas-
tional to use an interfacial no-slip condition together with thesical irreversible thermodynamics, the vapor-liquid interface
interfacial thermal and chemical potential equilibrium condi-is viewed as a separate phase in local equilibrium. It has the
tion [2,3]. This is referred to as the interfacial equilibrium advantage to yield interfacial relations that naturally cope
assumption. Interfacial chemical potential equilibrium meanswith the possibility of a jump of temperature across the in-
that the temperature of the liquid is at its saturation valugerface and that generalize the Hertz-Knudsen relation.
with respect to the pressure in the vapor. The two last asMoreover, this theory is in agreement with the kinetic theory
sumptions are nevertheless questionable. Indeed, more ggi3].
erally, a kinetic relation like the well-known Hertz-Knudsen  The purpose of this work is to study the role of such
law [4] should be used in place of the chemical potentialinterfacial nonequilibrium effects on Bard-Marangoni in-
equilibrium condition. The Hertz-Knudsen relation predicts astability, during evaporation of a liquid into its overlaying
mass flux through the interface proportional to the differencevapor; this will be achieved within the framework of Be-
between the pressure of the vapor and its saturation valugeaux’s theory. It is worth valuable to study the onset of
corresponding to the temperature in the liquid. It is onlyconvection and to compare these conditions with the experi-
when the kinetic evaporation coefficient is infinite that inter-mental results because it gives more insight on the validity of
facial equilibrium is recoverefb]. The interfacial nonequi- the thermodynamical model as a predictive tool.
The structure of the paper is the following. In Sec. Il the
set of governing equations is established, and some physical
*Collaborateur Scientifique du FNRS. parameters for water and its vapor are introduced. Section Il
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Z % Cold plate [14]. Density is then a function of temperature only. The
N N N N N S E—— liquid, a Newtonian one, is assumed to have the same prop-
Vapor erty. Moreov_er, one considers small variations of temperature
Interface S across.the_llql'nd and vapor phases so that Blmelssm.esq
n (XY, t)+ _ D approximationis valid for both the vapor and the liquid
A A A ' by phaseq14]. The vapor and liquid balance equations then
R : reduce to the following equations.
N AR s s (a) Vapor phase equations:
AAAAAAA
[romienana] L,,X V.v.=0 (13
> Hot plate v
. . IV,
FIG. 1. Configuration. p"(a_tv—'—v"' Vv\,) = —Vp,+ 7 AV— pug[1— ar(T,
deals with the study of some basic flow configurations under
the classical quasisteady assumption for both the vapor and -T)]es, (1b)
the liquid phases. A linear stability analysis is presented in
Sec. IV. The particular case of no-flow heat flux evaporation aT,
in presence of an inert gas is investigated to examine the WﬂLV\,-VTV: kAT, . (10

influence of gas phase diffusion on interfacial nonequilib-

rium situations. Finally, conclusions are drawn in Sec. V. Here T, andp, denote the temperature adginamical pres-

surefields, whilep, is the constant density taken at a given
reference temperatuiig . The coefficientsyy, 7, andx are,
A. Configuration respectively, the volumetric expansion coefficient, the dy-

Consider the general setup sketched in Fig. 1. The liquid'@Mic viscosity, and the heat diffusivigy, =V -V is the La-
i lying on a hot horizontal plate and its vapor is bounded byPlacian operator. _
a parallel cold plate. Leb,, be the distance between the two ~ (P) Liauid phase equations:
plates. The two horizontal layers are unbounded in the hori-
zontal ey ,ey) directions. The vertical coordinage is taken
to be directed from the liquid into the vapor, opposite to the
uniform gravity acceleratiog. The hot lower plate is imper-

II. GOVERNING EQUATIONS

V'V|:O, (Za)

Vi
p —+V|'VV|) ==Vp+nAvi—pg[l-an(T—T)le,

meable but vapor can be evacuated through the cold upper | ot

plate by a pump that maintains a reduced pressure in the (2b)
vapor layer. It is convenient to use the orthonormal frame

(O,ex,ey,e,) with the originO at the bottom plate X,Y,Z) 07_TI+V VTi= kAT 20
are the Cartesian coordinates anthe time. We use sub- gt Y mRa T

scriptsl andv for liquid and vapor, while subscriptsandb _
design the upper and bottom surfaces, respectively. Theherep, is assumed to be constant.

equation of the liquid-vapor interfac® is given by Z Within the Boussinesq approximation, we hgig—T|
— £(X,Y,t)=0. The unit vecton normal to the interfack, ~ <lay, and|T|—T[<1lar. o
and directed towards the vapor, is given by (—V & (c) Wall boundary conditions: At the rigid, impermeable

+e,)/N where V,=(dy,dy) and N=1+|V, &% Lett, liquid-hot plate,Z=0, with imposed temperatufg, one has
= (ex+ dxéey)/Ny andt,=(ey+ dyée;)/Ny be unit vectors

tangent to the interface, WittNy=1+ (9,2 and Ny u=v,=w=0, (3a)
=1+ (av€)%. The interface normal velocity is given by

Vs -n=d;&/N. Some quantities may be discontinuous across Ti=Tp. (30)
the liquid-vapor interface. We denote hy , a_ the values
of any quantitya at the interface, respectively, in the va-
por and the liquid phases witHa]]=a,—a_ being the
jump of the quantitya through the interface. The velocity

At the rigid permeable vapor-cold platé=D,, with im-
posed temperaturg€, and vertical velocityw,, one has

: Wy =W, 4
vector isvy= (Uy, vk, W), vnk=Vk- N, andVy=Vi—vnn (K v 43
=1,v). S

The governing equations are the mass, momentum, and u=vy=0, (4b)
energy balance equations in both the liquid and vapor phases, - (40
v tu-

and at the liquid-vapor interface.

(d) Initial conditions: Att=0 the depth of the liquid layer
is given byD, and the initial temperature and velocity pro-
The vapor is assumed to be a gas at low Mach number sfiles are supposed to be independent of tKeY() coordi-

that itsthermodynamic pressure,Pnay be taken as constant nates and to be known.

