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Thermodynamically consistent fluid particle model for viscoelastic flows
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A recently proposed viscoelastic dissipative particle dynamics model is put into a thermodynamically con-
sistent form that allows for nonisothermal situations. This model consists of fluid particles that have an
additional elastic vector characterizing the state of elongation of the molecules within the fluid particle. Very
simple physical mechanisms are proposed for the dynamics of the elastic vector that, with the help of the
GENERIC formalism, allows us to derive the full set of dynamic equations for the model. The model is further
generalized to include polymer diffusion. The connection of the present model witotheFeEssITapproach
and the Brownian configuration field approach is discussed.

DOI: 10.1103/PhysReVvE.68.041504 PACS nuni$)er83.10.Rs, 02.70.Ns, 05.40.Jc, 05.70.Ln

[. INTRODUCTION tion parameterf10—12. In this respect, DPD turns out to be
a versatile method for the simulation of complex fluids. A
Dissipative particle dynamic$DPD), as originally in-  couple of recent reviews on applications of DPD to the simu-
vented by Hoogerbrugge and Koelman, is a stochastic patation of complex fluids can be found in Refd.3,14].
ticle model for the simulation of Newtonian fluids at meso- A very interesting generalization of the dissipative par-
scopic scalefl,2]. In DPD, a Newtonian fluid is represented ticle dynamics model has been recently introduced by ten
by a collection of points with prescribed stochastic interac-Bosch in order to study polymer flowd5]. The idea is to
tions that conserve momentum and produce hydrodynamieapture the complex behavior of polymeric fluids by intro-
behavior. DPD bears a strong resemblance with thelucing an additional variabl@ associated with each particle
smoothed particle hydrodynami¢SPH method for solving [15]. The vectorQ collects the elastic information about the
the Navier-Stokes equationi8], except that DPD includes fluid at scales “within” the dissipative particles. The intro-
thermal fluctuations and it is thus applicable to mesoscopicluction of the additional internal variabl® is a radically
scales where diffusive processes are important. The connedifferent way of introducing complexity in the DPD model.
tion between SPH and DPD has been made clear in a recelitactually changes the scale of the technique with respect to
paper[4] where it is shown that by including in the original those DPD simulations in which elasticity is modeled
DPD model two extra state variables, the internal energy anthrough springs connecting dissipative particles. A particle in
the volume of the particles, one can construct a SPH modéhe ten Bosch model would represent large portions of par-
which is thermodynamically consistent, has a well-definedicles in previous DPD simulations of polymers. It repre-
physical scale, allows for input transport propertiesthout  sents, therefore, a serious computational advantage. Of
the need of kinetic theory to find out the transport coeffi-course, the price to pay for this advantage is the required
cient9, and allows for arbitrary thermodynamic behavior, profound knowledge of the physics of the mesoscopic vis-
thus solving the conceptual shortcomings of the originalcoelasticity in order to formulate the suitable equations of
DPD model. motion for Q. Because the ten Bosch model is a more coarse
The primary objective of DPD research has been to usgrained model than the usual DPD models for polymers, mo-
this stochastic fluid solver for the study of nonNewtonianlecular details are hidden in the phenomenological param-
fluids displaying interesting and complex rheological behav-eters of the model. However, from the point of view of ap-
ior, for example, colloidal suspensions and polymeric soluflications and computer time saving, this might be regarded
tions. The simple Newtonian fluid of DPD has been maddn some cases as a benefit.
“complex” by introducing additional interactions between  The ten Bosch model suffers from the same conceptual
the dissipative particles. For example, the complex rheologishortcomings of the original DPD model: it is not thermody-
cal behavior of colloidal suspensions has been simulated byamically consistent, it cannot possibly specify arbitrary
freezing spheref.e., introducing a rigid interaction between thermodynamic behavior, does not a have well-defined
particles of DPD particles that behave like solid suspendedphysical scale, and one needs to use kinetic theory to relate
objects[5-7]. Polymer solutions have been simulated bythe transport coefficients of the fluid with the parameters of
connecting some of the dissipative particles with springghe model. The aim of this paper is to formulate in a thermo-
[8,9]. Binary mixtures have been also modeled by considerdynamically consistent way a generalization of the ten Bosch
ing two types of particles that interact with different interac- model to nonisothermal situations. To this end we first for-
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mulate a model in which each fluid particle contains a fixed
number of dumbbells. This model can be understood as a
Lagrangian SPH version of th€ONNFFESSIT approach
[16,17]. Inspired by this model, in the second step we con-
sider only one elongation variable per fluid particle, as in the
ten Bosch model. This second model is much faster to simu-
late because of the large reduction of dumbbell variables in
the system. In addition, the second model incorporates the
number of dumbbells in the cell as an additional variable and
allows one to study polymer diffusivity problems. The model
is essentially a version of the smoothed particle hydrody-
namic model such as the one presented in R&f. with
additional elastic variables. As a final remark, we note that
the hydrodynamic equations for a viscoelastic fluid described
by a suitableconstitutive equatiomave been discretized by
using smoothed particle hydrodynamics very recefit§.

