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Asymmetric fluid criticality. Il. Finite-size scaling for simulations
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The vapor-liquid critical behavior of intrinsically asymmetric fluids is studied in finite systems of linear
dimensionsL focusing on periodic boundary conditions, as appropriate for simulations. The recently pro-
pounded “complete” thermodynamicL(—«) scaling theory incorporating pressure mixing in the scaling
fields as well as corrections to scalifighys. Rev. B67, 061506(2003] is extended to finite, initially in a
grand canonical representation. The theory allows for a Yang-Yang anomaly in whichlL.when the second
temperature derivativedfu, /d T?) of the chemical potential along the phase boundag(T) diverges when
T—T.—. The finite-size behavior of various speataitical loci in the temperature-density of (p) plane, in
particular, the k-inflection susceptibility loci and theQ-maximal loci—derived from Q (T,{(p).)
=(m?)Z/(m*), wherem=p—(p), —is carefully elucidated and shown to be of value in estimaTipgndp..
Concrete illustrations are presented for the hard-core square-well fluid and for the restricted primitive model
electrolyte including an estimate of the correlation exponethiat confirms Ising-type character. The treatment
is extended to the canonical representation where further complications appear.
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I. INTRODUCTION AND OVERVIEW tably model magnetic materials and analogous lattice gases
[1], in which the critical density is trivially known and the

True phase transitions arise in statistical mechanics onlyariation with (T—T;) is of primary interest, the long-
in the thermodynamic limit in which the volume of a system, established theory of finite-size scalifig,3] and its subse-
V=LY (in d dimensiony and the number of particles in the quent developmentst—7] have provided effective answers
system,N, go to infinity, while the densitp=N/V remains 0 many questions of how to extrapolate data for finite sys-
finite. In this limit, to be denoted for brevity simply by ~ tems. However, two new issues that demand further consid-
—», the free energy and other quantities may exhibit singu€ration have recently come to the fore. These are, first, the
larities at a phase boundary or critical point as functions ofiesire to obtain precis@&nbiasedanswers for the universal
the temperature or other thermodynamic fields. However, fogritical behavior of “complex” and, especiallygsymmetric
finite systems as, in particular, realized in computer simulafluid systems—in which, in particulaboth the critical tem-
tions, the free energy becomes analytic everywhere in thgeratureT. and the critical densityp, must be accurately
temperature and in other fields such as the chemical potentig@stimated8]—and, second, the realization that the existence
w and the pressurp. Thus thermodynamic quantities that of a so-called Yang-Yang anomal®,10l—in which the
vary discontinuously or diverge in the thermodynamic limit chemical potentiaj,(T) on the vapor-liquid phase bound-
become rounded whehnis finite. ary exhibits adivergent curvaturevhen T— T.——requires

Computer simulations have been useful in quantifyinga significant elaboratiof®,11,13 of earlier formulations of
and gaining insights into phase transitions in various sysbulk, thermodynamic scaling for fluidd.3,14].
tems. Nevertheless, to obtain precise, sharp results from The appropriately extended, “complete” scaling formula-
simulations—inevitably performed on finite systems—onetion for bulk propertiegi.e., in the thermodynamic limithat
must perform appropriate extrapolations on the sizef the  is needed to encompass a Yang-Yang anonp@lyhas re-
simulation “box.” Crucial questions then arise: How should cently been carefully expounded and investigated in some
one best estimate critical points from the finite-size data®etail: first in Part | of this papdrl1], to be denoted here as
And, especially: How can one reliably ascertain the criticall, and, more fully, in the thesid 2] of the first author, which
universality class of particular model systems? will be referred to here aK. It proves necessary to “mix”

To study the statistical mechanics of finite systems, onéhe pressure into the linear(and nonlinear scaling fields
must at the start address two basic issues, namely, the overdll. To be explicit, let us, followingd, introduce the dimen-
geometry of the system and the specific nature of the boundsionless deviations from thulk) critical point (p., T, c)
ary conditions. Here we will have in mind general via
d-dimensional systems with periodic boundary conditions
imposed on “rectangular” boxes of dimensioris; XL, . P—Pc T-T, ST T
X ... XLg=V=LY in which the ratiosL,/L remain fixed P= kT, t=—— k=77 @D
(typically at 1) whenL —o. Of course, this geometry com- 7B le ¢ BlC
bined with periodic boundary conditions has been used ex_i_h he th | ling fields f inal
tensively in computer simulations for studies of the bulk I NN the three relevant scaling fields for a single-component
properties of fluids. fluid must, in general, take the forms

In the case of critical phenomena in systems with a well L .
definedaxis of symmetryn some thermodynamic plane, no- p=p—kot—Ilou, 1.2
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T=t—| L—j IB (1.3 with the conclusion that for the case of periodic boundary
! e ' conditions, which is our main concern here, one should an-
ticipate additive terms in Eq$1.2)—(1.4); specifically, then,

h=p—kit=j2p, @4 we will [settingl ,=1; seel(3.22] adopt the scaling field

in which the quadratic and higher-order terms have been BT wl)=b—Kki——s /LEJr o 1.8
dropped(seel). The crucial new featurégoing beyond the PP Tl =p=kot =4 =S ' 89
previously accepted analyses: see REIS,14)) is the pres- and likewise, with new coefficientss; and s,, for

ence of the, in general, nonzero dimensionlgssssure- T(p,T,x;L) andh(p,T,ux;L), with d=2. (Note that the co-
mixing coefficientsj and j,: when these vanish the earlier efficients s, s;, and s, carry dimensions OLE.) Fortu-

formulations are satisfactory. nately, it then transpires that thelselependent contributions

. In terms Of. the(nonlineay scaling fields the ge“er?' scal- do not enter the leading behavior of the quantities of princi-
ing hypothesis ofl asserts that the thermodynamics nearpal interest, such as the andQ-loci in the (T, p) plane: see
criticality can be described, at least asymptotically, by below ' '

W25 AT, NAR: \ 0 vy _ Specific predictions for the finite-size variation of basic
(A"7%p, AL, ATh A Tug, NP, L) =0, 1 densities and susceptibilities are presented in Sec. IIC. The
(1.9 variation withL of the chemical potentigk at the bulk criti-

where is a free, positive scaling parameter. The exponent§@l temperatureéand density is examined in Sec. IID: the

o . L~ answer provides a route to uncovering the presence of
«a (for the specific heatand A (for the ordering fielch) are ) : P ;
related to the other standard critical exponents via L-dependent terms in the scaling fields as in El8).

Now, as mentioned, an important application of finite-size
A=2—a—B=B+ =85, 1.6 sScaling theory is to analyze numerical data obtained from
a=p=pty=p (1.8 simulations on finite systems, and, thereby, to gain knowl-

while 6,=6 and 65 are thepositive leading even and odd edge of the critical properties of t.he pulk system. Major ef-
correction-to-scaling exponents for the correspondire- forts have been devoted to estimating critical parameters
evantscaling fields,u,(p,T,x) and us(p,T,x). One then such as Tc.pc) and to confirming universality classes. As
discovers[9,1,K ] that the scaling forn{1.5 implies (a) the ~ eégards the estimation df. andp., most studies have fo-
existence of a Yang-Yang anomaly in whict2f, /dT?) cused on calculating the coexistence curve in fha@) plane
diverges as-j,/|t|* whent—0 and(b) a leading Usingular and then fitting the data with some suitably chosen formula
term varying as-~ j,|t|2# in the coexistence curve diameter, N Which T, andp. appear. o _
which dominates the previously known term-(l, However, simulations of a system in its two-phase region
+i)[t|¢ since, e.g.,8=0.32 and @=0.1Q, for d=3 Ma&Y require prohibitively long times or special, more elabo-
Ising-type criticaiity. éxperimental evidencgl5,16 cer- rate computational techniques to equilibrate the two coexist-
tainly reveals the presence of singularities in the diameter of'd Phases owing to the free-energy barrier that grows rap-
various systems; however, the available precision has so fAflly @ T decreases andl increases. Moreover, since the
prevented the unequivocal identification [of2# and|t|1~«  correlation lengthe(T,p) becomes large and eventually di-
terms which, inevitably, also combine witht?, . .. terms verges when the critical region is approached, finite-size ef-

etc. Beyond the appearance ofti” term in the diameter, fects smear out the vapor and liquid states rigaand blur

pressure mixing induces further new, singular terms of simitheir distinction thereby seriously hampering the reliable de-

lar character in other thermodynamic properties: lsee termin_ation of the coexistence cur_\/(_e._FinaIIy, field mixing
The task addressed here, in Sec. Il is to systematicalIifeven_'n the absence of pressure miyidtorts the shape of
extend the general formulation for bulk scaling, as embodied® diameter, etc. Consequently, naively fitting coexistence
in Egs. (1.1—(1.5), to finite systems characterized by a CUTve data may yield quite poor values fby andpc .
(single finite length scald.. According to the general prin- . To meet these latter challenges, Bruce _and Wilding some
ciples of finite-size scaling, by which all lengths should, in ime @go[19,2q proposed a rather convenient and effective
the critical region, be scaled by the correlation lengiT) finite-size scaling methodv for estimatiig and p., which,
~1/)t]”, we may anticipate that, in effect, the scaling param-in particular, incorporateg. andt mixing into the scaling
eter A in Eq. (1.5 may, in a grand-canonical setting, be fieldst andh (although pressure mixing isot included.
replaced byL”. Let us also note that when, as for real Their method, which has proved quite popular, is based on

fluids, hyperscaling is valigsee Sec. Il Awe have the hypothesis that fluid criticality belongs to the Ising uni-
versality clasgor, more generally, to some well studied uni-
dv=2-a. (1.7 versality class for which certain detailed critical properties

) ) are well established numericallyOn that basis their method
It has, however, been pointed oft7] that the scaling matches distribution functions of densiyd energy fluctua-
fields,p, t, h, ..., themselves may, in a finite system, gain tions observed in simulations to th@resumed available
an explicit dependence on the sizeThus finite-size effects limiting fixed point distributions as obtaineal priori from
in a system confined by hard walls might well be dominatedsimulations of simpler model&nown to be of Ising or other
by 1L contributiong5,18]. This issue, which is by no means charactex. In this way, following extrapolation ok, they
definitively settled in general, is considered briefly in Sec. llestimateT, and p.. However, significant questions remain:
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What should be done whempriori knowledge of thegsus-  the (p,T) plane of the inverse Binder paramefB]
pected or, possibly, quite ngwritical behavior of the system

of interest isnot available? How should one proceed if the (m?)2
effects of pressure mixing mayot be negligible[21]? Qu(Ti{p))= 2 with m=p—(p), (1.9
In light of these serious issues, an important aim of our (m*),