B. Phase equations and boundary conditions
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C. Interfacial equations where |;; are the phenomenological coefficients withy

The set of equations describing the liquid-vapor evapora= 21/ Tr according to Onsager-Casimir reciprocity relations
tion must be complemented by interfacial relations. Thesél5]: The coefficientd,; andl,, are positive. These interfa-
expressions will be either interfacial balance equations ofi@l constitutive relations generalize the usual interfacial
constitutive relations. Here, we use Bedeaygg] descrip-  €auilibrium relationsT, =T _ and . = that are recov-
tion of heat and mass transfer through interfaces to model th@g"ed if we assume that the coefficiehfsandl 5, are infinite.

phase changes under interfacial nonequilibrium conditions. When the constitutive coefficients are finite, the interface
Let 7= p(v;-n—Vs -n) be the interfacial mass flux rela- 2PPears as a barrier for the transport of both heat and mass.

tive to the motion of the interface antf. = —\ VT, -n The interfacial coefficients are function of the interfacial

the normal component of the heat flux at the interface witf€Mperaturel . However, at a first approximation, they can
A the conductivity of phase k. The only material property of € considered as constant; in analogy with the heat conduc-
the interface which is taken into account in this study is theflVity and the viscosity, we will consider the value of the
surface tension. We consider that tslew evaporation ap- mterfamal coefficients the one corresponding to the equilib-
proximationis valid, i.e., we neglect the viscous dissipation UM temperaturd . _ -
and molecular kinetic energy in the energy balance and the Here, we consider evaporation close to a global equilib-
vapor recoil term in the normal momentum balance. Then th&lum state P, T,) taken as the reference state. Then the

interfacial balance of mass, momentum, and energy equdX€SsureP, and the temperaturg, must verify the relation
tions are[12] P(T,)=P,, whereP is the liquid-vapor saturation law. Close

to this equilibrium statd,[ h]] is assumed constant and equal
J=py(Vy-N=Vy-n), (58  to the heat of evaporation at equilibriulm,(T,). Moreover,
[[1T]]= —[[T]]/T,2 andF~R, TIn[P. /P(T_)] as explic-
0=—[[p]In=yCn+[[n-7]]+ Vv, (5b) itly shown in Ref.[17], R, is the ideal gas constant divided
by the vapor molar mass. When evaporation takes place
[[Igl1=—[[h]]1T, (50 close to a global equilibrium with,;=<, relation(9b) re-
duces in the linear approximation to the Hertz-Knudsen re-
where vy is the surface tension; is viscous stress tensdZ,  |ation
=V .n is the curvature of the interface, ahds the specific

enthalpy. The surface tensiop is only a function of the B
interfacial temperature which is chosen to be equal to the J= m[ﬂl)—m],
liquid side temperatur@ _ [12]. In the linear approximation, *oT
one has with the accommodation coefficien{3 given by g
Y= 5= (T —T)) ©) =I_22R* TN27R, T,/P,. On th_e other hand, if, for _the satu-
rosr o ration law, we use the Clausius-Clapeyron equation

with vy, and y; reference values evaluated &t T, . LT/l 1

We now look at the restrictions placed by the second law P(T)=Pex TR I\TTT

* r

of thermodynamics stating that entropy productiors posi-
tive definite. Designating bg the entropy density and b then F = — L,(T,)(T_ — To2)/T,, where the saturation tem-
its entropy flux, the entropy production is defined 1] peratureT g, is defined byP(Ts) =P, . Under these condi-

5 tions the set of equation®) can be rewritten as
pS
o=—+V-(psvt+Jy), (7) | LT
" Jgu == ST+ 25— Mt 1. (0a
where the fields are distribution functions because they con- r '
tain singular contributions at the liquid-vapor interface. Un-
der the slow evaporation approximation and interfacial no- e |i1[[_r]]+ 2L (T (T —Toy (100
slip condition, it is checkedl16] that the interfacial entropy T? T =

productiono is

r

where the saturation temperature is a constant because the
os=Jq:[[1T]]-TF, (8)  thermodynamic vapor pressure is assumed constant. It is then
appropriate to choose this pressure as the referenceRstate
with F the thermodynamical force corresponding to the=P,, so thatT,,=T,.
thermodynamic flux.7. The quantity F is given by F The linearized law10b) was proved to be satisfied for the
=T_[[—h,./T+ul/T]], whereu is the chemical potential. study of dissipative systems when the temperature is con-
The associated interfacial constitutive relations are then  tinuous across the interface provided that the temperature
remains close to the reference temperat(oe Ref. [8]).

Jgr =l [UT]] =115, (CE) There is no reason not to use our generalized linearized egs.
(109 and (10b) in presence of a temperature jump at the
T= [ [LT]]—155F, (9b)  interface.
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TABLE I. Bulk dimensionless parameters.

Liquid Prandtl number Pre 7 Froude number K|2
" ik Fi=—7sj3
9D
Density ratio _ Py Rayleigh number pi9arD(Tp— Tend)
Pi Ra= 7K
Dynamic viscosity ratio Ny Depth ratio Dy—D;
n=-_- D=——
7 D
Diffusivity ratio Ky Thermal ratio To— Teat
K— — = ——
K Tb_ Tsat
Conductivity ratio \— Ay w,D,
N = K|
Volumetric expansion ratio aty Capacity ratio Y
ar=—— Co=——
ar P opx
D. Dimensionless equations T=1 (13b

We ChOOSdD|, D|2/K|, K|/D|, 7]|K|/D|2, andTb—TsattO
scale the length, time, velocity, pressure, and temperature,
respectively. In particular, the temperaturésand T, are

At the vapor-cold plat&=1+D:

made dimensionless b¥f,— (T,— Tea)/(Tp— Tsa) and T, Wy =W, (149
—(Ty—Tsad/(Ty,— Tsa). Interfacial mass flux7, heat flux, U=p.=0 (14b)
viscosity tensor, and surface tension are scaleg ky/D,, v
M(Tp—Tsad/Dy, 7]|K|/D|2, andvy,, respectively. As a conse- T.=T. (140
guence, the dimensionless equations are expressed as fol- Y
lows. At the interfaceZ = ¢&:
(a) Vapor phase equations:
J=p(Vy-n=Vs-n), (159

V-v,=0, (113

Cr(p_—p;s)=(1—-MaCiT_)C+CH{n-7_-n—z»n-7,-n],

v
Pl +w Vvv) =Pr(=Vp,+ 7Aw) (15b)
(n-7_)-t=n(n-7,)-t—MavT_, (150
1
+p| arPiRaT,— ﬁ) €z, (11b 1
| _
Jg- =g+ g (159
aT,
(b) Liquid phase equations: Ti=(1=H)T-—HJq: , (169
V-v,=0, (129 1 1
n To=Helg +. 7. (16b)
(9V| 1
E+V|'VV|:PH(_VP|+AV|)+ PﬁRaTl_F—n €z, VL=V, (160
(12b .
with t=(t1,t;), J=v;-n—vs-n, Jo-=—VT-n, and Jg,
(9T| = _)\VTV n.
W+V|~VT|=AT|. (129 (d) Interfacial kinematic condition:
- 9&
(c) Wall boundary conditions. Ve N= —2 (17)
At the liquid-hot plateZ=0: SN
u=uv,=w,=0, (133 (e) Initial conditions:
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TABLE Il. Interfacial dimensionless parameters.