Il. FLUID PARTICLES OF POLYMER SOLUTIONS . . . . -
FIG. 1. A schematic representation of a fluid particle containing

A very convenient way to construct new discrete modelsNid dumbbells. The set of the elongations of the dumbbell within the
for fluid dynamics which are consistent with thermodynam-fluid particlei is denoted byQ; .
ics is by using theseENERIC framework[19] which we sum-
marize in Appendix A. This framework, introduced byt-O ticle is not an independent variable but rather depends on the
tinger and Grmela, captures in a very synthetic way all thePositions of the given particle and its neighbors. In some
required constraints that a model should satisfy in order téecent workg22,21 the partitioning of the space occupied
comply with the first and second laws. It also describes howpy the fluid has been done through the Voronoi tessellation.
to introduce thermal fluctuations in a consistent way througHn this case, each particle has associated a cell around it with
the fluctuation-dissipation theorem. No additional physics is? given volume that depends on the location of the neighbor-
introduced inGENERIC further than the first and second Laws ing particles. In the DPD or SPH philosopf¥], one rather
and the fluctuation-dissipation theorem. However, it facili-provides a volume/; to each particle through the inverse of
tates enormously the task of constructing new models whic densityd; , which is defined by
are compatible with these physical laws. This approach has
been successfully used in Refd,20,21, where mesoscale izd:z W(r ) 1)
fluid particle models for Newtonian fluids have been con- Vi N5 He
structed.

In this paper, we model a polymeric solution through aHere, rjj=|r;—r;| and W(r) is a bell-shaped function of
collection ofM fluid particleswith positionsr; and velocities ~finite supportr . and which is normalized to unity
v; which are understood as representing real portions of the
material. They are regarded a(;tually as small thermodynamic j drw(r)=1. )
subsystems that move following the flow. Each thermody-
namic subsystem is composed Ny molecules of the sol-
vent plus theNid polymer molecules. We will assume initially
that the number&\® and N¢ are fixed, and, therefore, the

mass of each fluid particle is constant. In Sec. VI we will Finally, every fluid particle, that is, every thermodynamic
relax the condition of constant number of dumbb&fsper subsystem, has associated an entropy func8de; ,Q;).

fluid particle. The simplest model for a polymer molecule iSThe microscopic definition of this entropy function is given
a dumbbell, where two beads are connected with a spring,y the |ogarithm of the “number of microstates,” which are

and for the sake of presentation we will focus on this Simp'%ompatible with the prescribed valuestf,Q; [23]. In more
model. Every dumbbell in the fluid particle is characterizedpreciSe terms

by its end-to-end vector or elongatio®;", where «

=1,... NY runs over the different dumbbells of the fluid

particlei. We show schematically a fluid particle in Fig. 1. S(Ei ’Qi):kBlnf dz6(H(2)~E)8(Qi(2)—-Q),  (3)
Every fluid particle has two additional thermodynamic

variables, which are the internal enerBy and the volume wherez is the set of microscopic degrees of freedgmosi-

V. The internal energy; represents the contributions of tions and velocities of the solvent molecules and beads

kinetic energy of the solvent and bead particles with respedt(z) is the Hamiltonian of the fluid particle. If the Dirag

to the center of mass of the fluid particle plus the potentiafunctions containingQ; were not present, Eq3) would be

energy of interaction(including solvent-solvent, solvent- the equilibrium thermodynamic entropy of the fluid particle.

bead, and bead-bead interactiprie volume of a fluid par- The introduction of thesé functions arises from our require-

Note that if particlei has many neighboring particles within
re, then the densitg; in Eq. (1) will be large. Consistently,
we associate a smaller volumé with it.
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ment of describing the system at a more refined level okystems, that is, by the sum of functi¢8) evaluated ag;,

description through th€ variables. Qi, V. This is the well-knownlocal equilibrium assump-
We compute the entropy of a fluid particle through E3).  tion.