studies has been to develgmbiased finite-size scaling
methods for estimatind . and p. without the need for such where(-), denotes a grand-canonical ensemble average in
strong assumptions and extensiaepriori knowledge. For the finite system.
this purpose, as previously repor{e&j22,11, various special Now whenL—o0 anywhere in the one-phase region one
loci have been introduced that, in the thermodynamic limithasQ, (T;p)— 3 [23], where, for brevity, we have replaced
spring from the critical point in the density-temperature orthe argumentp), in Q_ by p. On the other handat criti-
other thermodynamic plane. The bulk scaling behavior ofcality, Q,(T.;p.) approaches a universal valg, that is
these critical loci was derived within the complete, scalingclose to 0.6236 for d=3)-dimensional Ising systems in a
theory inl (and also studied there within classical mean-fieldcubic box with periodic boundary conditiofi24—-26. For
theory. Among these loci, th&-loci—defined via the points finite systems at fixed near criticality, however, one finds
of isothermal maxima ofy¥=y/p* in the (p,T) plane, thatQ, exhibits rounded maxima that serve to provide well-
where y=p?kgTK; is the isothermal susceptibility—have defined loci,po(T;L) [22]. The behavior of thes®-loci for
already been used in simulations to estimate the criticalargeL is derived explicitly within the full finite-size scaling
points of the hard-core square-wéHCSW) fluid [8], and of  theory in Sec. IVA. One might note that determining the
the restricted primitive modéRPM) electrolyte[22]. Itisa  Q-loci involves calculation of the fourth density moment and
goal of the present paper to analyze the behavior of thesef its density derivativei.e., the fifth momentso that the
k-loci in systems offinite size explicit expressions for analysis requires some care. By the same token, in order to
p®(T;L), thek-loci, in the (p,T) plane are obtained in Sec. obtain theQ-loci reliably via simulations, data of high qual-
lIl. Not surprisingly, one finds that the density ity are needed. As for thieloci, one may defin€@-loci by
=pW(T,;L) evaluated on &-locusat T, (where we sup- points of isothermal maxima in the(T) plane of a modified
pose thafl, has been estimated reliably in some other way Q parameter, namehQ™=Q, /p¥. The behavior of these
approaches the critical densipy whenL—o: But in what loci is presented in Sec. IVB: we find that the density
manner? p&(T¢;L) evaluated aff; on these loci varies in leading
We show in Sec. Ill A that there is a leading deviation of order ad_ ~2#/” with, as in thek-loci, a subsequernt™ =)/
magnitudeL ~2#” followed by a term of ordet. =~ */":  term. However, the amplitude of the leading contribution
however, the amplitude of the leading contributicemishes  now vanishes whek=—97R,, in contrast tk,,=3R,, for
whenk takes an “optimal” valuek,,=3R . In this result  thek-loci; thus the “optimal” value ofk for the Q(¥-loci has
R, is the (dimensionless strength of the Yang-Yang the opposite sign.
anomaly as defined in R€9] and inl. Sec. Il E. Extrapo- Following Binder’s original approach faymmetricsys-
lating data for the densitiep®(T,;L) to the thermody- tems[23], Luijten et al.[22] examined plots of
namic limit can thus providanbiasedbulk) estimates of the
critical density. In Sec. lll B we reapply this approach to the QT )= . .
HCSW fluid using what we believe is an improved estimate QEM=QuTipo(TiL)), (119

for T.: see below. Our new estimate fpr, agrees well, ie., Q, evaluatedbn the Q-loci po(T,L). For the RPM they

within the uncertainties, with the previous resi8i. As in- observed that the successive self-intersectionsiasreased
dicated, this method for estimating has also been success- '

fully applied to the RPM electrolytf22). sayTS(L), co_nverged rather rapidly to a precisely defined
Evidently, however, in locating, by this route, one first Value T=—which thus served as a good estimateTer At
needs a good estimate . For fluids with relatively weak the Same time, they found that the value<Qit at the inter-
asymmetry, such as the hard-core square-well model, it waECtion points approachgd a limit that coyld be identified as a
found[8] that the extrema in density of theloci themselves ~ (SUrprisingly precise estimate of the universal valu@. .
provide fairly good estimators fof,, that may be extrapo- | nereby they established convincingly that the Rfaivleast
lated inL. However, the whole critical region of the RPM is Within the =5 level of discretization they studi¢@2]) be-
extremely asymmetric, in part, so it seems, because of thlongs to the short—range Ising unl_versallty class—despite the
remarkably low valuep* = p.a®=0.08[22], of the reduced long-range Coulomb mteracpons in the modgl. We show here
critical density (where a is the hard-core diameterAs a  that the approach of the estimatorgy(L), derived from the
result, estimators fof, based on the availableloci prove ~ QC(T) plots to T obeys a ™" law, while the differ-
rather misleading: indeed, theloci for “near-optimal” val- ~ ence QP(Ty(L))—Q, varies asL™?" followed by a
ues of k are observed to varynonmonotonically in j%L*Zﬁ’” term (see Sec. VB Note that these results are
p—probably as a result of competition between the two leadindependentof asymmetry or pressure mixingn leading
ing contributions A p~ (k—kop)/L?#” and 1L~ 9" men-  orde).
tioned above. To overcome this serious obstacle to progress, In Sec. V A we develop the theory for this approach and
Luijten, Fisher, and Panagiotopould®2] introduced the apply it to reestimatd . for the HCSW mode[8]. The new
Q-loci which they defined by points of isothermal maxima in estimate is about 0.06% higher than the earlier véjebut
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that leads to no significant changes in the main conclusiongaluable to study the finite-size scaling behavior of near-
reached previously: in particular, as noted above, the previeritical fluids in a canonical or f,T) representation.
ous estimate fop, remains unchange@vithin the uncertain- The bulk canonical free-energy densityf(p,T)
ties). =lim__.Fn(V,T)/V, whereFy(V,T) is the Helmholtz free
On the other hand, in Sec. IV C we consider the behavioenergy, has a leading asymptotic scaling behavior near criti-
of Q.(T;{p),) for largeL in the two-phase region beneath cality of the form
T.. (See also Rovere, Heermann, and Bind&f].) We ex- C(2-a) 8
hibit plots for the HCSW fluid and RPM that illustrate some f(p. T)~fo(p. T) +Alt] Xo(m/[t]F),  (1.13
striking features(and we correct a misleading expression
given in Ref.[8] for the behavior ofQ (T;p. ) with p_
=(p). whenL—o below T; ). In Sec. IVD we go on to
discuss the explicit scaling form for the twaminima of

in which fy(p,T) is a smooth(generally analytical back-
ground part of the free energy white=(p—p.)/p.. How-
ever, this simple scaling form does not incorporate any mix-
. . ing in the scaling fields. We may anticipate that upon
Qu(T;p) that, whenT<T,, approach the two sides of the incorporating the mixing of the scaling fields, the leading

coexistence curve rather rapidly as-: see Figs. 8 and 9, gcgjing behavior remains unchanged but with some modifi-
below. It turns out that these considerations lead to an appag,tions of the scaling variables andt. But what should be
ently very effective and systematic method of estimating the,y pectecprecisely That may well affect the behavior of the
limiting coexistence curve width and diameter, namely, corrections on various loci29]. And what scaling form
_ _ should one obtain if, in particular, pressure mixing is intro-
Ap=(D=p(T)=p(T), (.19 duced? In Sec. VI we derive explicit canonical scaling forms
p=pa(T=3[p(T+p (D], (1.12

from the complete scaling formulation in the grand-canonical
representation. This is carried out first for the thermody-
wherep (T)=piq(T) andp_(T)=py{T) denote the true namic limit: then our finite-size results are applied to obtain
+ ~— Pliq - — Pva '
bulk liquid and vapor densities, respectively. This metho
which yields precise results surprisingly close Tg, has

dcorresponding canonical expressions. In Sec. VIB we dis-
been applied to the HCSW and RPM models; however, th

cuss the definition of finite-size canonical critical points and
lucidate their behavior as illustrated by results for the
details, which entail using the simulation data to generate
scaling function for the minima a8—T.—, have been ex-

CSW fluid and the RPM electrolyt,22].
pounded elsewhel@8].

Finally, Sec. VIl summarizes the paper briefly.
The universality class of a particular system can be iden-
tified or checked and confirmed by determining critical ex- Here we extend to finite systems near bulk critical points
ponentse, B, etc. In Sec. V C we analyze further a method the complete scaling theory that incorporgtesssure mixing
for estimating the correlation-length exponent[8]. This  [11].
method has been applied to the HCSW fl{i&d and, more
recently, reported for the RPM electrolyfiz2]. A thermody- A. Scaling functions and hyperuniversality

namic quantity for a finite system, s& (T), evaluated on . vy d

some suitable locus, sa=p., may exhibit a maximum at To extem_j the bulk~sc~alll1g ansat. to a finite V=L

T=TP(L) which can be regarded as an effective finite-sizeSYStem We firstreplace, h, t; u,, us, ..., bycorrespond-
finite-size nonlinear scaling fields

critical temperature. According to finite-size scaling one exNd

pectsTP(L) to approach the true critical temperatdfgas-  P(P.TousL), oo, Up(p, TopiL), ..o, of form (1.8),

ymptotically asL~Y*. We confirm that this conclusion sur- etc.,_ and choosel?n_arbltrary fixed reference length] say

vives pressure mixingfor suitable loci and, by way of an  SettingA=(L/I,)™ in Eq. (1.9 then leads to the general

application, show that by examining a rather wide range of\yPothesis

propertiesP (T) for the RPM one can identify those for L\ (2-a)lv L\ L\ Ay |\ balv

which the desired maxima approa€h from above This is \II(N(_) ,T(_> , ﬁ( ) : u4(—*) L )

important in practice because simulations above criticality | L

are significantly less hampered by problems of full equilibra- -0 2.1)

tion than those at or belowW. where two distinct putative '

phases coexist and “alternate” in the simulation box. Consewhich we expect to be at least asymptotically valid for

quently, sufficientlyprecisecalculations ofTC(L) are rela- L/l, —o asp, t, andh—0.

tively easy which, in turn, provides a suitable basis for robust | et us now restrict attention to dimensionalitidsless

extrapolation. In this way, we show that one can estimate theéhan the upper critical dimensionality. (=4 for normal

exponentr fairly accurately. For the RPM electrolytat the  fluid criticality). Then thehyperuniversality exponent rela-

{=5 level of discretization we find v=0.63=0.03 [22]  tjon, supported by renormalization grodRG) theory (for a

which supports the conclusion that the model belongs to théixed point without dangerous irrelevant variab[&§)]) dic-

(d=3)-dimensional Ising universality cla$g2]. tates (2-a)/v=d [see Eq.(1.7] and we may solve Eq.
Both for gaining insight into experiments, in which the (2.1 for P to obtain

densityp is most often a controlled variable, and, likewise,

for simulations in which the particle numbBris fixed, it is p PP, T, L) =LY (XYL Yia, - ), (2.2

II. FULL FINITE-SIZE SCALING FORMULATION

| |
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where we have introduced the dimensionless scaled variablésr «, even and odd, respectively, where the expansion coef-

XL:DL’TEL:L/V, yL:ULF]LA/V,

yu=ULL %" (k=4,5,..)). (2.3
HereD,_, U, andUocu, are nonuniversal metrical fac-
tors, of dimensiond ; ¥, 1,4/, 1% respectively, which
depend on the system under study.

By construction(note the factop.>0) the scaling func-
tion Y(X,Y;Y4, . .. ) isdimensionles$31]. However, thehy-
peruniversality scaling hypothedi32] (supported by various
exact calculation§32—34, simulationg 35|, and RG theory

[24)]) tells us thatY(X,Y;Y4, . .. ) is auniversal functionof

its (appropriately normalizedarguments. Note, however,

that Y(X,Y;Y4, ...) mustdepend on thegeometryof the
finite systemand on theboundary conditiongmposed; but it

ficients Y are universal numbers.
For our present purposes the leading approximation

Y=YO(x Y0 +YE YY) +YEs YO (XL y0), (2.9

in whichU 4, andU 5 in the definitions ofy, , andy, 5 have
been replaced by their critical-point values, will amply suf-
fice.

B. Finite-size corrections to the scaling fields

In this section we discuss in a little more detail the ques-
tion of finite-size corrections to the scaling fields that was

will not depend on any microscopic details beyond those thafouched on in the Introduction. This issue seems to have
determine the bulk Universality class of the relevant Criticalbeen first raised in Re[l?] but to have escaped much more
point. FurthermoreY must be even under change of sign of extensive or systematic discussion. Here we consider only a

the odd scaling variablesy< —vy, ys& —vys, ...