Crispation number k| T2\
Cr= D =T D
! 1171
Marangoni number SD(Th—T oL (T,)2D
Ma= L1 b~ sl (To ™~ Toad Transfer parameters K= 0 71 W(T)D,
K| ! TN
Kutateladze number I,
_ColTy Tl N
Lu(To) e

¢=1, temperature and velocity profiles independent ~ Parameters$d, andH; are proportional to ), so that their
values are larger when the liquid depth is smaller.

From an experimental point of view, the temperaturgs
T,, andTg, the distancd®,, between the two plates, initial
The dimensionless parameters that appear in the above equigtid layer depthD,, and the top cold plate velocity, are
tions are defined in Tables | and 1. parameters of the problem. It is convenigti] to define two

For water at 45°C,xk=120, Pf=1.74, C,=0.5, 7 new dimensionless numbessand A related to Ra and Ma
=4102 \=35102, a;=2.7102, p=6x10 4 Foran by
initial liquid layer depthD;=6 mm, it is found that Cr
=1.3x10 7 which means that the crispation number is very Ra=(Ray) agA, (199
small. Moreover, Ku/Ma 8.2x 108 so that the Kutateladze
number is very small as regard to the Marangoni humber.

The values of the interfacial transfer coefficients at 0 °C
have been determined by Bedeaux and Kjelsfrlifi from
the experiments of Fang and W4drtD] on water evaporation whereqy is related toa by
into its own vapor. In these experiences, no convection is

of the(X,Y)coordinates. (18

Ma= (Mag)(1—ag)A, (19b

observed. Moreover, from steady experimental situations, 1 g/ 1
one can only find two of the three independent interfacial ——1= —(——1), (20
transfer parametersl,, k,, andk;. Therefore, following %q 9 la

Ref.[17], we assume that the dimensionless coupling coef-
ficient k;, will be givena priori. Two cases are investigated: and where Rg May are two arbitrary numbers. Here we
k,=0, i.e., no coupling and,=0.18 as derived from the choose Rgas the critical Rayleigh number for pure buoy-
kinetic theory of gases. We have also used the scaling coe&ncy instability and Mg as the critical Marangoni number
ficients proposed in Ref17] to obtain reasonable estimates for pure thermocapillarity instabilityg, is the acceleration at
of these coefficients at the reference temperatlire the earth surface due to gravity. The quantitys a measure
=45°C. The corresponding values for the interfacial dimen-of the liquid depth parameterD, since 1h—1
sionless transfer parameters are reported in Table III. = (Ray/Mag) ¥S/(pi9oar DY), while A is related to T,
The values of these coefficients are still acceptable for a-T,. It is convenient to take the acceleratigndue to
fluid whose interface is moving because, according to theyravity as a variable parameter. Under microgravity (
thermodynamical model, the interfacial coefficients are inde=0), the parameter, is null whatever the value of the
pendent of the displacement of the fluid-gas interface buinitial liquid depthD, and cannot therefore be used to mea-
depend only on the temperature. Moreover, as proved in Segure the depth of the liquid layer. In contrast the parameter
IV, the gqualitative conclusions of our analysis are rather in<s not zero even fog=0 and is therefore the appropriate
sensitive to the values of these interfacial parameters. candidate for evaluating the liquid depth. The dimensionless
For further purpose, we introduce two extra interfacialparameterd, Ku, Fr, Cr, H; andH, are linked toa and A
parametersH. and H; given by Hc.=kpk;H, and H;=[1  via coefficients independent of the liquid depth, for instance,
—HZ/(kjH,)] 'k *. The parameteH, is independent of
the liquid layer depttD,. It is of the order of one or smaller.

Ku=Ku,May1/a—1y/May/Ra, (21)
TABLE lll. Interfacial dimensionless transfer parameter values
(D=6 mm. T,245°C) P with Kuy=(\piGoanComi)/ (¥22y). The new dimen-
sionless parameter@ and A are preferred to the classical
K 0.18 0 Rayleigh and Marangoni numbers for the stability study. In-
H, 4.2 3.3 deed, they are directly related to the relevant experimental
K 4.8 21 data, namely, the temperature drog— T, and the liquid

depth parametéD,.
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I1l. QUASISTEADY BASIC SOLUTION H.
. . _ T =2 (25b)
When solving the set of equatio$1)—(18), one finds a &+ H;
basic one-dimensional unsteady solution independent of the
(X,Y) coordinates. Here, we shall work in the frame of the E(t)=—H;+ J(1+ Hj)2—2(Ku)t. (250

guasisteady assumptidar which the time derivatives in the
partial differential equations both in the liquid and vapor The temperature field, is then obtained by using relation
phases are neglected but not in the interfacial kinematic con4.6h) in which the small heat flux terrd 4+ is not negligible

dition (17). This assumption is satisfied after a short time,and evaluated via relatiof23b). The vapor phase solution is
during which the liquid depth remains constant, because ofhen given by

the large value of the evaporation h¢at.