in Appendix B under the basic assumption that the suspen- For future reference we present here the derivatives of the

sion is dilute(so we may neglect the interactions among theenergy and entropy function&omputed in Appendix B

dumbbells and between the dumbbells and the solv&he  with respect to the state variables,

result is

JE
Y, ar.
S(E,Q)=S%E)— S(Q) +kgNU(1+InndAD), (@) d
T>(E) JE 0
where the dumbbell density numberri$=N9/V. In obtain- GE | M| [ my 10
ing this equation, we have neglected terms that scale as the ox JE|T 1! (10
inverse 1IN® of the number of solvent molecules. We have JE; 0
introduced the solvent entro@®?(E), which is assumed to
be a known function of its arguments. The generalized en- JE
tropy depends on the dumbbell potential (7Qiﬁ
Nd
a S
V(Q=2 V(Q), (5) N P
a r?l’i 2 ijﬁ
k
whereV4(Q) is the spring potential of a single dumbbell. It 5_5 koK
is possible to show that for multi-bead-spring models, the 9S V; 0
entropy has a form identical to E¢4) except that an effec- —= = 1 , (11
: : . OX aJS
tive potential appears instead ¥f(Q). The solvent tem- — T
perature introduced in Eq4) is defined by IE; !
S Fy
1 JIS*(E) — T
- , (6) 9Qf :
TS(E) JE

where we have introduced the following vector that depends

whereas the thermal wavelength of the dumbbells is only on the position of the particles:

h2 112 ad
Ng=| ———————| . 7 __
‘ (ZWmdkBTS(E)) @ Q=== wij+5i12k @ik (12
The constant&g, h, mq, andD are the Boltzmann constant, | 1 q.a
the Planck constant, the mass of one bead of the dumbbei’l\{
and the dimension of physical space, respectively. wij=—W'(r;j)e; . (13)
Ill. GENERIC FORMULATION Here, the prime denotes the derivative agg=r;—r;/

[ri—r;| is the unit vector joining particles .
The temperature appearing in E4.1) is given by the
derivative of the entropy4) with respect to energy, that is,

We will denote byx={r;,v;,E;,Q;, i=1,... M}, the
full state of the system, wher®,={Q%, a=1,... N% is
the collection of the elongations of the dumbbells of particle
i. The total energy of the system is given by 1 4S(E,Q)

1
M T = o= TO(IN). (14)
EX)=2, gvinr E;. (8) T(E)

The temperature is given, therefore, by the solvent tempera-

Here, E; must be understood as the total internal energy ofure, because we are neglecting terms that are inversely pro-
the fluid particle, including elastic contributions from the Portional to the size of the fluid particles.

suspended dumbbells. The total entropy of the system will be The pressureP, of the fluid particlek is given by the
usual thermodynamic definition

S =2 S(E;,Qi. ). (9) P_4S(E.Q)

T av (19

Note that the entropy of the full system is defined as the sum
of the entropies of each cell taken as thermodynamic subBy taking the volume derivative of E¢4) we obtain
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P=PS+kgT®nY, (16) Note that in order to have antisymmetrylgfwe must have

LiJ-:LjTi, where the superscripi means matrix transposi-
where P* is the solvent pressure and the last term is theion. The first row ofL;; ensures the equation of moti¢ho).

osmotic pressure of the dumbbells. The first column is fixed by antisymmetry af We have set
Finally, we have introduced in Eqll) the dumbbell to zero the right lower block in order to satisfy the degen-
force eracy conditionL(d/9x)S=0 in Eq. (A2) in Appendix A.
The only nontrivial part of this degeneracy condition be-
3Vd(QJ-B) comes, after the matrix multiplication of E1) with Eq.
Fi=m— 17 (1),
: : I P 1 Ff
The physics that we want to introduce in this model can _2 (o 2_]+Aij _+E Aig - " (22)
be summarized in rather simple terms. The fluid solvent i di'T; L Y

moves hydrodynamically and a fixed nhumber of dumbbells ] ) o .

NY are transported by each fluid particle in its overall mo-The simplest choice fo; that satisfies Eq22) is

tion. If the fluid is in an extensional state, the elongation

vector Qi of the dumbbella within the ith fluid particle A;=9Q; E;—E Aiﬁ.'FjB- (23

should increase, as if both ends of the dumbbell were “an- di B !

chored” in the flow field. To this elongation due to the flow

field there is an opposite relaxation effect due to the underThe final reversible part of the dynamics will be

lying spring that tries to reduce as much as possible the mag- :

nitude ofQ; . Our aim in the following sections is to translate il rev=Vi,

in mathematical terms this physical picture.

mVi|rev=Z Aij )
IV. REVERSIBLE PART OF THE DYNAMICS I
In this section, we formulate the reversible part of the .

dynamics for the set of variables According toGENERIC Eilrev= —Z Aji-vj,

the reversible part of the dynamics represents purely kine- .