The bulk limit may be obtained formally by setting
=1/|D,1|” and lettingL — o (when it drops out of the non-
linear scaling field®,t, .. .). This yields the scaling form
[(2.3), namely,

P=Qlt|>" “W.(y:ya¥s, .. .), (2.4
with the identificationQ=|D|?>~*/p., which is, thus, a di-
mensionless nonuniversal amplitude, while

(2.9

Wo(Yiyg, - )=Y(E1Yiyg, .. .)

is universal with the amplitudes iH2.1) and (2.2 related
by U=U_/[D.|*, U=U D |% (k=4, 5, ...).

d-dimensional hypercube with periodic boundary conditions.
A field-theoretic RG approach to finite-size scaling was
initiated by Brezin [36]. Later, with Zinn-Justifj24] system-
atic calculations of the scaling functions were presented us-
ing bothd=4— ¢ andd=2+ e expansions. In particular, the

shift of T, that enters the scaling variabieof the universal
scaling functions was computed: see R&#4] Egs. (3.20
and(3.32. Indeedt as calculated in Eq(3.21) of Ref.[24]
contains finite-size corrections that, in leading order, vary as
L 2. A similar form fort was obtained by Korutcheva and
ToncheV[37] for a finite system with long-range interactions
decaying as 1f7272°, 4—0+. Recently, Chen and Dohm
[38] calculated the finite-size free-energy density of an
0O(n) ¢* field theory confined in a hypercube with periodic

In contrast to the bulk scaling function, the finite-size boundary conditions: they usedsharpcutoff in k space and

function Y(X,Y;Y4, - . .) must be analytic in the vicinity of

obtained a nonuniversal~? contribution that dominated a

the origin since all critical singularities will be rounded in a universal scaling part that varied Bsd.

finite system. Followind we may thus expand for lardein
powers of the irrelevant variables to obtain

YOy )= Y000y + 2 Yoy )y, (2.6
where, as in |, the multi-index « is defined by
k=(4),(5),...,(4,4),4,5),..,(444),..., while
VAARERRRRL meansyLlyL] YLn- The underlying symmetry

of the scaling functiorY (x, ,y, ; . . . ) which is evidenced by
exact results and RG theory, then requires

Y (X, =YL ==Y (XL,yL), (2.7

for x even or odd in the sense Kf2.7). Thence we have the
expansions

2
oYLt

2 2
=YL(Yort YIxX + Yoxt + Yoy + - -),

Y*(xL Y0 = Yoo+ Yigx + YaxC +Y
(2.9

On the other hand, Jasnow and co-workigd4,39 con-
cluded via RG theory that the system sizdoesnot enter in
the formation of the scaling fields: see, especially R&#]
Sec. lll. Likewise Zinn-Justin7, page 778 argues that:
“The crucial observation which explains finite-size scaling is
that the renormalization theory which leads to RG equations
is completelyinsensitive to finite size effectdice renormal-
izations are entirely due tshort distance singularitieAs a
consequence RG equations are not modified..” Never-
theless, in our assessment it remains uncertain whether or
not, even in the simplest case of periodic boundary condi-
tions, the system size affects the scaling fields. While further
careful analyses may settle the issue convincingly, we feel

justified in allowing for anL ¢ leading contribution in all
the scaling fields—as embodied in E@..8); however, it

seems safe to assume tligt 2. As mentioned in the Intro-
duction, we then find in most cases that these corrections are
less important, whenL becomes large, than those arising
from field mixing and the leading irrelevant variables.
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C. Some basic thermodynamic properties where only the leading terms have been displayed while the

The generalized number and entropy “scaling” densities constants are

p and's, introduced inl play a significant role also in ana-

lyzing finite systems: they are defined by er=1—j,, e=Il;+j; (Ip=1); (2.17
p=(apldhy;, S=(apldl)s. (2.10  seel(2.30 and1(3.22. This result is needed to study the
k-loci in finite systems: see Sec. Ill A. The-loci, taken up
From Eqgs.(2.2 and(2.3), we obtain[31] in Sec. IVA, demand the higher-order analogs.

Pc;: U,_L_B/V(&yY), pc§= D,_L_(l_“)/”(axY), D. Chemical potential at(T., pc)

Before turning to the various critical loci and their finite-
(2.1 ) s ) . .
. size behavior, we address a rather special question which
where, here and below, we adopt the notatiodgY]  turns out to be interesting, since its answer, as mentioned in

E(aY/(?x,_)yL, etc. the Introduction, opens an opportunity to determine via pre-
Now recall the definitiond(2.14) of the “true” reduced  cise simulations the presence or absence of finite-size depen-
number and entropy densities, namely, dence in the scaling fields. In a finite grand canonical en-

semble at temperaturg the chemical potentialk must be
. adjusted to achieve a specified density: but the resulting
= S :(&_p> (2.12 value will depend or.. Accordingly we ask: “How does the
pckg \ at M' ' finite-size chemical potential, sayf = u, (T¢,pc), needed to
achieve the bulk critical densify. at the critical temperature
Following I (2.16—(2.19 these may be expressed in terms of Tc @approachus = u.?”
the genera”zed, Sca”ng densities. Thus we find To attack the problem we first determine the Scaling fields
atT=T.andp=p,, i.e.,t=0 andp=p.=1. Recalling that
lo=1 [1(3.22], the relation(2.13 for the densityp then
yields

ap

m

p

r
Pc t’

p=Ilo+(200+Igng) w+ (Ng+ 2l gMo) p+ (vo+ I oNa)t
+(1—jolo)p—(I1+ij1lo)s

o ~, ~—~ 0=(1-j)p—(li+j)s—jx1=j)p?+ -, (2.18
+j2(j2lo=1)p “+O(ps,s9), (2.13

whereqy, Ng, My, vo, Na, €tc., are the quadratic mixing \fvhere we have neglected the “background” termsuirand

coefficients entering the full nonlinear scaling fields: seeP (@rising from the quadratic mixing coefficientand may
1(1.4—(1.6); in addition, one discovers that the finite-size check later that they yield only higher-order corrections.

L9 correction terms in the scaling fields—see Egg—  [Note thats~L~(~<)"" dominatesL " since d=2>(1
enter only with the quadratic mixing coefficients. Likewise — @)/v.] By appealing to Eq(2.11) and the scaling function
we obtain expansiong2.9) and(2.8) this can be reexpressed as
é: k0+(Uo+ kono)ZL+(n3+ 2k0mo)l3+(2ro+ kong)t 2(1_JZ)UL[Y82+Y§)§)yE4+ o ]yL
~ ~ ~ )~~~ H —1+a)lvp\y0 N
—(kytjoko)pt+(1—]j1ko)s+O(p? ps,s?), (2.14 ~ (iDL MY g - ]=0. (219

where, again, we have retained only the leading term&rom the definitiong2.3) of y, andy,, we thus find that
needed later: further terms are givenkii4.29—(4.30. whenp=p. att=0 the ordering field obeys
Similarly, the generalized susceptibilities defined in

[(2.28 are useful here: one finds F\%aﬂ/L(lw*WEaM/L‘”(‘/*l)’V, 2.20

S —(22A) AR2)~— [ 12] YIv( 92
Xnn=(9"p/In)7=ULL"*(9)Y)/ pc, (219 \here the omitted correction factor includés %/* and

o - - _ _ L~ 1»*d=d a5 leading contributions, while
and likewise foryp; andyy; . The basic number fluctuation or

reduced susceptibility yny=(3°p/dp?), can then—see _ _
1(2.29 andK (4.33 and Appendix F—be expressed as a,=(11+]1)D Y3/2(1- ) UFYG,. (2.21

Note also that even in the absence of pressure mitiieg
j1=j»=0) the contribution ofu to't, vial,+0, ensures that
—2e,63U D LA A(g,0 )+ -, (2.16 h does not vanishas it would identically in a symmetric

pexnn=©ESUELY(32Y) = 3] ,e,USLOPIM(52Y) (0,Y)  pe
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system); insteadh decays with a leading exponemk+
(v—1)/v of a value about 3.38 for thé= 3 Ising universal-
ity class.

Finally, att=0, relation(1.4) for 1 with the added term
—s,/LY, and Eq.(1.8), lead, in linear order, to

L=F+j,p+s,/Ld

=R+ jo(P+ e+ so/LY)+5, /LY. (2.22
On using Eq(2.2) for p atx, ~y,~0 this may be solved to
yield

pE=[u(Te.peil) = mcllkeTe,
=aL/LE+ap/LdJraM/(l—j2)|_d+(7*1)/wr -
(2.23

where the new amplitudes are

ay=1]2Y0o/p(1—]2).
(2.29

a =(Sat]j250)/(1=]2),

Evidently, if d<d and j,s, ands, do not both vanish, the
dominant behavior arises from tlhedependence of the scal-
ing fields. If pressure mixing is absefwr negligible the
last, most rapidly decaying term in E(2.23 will be con-
trolling.

IIl. MODIFIED-SUSCEPTIBILITY LOCI
IN FINITE SYSTEMS

A. Asymptotic expressions

The k-modified-susceptibility loci or, for brevity, the
k-loci are defined by the isothermal maxima yf#9= y/p*
and so satisfy(4.32, namely,

p(axnn/Ip)T=K(xnn)?. (3.0

We aim to solve this equation asymptotically near criticality,
first, to obtainx®(t;L), i.e., the finite-sizek-loci in the
(,T) plane, therp®(t;L), and, finally,p®(t;L), the locus
in the (o, T) plane which is of most practical interest.

The required third-order  susceptibility yys
=(dxnn/ 1) T Can be obtained by differentiating E.16)
with respect tou at fixedt. This entails the derivatives

(0% [apm)r=D LY¥ (=11 =j1p+ ), 3.2

(ayLlap)r=U LA (1=jop+---), (3.3

which follow from Egs.(2.3), (1.3), (1.4), and (2.12. On
using Eq.(2.13 for p this leads to

PHYSICAL REVIEW E 68, 041506 (2003

poxne=€UPLU T a2Y) — [ edp UL
X[A(33Y)(3,Y)+3(F5Y)?]

—3eleUD LTI (9,05Y) + -+, (3.9

where we recall Eq(2.17) for e; andes. Using the expan-
sions (2.6) and then Eq.(2.8), for the scaling functions
Y*“(x_,yL), yields, after some algebra, the defining equation
(3.1) in the form

[24e,Y0,+ 24e, Y9 X +24e,UC, YLy,
—(3jatkepepg TULLTA2Y g+ 2Y 0 + - - ]2
—3e5(D /U LE Y 2Y ]+ 2Yox + - -]

—‘,—.:0

(3.9

With the aid of Eq.(2.3) the scaling fieldh can hence be
written in terms ofL andt as

h=23(3j,+ke))/pc YL 20+ 2Y,D TLY
+ 200 YEIL - 2= U YERIYEL Y
(3.6)

In order to solve this equation f(it as a function ot. and

t, we first write p in terms of &, t, and L by using the
finite-size scaling equation2.2). Expansions(2.8) for
Y(x_, ...) canthen be employed and on solving iteratively
for p we obtain

pcb:Pc(kot+ZL+SoL_d+ .. ‘)+Y80L_(2_“)/V
+D Y (1—jiko)t—(Iy+jg) ]~ @

+US YL @ratolvy (3.7

Rewriting Eq.(3.6) yields the reduced chemical potentjal
in a similar form from whicrf) may be eliminated using Eq.

(3.7). Solving for,ZL iteratively as a function af andL finally
yields the finite-sizek-loci in the (u,T) plane as

pOGL =[ ML)~ ucllkeTe
:;Lgk)t+(32+jzso)|—7a+M(lk)Li(zia)/V
+ M(zk)L7(27a+0)/v+ M(3k)th(lfa)/v+ .
(3.8
where theM (¥ vary linearly withk and are given explicitly
in K(4.53 and K (4.54 while 1{9=(k;+joko)/(1—j,) is
actually independenbf k and equal toﬁml which was de-

fined inl1(3.16 as the(reduced slope of the phase boundary
no(T) at T=T.. Notice that, owing to the hyperscaling re-
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lation, the Lfa term here dominates the universal Sca"ngWhiCh is the amplitude of the linearterm in the coexistence

contribution,L ~ 2~ @/*=|_ =4 whend<d.
Substituting Eq(3.8) in Eq. (3.7) yields thek-loci in the
(p,T) plane as

pM(tL) =[p®(T;L) ~pcl/pckeTe
=p{t+[(1+]2)se+ )L ¢
+(MP+YgL -
+( M(2K)+ UE4Y8%))L7(27“+ 0)/v
+(MP+D YL~ alvp (3.9

wherep{ =ko+ u{¥ is also independent df and equal to
P, [ seel(3.12] while

7=1—j1Ko—(I1+]1)(Ki+]j2ko)/(1—j2), (3.10

which, in fact, has the same value aé 1(3.14.