The incompressibility condition leads to a null velocity in (1-H)H,;
the liquid phase, which is therefore in a purely conductive TErH,
state, and a constant velocity in the vapor phase. As a con- Jq+=—'Hf(x), (269
sequence, the interfacial balance of mass readsWas 1+HHi(x)
=(1/p—1)J. The value of the velocityV, at the top cold
plate must assume the particular value given by the solution HcH; Hi )} Hf(x)
of the quasisteady problem. E+H; T\ E+H; &
Within the quasisteady assumption, the temperature pro- T,=T_— T+ H HT(x) . (26D
files are '
with
1-T_
=iz (229 Coku 1 DH, A
H &+H; H=Tip-¢ ™o
CoJ
1—exr{— T(“’D_Z)} According to the interfacial mass flux and heat flux ex-
T,=T+(T,=T) , (22D pressiong25a and(268 and assumptiofi24), we conclude
1— exr{ - 1+D- g)} that the one-sided model is satisfactory at tirsed for small
A values of HoT and HgH;, i.e., when the thermal ratio
. L . (N/D)T is not too large and the initial vapor layer depth
after using the approximation (@y—1~1/p. In addition, D,,— D, not too small. We have calculated 2, — D, must
be larger than 0.13 mm fdg,=0.18. Moreover, if the one-
3 :1—T— (239 sided model is satisfactory at tinte=0, it remains also sat-
a- g isfactory as evaporation proceeds because the quahtiiy-
creases with time so that the valueld and HH; remain
NT.—T) [CoA(1+D—§) smaII._Concernmg the interfacial equmbrlu_m s!tuatlon(
Jgr = 1+D—¢ N , (23b —0), it shou_ld_bg stressed that when _the d|ﬁg$|0n mass flux
J becomes infinite at the end of the interfacial evaporation
, process, the quasisteady approximation becomes wrong ac-
with f(x) =x/(expx—1). cording to Burelbaclet al. [8].

As a consequence, the interfacial relatiddsd), (163,
and (16b) constitute a set of three equations for the three
unknowns7, T_, andT, , parametrized by the liquid layer
depth¢(t). The variation of the liquid layer depth is given by A particular situation of interest is when the saturation

B. No-flow heat conduction solution

the interfacial kinematic conditiofy= —dé&/dt. temperaturel ¢, (or T) is chosen such that the velocity im-
posed at the cold top plate is zero. Then, there will be no
A. One-sided model evaporation. This is the so-calletb-flow heat conduction

_ o solution. We obtain in this case a time-independent solution
If we assume that the heat flux terdy, is negligible in  ¢ty=1 with

relations(15d) and (16b), i.e.,
1+[H +(—1+H)HH IHy 1

Jge <JIKu and Jg; <JI(KuH,), (24) T=— TTHA o (273

we obtain a liquid phase problem that is uncoupled from the

vapor phase problem and whose solution is the same as that T :M, (27b
given by Burelbactet al.[8], namely, 1+HcH;
K 25 r,o7 - et HeH 27
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With the no-flow saturation temperature given by E2jra, zen during the stability analysis, i.e., that the perturbations
we find thatTH, is of the order 1, so that the one-sided evolve more rapidly than the basic state. The linearized di-
model is not valid. Moreover, for an imposed saturation tem-mensionless equations for the perturbed quantities are the
perature close but largésmalle) than the no-flow saturation following.

temperature, the liquid will completely evaporateon- (a)Vapor phase equations:

dense.
V-v,=0, (293

C. Small diffusion mass flux approximation

ov. c7V
Another approximation besides the one-sided model is the P_ (?tv +Wvﬁ—zv> =-Vp,+nAv,+arpRaT,e;,
small diffusion mass fluxapproximation defined by7 (29b)
<H/C,, i.e,,CpJ(1+D—§)/N<1. Under this assumption,
relations(22b) and(23b) can be reduced and the problem to aT, b(;T
be solved becomes a two phase coupled linear problem ot TWe 7 X =kAT,. (299

whose solution reads as

T 1+ HIH, A HeH (— 14+ Hot T+ TE] (b) Liquid phase equations:

Ku~ H, . (283 V.v=0, (309
T_=H{1+H[H,—(—1+H)TEMH,, (28D %=Pn(—Vpl+Avl+RaT.ez) 30
To=T_+{HHH,(— 14+ T)—HH,+ H[(~ 1+ Ho)H.H,
aT
+HJTEH,, (280 &—tI—JqF\N|=AT|. (309

with Hi=H;+ &+ HH;H +H[(—1+Hc)?H; + H,]¢. The T
domain of validity of this approximation includes the no- (c) Wall boundary conditions:

flow heat flux solution and is complementary to the one- B S

sided approximation because no small valuesHgl and AtZ=0, w=u=v,=T=0. (313
HoH; are allowed. As the quantitid is usually small, one

o AtZ=1+D, wy=u,=v,=T,=O0. (31b)

(d) Interface g=&°):

J~ [L+HT(HH;+ 9],

§+H J=p(W;—Ws), (329
so that the interface velocity increases as evaporation pro- W, AW,
ceeds and the validity conditio<H/C, can be easily Cr(p-—p+)= ZC{(?Z 5z, +Crxgé
checked. In patrticular, for interfacial equilibrium, the small
diffusion mass flux approximation is not valid at the end of —(1-MaCrT®)A &, (32b
the evaporation process because the diffusion massflux
becomes infinite, as mentioned above. N1, Nqy b

The evolution of the liquid-vapor interfacg(t) that we 57 * ViW-= Moz, " VW+ —Ma(VyT_—J4-V4),

derive in this section, and, in particular, the latf? of rela- (320

tion (250, is only valid when the liquid phase is in the state
of conductive flow.
After having determined the basic quasisteady solution of Jo-=Jgr T ¢ J+ X3¢, (320
the liquid-vapor evaporation problem, we will study, in the
following section, its stability with respect to infinitesimally gnd
small disturbances in order to determine the onset of insta-

bility. Ty=(1=Ho)T_—HJg, +x5¢, (333
IV. STABILITY ANALYSIS 1 1
g T-=Hedgs + oI+ X3¢, (33b
o . ; u
A. Linearized equations !
To study the linear stability of the quasisteady solution, let Vi =V;_—WIV ¢, (330

us reformulate the relevant linearized balance equations. Let

G’ =G— GP" be the perturbation of a general quant@ywith  with

the superscripb referring to the basic quasisteady solution. ¢

For simplicity the superscrigtwill be omitted in the follow- A= 24 52 _ _9 _

. . : . S =d5x+dy, Vvi=(u,v,0), ws=—, =W_—Ws,
ing of this section. We assume that the basic solution is fro- ~ 1 "X Y 1= (0,0 ot J *
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5 aT, 5 aT,
N 2 Ly
and
ap;’  apy
b \
XOZ_ (927 (92+' (343)
Sl vaTE (34b)
Nz Nz
(1-H)J 1Jb H)\(?ZTS (340
—(1- P+ —Jgr FHA—, v
c/vYq \ q+ r (922+
1 921D
Xo= g —HA——. (349