matic effects on the evolution of the variables, and it is given

by [see Eq(A1) in Appendix A] Qlrev=—2 Al Vi (24)
i |
. JE S .
X|revz|_&, (18) Let us turn, now, to the specification of;; by requiring a

particular motion for the vecto; due to the advection of
the fluid. From a continuum point of view, an arbitrary vector

whereL is an antisymmetric matrix. We wish that the revers—]A is advected under a velocity fieldr) according to

ible part of the dynamics produces the following equations o
motion for the positions of the fluid particles: A=A-Vv(r), (25)
ri=Vi. (19 where the dot stands for the substantial derivaike. (E3)
) . i in Appendix B. The physical picture is that the vectarhas
The simplest nontrivial reversible palf(d/dx)E that pro- s hoth ends anchored in the fluid, as shown heuristically in
duces the above equatotd) has the following form Appendix C. We want that the elastic vec®f evolves in a
. similar way. We need, therefore, the gradient of the velocity
ri 0 field at the point where particleis. Following the SPH phi-
losophy, we interpolate the velocity field according to

2 mv,
S =3 J : (20)
Ei J
_ 0 Ej: W(r—r))y,
Q rev v(r)=——m"—". (26)
W(r—r;
where the block_j; has the structure 2 ( V)
0 15 0 0 By taking the gradient of this expression we obtain
1| —18; 0 A Aig,
L”:E 0 —Aji 0 o | Yv(r) 2 VW(r_rj)Vj ( ); VW(r_rj) 27)
v(r)= —v(r .
— AT
0 ja 0 0 2 W(r—r)) 2 W(r—rj)

(21)
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Therefore, at particle we have the approximate expressiontum P(x) =3;mv; due to the symmetries under exchange of

for the gradient of the velocity field, the indices, j in the momentum equation.
Let us summarize now the line of reasoning followed in
> VW(ri—r))V, > VW(ri—r)) this section. We have assumed a particular equation of mo-
] ] tion for Q" in which this vector is anchored in the solvent.
Vv(ri)= d, —v(ri) d; This implies a particular form for the matrié;iﬁj in Eq.(30).
1 The conservation of energy implied by the antisymmetry of
-~ > IR (28)  the matrixL imposes that this matriAiBj should appear in
i

an additional term in the momentum equation. The particular
form of this term is dictated by the degeneracy condition
LoS/ox=0, Eq.(23) which ensures that there is no entropy
production due to the reversible part of the dynamics. As a
result, we have been able to identify a reversible part of the
. Qe stress tensor, which depends on the configura@grof the
Qi":?-z wjjVij - (290  dumbbells. It is quite remarkable that the small physical in-
ol put given by the anchoring o translates, through the

Bv comparina Ea(29) with the last equation in Eq&24) we GENER|cf_ormaIism, into a very sp_ecifi_c form for the stress
y paring Eq(29) wi au IT .I a824 w tensor. Finally, the energy equation in E¢83) describes

wherev;;=v;—v; and wj; is defined in Eq(13). Therefore,
the continuum advection equatig®5) becomes the discrete
equation for the kinematic motion @J;*

in the explicit form for the matrix- A;; , i.e. . d o
obtain the explicit fo or the mat jio 1€ how the mechanical work is transformed into internal energy
Qv in a reversible way.
_A}rai:d_i' _wij+5ij2k Wik 1
V. IRREVERSIBLE PART OF THE DYNAMICS
B B
Aig=— Q_J wij+ 5”2 wi|1=— Q_J.Qijl_ (300  As shown in Append_ix A, in ord_er to deri_ve the_ irrevers-
oo K d; ible part of the dynamics of the viscoelastic nonisothermal

DPD model, a very useful route is fst postulate the ther-

mal noisegix andafterwardscompute the dissipative matrix
M through the fluctuation-dissipation theorem:

With this particular form of the matrix\;; we can write the
vectorA;; in Eq. (23) as

1
dj E M=——0. (34)
2kgdt
The term in brackets can be understood as the reversible part
of the stress tensor of particjgi.e., This procedure ensures thist defined through Eq(34) is
automatically symmetric and positive semidefinite. We pos-
II;=P;1+ djEﬁ: FFQL. (32)  tulate the following form for the thermal noisedx

={0,dv; ,dE; ,dQ"}. Note that we do not assume any ther-
This stress tensor includes an isotropic component given binal noise for the position of the fluid particles, as we want to
pressure in Eq(16) and a nondiagonal part. Substitution of respect the equation of motidmz v;. In Ref.[4] we have
(12) and(32) into Egs.(24) leads to the finateversiblepart  giscussed how to introduce the thermal noises,dE; in
of the dynamics for the viscoelastic model: order to recover a matri¥l which produces an irreversible
part of the dynamics that can be understood as a smoothed