To obtain thek-loci in the (p, T) plane, we now substitute

Egs.(3.8) and(3.9) into the scaling field$ andt to find

yL=2(3],+ke)U (YR YS,LA1+2U¢,YEDIYS Lo

+2D Yt LY Y3+ ], (3.11)

XL: DLTtL1/V+ sy

(3.12

and thence can express the generalized dengitesd's in
Eqg. (2.11) in terms ofL andt. Finally, from Eq.(2.13 we
obtain the desired-loci in the (p,T) plane as

p(k)(T, L)/pc: 1+ Bg-k)L72ﬁ/V+ Cg-k)l_*(l*a)/v
+ ng)L*(2B+€)/V+ .. +A(lk)t+ L.
+APL A gl -y

(3.13
where the leading coefficients are
BY=(1-j2)(3j2+ kepUZ(Y5)*I3p2YE,, (314
CM=—(l1+j1)D Y3o/pc, BI=3BLUL, YV,
(3.19

AP =04+ ng+ 200+ Ne) 119+ (Ng+2mg) pi,

(3.16

while A% andB{, which also entail theonlinearscaling-
variable coefficientsy,ng,mgy,qg, - .. [seel(1.49—(1.6)],
are given inK (4.62.

Note that the coefficienA{¥) of the leading analytic,
L-independent term actually coincides witky in 1(3.26

curve diameter. Furthermore, the contribution from the

finite-size corrections to the scaling fields, i.e., the® term

in Eq. (3.13 is dominated byL 2f/v, L=~/ and
L~ B+ terms (providedd=2). WhenT=T,, the ana-
lytic, L-independent part 0p{ vanishes. The leading cor-
rection then decays ds 2#/* with an amplitude that varies
linearly with k; this is followed by ar. =~ ” term whose
amplitude doesot depend ork. As mentioned in the Intro-
duction, the leading amplitudg{") vanishes, in fact, whek
assumes the “optimal valuek,,= —3j,/e;=3R,, where
the Yang-Yang ratioR, is defined in Ref[9] and | Sec.
Il E. This value coincides with that obtained i4.37) for
the thermodynamic limit when it should describe the particu-
lar k-locus that approaches the critical point “most directly”
in the (p, T) plane.

B. Finite-size k-loci: Behavior and applications

The near-critical behavior of the finite-sikdoci for the
HCSW fluid and for the RPM electrolyte is illustrated in
Figs. 1@ and Xb), respectively. The results shown are based
on simulations in periodic cubic boxes of dimensions
L* (=L/a, wherea is the hard-core diameteup to 13.5
and 12, respectively8,22]. The limiting (L— ) behavior
for the same models is shown in Figs. 1 and 2 ofwhile
results for a van der Waals fluid are shown jiFig. 3. The
differences between the HCSW and RPM are quite striking:
for the former a value ok, close to zero or even somewhat
negative is suggested, while for the RPM one might con-
cludek,,=0.8. Thesdinevitably rather uncertajrestimates
correspond surprisingly well vig,,= 3R , with more recent
(quite independeptestimates for the Yang-Yang ratid,, of
—0.044(3) and+0.26(4) for the two modelf28].

Result(3.13 shows that the density estimatat T=T,.
on the k-locus, namely,p™(T.;L), approaches the bulk
critical densityp, as, in leading orded, ~¥, with ¢=2p8/v
provided the pressure mixing coefficigiptdoes not vanish.
For (d=3) Ising-type criticality this predictsgy=1.03
whereas for a classical systepm=2. If j, (and, henceR )
vanishes or is numerically small, the next leading term in Eq.
(3.13, varying asL ~*~®’* becomes dominant. The expo-
nent = (1— «a)/v then takes the value 2 for classical criti-
cality but=1.41 for (d=3) Ising systems.

If a reliable estimate foT ;. is known—we indicate below
[in Sec. IV { how this may be found by using th@-loci—
these results can be used in simulations to obtain convincing,
unbiasedestimates of the critical densip . By “unbiased”
we mean that prior knowledge of the critical universality
class isnot required. One effective strategy is implemented
in Fig. 2 for the HCSW fluid where p¥(L*)=
pM(T=T,;L*)a® has been plotted fok=0 and k=1 vs
1/L* ¥ for trial values of the exponent varying from 1 to 2
(which encompasses both the classical ahd 8) Ising uni-
versality classes For these plots the HCSW estimaté
=kgT./e=1.2186, obtained in Sec. IV C below, has been
used. It turns out, however, that¥(T;L*) is rather insen-
sitive to T=T_ so that essentially the same results are ob-
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15 ——— — —T 77T
L (a) 0.314
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T* 0.310
12 |
0.308 | 1
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0.306 L L L L
P A 0 0.05 0.10 0.15 0.20
00 01 02 1/L*%
0.07 e 1
nTr T 0.30  (b) J
k=0 B % M %
i 028 fxx x "x x. 3
0.06 | R . X% X X X
SRt pED)EE e -
T [ k=1 \ o6 f X e 1
o S
0.05 | y . N \
[ SOty 0.24 | x X “x % Tx
I (v), (iv) (iii) (i) (i)
k=0.5 ' 0 0.05 0.10 “ 0.15 0.20
*
0.04 L L
0.0 0.1 0.2 03 1/L
* . .
P FIG. 2. The scaling behavior ¢ff (L*) at T=T, for (a) thek

. =0 locus (solid lines and squargsand (b) the k=1 locus for a
FIG. 1. Thek-loci in the (b, T) plane for (&) the hard-core  hard-core square-well fluid] for trial values of the exponent: (i)
square-well fluid with(from the righ} k=0, 0.25, and 1 where the 1 0 (ji) 1.2, (iii) 1.4, (iv) 1.7, and(v) 2.0. The dotted lines and open

System Si26$.* used in the figure are 5, 6, 75, 9, 105, 12, andsquares in par@ derive from theQ_|oci: see Sec. IVA.
13.5 (measured in units of the hard-core diameger o) [8]; and

(b) the restricted primitive model electrolyte wik=0, 0.5, and 1
where the system sizes shown &ffe=6, 7, 8, 9, 10, and 1p22].

The estimated critical point is shown by a crd@2]. Note that ) )

p* = pa3 while the reduced temperaturg are defined in Ref§g] 1 Nis value agrees well with Orkoulaet al. [8] who found
and[22] and in Sec. V. ps =0.3067-0.0004. By the same approach Luijtenal.

[22] estimated the critical density of the RPM electrolyte but
only to the rather lower precision af 3% which, however,
should be more reliable than other, less systematic and bi-
ased methods.

p¥=p.a3=0.3068-0.0007. (3.17

tained if the original Orkoulagt al. [8] estimate(which is
about 0.06% loweris used insteadNote that this insensi-
tivity is not realized in the RPM.

The straightest plot fok=1 [in Fig. 2(b)] corresponds to
r=1.0 which is consistent with Ising behavi@s expected
However, thek=0 plots in Fig. 2a) are straightest fors Some time ago Bindd23] introduced the dimensionless,
=1.4-1.7: this is also consistent with Ising behavior pro-finite-system moment rati®, (T;(p),)=(m?)Z/(m*)_, de-
vided (as seems to be the casie value ofj, is small.  fined in a grand-canonical ensemble with=p—(p), , and
Together these plots suggest a critical valuepdfin the  showed how, in simulations of symmetric systetwherep
range 0.3065-0.3080. To improve the possibilities for ex-=p. is known), it was particularly useful in locating the
trapolation, thek=0 data are combined with data fdr critical temperature precisely. Specifically, plots of
=0.25 and 0.1 in Fig. 3 and plotted wg(L* +1*)¥, where Q. (T;p.), evaluated on thésymmetrig critical isochore at
Ais merely a convenient scale factor while the “shift” has  values ofL increased in steps by incremenid., display
been introduced to alloapproximately for the anticipated successive intersections at temperatures, “ﬁé&/(L), that
higher-order corrections. From this figure, we estimatéor rapidly approach the limiting, critical temperatufe=T.. . At
the HCSW fluid(with interaction rangd=1.5a [8]) as the same time the intersections define a unique and universal

IV. BEHAVIOR OF THE Q PARAMETER AND Q-LOCI
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FIG. 3. Estimation of the critical density for the HCSW fluid by 0.8
extrapolation toL—«. The upper solid symbols derive from the QL
k=0 locus with(from the righ} (¢, 1*, A)=(1.0, —1.5, 0.7),
(1.2,-05,1.0), (1.4,01.4), (1.7, 1.0, 2.4), (2.0, 1.5, 3.5). 06|
The central crosses, from thk=0.1 locus, have ,1*, A)
=(1,0, 1). The loweropen symbols are plotted witffrom the
right) (i, I*, A)=(1.0, 0.5, 1.0), (1.2, 2.0, 1.7), (1.4, 3.0, 2.7),
(1.7, 4.5, 5.6), and (2.0, 6.0, 10.5).

04}

02}

critical value [24-26 Q.=lim _..Q. (T¢;p:). However,
the obvious difficulty in attempting to adapt this approach to ; ; ;
a nonsymmetric fluid system is that the critical densitpas 0 0.05 0.1 0.15 0.2 0.25 0.3
known; nor, in fact, even ip, were known, is it clear that the P
critical isochore would be the most appropriate locus on
which to examine the temperature dependenc&®pof In- FIG. 4. The moment-ratio paramet€, (T;p) vs p at fixed
deed, we will see from our study &, (T;(p),) for general temperaturega) for the hard-core square-well fluid at*=10.5
SystemS, which is presented here' that the IQI}H$’C1 even (from the tOp,T*=1.0, 1.1, 1.15, 1.2, 1.22, 1.25, 1.3, 1.35, and
if known, would not normally be optimal. 1.4): note thatTg =1.2179[8], and(b) for the restricted primitive
To make progress as explained in the Introduction, wdnodel electrolyte at.* =10 (from the bottom, the soIid-Ilines., are
define, following Ref[22], the Q-loci po(T;L) via the iso- fo*r 1T =13, 15-19, 19,5, 20, 20.5, and)2the dashed line is at
thermal maxima of_(T;(p). ) where, it is worth reempha- Tc =0.050[22].
sizing, (- ), denotes a grand canonical finite-size average in
which ,(<L ?s chosen to yield the desired values of the mearRL(T:{p)L) for T>T. should tend to the constant valgeas

density(p), (which, of course, iglistinct from what might L increases. In practice, as illustrated in Fig. 5, the approach
be considered for a canonical system in whigkN/V is at fixed T is nonmonotonic and entails a progression of the
directly controlled and does not fluctuatés seen in Fig. 4, Q-locus to an apparently well-defined |IW€(T)-

for the HCSW fluid and the RPM, the rati@, at fixed T To estimate the asymptotic behavior@)(T;L) we may
displays a unique maximum vs density so tpa{T;L) is follow the strategy used in studying tkdO(l First, in terms
well defined. In more complex models with, e.g., more tharof the generalized susceptibilitiggy«= (p/du“) with p

one critical point, the loci will presumably display separate=p/kgT and u=u/kgT, note thatQ, is equivalent to
branches or more complex topology; but our concern here i¥/( yyn)?/ xns. Thence we find

with the behavior of the loci near criticality &s— oo, firstin

the one-phase region aboVg, then through the two-phase 2Q

region belowT,. In the following section we illustrate the IEL) Ly AN [2xnaXne— 5] (4.1)
- LS . 2 NSXN4 ™ XNNXN5 1 :

explicit use of these results in simulations. am [+ (xn9)

from which, since(p), increases monotonically wite at

o _ ) _ fixed T, one sees that the, locus satisfies the equation
As observed originally by Binder, thermodynamic density

fluctuations in a single-phase region of the phase plane oo L
should follow a Gaussian distribution whén—e« so that 2xn3XN4— Xnnxns= 0. (4.2

A. Q-loci above criticality
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o5 —mm—mmmr—r—— Y Now we may use the leading approximati¢h9) for the
[ 1 scaling functionY and substitute expressiori2.16), (3.4),
(4.4), and (4.5 into the Q-locus equation4.2). This then
reduces to
04 | .
Qrl [4(Y0)2=5Y %Y 0elyL +3i2(Y3n) Yo /pL A"+ - - - =0,
(4.6
03 F - . . .
where, for brevity, we have displayed only the leading terms;
this, in turn, is readily solved to yielgd, on theQ-locus as
0.2 ) ] Yy~ — j2Yq . 3(Y52)*YoUL /pc 4.7
T T agoeYeYs
01 aa o o o o 1 o o o o 0 o 2 o 2 0 o 2 o o 0 4 4 4 4 ] . oY
0 01 0.2 03 04 05 0.6 To obtain lhe defsny; we a.ppeal to Eq(2.13 and use Eq.
* (2.11) for p ands; then, with Egs.(2.6) and (2.8) for the

p scaling functions, and using E.7) for y, , we finally ob-

FIG. 5. Variation of the moment rati@, (T;p) with increasing  tain theQ-locus explicitly as
size for a hard-core square-well fluid Bt = 1.300=1.0674} [8];
the system dimensions ate =5, 6, 7.5, 9, 10.5, and 12. The po(T;L) pe=1+ BQL72B"’+ CQL*(l*a)/v_f_AQt_g_ -

horizontal solid line represents the single-phase ligit= % 4.9

Here we have employed the reduced susceptibiliigg,  Where the leading coefficients are

)V(Ns, etc., introduced in Eq$2.16) and(3.4). From Eq.(3.4)

we then obtain Bo=—2j2(1—j2)YoYoUL/pc,
pexna=ESULLO T (GIY) (dy o)1+ (9x03Y) Co=—(l1+]1) YD /pe. 4.9

X(ax 1) 1] =i 263ps "UTLZA(93Y) (3, Y) while Aq is equal toA{=A,, the (reduced slope of the
coexistence curve diameter as given($116 and 1(3.26.