H;

It is convenient to eliminate the horizontal components of the

PHYSICAL REVIEW E 68, 041601 (2003

) %W, 8w,
At 2=, A1W|7—?=77 W = 5
- +
—Ma(A;T-—J3°A48), (379
0W| B &WV bA 37
9z az, W 16, (379

plus the remaining interfacial conditior(82a),(32b),(32d),
(334, and(33b).
B. Normal mode technique

1. Differential system of equations

According to the normal-mode decomposition, we seek
solutions of the form

(p,w,T)=[P(Z2),W(Z),0(Z)]exd ct+ikX], (38

¢= pexg ct+ikX],

velocity in the linearized set of equations to obtain a vertical
velocity-pressure-temperaturevp, T) system. This is done wherek is the wave number and the stability parameter.

by applying the divergence operator on the Navier-Stokesvith the notation’ =d/dz, "=

d?/dz?, we obtain the fol-

equationg29b) and(30b), the horizontal divergence operator |owing equations for the amplitudeB(Z), W(Z), ©(2),

on the no-slip boundary and interfacial conditidgB4), (330

and the Marangoni conditiof82c). After use of the continu-

ity equation, we obtain, in the bulk,

aTy,

Apy=parRa—=, (353

oW W 1 ap
—1 v p? Wy \%
Pr, ( P +w, az) 09z — +— AWV-I—aTRaTV,
(35b)
aT, pITy
oW Vaz wa KAT,, (350
and
&T|
Ap=Ra_> (363
prif_ PP \witRaT (36h)
aT,
|:AT|, (36C)
while at the boundaries and the interface:
&W|
At Z=0, a_Z:W':T':O' (379
WV
At Z=1+D, 7 =w,=T,=0, (37b)

and ¢, respectively:

W —| k?+ Piﬁc)w.—Pl’JrRa.:o, (39a
P/—k’P,=Ra0/, (39b)
0 —(k2+¢)0+J/W,=0, (390
p pwy 1 P
W —| k?+ ﬁc)w ﬁw\’,— ;P\’,+ ;aTRa®V=0,
(399
Py—k?P,=pRa0,, (399
1 wh 1
Oy—| K+ —c @V—TV\’,JrHJq\t,’WV:O. (39f)
The corresponding boundary conditions are
W (0)=0, (409
W/ (0)=0, (40b)
0,(0)=0, (400)
W,(1+D)=W/(1+D)=0, (400)
0,(1+D)=0, (40e
and at the interfaceZ(= £%):
J=W_-co, (413

041601-8
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W_—cd=p(W, —cé), (41b)

Cr(P_—P,)=2CrW’" — W’ )+[(1—MaCrT? )k?

+Crxole, (4109
W +K2W_ = 7(W, +k2W, ) —Mak?(® _ —J > ),

(410

' ’ 1 b
®_:)\+_K_uj_X1¢’ (418

and
W' =W, +k2w2, (429
0.=(1-Hg)®_+H\O' +x3¢, (42b)
1 ’ 1 b

H—,Z—HCX®++K—UJ+X3¢. (420)

]

To investigate the role of the interfacial thermal and mass

resistances on the liquid-vapor instability, we consider a con
figuration for which the interfacial deformation and gravity
forces are negligible. We show in the following section that

in this situation, the instability problem can be reduced to a
one-sided liquid phase model with the vapor fluctuations

taken into account through the introduction of an equivalen
Biot number, the expression of which will be derived. To be
specific, we consider a liquid layer of initial deptd,

=6 mm equal to the depth of the vapor phase, D51,
a=0.148, andT,=45°C. In this caseH, is small and we
are left with the only independent parameteYsand T.
Moreover, we suppose that the interfaceuisdeformable
(¢=0), since the crispation number is very small for a wa-
ter layer of this depth, and taken for granted &xehange of
stability hypothesis ¢=0).

2. No-flow heat conduction approximation

We first study the stability of the no-flow heat conduction
basic state because it is the much easier situation. Vi§en

PHYSICAL REVIEW E 68, 041601 (2003
fe(Z)=sinfk(Z—1-D)],
f(Z)=—[b,k?Z%2+k(—by+4b,k)Z]/(8Kk3),
f5(Z)=—[b1k?Z%+ k(—b,+4bzk)Z]/(8K3).

If the two interfacial liquid side quantitie®/_ and W’ are
known, then the four equatiori$0d), (413, (41b), and(423
give the values of the coefficients, b,, bs, andb,, while
equationg40e and(42b) lead to the values of the remaining
two coefficientsbs andbg if we admit that the quantity) _

is known. The remaining three interfacial conditions take the
form

H;
0 - Jw =

Ku (443

—HjHgT,,

W’ + KW+ Mak2® _ = — kzngV(Dk)W_

- gdeV(Dk)WL . (44b)

1
yvith

b b

qv qu
K Kp

—(1—H)HftT(Dk)® _,

2

gT,= dfT, (DKW, + YT (DK)W_

(453
and
fW,(X)=6f(x)/x2,
dfW,(x) =4 (x)/h(x),

3 coshi2x]—3(1+2x?) — 2x3tant x]

FT,(x) =
9 (813x°(g(x)/(x))

=0 andé=1. Moreover, as this basic state is still steady, the

frozen assumption is not necessary.
Under microgravity conditionsg=0), the solutions in
the vapor phase have the following structure:

Pyv=nlb1fe(Z) +byfs(2)], (439
W, =(b3+b,2/2)T5(Z)+ (by+byZ/2)f5(Z), (43b
1.y
0,=|bs+ KJq\/H(Z) fe(2)
1.y
+|bg+ K‘]q\/fB(Z) fs5(2), (430

with six unknown coefficient®; and
fg(Z)=coshk(z—1-D)],

04160

sinH x]%tani x]—x3
(413)X7(g(x)/f(x)) '

dfT,(x)= (45h)

ftT,(x)=1/g(x),

2x4/3
X)= 5
cosh2x]—1—2x

_ (HN/D)x+tani x]

and
i) 4x313
(X)_sinr[ZX]—Zx'