Filrev=Vi particle hydrodynamics discretization of the irreversible
terms of the Navier-Stokes equations. We only have to pos-
mVi|rev: 2 E+ 5 W tulate now the noise termﬁj{’. We discuss in Appendix D
i di2 dj2 . that a reasonable assumption for the stochastic forc@'ois
given by
. I1;
Eilrev=— d—z'E i Vij » 5 ke T 1/2
] dQ?z(46wna du,,, (35)
o Q"
Qi |re"_d_i ' 2 @iV - (33 wheredU,, is an independent increment of the Wiener pro-

. . cess, satisfying
These equation&33) conserve total energidue to the anti-
symmetry ofL) and leave the entropy unchangelde to the _
degeneracy ¢S/9x=0). They also conserve total momen- dU“idU'Bj_gaiﬁjldt' (36)
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We recognize in the prefactor of E(B5) the diffusion coef- W' (1))
ficient of the beads of radiws given by the Stokes-Einstein Fij=———— (4)
relation. We will assume that the noid€ are statistically !
independent ofiv; ,dE; . Note that concerning the irreversible part of the dynamics,
According to Eq.(34), the matrixM —M; is given by the solvent and dumbbells are completely uncoupled and,
therefore, the solvent irreversible dynamics is identical to
0 0 0 0 that in Ref.[4].
~ ~1 -~ By collecting the reversible part of the dynamics, Egs.
0 dv;dy; dv;dE; 0 (33), and the irreversible part of the dynamics, E@), we
2kgdt 2kgdt obtain the following set ofdeterministicequations, corre-

- o~ - o~ sponding to Eq(Al):
dEdv] dEdE; P J alAL)

0 ] 0
kgdt 2kgdt
= =B I’,=Vi,
2kgdt

I, I

22
& d

S {
The central diagonal block has been computed in IR&f.
and we have to compute only the last diagonal element,

2 wijVij +

57] Fi'
] Wi~ 5 2 rcij[Viij(enj Vij)e;],

F
3 2 g Vit vice)’]
dQrdQf 2T

St = ¢ Oasdil (39)

IJ
— 2K2 TIJ ,
Now we are in position to write the deterministic irreversible

part of the dynamic§|irr= M - S/ 9x which, after use of Eq.

(12) for the derivative of the entropy, becomes - Qf 2

This set of equations have the very appealing features of
conserving energy and total momentuR+X=;mv;, and

Zk QP /d2T

Vi 0 leading to a positive production of entro¢x)=0.
E. :Ej: Mij i ' (39 The evolution ofr;, v;, andE; is identical to that of a
! T; simple fluid without dumbbells, as given in Réf], except
e . EB8 for the additional dumbbell contribution to the stress tensor
T—' in Eq. (32). Apart from that, we recognize in these equations

j the different physical processes involved. In the momentum
equation, viscous forces proportional to the viscosity try to

By collecting the results of Refd] (once we neglect, for  oq,ce velocity differences between fluid particles. In’the

simplicity, the bulk viscosity for the diagonal blocks oM;;  gnergy equation, a viscous heating term proportional to the
together with Eq(38) we obtain the following irreversible  ghear viscosity describes how the kinetic energy which is
part of the dynamics: dissipated by the friction forces leads to an increase of inter-
, nal energy of the particles. Also in this energy equation, the
rilin=0, heat conduction term, with overall magnitude given by the

thermal conductivity of the solvent, tries to reduce tempera-
: 7 ij ture differences between fluid particles.
MV, i = — 3 2 ﬁ[viﬁ(qi “Vi))&;jl, Finally, the last set of equations governs the dynamics
. of the elongation of every single dumbbell in the solution.
_ 159 Let us discuss in detail this set of equations for the simplest
Ei|ir,=§?2 dad [V|,+(Vu &;)%]— ZKE Fi T.J, case of Hookean dumbbells. For Hookean dumbbEfis
] i =—HQ, whereH is the spring constant, and the last irre-
versible term describes an exponential decay governed by a
Oy == Fe (40) time scale given by//2H. Given an initial elongation of
P e every dumbbell in each fluid particle, this terms relaxes it
towards a zero elongation. The advective term cannot do
where 7 is the shear viscosity of the solvent ardhe ther-  anything against this relaxation and, actuaf;=0 is the
mal conductivity. The geometrical factés; is given by final solution of the equations for the dumbbell elongation.
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Apparently, we have derived a model in which the dumbbells i 157 Fi
just relax towards zero elongations, the dumbbell contribu-dE;= — —22 wjjV;dt+ 33 4 d—é_[vﬁﬂw,— -qj)z]dt
tion to the stress tensor vanish, and we are back to the model di i I
for a Newtonian fluid. E..
Of course, an essential element is lacking in the above set —2k, ﬁTijdt,
of equations, which is the presence of thermal fluctuations. I
Thermal fluctuations are the crucial bit that make the model o
sound and useful for_ the simulation of polymer soluti_ons. dQ-“zQ—i-E wi~vi-dt—2—HQ-“dt+d("j‘“. (43)
The way to proceed is to formulate tiENERIC stochastic bod ¢ '
differential equations as shown in Appendix A. This has been . )
done for the Newtonian model in Rdf4] and leads to a Of course, du_e to the co_upllng between equa.tlons, the full ;et
proper thermodynamic version of the original dissipativeOf equations is stochastic even though there is only one noise