+10(03Y)(32Y)1(ayy I ap)r Note that the leading amplitud&, vanishes whef,=0. As
3 14y 240 3 3 an explicit example, we present tlielocus for a hard-core
—J2€1pc UL T4(0xdyY) (dyY) +4(0yY) square-well fluid 8] in Fig. 6. Evidently, the loci both above

and belowT . approach the critical point wheln— .

As illustrated by the open squares in Figa)2above, the
evaluation ofpo(T;L) at T=T, can be used to provide un-
biased estimators for the critical densipy, which, in fact,
+(‘9§‘9§Y)(‘9XL/5;")T]+ . 4.3 res_(?mble quite_closgly the sequence provided bykth®

loci: see also Fig. 5 in Ref22].

X (9x0,Y) +6(dxd5Y)(F5Y)1(ax )

—3efeUID L D (4,03Y) (ay, lop) T

Using Eq.(3.3) for (dy, /dx)7 and, in that result, Eq2.13

w2 B. Modified or Q-loci
for p yields o _ _ -

It is instructive to define a modifie@ parameter, as for
x% in Sec. A, via

o= UTLO 29/ (58Y) 5] g URLEr

XL(TAY)(2,Y) +2(83) (42Y) ] QM(Ti{p)=QuT:{(p)p)E . (4.10
—4eleUiD LAY (g, g3V )+ - - (4.4 The modified orQ™-loci are then defined by the points of
isothermal maxima o™ in the (p,T) plane. In terms of
Similarly, after some algebra, we obtain the reduced susceptibilities, the equation for the locus

p&(T;L) becomes

o515 (y+3A) v 5\ i 5 — 1116y 2(y+A)v
pcxns=€7UlL (8yY)—j.€ipe UL . v . . . .o~
’ g ‘ pL2xn3xNa— XnnXns] = KXRinne, (4.1)
X[6(35Y)(dyY)+15(d5Y) (d5Y) +10(35Y)?]

a2 (y+28+1)ivs 5 o8 which extends Eq4.2). The extension of Eq4.6) gains the
—5e7esU D LY (OxdyY)+ - (45 termik(1—],)(Y9)2Y,U L #"Ip, on the right hand side.
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1.5 —T T T T T 1 here. In the case of general fluids the density distribution
130 r ] P_(p) has no symmetry: thus for lardein a d-dimensional
\ [ system of fixed regular shape with periodic boundary condi-
1.4 F 125 L 1 tions, we will accept the formi27]
s 120 f ] PL(piw, T)=Ciix_exd — B(p—p-)°L2x]
T [ , + x5 exd — B(p—p.)2L%2x . 1}
- 1.15 1
0.30 0.31 0.32 d
1oL xXexd Bp(u—pq)LE], (4.13
where B=1/kgT, while C, (u,T) is a normalization con-
stant, and the¢.(T) are the infinite-volume susceptibilities
11 F [defined viay=(dp/du)+] at p=p.(T)=. This distribution
has been set up so that wher u, both Gaussians contrib-
. . . . . % ute toP (p) with equal weigh{46].
1 .0 & 3 " 3 1 1 ',;‘ . . . .
0 01 02 03 04 05 06 T_o S|.mpl|fy.subsequent expressions let us introduce the
o* basic, dimensionless ordering field
FIG. 6. TheQ-loci in the (p,T) plane for a hard-core square- h=[p—p,(T)]/kgT, (4.149

well fluid. From the right, the simulation box dimensions are
=5,6,7.5,9,10.5, 12, and 13.5. The estimated critical point showrand the average and difference densities and susceptibilities
is (p% ,T¥)=(0.3067, 1.2179]8]; the solid dots represent the es-
timated coexistence curve diameter. —
p(T)=3(p++p-) and po(T)=%(p+—p7),( 5
4.1
Finally, p$’(T;L) is represented by theame expression
(4.9 (for k=0) except thaB, must be replaced by —
x(M=%(x++x-) and Xo(T):%(X+—X-)-(4 6
BG = —2[j,— 5k(1—j2)1(1=j2)YoYo Ui /e '
(4.12 Note thatyy vanishes identically in a symmetric system. For

) o _ ) ) further convenience, here we also define the augmented
This coefficient vanishes wherk=ko=9j,/(1-j2)= field-dependent densities

—9R, which may be contrasted with the “optimak-locus

specified byk,,=3R, (see Sec. Il A. Note that the coef- — = = N - L
ficientsCq andAq in Eq. (4.8) donotgain anyk dependence P~ =P+ xN. pg =potxoh, and py7=po+ 2 xoh.
although various higher-order coefficients will, in fact, de- (4.17

pend nonlinearly ork. By replacing the summation over discrete density values,

p=N/V=0, by integration ovep and extending the lower

limit to p=—o (which will entail only an exponentially
At fixed T<T, the phase transition in the thermodynamic small error for large.), we may computép), and the mo-

limit is of first-order character with a jump in density from ments(m"), . This yields

p_(T) to p,(T) asu increases through the phase boundary,

u,(T). Finite-size scaling theory has been extended to first-

order transition$23,40—43 although the main focus previ-

ously has been on the dependence as a function of the field —

hoc su— ,(T). Here, motivated by the requirements of simu- NOte that wherh=0 or .= 1,(T), we have(p) ~p(T),

lations, we will enquire more closely into the variation with l.e., the coexistence curve diameter. Likewise we find

the densityp. From this perspective, the crucial feature is

that whenu=u ., the grand canonical equilibrium distribu- (m?) (u, T)=fo+f,/BLY, (4.19

tion function P, (p; u,T) exhibits two peaks located at den-

sities neatp _(=p,a) andp, (=p;y). For sufficiently large 4 21 2

L these peaks canp)be represen?ed as Gausgam2,43. (ML T~ ot 5/ BLEH£41 B2, (4.20

Inside the two-phase region one may also need to consid%here with

the surface free energy associated with interfaces that sepa- '

rate domains of coexisting phasgx7,40,44,4% However, o

for regularly shaped domainguch as periodic cubes or Ap=(p) —pt and T=tanhhp{"LY), (4.20)

fixed-shape parallelepipedhese contributions enter only as

exponentially smaller corrections, so they are not considerethe coefficients may be written

C. Behavior of Q in the two-phase region

(P)L(,T)=p" +pg tantthp{LY. (419
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fo=Ap*+pg?=2pg ApT, (4.22 1

fi=x+x0T, fa=3(x*+x3)+6xx07, (423 o8}

Qri
fo=Ap*+6pg *Ap?+pg *—4pg Ap(Ap?+pg )T, 06 k ]
(4.24)
f3=6x(Ap®+pg?)—12x0pg Ap 0.4 1
+6(x0Ap®+2xpg Ap+ xopg DT (4.25 .

From these results it is evident tHaf ({p)) is a ratio of two
polynomials of fourth order ip) but quadratic in_ 9.

To examine the two-phase behavior@f in the thermo- 0
dynamic limit, let us define the scaled deviation from the

coexistence diameter(T) via

FIG. 7. The behavior of the limiting moment rat{@,.(T;p) vs

(4.26) p at fixed temperatures beloW, for the hard-core square-well fluid

[8]. The solid line, dashed line, and long-dashed line areTfdr,
so thaty=+1 for p=p.(T). In the first instance we may =0.82, 0.90, and 0.985, respectively. The cross is at the critical
then, as in Ref[22], setu=pu, (or h=0) before allowing Point (Tc . pg)=(1.218, 0.3067]8].
L—o. As observed after Eq(4.18 we then have(p)_
—(p)=p and 7=0 in Egs.(4.2)—(4.25. If nonetheless
we identify (p), in Eq. (4.21) asp in Eq.(4.26) and evaluate
(m?)., and({m*).. accordingly one is led to

y=(p—p)lpo.

To give a graphic impression of the limiting behavior of
QL(T;{p)) we display in Fig. 7, plots constructed using Eq.
(4.30 and the coexistence curve data for the hard-core
square-well fluid[8] at various temperatures beloly.. In
addition we have indicated by a cross the anticipated Ising

QYU(T;p)=1—4y?/(1+6y2+y*), (4.27  critical point value,Q.=0.6236(2)[25,26, which we also
verify independently below. The horizontal line@t= 3 de-
which, apart from the superscript that indicates the limit-  scribes the limiting single-phase value.
ing procedure adopted, is the result quoted, misleadingly, in
Ref. [22] Indeed, this can only be the correct limit of D. Scaling of Q, ({p)) near coexistence
Qu(T;{p)) whenT<T, if y=0, i.e.,onthe diameter.

To obtain the true limiting behavior for 1<y<1, one
must first notice that fop)_ to approach a general value in
the interval p_, p.) the thermodynamic limit must be
taken withhL® in Eq. (4.18 approaching a finite value that
yields{p), — p for the desired value of. This corresponds,
in fact, to 7~tanhfp,L%)~y and then yields—see also Ref. .
[27]—the limiting moments (p)L=p++x=h—2(po+xoh)e 2wl (4.3D)

In the one-phase region outside the coexistence curve, i.e.,
for y?>1 [see Eq(4.26)] the resultQ..= % should be recap-
tured by the analysis based on E4.13); indeed, the results
(4.18—(4.25 do confirm this. Thus forh nonzero and
L—oo, expression(4.18 yields

) " ’ where the+ or — corresponds tq/=0. On substitution in
(M*).=po(1-y?), (4.28 Egs. (4.22—(4.25 the L-independent terms iim?), and
(m*)_ cancel identically, leaving

(m*)..=p5(1-y*)(1+3y?), 4.29 d
(m?), =y /BLY4O(e 2oL, (4.32
both of which, perhaps surprisinglyanishlinearly on the
phase boundary, i.e., 8—1—. Equally, then27] and, similarly,(m*), ~3(m?)Z, yielding finally
Qu(Ti{p))=(1=y?)/(1+3y?) (T<Ty (430 QU(T)=4+0(e 2o, (4.33

vanishes linearly on the phase boundary. On the other hanéhr T<T,. andh nonvanishingbut not too largg

Q.(T<T,) takes its maximal value, namely 1, on the coex- Evidently, in the thermodynamic limitQ..(T;{p)) van-
istence diametery(=0). Indeed, the corresponding approachishes asp approacheg, or p_ from the two-phase region
of the po(T;{p)) loci below T to the diameter is evident in and then jumpsliscontinuouslyto 3 on entering the single-
Fig. 6. phase domain. This behavior Bs- can be seen clearly in
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1 ——
0.8
0.6

Qr}

0.4

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6

FIG. 8. Behavior ofQ,(T;p) for a hard-core square-well fluid
at T/T.,=0.944[8]. The thin lines represent simulation data for
L*=5,6,7.5,9, 10.5, and 12, while the thick line is the prediction
for L= [scaled to the estimated values@f(T) andp* (T)].