1-9
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The problem is now equivalent to a liquid-side problem.after introducing the scaling= @/J for the liquid tem-

This one-sided model can always be obtained since the twperature and setting |F!e\]qI [1+ HjHgtT,]/[1

functionsg and h are positive so that the quantities defined — KuH.gwT,](Ku/H;). These operations Iead to a Pearson-

by the se{45b) exist. Note that the above one-sided model isjike “reduced” model expressed by

not of the Pearson-like forfil9] as derived by Burelbach

et al.[8] because of the presence of the paraméterin the W_=Pgf_, (499

set (44). However, we can overcome this problem by ex-

pressingW’ as a function ofWV". andW_ . W’ +k?Ma, 6_=0, (49b)
This can be achieved as follows. First, observe that in the

liquid, the field variables can be written as 6" +Bi 6_=0. (499

p;=acoshkZ]+bsinH kZ], (469

w,=(c+az/2)coshkZ]+(d+bz/2)sinH kZ], (46b

f b 7%+ a _d kz]+ z2
Jq| ak” " g 2k 7| coskalt| 97 g
¢ kZ 46
+ a3 2| sk, (460

If we suppose that the solutions of the 403 and (40b),

W_, andW” are known, we can determine the coefficients

a, b, c, andd and writeW”. as a function ofW_ and W'’ .
This leads to

. Afk)

-~ hik) W’ —(K?+6f(k)W_,

so that the quantityv’ can now be written in terms ai_
and® _ by elimination of W’ from Eg. (44b); the result is

o 7 f(DK)\ 3h(k) k2h(k)
alw_—<1—pD2 f(k) 2 _—MQT(I()_

whereina, =1+ (7/D)[ h(k)/4f (k) ]d fW,(Dk).
Expression oy T, reduces to

gT,=gtT,® _+gwTW_, (47)
with
k2h(k) Jqsoz
gtT\,=—a1 4f(k)dfT\,(Dk) Ma
A
_(1_Hc)5ftTv(Dk)v (48@
T,= JbDfT Dk k2h(k)dfT Dk
gW - V( )+a/l 4f(k) v( )
7 f(Dk)\3h(k)
X —pD2 fK) 5 (48b)

so that Eq.(443 reduces to

W_=Pg6_,

with the new “reduced” Marangoni Maand Biot numbers
Bi, given by

ndfW,(DK)[  3h(k)
Ma,=J S Ma+ (1+f5)Pg + P
a=Jqg ( 3)Pe DKZa, —
kzh(k)J oM 50
4f(k) a e (503
1 Ku
E_(l_Hc)gtTv_WgWTv
P | ]
Bir= 1—KuH gwT, ’ (500

with f3=(7/p)fW,(Dk) andf,=1—[k?/6f(k)]fs.

The relationg50a and(50b) can still be simplified under
the following hypotheses. Indeed, #/D is small thena;
~1 and MaquFMa+(1+f3)Pe. Moreover, the function
f5 is less than 100 provided th&@k>1.6. The ratio (1
+13) Pe/(JqI Ma) is of the order of (% f3)Ku/(MaH;) and
is very small prowded thatl; is not too small which |mpI|es
I22<6>< 104 kg Jim7?s -1 . This quantity |s of the order
of 1078 kg Jim%s? [17] so that Ma~J,/Ma. In this
relation Jq| is of the order of 1 and comes out because we
have chosei,— Ty instead ofT,— T _ for the characteristic
difference of temperature. The denominator in Biot's relation
(50b) can be approximated by one since the Kutaleladze
number is very small. Moreover, in the numerator of Eq.
(50b), the third term is negligible compared to the second
one as Ku/(M&l;) is very small so that Bi~(1/H;)—(1
—Hg)gtT,. The first term in the expressiod8g of gtT,
can also be neglected compared to the second one and there-
fore one obtains the final simplified expressions

ai 1 (1—H,)? 51

|r~H—j+Htaw, (513
TNk

Ma, ~J Ma. (51b

ForH,=H =0, the second contribution in Bis due to
heat conduction in the gas only, while the first one is due to
kinetic nonequilibrium effects at the interfa¢g]. Clearly,
the relation(519 is a generalization including heat and mass
transfer barriers at the interface.

The set of six equation@9a—(49¢), and(409—(40¢) has
a nontrivial solution only if
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Ma, Ma,
400 400
350 — Spectral resolution and 350

Pearson like model

300 300
250 - - Equivalent Pearson model 250
200 200
150 150
100 100

50 50

0.5 1 1.5 2 2.5 3 3.5 4k i 2 3 4 k
FIG. 2. Neutral stability curves: Marangoni versus wave number FIG. 3. Interfacial parameters variations, & 0.18).
(kp=0.18).

shows a very good agreement. This comparison validates the
tanik] spectral Tau numerical code at least in absence of gravity.
Ma, = fa(K)| 1+ — —Bi—fedk)Pg |, (52 As mentioned earlier, there remains an incertitude about
the values of the phenomenological coefficients. To check
the role of these parameters, we have comp(geé Fig. 3
the neutral stability curve for an interfacial phenomenologi-
) cal coefficientH, that is 50% less than the value reported in
coslik](cosHk]sinffk]/k—1) Table Il and a value ok; twice the value reported in Table
(sinq k]/k)3— coslik] . Figure 3 shows that the results behave qualitatively in the
same way so that the relative importance of the different
) ) mechanisms that contribute to the onset of the instability,
fod _ (7—4k"+5 coshi2k])tanfi k]/k—2(6 +k7) appear to be not fundamentally influenced by the values of
P 16k?(coshk]sinH k]/k—1) ' the interfacial transfer coefficients. Of course, it would be
valuable to compare our results with experimental ones per-
The function fy,(k) is identical to the well-known Ma- formed in presence of convection to obtain more realistic

rangoni neutral stability curve for an adiabatically isolatedvalues of the coupling coefficied, and to validate our in-
upper boundary. It is minimum at 79.61 with a critical wave térfacial thermodynamical modeling.
number k=1.99. The functionfy,(k)[ 1+ (tanHKk]/K)Bi, ]
was derived by Pearsdi9]. It has a minimum varying be-
tween 79.61 aneb with critical wave number values varying To have an insight about the role of the evaporation rate
from k=1.99-3.01 when Binumber is increased from 0 to on stability, we shall investigate the stability of the quasi-
0, steady flow in the small diffusion mass flux limit. Interfacial

The functionfp{k) decreases from 0.275 k=0 to 0 at  thermal resistance will be neglected according to the results
k=oo. For k between 2 and 3fpe~0.1; the termfpPe is  of Sec. IV B 2. As the evaporation raf® is generally small,
then negligible according to the above choice of the coeffithe analysis will be limited to the first-order correctionh.
cientl},, so that the Pearson relation remains valid with theAfter some algebra, it is shown that the equivalent Biot and
above(51a—(51b) choice of equivalent Biot and Marangoni Marangoni numbers are
numbers.