particle dynamics model. A particularly interesting feature ofsourcedQ[" - It may appear odd that having neglected ther-
this version of DPD is that thermal fluctuations depend onmal fluctuations in the momentum and energy equations, the
the size of the fluid particles, in accordance with usual con€quations for these variables still retain a stochastic charac-
cepts of equilibrium statistical mechanics. Therefore, forter. However, we should remark that what we have neglected
large enough fluid particles, the thermal fluctuations in thef® Spontaneous thermal fluctuations as they appear in the
momentum and energy equation can be neglected. Of coursedndau-Lifshitz theory of fluctuating hydrodynamics. Its
this is consistent with the fact that in order to simulate aPhySical origin is the random interchange of solvent mol-

basket ball in a swimming pool we do not introduce thermaleCUIeS between fluid particles, and these fluctuations are
fluctuations in the description whereas if we want to simulateSmall as compared with the total amount of momentum or

: . . . . . energy in the fluid particle. However, the fluctuations in the
a micron sized colloidal particle we will necessarily need to

. : : . Qf‘ variables have aindirect effect on the momentum and
introduce thermal fluctuations. The essential physical reaso . : X
nergy variables through the coupling via the stress tensor.

Iﬁr tHeO?Epin?encfhoi ttue thermaltfluctuact;ons on the S'Zf he importance of this indirect coupling depends, of course,
€ fluid particie IS that the momentum and energy are exteng, e concentration of polymer molecules and the strength

sive quantities. _ _ _of the springs, and can make a crucial contribution to the
Whereas thermal fluctuations can be neglected in the f'n%ynamic behavior of the fluid.

stochastic equations for the momentum and energy, they can-
not be neglected at all for the dynamics of the dumbbell
elongation. The dumbbell elongation is not an extensive vari-
able, it is rather a mesoscopic variable for which the fluctua- The model governed by Eqet3) describes the dynamics
tions are an important component of its full dynamics. Theof every single dumbbell in the system. This approach is a
effect of the thermal fluctuations in the dynamics of the elon-similar to CONNFFESSIT[16,17], where a stochastic simula-
gation variable is quite dramatic. Although the dumbbelistion of the dumbbells is coupled with a numerical solution of
want to relax towards zero elongation, the thermal noiséhe fluid flows. Of course, having to keep track of the evo-
guarantees a permanent kickoff of this state of zero elongdution of every single dumbbell in each fluid particle is an
tion. This slight deviation from zero is sufficient for the con- €xpensive task. Note that, according to the last equation in
vective term in the elongation equation in E42) to “drag’” Eq. (43, all j[he dumbbells of a given fluid partl'cle will d.|s-'
the ends of the dumbbell apart. In a steady shear flow, foplay essentially th_e same behavior, at least in a stat|stlc_al
example, the system will reach a stationary situation whereSense. The dynamics of different dumbbells of the same fluid

although the elongation of each dumbbell is zero on averag@,artide differs only by the initial conditions and the aptual
the resulting distribution is not isotropic, leading to a non->°44ence of random numbers used for the stochastic term.

zero contribution to the stress tengsee Sec. VI Fpr Fhis reasor, we C.OUId focus on a given tagged dumbbell
The final set of stochastic equations in this model areW'thln each flw_d partl_cle and assume that the re_st of dumb-
therefore bells of th_a_t fluid particle “are doing the same thing.”

' In addition, the model presented above has a constant
number of dumbbells in every fluid particle. This does not
seem to be a very reasonable assumption. After all, if the

dr;=vidt, beads of each dumbbell are subject to thermal fluctuations,
then the center of mass of the dumbbell will suffer also from
thermal fluctuations, leading to a diffusion of the center of
mass of the dumbbells within the region of a fluid particle
until they cross the fluid particle’s “boundary.” This, even-

- w;;dt tually, should lead to an interchange of dumbbells between
fluid particles. The model in Eq$43) does not allow for a
change in time of the number of dumbbells in a fluid particle.