grand canonical simulations as illustrated in Fig. 8 for the
hard-core square-well flui@8]. The predicted limiting be- I
havior is approached rather rapidly at the selected tempera 02 [
ture, namely~5% below criticality. However, closer td,
and for the RPM the convergence is much slower and less
regular as seen in Fig. 9 which reports simulation$.5%
below the(estimategi critical points. In all cases—as follows
from previous theoretical and simu-lation-based observgtions FIG. 9. Simulation data foQ(T:p) (@ for the hard-core
Ezrgéi?ﬁgﬁggppfgz Zfr%réu;’i%);)oggﬁiy l:r)ﬁijr;?)?)?c,):gkt\ilr?g square-well fluid aff/T.=0.985 using the same box size$ as in
the coexistence curve asincreases H0\,Never the strongl,y Fig. 8 (b) for the RPM electrolyte al/T.=0.986 forl * =5-10
. - ’ ’ e[22]. The thick lines represent predictions for the lirhis .

asymmetric and relatively slow approach of the RPM to th
limiting behavior is striking. Nevertheless, it turns out that
by tracking these minima and suitably extrapolating them or{4.34) [seeK Figs. 4.9 and 4 Bquite closely mirrors, except
the basis of the present theoretical foundations, remarkablfpr its precisey< —y symmetry, the simulations for the
precise estimates of the density ]umppozT):p+(T) HCSW fluid shown .in FIgS 8 and(@: indeed, the HCSW
—p_(T), and of the diamete;?(T) can be obtained for both fluid does not _dewate drastically from overall ‘symmetry
models[28]. even though_lt displays some pressure and chemical potential
mixing (as discussed aboye

For finite L, Eq. (4.34) predicts two minima that satisfy

In order to understand the minima better let us, for sim-
plicity, consider the symmetric case wheye = y_ SO xo
=0 in Egs. (4.13—(4.16. After some algebra we obtain
from Eqgs.(4.19—(4.29 the expression

T.=*+(1+2X)Y%(1+3x)2 (4.36)
[X+(1-T?)]°
QTP = e ena—To+14272—378  *3
X(2+3X?)?
whereT(hpoLY) was defined in Eq(4.21) while Qmin(T;L)= A+ 18701 36224 2745
X(T,h;L) = x(T)/pX(T)kgTLY. (4.39 —YIp2keTLI+O(e 2oty (4.37)

WhenL—» so X—0 andh—0 with 72—y?<1, the pre-

vious result(4.30 is recaptured; on the other hand, wHen ThusQ,(L) approaches zero, the limiting value at coexist-
—a with h fixed and nonzero, one ha?—1 and Eq. ence, at % On the other hand the positions of the minima
(4.33 is matched. A plot ofQ, vsy generated from Eq. approacho, andp_ whenL—-oc. In order to find the cor-
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respondingL dependence, we first determihe from Eqs. Once the critical temperature is obtained, we may use the
(4.36 and (4.21) obtaining a (In_)/LY variation. From Eq. k-loci and theQ-loci to estimate the critical density, as

(4.18 we then find the density minima at already demonstrated in Sec. IlIB: see Fig. 3. To estimate
the universal correlation exponenfor the RPM, the critical
pnﬁin(T;L)=p1(T)t2po(T)BQ(T)L’d isochore is then utilized.
X[In(Ld/BQ)— 1+0(L™ %], (4.39 A. Estimation of T for the hard-core square-well fluid

The HCSW fluid is the simplest continuum model that
exhibits realistic gas-liquid separation and criticality. Hard
_ ) spheres of diametaa=o interact via an attractive square-

Bo(T)=kgTx(T)/4po(T). (439  well pair potential of deptlz and rangeb=\a. In the simu-

) . ) _lations discussed hef&], \ is taken to be 1.5 which reason-
Since this result has been derived only for the symmetriGy,y represents simple fluids such as argon, etc. Reduced
case(although it has wider validity28]) we may replacey  temperature and density are defined, as usual, Ma
by x.=x_; it is also useful to recall that@=p,—p_ =kgT/e andp* =pa®.
=Ap..(T) [see Eq(1.1D)]. As already observed, for systems with axis of symme-

Our discussion ofQ, (T;(p)) below T; has, up to this try, such as Ising ferromagnets and lattice gases, Binder
point, been confined txed Tand, then, to large enough  [23,47 used the moment paramefdr=(1—1/3Q,) to es-

On the other hand, wher= (T —T.)/T.—0— the basic ther-  timate critical temperaturegand critical exponenjs by
modynamic properties entering the expressions fokevaluating the parameter as a functionTobn the axis of
Qu(T:(p)) and for the minima and their locations will dis- gy ymetry, where, of course, the ordering fi#ldvanishes
play their standard critical behavior, specificalps~[t|”,  igentically for all L, and then locating self-intersections.
x~|t|7?, while xo~[t|#~” [seel(3.41,3.42]. Beyond that, However, asymmetric systems, such as continuum fluids
however, the divergence of the correlation length, namelywhere there is no obvious symmetry axis, pose a crucial
é~allt|”, implies that each variable appearing in the for- question when one aims to apply the same idea: Where
mulas above should, wher-0—, be associated with a fac- should one look? The best choice is, naturally, the locus of
tor [t|”. However, the analysis based on the two-Gaussiatisymmetry” corresponding to the vanishing of the finite-size
form (4.13 implicitly assumed thav=L/{~L*[t|" was  ordering fieldh(p, T, x;L). In practice, however, the mixing
large [27,40—-4§: thus whent—0—, we may not simply  coefficientsk,, j,, ands, in the ordering field—see Egs.
substitute the expected powerstdh to the expressions so (1 4) and(1.8—are not known for such systems so that it is
far derived. On the other hand, the full scaling expression fOEjifficult to determine the locub=0 in, say, the T, p) plane.

Q. implied by the basic scaling ansa@.2), namely, Furthermore, suppos®, is calculated along any fixed
locus—such as the critical isochore or even, say, the limiting
Qu(Tip)~ QXYL YLaYiss -+ -)s (4.40 Q-locus pg(T)—on whichh does not vanish, but rather re-

must reproduce the expressions obtained here wiven mains nonzero for anl. The contributions t@, from non-

=L/¢~|x |"— [see Eq.2.3]. This means that although Vanishingh may then be gauged by expanding the scaling
we cannot hope to derive theoretically an explicit generafunctionQ(x. .y, , . ..) in Eq.(4.40 about the critical point
expression for the scaling functiad(x,y, ...), oreventhe @as

scaling forms for the reduced minima,.,(T;L)/po(T), we

where the scaling amplitude is

have in essence obtaineaactinformation about the corre- QXL ,YL s -+ -)=Qc+ QX+ QuxZ+ Qqy?
sponding scaling behavior. It thus transpires, as shown in )
Ref.[28], that by starting at a temperature beldw where +QaYLat Qsyist -, (5.9)

T)/a=0(1), simulation data at increasingcan be used . L . .
&) (1) 0 where the linear termy, , y, s, etc., vanish identically in

to generate the appropriate scaling functions ggy.(T; L) view of the basic symmetry UNdeE < —y, . YLo© —Ye

and pyy(T; L) and thereby also obtain precise estimates fOretc:. Evidently, any small uncertainties in the critical param-

po(T) and p(T), i.e., the(limiting) coexistence curve and eters will be enhanced via the scaling combinatign
diameter, even very close . «hL*’* whenL increases. For example, dp, is an error in
pe, the contribution toQ, will vary as y?~ 8p2L2#* and
V. APPLICATIONS TO SIMULATION hence diverge wheh —x, thus causing difficulties in ex-
In this section we extend and illustrate the finite-size scalirapolating finite-size data. Explicit calculations reveal the
ing analysis and the use of the special loci by estimatingorresponding reduction in precision.
critical parameters for the hard-core square-well fl@and Beyond this issue one finds, by explicit calculations for
the restricted primitive model electrolyf22] on the basis of ~Strongly asymmetric systems such as the RPM, that the be-
grand-canonical Monte Carlo simulations. In particular, thehavior ofQ, (T) onthe critical isochore(p), = p., may not
Q-loci play an important role in determining the critical tem- even be monotonic—as it is on tile=0 locus. This adds
perature and indicating the universality class of the modelsfurther uncertainty to interpreting the data.
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FIG. 11. Plots of T3(L) vs (L*+1*)"% with ¢=(1+6)/
FIG. 10. Plots ofQ,(T;{p).) on theQ-loci, po(T;L), for the —2 41 to estimatd™ focr(thzz HCéW quid). v=( )y
HCSW fluid providing estimates foF, andQ. . Classical XY, and ¢

Ising values ofQ, are marked on th& axis[24—26. The system

_ v
sizes match those in Fig. 6. X =Dy rtL>"+ -,

~—ULQa/QiL "= [3Y3Qs/QiL*#"™, (5.3

To overcome these obstacles, we consider Ghtoci,
po(T;L), for a fixedL on which it was shown in Sec. IVA wherer was defined in Eq(3.10 andYg, in Eq. (4.7), while
that the scaling combinatiow, =hL*/" actually decaysas  the coefficientsQ; in Eq. (5.1) could also be expressed in
j,L %" whenL—: see Eq.(4.6). (Thush vanishes like terms of the ;ca!mg-funcﬂon expansion coefficieify . Fi-
i,L-(4+A)/" ) Hence, theQ-locus can be considered as an Nally, TS(L) is given by
“optimal” choice for analyzingQ, and estimatingr.. No-
tice, of course, that in a symmetric system Qdocus re- tS(L)E[TCQ(L)_TC]/TC
duces toh=0 (or, equivalently, top=p,). For certain other
thermodynamic quantities one might find corresponding op-
timal loci, such as thé&-susceptibility-loci, etc. Here we ex-
amineQ_L evaluated on th&-loci for the HCSW fluid.(For P,=Q,U%,/7Q:D, P2:j§Y(23Q3/QlTDL' (5.5
application to the RPM: see RdR22].)

Generally, one must expect th@; on aQ-locus starts Notice that ford=3 Ising systems the leading exponents in
nearQ= 3 aboveT, (in the one-phase regigrbut, since the  Eq. (5.4) are (1+ §)/v=2.41 and (¥ 28)/v=2.62, the lat-
Q-loci in the two-phase region approach the diameter) ter with an amplitude proportional t';ﬁ; these large values
[see Fig. 6 Q, must then approach unity beloW [see Eq. explain the observed rapid convergence of'ﬂ‘j’éL).

(4.30]. At T=T, the Q-loci approach the critical point so  Figure 11 displaysTS(L) vs L~ for the HCSW fluid
thatQ_ on aQ-locus must pass through the universal valuewith the predicted Ising valuey=(1+ 6)/v=2.41. The
Q. at some temperature, s&(L), that approache$. as  small valueR = —j,/(1—],) [seel (3.41)] of about—0.04
L—. These features are evident in the plotsQbn the discussed in Sec. Il B indicates that the amplitiRiein Eq.
Q-loci for the HCSW fluid shown in Fig. 10. Thus all the (5.4) is negligible. Thus considering only the leading term is
curves intersect one another near the Ising val@g sensible. However, to allow for the various higher-order cor-

=— Py /LA _p, AF2B)vy (5.4

=0.6236(for periodic boundary conditions on a cuE—  rections, the small shift parameter has been introduced.
26]) strongly confirming that the HCSW fluid belongs to the  From this plot, we estimate the critical temperature for the
(d=3)-dimensional Ising universality class. hard-core square-well fluid to be

To obtain the asymptotic behavior Elaf(L) for largelL,
we solve the equation T#=1.2186-0.0003 (HCSW) (5.6

This value is about 0.06% higher than the estimate
QuUTipg)~QX .Y YiaVis, - e=Qer (52 _12170-0.0003 of Orkoulaset al. [8]. For the RPM,
Luijten et al. [22] obtained a precision of-0.04% in esti-
where the subscrip@ notation denotes evaluation on the matingT; by the same approach.
Q-locus. Substituting expressidd.7) for y, on the Q-loci It is worth stressing that in all these calculatiofed
and using Eq(5.1), we may solve this equation to obtain  those described above and be)atvhas been imperative to
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use extensive histogram reweighting proced{#&@$in order C. Estimating the correlation exponent

to precisely determine intersections of loci, maxima and ot pasic importance and value in determining the univer-
minima, etc. It is clear that without sufficient precision a”d'sality class of a model is the correlation length exponent

indeed, accuracy in calculating finite-size properties, exag already frequently stressed, this enters in finite-size sys-
trapolatl_on prqcedures are doomed to failure or, worse, Ser%-ems via the combinatioh|?|” which opens manv routes to
ously misleading estimates. P y

the estimation ofv. For example, the scaling @, on the
o Q-locus should satisfy
B. Estimation of Q.