To conclude, we have shown that the stability of the Bi :i+ kA —&jb (533
liquid-vapor system can be described by Pearson’s model " H; tanik(1+D-¢§)] 2%
[19] at the condition to introduce an equivalent Biot number
given by(51a. This is the Biot number that would have been MafquFMa, (53b
found from thevapor conductive assumptipmne., by ne-
glecting the vapor velocity fluctuations. In this case, the syswith J°=Ku(1+HT)/(H;+ & +HH;). It follows that the
tem is the most stable as the coefficiehts and H, are  neutral stability curve Maversus the wavenumber, with Ma
small. Using the numerical values of Table I, it is checkeddefined in terms of the temperature difference across the lig-
from Eq. (518 that the interfacial thermal resistance pro- uid layer, is not influenced by the quasisteady basic flow if
vides a small correction to the Biot number kf=0.18  we neglect the third contribution in Bi In contrast( recall-
which becomes negligible fok,=0. Therefore, it can be ing that the liquid heat flux is given bquF=[1
stated that the limiting mechanism is essentially interfacial— (H; /Ku) ]/ £P), the Marangoni number Ma expressed in
mass transfer. We have compared the neutral stability curvasrms of the differencd,— T, between the temperature at
obtained, respectively, from a spectral tau numerical resoluthe lower plate and the saturation temperature at vapor pres-
tion of the linear two phase problem, the linear Pearson-likesure is greatly modified by the presence of the quasisteady
model (49) and the above equivalent Pearson model: Fig. dasic flow.

with

fMa(k):8

3. Quasisteady flow
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Ma, Ly(To (1 1

* r
1200 — Spectral resolution
1060 - - Equivalent Pearson model while, according to the ideal gas equation of state, the partial

vapor pressure is given by

800

W, 1-Y.
600 v v

P,=P / <1+ — , (58
400 v Wa Yy
200 wherein the global pressuf®, is a constant. The saturation
k temperaturél s, is defined byP(Ts,) =Py and is also a con-

2 4 6 8 10 stant. Settingr,,=W,/W, the ratio of molar weights, for
FIG. 4. Neutral stability curves: Marangoni versus wave numbef€mperatures clos'e to the reference temperafureelation
(ky=0.18, thermal raticl =1, initial time t,=0). (56b) can be rewritten as
le(Tr)

As shown in Fig. 4, the agreement between the resultsj_lzzR*T

1+(ry,—1)Yys
provided by a spectral Tau numerical resolution of the linear* '

WYV+

r R. T2 (Tsat_T—)+|n(

* 0 r

two phase problem and the above equivalent Pearson model (59)
is excellent at the initial timé,=0. . .

If the temperature differencd@,— T, is small enough In dimensionless form, Eq$54), (55), and(59) become
then the system is initially stable. When evaporation pro- oy
ceeds, the neutral stability curve goes up so that the system is — +Vg- VyvziAyv, (60)
more and more stable. For sufficiently large values of the at Le
temperature differenc&,— Ty, instability sets in at the ini-
tial time t,=0. K
i Hime TV Yur (1= Y,) Jp=0, (613

4. No-flow heat conduction with an inert gas

To investigate the influence of the interfacial mass resis- J= @

tance compared to the diffusion of the vapor in the gas phase Hj

in presence of an inert gas, we reexamine the no-flow heat . . ] .
wherein we have introduced two new parameters: the Lewis

conduction approximation of Sec. IV B 2 in presence of an 2 :
inert gas. As justified by the results of Sec. IV B 2, we ne_number Le=1cg/Dg and Ky=CyR, T¢/Ly,(T)%. Typically
Le~1 and Ky=3x10 2.

glect the interfacial thermal resistance. : S .

This situation is easily described by introducing a new The np-flow basic solution is know given by the tempera-
variable in the gas phase, namely, the vapor specific densify!® Profiles
Y,. This quantity verifies the following balance equation TP=1-(1-T")Z (629
written in dimensional form ! -

Ky

T+l . (61b

FwYv+

1+ (ry— 1)Yv+)

. To=T+(T5-T)(1+D-2)/D, (62b)
\
—+Vv,- VY, =DAY,, 54
ot 9T VT 4 1 1\Ky [1+(r,—1)Y?
T=———| 1+ —|=In| ———|, (620
. e . . . Ho Ho/Ku %
Dy is the gas diffusivity. Subscrig will replace subscript wev
used in the previous sections. The relevant boundary condi- 1 1)yP
tion is dY,/9Z(Dy)=0. The nonsolubility property of the TP = — an M (620)
inert gas in the liquid can be expressed by N Ku raY? ’
atZ=¢, DVY,+(1-Y,)Tpy=0. (55) =T, (620

where Y2 is uniform and known. The linearized perturbed

By neglecting the interfacial thermal resistance, the interfa i
equations are

cial phenomenological relations are

T, =T 56 AN 63

+=1-, (569 ot e (63
T=1R TAN[P(T-)/Py ], (56b)  with, atZz=1:

with P, the partial vapor pressurel2]. The liquid-vapor K 4 (1—YP _

saturation curve writes as LeVY" (1=Y,)JIp=0, (64a
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_ku T Kyf Y
j_H_j —_K_u Y, tvt |

(64b)

whereinfy =(1/Y)/[1+(r,—1)Y}] varying frome at Yy
=0 to 1f, atY2=1.
Referring to the normal mode technique, we writg

=Yexgct+ikX] so that for an undeformable interface, the

relevant equations are

Le
Y — k2+70)Y=0, (659
atZ=1+D, Y'=0, (65b)
K
atzZ=1, L—eY;+(1—Y5)j/p:o, (650
Ku T Kyf Y, |= 65
FARETRAS =J. (650

Assuming exchange of stabilitc € 0), the solution of Egs.
(65a—(65¢) takes the form

Y=b,coslik(z—1-D)], (66)
with b;=Le(1—Y5)/(xpk sinH{DK]).7: the interfacial tem-
perature is found to be given by

7 =i,
T KuY’

(67)

wherein we have introduced an equivalent interfatig|
coefficient

Kyfy Le(1-Yy)

Hir = pktantiDk] (68)

H; .