_ 5_7’ 2 i[ L+ (e -vi)e ]dt In order to encompass the possibility of describing poly-

3 d oA mer diffusion and, at the same time, reduce the number of

VI. POLYMER DIFFUSIVITY

I 1
d?  d?

dei:E

i
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variables to simulate, we present in this section a new moddbue to the dilute assumption, we expect that the variation of
that differs from the one presented in the previous sections ithe number of dumbbells does not affect appreciably the
the variables used to describe the state of the system. Nowjassm of the fluid particle, which is still assumed to be
each fluid particle will be characterized by its positignits  constant. However, it might strongly affect the elastic prop-
velocity v;, its internal energyE;, a uniquevectorQ; de- erties of the fluid particle and for this reason we retdfhas
scribing the elongation of a statistical representative of they variable.

dumbbells, and the number of dumbbeﬂl% within the fluid Concerning the dynamics of the new variables, we basi-
particle. By selecting a single elongation vector for everycally construct a system @fENERIC equations by proposing
fluid particle we return to a version of the ten Bosch model| gngM matrices. As far as the reversible part of the dynam-

which, in turn, is analogous to a Lagrangian version of th§.s is concerned we choose the followihgmatrix, to be
Brownian configuration field approadl24]. The Brownian compared with Eq(21):

configuration field approach is similar to tliNNFFESSIT

approach except that only one suitably correlated elongation

variable is kept for each fluid element. The connection be-

tween both approaches has been elucidated in &1 0 15, 0 0 0
where it is shown that the Brownian configuration field ap-
proach can be understood as a variance reduction version of 1 — 19 0 4 Ajj 0
the CONNFFESSITapproach. Lij=— 0 —4j 0 0 0

Let us proceed to formulate the equations of motion for m 0 AT 0 0 0
this new set of variables by following theENERIC strategy I
again. The total energi(x) of the system in the new vari- 0 0 0 0 0
ables is still given by Eq(8) and the total entrop(x) has (47)

the same form as in Eq9), but now the entropy of a fluid

particle is not given by Eqgé4) but rather it is postulated to

be
This matrix ensures tha{"|..,=0, that is, the reversible part
of the dynamics does not change the number of dumbbells in
each fluid particle. The dumbbells are simply transported by
the reversible dynamics. From the argument in Appendix C

(44) concerning the advection of a vector, tig; element is
given by

NVYQ)

S(E,Q)=S%E)— TE +kgNA(L+Inn\g).

Despite of its similar notation, the fluid particle entropy pos-
tulated in Eqg.(44) depends on the energy,single variable
Q, and the number of dumbbelN® whereas the fluid par- Q
ticle entropy(4) depends on the energy and tNé elonga- Aij=— E'Qijla (48)
tion variables of each dumbbell in the fluid particle. !
The derivatives of the energy and entropy with respect to

the new variables are
and the degeneracy conditiw®S/9x=0 now leads to

p
> Qo
<R
0 0 1
A= 10, (49
my; 1 de
E_| s il 45 !
0 Fi
0 T_J where the stress tensor of partiglaow takes the form
M
T

where we have introduced the chemical potential through

pt 9S V4(Q)

T —d=kBIn(nd)\3)+ (46)  to be compared with E¢(32).
oN

T For the irreversible matrisM we now select
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0 0 0 0 0
0 dvidv] dv,dE; 0 0
2kgdt Pkgdt
- -
, dEdv  dEdE o 0
2kgdt 2kgdt
B B o ) (51)
0 0 0 dQidQ;
2kgdt
Rid R
0 0 0 0 dNTdN;
Pkgdt
|
where we have introduced a noise tedN’, which is sta- We have thus completed the formulation of this new

model. The equations are simply Edd4.3) with only one
elongation variable per fluid particle, the stress tensor given
y Eq. (50), coupled to the diffusion equation

tistically independent oflv;, dE;, anddQ;. In the discus-
sion in Appendix D we see that the mechanism by which th
center of mass of the dumbbells diffuses is essentially th

same as the mechanism by which the elonga@gnof the E 9 vy 4 g
dumbbells change, that is, the diffusion of each bead of the  dNJ= -] [L —(Tinid+T,-n}’) = —'}dt.
dumbbells. In that respect, one would expect certain correla- T Ldidj ¢ T T

tion between the process by which the number of dumbbells (55)

in a region of the fluid changes and the process of change of . .

Q. However, note that the elementary process by WINEh Th!sd equation consgrves the total number of dgmbbells
changes is the diffusion of the center of mass for thosesiNi =0. The evolution of the number of dumbbells in each

dumbbells that are in the boundary between two fluid parfluid particle is governed by the unbalance of dumbbell

ticles. The diffusion of these small numbers of particles neafhemical potentials between neighboring fluid particles that
the boundary should not affect strongly the stochastic chang#ill produce an exchange of dumbbells between fluid par-
of Q; and, for this reason, we assumiB? to be uncorrelated ticles. This equation couples with the momentum and energy

. ~ . ~da . . equations through the stress tensor. Note that the vaanbIe
with dQ;, i.e., d.NidQJ'_O’ leading to the block diagonal is extensive and we do not consider additional stochastic
form of the matrixM.