There seems little serious doubt on the basis of Figas0 QL(T;po(T;L)) = Qc~AQ(tLY™). (5.10
well, of course, as on previous evider&) that criticality in
the HCSW fluid is of short-range Ising type. In other casesFrom  this it follows that the derivatives
however, one may well desire to estim&g, and hence 0Q,(T;po(T;L))/dT evaluated atT. or at T?(L) or at
resolve the universality class, in unbiased fashion. In thatréL(L), etc., will all, in leading order, diverge as/. How-
situation the successive intersections of plotsQpfon the  ever, obtaining these derivatives accurately is a difficult com-
Q-loci for increasing sequences bfvalues may be useful. putational task. Furthermore, the corrections to the leading
Accordingly, let us defindg"(L) andQg"(L) as the inter-  behavior are likely to be quite significafawing, in particu-
sections of a plot 0Q, (T) on thepg(L;T) locus with a plot  |ar, to the strongly nonlinear variation afQ(x) which must
of Q__a.(T) on the po(L—AL;T) locus and ask for the saturate at constant values of order unity when = o],

asymptotic behavior als increases at fixed, smallL. To provide a robust method of estimatimgrom simula-
The analysis follows the lines of the preceding sectiontions above criticality—which are intrinsically easier to
except that Eq(5.2) is replaced by bring to equilibrium than simulations closer to or below
T.— Orkoulaset al.[8] introduced various “estimator func-
QXL YL, ---)|Q_Q(XL—ALayL—ALu _‘_)|Q%o. tjons,” yj(T,',(:L). When evaluated in the thermodngmic
(5.7) limit on a critical locus, say, that approached the critical
point from above, these diverged &s-0; but in a finite
For the temperature intersections we find system they exhibited rounded maximiaove T at tempera-
turesT;(L). For suitable loci the T;(L) must approaci,
[TéL(L)_Tc]/Tc: P, /L0 2Bp, L A+2B) vy asL ™. Then Orkoulat al. consideredinbiasedexponent

estimatorsjndependenof the unknown(or known value of
(5.8 T.. Specifically, for a pai); and ), they measured T,

which, in leading order, isndependentof AL. The coeffi- =Tj(L)~T(L) and computed sequences

cientsP; andP, are the same as those defined in Exj5),
which enter Eq.(5.4), namely the asymptotic result for
tS(L), the intersections witlQ.. However, the approach
takes place from the opposite side, and sifee0.52 and
2[3=0.65, the amplitudes are smaller. For these reasons ores L —«. By using estimates for the critical isochore, Ork-
might well prefer to use the successive intersections: howeulas et al. [8] estimatedv for the HCSW fluid and con-
ever, a little reflection shows that they place greater demand&med its Ising-type character. They also checked that,

AjkE 1

ATp(L+AL) L 1
- =, (5.11)

on the precision and reliability of the simulations. within the available precision, the results fowere not sen-
Unfortunately, the convergence of the estimatesQJgris  sitive to the estimate fop, .
not as rapid. We find However, this method is relatively demanding in that the

differences T;(L) — T, (L) must be obtained to relatively
high precision. For the RPM—which is much harder to
AL ,\, [ olv
Qg (L)=Qc+(1+6)QaU,/L simulate reliably than the HCSW fluid even aboVg—this
+(1+218)j§Q3Y2/L2ﬁ/V, (5.9 proved a stumbling block. In addition, while relative insen-
Q sitivity to the estimate op,. could reasonably be expected,
the very strong asymmetry and the likelihood of strong pres-

where for Ising-type systems the exponents éte=0.83 7 . . ) g
and 28/ v= 1_02_ ¥|Phi5 ;ower converg?ance may be the reaSure mixing(since confirmed28]) made the choice of criti-
al locus more questionable. Would the critical isochore still

son why the successive intersections seen in the inset in Fig. : -
10 suggest a limit some 1% or 2% higher than the estab?® sajusfact_ory._ L

lished Ising valu¢24—26. However, since no special efforts Atissue in this latter question is that, as a result of pres-
were originally madd8] to gather HCSW data optimal for SUr¢ MiXing, the estimator anCt'O?%(T) pick up contribu-
evaluatingQ and theQ-loci, one must also suspect the pos- tions varying with the field$1 andp on the locus/, sayp
sibility of inadequate simulation accuracy. By contrast, the=pc- This question is partly resolved by the analysisl of
central unbiased estimate f@, for the RPM (on which Sec. IV D which shows that on the critical isochdesd, by
considerable effort was focusedaptured the Ising value extension, on any locus behaving asymptotically as (

precisely within uncertainties of only 0.3% [22]. — pc)~ct—0] one hash~|t|*~**” andp~|t|> . The as-
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FIG. 12. The estimator functio’,(T)=(3Cy/d®) with ® 1/L

=1/T* on the critical isochored =0.079) of the RPM electrolyte
(at a /=5 discretization leve[22]). The vertical line marks the
estimated critical point af; =0.050 69[22].

FIG. 13. Plots of estimator&.14) for the exponent I for the
RPM using), (open circles and Y (crosseswith I* =2, 0, and
— 2 from the top downwards, ary, (solid circleg with I*=5, 3,

sociated correction exponents are sufficiently large2} 1, -1, and-3: see text and Eq5.14).

that they are of little practical concern relative to the un- o )

avoidable leading correction-to-scaling terms varying‘as ~0.045<T*=<0.070. The remaining functiors, . .. ,V;, do

In a finite system a discussion along the lines leading to Ecdisplay extrema abov@, but their behavior is not very
(5.9 [that invokes the analog of Eq4.7) for y, on the smooth for the accessible valueslof.

isochorg is appropriate; but, as in E¢.9), the extra terms Accordingly, new estimator functions were sought. After
to be anticipated, varying das 2P are of higher order than some investigation, two further acceptable functions were
the leadingL~?" corrections. Nevertheless, it may be of found, namely,

value, as suggested in Rdfl0], to use as the locug a

“theta locus” defined via F(m2)L2 F2(mPyLe

po(T)=pc[ O+ (1=9)(Tc/T)], (5.12 0%/, 0% ],
where a most favorable value rpki)ght be one chosen 10 \yherem=(N—(N))/V. The behavior of these functions re-
approximate an optima-locus orQ*”-locus. sembles that shown fay,(T) in Fig. 12 although for the

For the RPM a second problem arises which we explainggme yalues of. the maxima lie further froni,: seeK
here and then deal with explicitly. For completeness we reFigs. 4.15 and 4.16.
call that the restricted primitive model electrolyte consists of Finally, we must accept that neither the quantity nor the
N=2N, hard spheres of diametar=o, of whichN. carry  quality of the obtainable RPM data suffices to implement

a charge+qo and N—(:2N+) a charge—qo. The pairwise  recipe(5.11). Instead, we accept the biased estimators
Coulomb potential ist qg/Dr for two like/unlike charges at
separatiorr. Appropriate reduced variables are
azlq T(L+AL) =T JL*+1* 1 -
T*=kgTDalq;, p*=pa’. (5.13 I AT{(L)=T¢ | AL* s (5.15

_ 1Orkoulle;s egal._ljﬂtrO(cheld 12 (isgmator fur;}ction}ij (] which require a value fof . : that we take from the study of
=1...,12) [8]. e simplest,);=Cy, was the constant Q on theQ-loci as in Fig. 10[22]. The shift parametel*
volume heat capacity. But for the RPM this displays maX'm‘ﬂj'allows, as in Fig. 11, for higher-order terms in the behavior

fairly far below T, which, moreover, are not easy to locate fthe T (L). Ext lati 1 illustrated in Eig. 13
precisely [48—50. With ®=1/T* Orkoulas et al. defined siel e i(L). Extrapolation vs 1/, as illustrated in Fig. 13,

V,=(dCy/3@),: this function has a local extremum,

T5 (L), above T, which varies fairly regularly ad in-

creases: see Fig. 12. On the other hand, in the case of the v=0.63+0.03 (RPM). (5.16
RPM the functiong)s, . .. ,)s prove to have maxima close

to butbelow T.. The function);, a modified susceptibility, This value(previously reported but not justifiel®2]) sup-
displaysno maximaon the critical isochore in the range ports the conclusion that, despite the infinite range of the

041506-18



ASYMMETRIC FLUID CRITICALITY. Il. FINITE-SIZE SCALING . .. PHYSICAL REVIEW E 68, 041506 (2003

ionic forces underlying the model, it behaves, as regards Similarly, it seems clear that the general scaling fieid
phase separation and criticality, like a short-range Ising-type,, ) 14 be chosen conjugate to the general ordering Field

system. Thus we adopt

VI. FULL SCALING IN THE CANONICAL ENSEMBLE ~ ~ o~
m=(dp/doh)y, (6.4

In the thermodynamic limit for regular systems there is a
full equivalence between the different ensembles. Consewhich is identical to the scaling densify that was intro-

quently a “canonical description”in terms of the Helmholtz yyced in Eq(2.10 along with the scaling entrops.

free-energy densityf(p,T)=lim__..F\(V,T)/V with p With these variables in hand we can rewrite F8j1) as
=lim__,..(N/V) is as valid and provides the same informa-

tion as the grand canonical viewpoint basedpgit, ) that . . -
we have so far adopted. Similarly, as observed in the Intro- f(p, T)=F(p,T)/pcksTc="Fo(p, T)+f(p,T), (6.9
duction, in leading order the canonical scaling fofinl3),

which invokes the scaled combinatiamm/|t|?, is equiva- ~Where the nonsingular background term may be expanded as
lent to the grand canonical forif2.4) that entailsyoh/|t|*
«[mw—um,(T)]/|t|*. However, in higher orders the necessity
for field mixing via Egs.(1.1)—(1.4) complicates matters.

Specifically, whereas the full scaling fields «, andp are
generally nonsingular functions of the underlying scaling
fields, t, u, and p (unless renormalization group “reso-
nances” aris¢ 30]), this is no longer the case for the canoni-
cal variablesm, T, andf. Here we derive some of these f(p,T)=mh—p+jmp—epessh—j,eqessp+-- -,
complications that arise canonically, first in the thermody- (6.7)
namic limit in the presence of pressure mixing, then in finite ) o

systems. In the latter case we wish, in particular, to underl? Which the presence of the coefficignt makes clear how
stand the asymptotics of the finite-size, classical-type criticaPr€SSure mixing enters. B

points that may be identified in canonical simulations: see, Our aim now is to express in terms of the general ca-
e.g., Refs[8,22]. nonical scaling combinations

folp, T)=Tc+ mep—Kot+egeqpt+ - - -, (6.6

with o= (pese—Pe)/pcksTe and ue=puc/kgTe.. On the
other hand, the singular contribution becomes

A. Thermodynamic limit z=m/B[T|A, y,=Ul[T]?, ys=Us[T|%,

By standard thermodynamics for infinite systems the (6.9
Helmholtz free-energy density is given by _
whereB=QU: see Egs(2.4) and (2.5 and accompanying

f(p,T)=pp—p, 6.1) text. To that end, from Eq$2.4) and(6.4) we first obtain
whereu andp are understood to be reexpressed in terms of z=W.(Y;Y4,Y5, -..) With y=UT1/|T|A, (6.9
the density vigp=(dp/du)t. It is straightforward to intro-
duce the reduced variablgs p, and for t=0, whereW'.(y; ...)=dW. /dy. Inverting this ex-

pression yields

u=eo(h+jptet+---), (6.2 = i
m=eg(h+jpt+ey h=U"t|*F“(z;y4.Y5, - . .), (6.10

via Egs.(1.1) and(2.12), and convenient to recall E(R.17),

for e, andes, and, further, to write where the scaling functions% (z) are the inverses of the

W. (y). From Eqg.(2.4), we hence find

a1 o _ ; B B
€=€;1 ", e2_Jl+JZI1! e4_kl+]2k0- (63) p:Q|t|27aFPl(Z;y4,y5, . .)’ (611)

Now we must address the choice of general canonicgh which the new scaling functions are defined by
scaling variables. We wish, first, to allow for the leading

correction-to-scaling terms which are expressed in ternis of

both for infinite and finite systems in Eq&.2—(2.4). Ac- FL(ZYays, - )=Wa(FEZYay - )iYas )
cordingly, it seems appropriate to addpglso canonically, (6.12
although it will need to be reexpressed in termsndh place Then, rearranging Eq$1.2—(1.4) and substituting yields
of u. the canonical thermal scaling fields
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T=1t—egesh—egep+- -, efficientjz that induces a .Yang—Yangl anomaly. In. as far as
this and the other nonscaling corrections are of higher order
=7t—(eges/UW)[T|*FA(zZ;y,, .. .) (in powers oft) than the scaling term, they might be re-
_ garded as part of a “singular background piece,” say,
—e&Q[t[* “FR(Zys, .. )+, (613  f,(p,T). But the singular nature of the canonical scaling

fieldst andm cannot be so readily sidestepped.