This new coefficient is independent of the temperature dif =T

ferenceT,— T, but depends on the wave numbeMe are

PHYSICAL REVIEW E 68, 041601 (2003

For a liquid layer surmounted by a vapor-air layer of the
same depth witil,=45°C and fork=2, this condition be-
comesH;<(1—Y{)/[4.6(1+0.6Y)YC]. This is satisfied if
H; is small enough andt® not too close to one for which we
recover the liquid-vapor previous situation. Then interfacial
mass resistance is negligible compared to the vapor diffusion
mass resistance. For example, fgf=0.2, we needH;
<0.8 and this condition is met by a 6-mm-thick liquid layer
if the coupling coefficienky, is zero(see Table Il If inter-
facial nonequilibrium is negligible, the equivalent Biot num-
ber is the inverse of a thermal resistance that is now due to
the vapor diffusion which is the limiting process. Instability
is more likely to occur than in the liquid-vapor system. In the
above expression of the Biot number, we have neglected the
gas phase conduction thermal resistance since this term is
small with respect to the vapor diffusion resistance.
According to the Pearson-like model, the critical Ma-
rangoni number Maexpressed in terms of the difference of
temperature across the liquid layer, is positive so that the
liquid temperature gradient is negative at the onset of insta-
bility. Moreover, the basic liquid heat flux is given by

Jo=1+a,/Ma, (72)

with

ay= Ky n
* Kuyla—1May/Ra

1+ (ry—1)Y"

A%

It follows from relation (698 that Ma=Ma, — «,. As the
coefficient @, is usually larger than the critical value for
Ma, , the critical Marangoni number Ma defined by the dif-
ference between the temperature of the lower plate and the
saturation temperature at vapor pressure is negativergnd
sat- Moreover, fromT~—Mag, /(HMa) andH<1, it is
seen thall >0 so thatT ,> T, and the gas temperature gra-

led to the same mathematical set of equations as in Sedientis positive.

IV B 2, but with Hj, instead ofH;. The new value of the

number Pgis now P$=Jq|bKu/H,-r . As Peg is much smaller

than KuHj, , one has
Ma,~J/Ma, (693

Bi,~Peg /(KuJy). (69b)

As no-flow heat conduction is a particular case, one can-
not extend the results for the mass-diffusion-limited regime
of Sec. IV B 4 to the quasisteady situation of Sec. IV B 3.
Indeed, for the quasisteady situation with an inert gas, the
diffusion equation is coupled with the gas momentum bal-
ance and therefore more investigation is needed. Ha and Lai
[3] have studied Marangoni instability in a horizontal layer
of finite depth that evaporates into an infinite depth gas layer

We recover again Pearson’s model at the condition to introcomposed of both vapor and inert gas. Their analysis as-

duce the Biot number

Bi 1 1
|, =——=
"Hir kyLe fy,(1-Y0)

«p KtanfiDk]

(70

In the denominator of relatiofiv0), the interfacial nonequi-

sumes an initial transitory regime where the gas phase is
quasisteady, but the liquid phase unsteady with a constant
liquid layer depth. Moreover, their analysis is restricted to

fluctuations in the gas phase that are unidirectional and simi-
lar to the basic solution, so that they are led to a liquid phase
model. It is not clear to which extent such an assumption is
justified. Indeed, in the no-flow situation presented in this

section, we find an equivalent Biot number that depends on

librium contribution is negligible as regard to the first massthe wave number. Clearly, the role of mass diffusion under

diffusion term ifH; xpk tanDKJ/Ky fy Le(1-Yy) <1.

general vapor fluctuations remains an open problem.
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V. CONCLUSIONS nonlinear analysis which is outside the scope of the present

- - work but is presently under progress.
The role of evaporatiofin a two-phase liquid-vapor sys- " set of instability usually coincides with the beginning

tem) on Marangoni instability is examined. It is shown that ¢ the quasisteady regime but such regime should occur after
the perturbation equations for the two-phase setting can bg yansitory regime that should be investigated in more detail
reduced to a single liquid phase model by the introduction ofg petter apprehend the physics behind the evaporation pro-
an equivalent Biot number. cess.

Itis seen that evaporation has a stabilizing influence since The role of diffusion in the gas phase has also been ex-
the transfer of heat and mass through the liquid-vapor interamined in the simple no-flow situation. We have found that
face is equivalent to a positive Biot number that tends tathe perturbation equations still reduce to a liquid phase
infinity in the interfacial equilibrium case. In contrast, inter- model by the introduction of an equivalent Biot number. This
facial nonequilibrium has a destabilizing influence as theBiot number includes the heat resistance of both vapor dif-
Biot number decreases when interfacial nonequilibrium effusion in the gas phase and interfacial nonequilibrium. We
fects become more and more important. Even if the tempergiave shown that the interface can be considered at equilib-
ture field is discontinuous through the liquid-vapor interface fium under the condition that the vapor specific density is not

the interfacial thermal resistance has a small influence on th@o close to 1 and the liquid depth not too small. The regime
evaporation rate and on the stability. The regime isiS then mass-diffusion limited. More general situations, in-

interfacial-mass-transfer limited. cluding finite velocities will to be investigated in the future.

The position of the liquid-vapor interface is not necessar-
ily fixed but has been allowed to vary #. Such a depen-
dence is shown to be valid when the liquid is in the unper- This work was partially supported by ICOPAC Program
turbed reference state and it is therefore justified to use thRo. HPRN-CT-2000-00136 funded by the European Union
same law to determine the threshold of instability. Above thisand the CIMEX-ESA Project No. 1429/00/NL/SH. P.C. ac-
critical point, motion sets in and the position of the interfaceknowledges financial support from the Fonds National de la
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