In contemplating these results one may speculate that
) ) there might exist better choices of the canonical scaling
reduces tort. Notice, however, in contrast to the grand- g6 & 347, that would ameliorate the singular mixin
canonical formulation, that for nonzetg or j; the scaling T X 9 9
. o ] i i . ] terms in Eqs(6.13 and(6.14) and/or absorb some or all of
fieldst is now a singular function dfwith leadingnonlinear  he nonscaling corrections in E(5.17); however, this seems

PR ; 2—a— 2—a (; 2 . o o . f

contributions varying aft|*”«# and.|t| (in place oft”, ynlikely to us. Indeed, it is worth recalling that even the
etc). By the same token, corrections proportional rté concept of a “nonsingular background” encounters dangers
~m?, arising from the expansion & (z) andF® (z), will near criticality in a canonical or Helmholtz formulation.
carry the singular factor$t|” # and |t|”; moreover, the Thus in a symmetric system ned with m=p—p. one
former actuallydominateshe nominally leading term linear might reasonably expect the background to have the power

wherer=1—ey(kqe, +k,e3) was also defined in E¢3.10.
When the mixing coefficient$;, j,, andj, all vanish,t

in t. series expansion
For the general canonical order variabe we find from
1(2.18 folp, T)="fot fot+fm2+fy tmP+fmi+ ...
(6.18
~_ CEITI 2 2
M= oM+ €oasH(JoF I1ke) €/ )M+, But since the inverse susceptibility (T) is given by
—eom+e0esQ[T|1 “FS(zy4, .. .) (6%f/om?)1, the susceptibility itself cannot diverge @
unlessf, vanishes identically. Similarly, if, , andf, do not
+(jotjik) (€3 Hm+ -, (6.14  alsovanish, one would have<1 andé<3, both of which
_ inequalities contradict exact theory and precise experimenta-
where, from Eq(2.10 for s, we find tion. These observations point, of course, to the fundamental
character of a grand canonical or, better, a full field formu-
FS(z...)=2-a)FR(z ...)—(B+zFA(Z ...). lation in terms ofp, «, andT.
(6.195

~ B. Finite-size canonical criticality
Evidently, m also entails singular terms that, indeed, intro-

duce[t|*~“ as a leading correction unlesg=1,+j; van-
ishes.

Finally, T(p,T), the singular part of the Helmholtz free
energy, can be expressed as a sum of a scaling piece, which

To extend our canonical scaling description to finite sys-
tems we may follow Sec. Il. First, in the set of scaled vari-

ables(2.3), we replacey, =U hL'" by

simply extends the original leading for(h.13), plus a series z, =B mLA". (6.19
of nonscaling singular but higher-order corrections arising . - .
from field mixing. If we define the scaling functions Then, in addition to a nonsingular background free energy

fo(p,T;L), we may anticipate a singular part, corresponding

X (Z:Yar ... )=FP—2FE, X2 =zF to Eq.(6.17), of the form

fs(p, T;L) =L~ @ [ Xo(X 20 5Yia, Y150 - - -)

X¥(z;...)==F5(z, .. )Fi(z...), X3==F3F%,
(6.1 il X (X020 Y )
the explicit result, recalling Eq6.9), is +e0esL X (x,z0 ;..
- ~ +j2808sL VX a(x vz L)+ ]
f(p.T)=—0Q[t|> YX.(Z:y4,Y5, ...)
(p Qlt|* [X+(Zya,Ys (6.20
—i2QUItPXE(z; .. ) o . .
Note that the new finite-size scaling functioXg and X5
+(epe3/U)[T|1 2 AXk(zZ; .. .) should be symmetric undez, -2z, y s —ys , etc.,

B while X; and X, are antisymmetric. In the absence of field
+j.€083Q[t|* " X%(z; ...)+---]. (6.1  mixing we recover the obvious finite-size generalization of
the scaling form(1.13. However, the pressure mixing coef-
Evidently, the most singular nonscaling correction is of relaicient j, generates a nonscaling correction that vanishes as

tive order|t|# and arises only from the pressure mixing co-L~#* and is antisymmetric iz, , y, s, etc. The coefficient
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I, which mixes the chemical potential into the thermal field
t, produces an antisymmetric correction vanishing as

tv
L*(l*a*ﬁ)/v.

As in Egs.(2.6)—(2.8) we expect that the scaling functions
Xij(XL,Z;YL4:Yiss - --), can beexpanded generally in
powers of the irrelevant variableg, 4, y, 5, etc., and, also
for finite L near criticality, in powers ofk, andz , with
coefficients X{,; as in Eqg. (2.8). [See alsoK(4.182—

(4.184.] There is, in fact, a concealed subtlety here: specifi-

cally, the particle numbeN is an integer so that the density
p and, likewise,m are intrinsically discrete variables in a
finite system. Away from criticality the free energy surely
approaches an analytic function pfwhenL—<; but the

degree to which a corresponding smoothness may be as-

sumed in a finite system close to criticality n®t obvious.

[Incidentally, the corresponding issue can be raised in cory
nection with the two-Gaussian description of the distribution

P.(p;u,T) in Eq. (4.13.] However, in the absence of con-

crete evidence to the contrary, the assumption that the finite

size canonical free energi(p,T;L) may be treated as an
analytic function throughd.,T;) seems highly plausible if

used, as here, to determine leading asymptotic behavi
whenL — oo,

Now simulations of simple fluid systems reveal that as, a

function of density,f(p,T;L) exhibits two peaks fol<T,

PHYSICAL REVIEW E 68, 041506 (2003

te(L)=[TAL)—T /T,

=ciL M 14l jcal 2]

(6.249
and the canonical critical density as
PAL)=pl L+]oby L~ bl = ()
+hgL @A (6.25

where the leading amplitudes are given by

(6.26

t is instructive to learn that the asymptotic behavior of
pg(L) has the same form as exhibited by théoci and the
Q-loci evaluated aff=T,: see Eqs(3.13 and (4.9. The

data for the RPM, however, suggest that the two leading
corrections in Eq.(6.25 compete rather strongly so that

d’rg(L) appears to approagh. honmonotonically{22].

VII. CONCLUSION

In this paper we have extended to finite systems the

that correspond to the separation of the two phases. One MaYomplete” scaling theory developed in Parf11] for criti-

then define a finite-size canonical critical

(pY(L), T2
virtue of the analytic behavior df(p,T;L), such canonical

point,

cal behavior in the thermodynamic limit that incorporates

(L)), as a point where these two peaks merge. Bypressure mixing in the scaling fields as well as the irrelevant

corrections to scaling. The basic theory is set out in Sec. Il in

critical points must, in general, be classical in characterg grand canonical orp(u,T) formulation: see Eqs(2.1),
However, they will—at least in simple cases—approach thg2 3) and (1.1)—(1.4). The possibility of finite-size correc-

bulk critical point (o, T.), whether or not the critical behav-
ior remains classical in the thermodynamic limit. In prin-

ciple, extrapolating such canonical critical points may help

locate the limiting critical point; in practice, however, this
has so far proved of limited usefulneg,22]: see the nu-
merical behavior revealed in Fig. 3 of R¢&] and Fig. 1 of
Ref. [22]. Nevertheless, it is of interest to elucidate the
asymptotic behavior, especially pﬁ(L).

The conditions determining a classical critical point re-
duce to

(afs/om);=0 (%*fs/am?)1=0. (6.22)

On expanding the scaling functions in E§.20 these yield

0= 2X8,OZZL +] 2X2,01|- Ay sz()l,%zu Sl vz,

+ep83X5 oL A (6.22
0=2Xg g5+ 2X5 1+ 6] X3 od. ¥z,
+2XE UL+ (6.23

Solving these equations fog andz_ and using Eqs(6.13

and(6.14) for t andm finally yields the critical temperature
as

tions in the scaling fieldp, h, andt [see Eq(1.8)] has been
reviewed briefly in Sec. I B and, in Sec. 11 D, a fairly direct
route to detecting such a dependence—by studying numeri
cally u(T¢,pc;L)—is proposed.

Section Il applied the theory to elucidate the near-critical
behavior of thek-loci, defined in the §,T) plane by the
isothermal maxima of the modified susceptibilities
x(T.p)/p: see Fig. 1. The usefulness of tkdoci in esti-
mating the critical density, via simulations is demonstrated
for the hard-core square-well fluid in Sec. Il B and Figs. 2
and 3. It also transpires that the valuelofvhich yields a
locus that approaches the critical point “most directly” pro-
vides a reasonable estimate of the Yang-Yang raip
[9—117] that, in turn, provides the most direct measure of the

degree to which pressure enters the ordering felth this
way Fig. 1b) provides rather clear evidence of a significant
ratio, R,,=0.26, in the restricted primitive model electrolyte:
see Sec. Il B.

The behavior of the basic moment ra@ (T;{p)), as
defined(following Binder [23]) in Eq. (1.9), is the topic of
Sec. IV: see Figs. 4 and 5. In particular, the associ@talci
(andQ®-loci) are determined in Sec. IV fand Sec. IV B:
see Eq(4.8) [and Eq.(4.10] and Fig. 6. Of especial interest
is the behavior ofQ (T;(p)) below T., within, up to, and
beyond the boundariep,, (T) andp _(T), of the two-phase
region: see Figs. 7-9. For fixed<T. and large enough
system sized, exactnontrivial results have been found, as
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shown in Secs. IV C and IV D: in particular, the study of the same although new terms may well appear and dominate the

minima in Q_(T,(p)) [see Fig. 9 and Eq4.38] lays the
foundation for a precise methd@8] of estimating[p. (T)
—p_(T)] and the coexistence curve diamepél) at higher
temperatures very close W, .

Of remarkable value for estimating. for asymmetric
fluid models is the behavior d, evaluatedon the corre-

N dependence in certain regimes.

The issue of &anonicalor (p,T) formulation of critical-
ity with corrections to scalingnd pressure mixing is taken
up in Sec. VI. The basic expression, E§.17), for the sin-
gular part of the Helmholtz free energy is intrinsically more
complex than the,«,T) scaling formulation, entailing an

spondingQ-loci: see Fig. 10 and the asymptotic expressioninfinite series of “improperly scaling” corrections. This for-
(5.4) and corresponding plots in Fig. 11. Likewise, the esti-mulation provides a basis for determining the asymptotics of

mation of the critical valueQ.=Q..(T.;p.), described in

the canonical critical pointéof classical charactgithat can

Sec. VB, is important for determining the universality classP€ observed in N,V,T) simulations: see Eqd6.24 and
of criticality. Finally, in Sec. VC and Figs. 12 and 13, the (6.25.

estimation of the critical exponemtfor the highly asymmet-

In summary, we believe that the theory developed here

fic restricted primitive model electrolyte has been describednd the applications illustrated constitute a solid foundation

(confirming Ising character

for future computational studies of criticality that employ

We have not discussed finite-size effects near criticality irSystems of finite size.

an (N,p,T) ensemble(in which the volume is allowed to
fluctuatg. This is an interesting and potentially useful task;
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