. . forces in Eq.(55) that are assumed to be negligible. In this
Now, concerning the stochastic changes of the number n Eq.59 n gig! !

dumbbell identify the ol hasti b ay, we are assuming that even though the suspension is
umbbells, we identify the elementary stochastic process by e " every fluid particle contains a sufficiently large num-
which this number changes the random interchange of dumbg

bells b fluid icles d he diffusi fth er of dumbbells for the fluctuations on the number of dumb-
ells between fluid particles due to the dilfusive nature of thg, 5 15 pe negligible. It is of course possible to validate this

centﬁr of mass of the (illumhbbells W'th'nha ﬂuf'dh part'CleaTh_eassumption by explicitly including the thermal noise and to
mechanism Is essentially the same as that of heat conductiQuqeqs its effect. For the sake of simplicity, we neglect in this

as considered in Ref4] and we postulate the matrix term  oner the stochastic forces on the number of dumbbells.
dNddN¢ 1
I~ |5 2_p2
2kgdt sz[ﬁ”;; DDy

(52 VII. SIMULATION RESULTS

In this section, we present simulation results in order to
whereD;;=Dj; . The irreversible evolution of the number of check and validate the present model. As a first step, we will
dumbbells will be, therefore, assume that the number of dumbbells within each fluid par-

) ticle is a constant equal tdd, thus neglecting dumbbell
N = - & diffusion between fluid particles. We will also assume that
L T 2kg the thermal conductivity is very large in such a way that the
temperature is already equilibrated to the sagen all the
After the discussion in Appendix E, we find that a reasonabldluid particles. A Hookean dumbbell spring will be assumed
functional form for the coefficient®;; is simply in this paper. Although the model permits to study more gen-
eral situations, the isothermal and constant dumbbell density
case allows for a comparison with analytically known pre-
dictions for Hookean dumbbells.
The simulated isothermal equations are

d d
Mi M
T T (53

112
(54)

Fij 2 d d
Dij :|:de Z(Tini +T]nj

In this way, Eq.(53) becomes a smoothed particle hydrody-
namics discretization of an advection-diffusion equation. dr;=v;dt,
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m with
dpi:_Pi; ;Vij'wijdt- _ B
: dQ;=C,dU;,
I, 1L N _
md\/lzz d_l+—2J (1)|Jdt HI:(PIS+C3)1_C4QIQI!
! i
PP=Csp; . (60)

575 <« Fij
3 2 didj[ i+ (8)viy)ey] Five nondimensional constants appear in E§8) and (60):

Qi 2H ~ 575 ksTo
4O =<1 wividt- 2 Qdt+dd,, (56 S RS b 11}
Qi d; ; Wij Vij 3 Qi Qi (56) C; 3polovo C, HL(Z) (61)
with Nkg T, NIH c,To
S d d 3: 5, 3’ C4: 3 ) C5: 2 (62)
ITj= (P +kgTong) 1-HNyQ;Q; (57 PoVoly POV oM H Uo

wherep;=md is the solvent mass density an§=N%Vis  The reference density iso=msNYLg. Herem, represents
the constant dumbbells number density. Note that we solvéhe mass of a single-solvent molecule aitithe total num-
explicitly the equation for the density, which is easily ob- ber of solvent molecules contained in the box. Note that we
tained from definition(1). We evolve the density rather than have the usual dimensions for density, pressure, viscosity,
computing it from definition(1) because we foresee future etc., corresponding to three-dimensioit@D) systems. On
applications where the presence of walls makes the evaluhe other hand, we are performing 2D simulations, under the
tion of the density througkd) less accurate near the wi#].  assumption of translationally invariant behavior in thei-

We select an ideal gas equation of state for the solvent pregection.

sure PP= cppiTo, Wherec, is the specific heat at constant

pressure. For the weight function, we have chosen the Lucy A. Theoretical results for Hookean dumbbells

function Analytical results for an isothermal Couette flow for

Hookean dumbbells are available in the literat[26], and
give exact prescriptions for the dependence of the material
. : . . functions and the stretching of the dumbbgIB?) as a func-
_ 2 _ 3
wherecy =5/ in two dimensions and,y=105/16nr in tion of the shear rate in a steady shear flow. Let us assume a

three dimensions. . . . : 2D steady shear flow. The Cartesian components of the ve-
In order to make the previous equations dlmen3|onlessiocity field are by definition

we consider the following basic units: unit of maag (mass
of a solvent molecule unit of lengthL, (box dimension
unit of time A= &/4H (viscoelastic decay time for Hookean

dumbbell model unit of temperaturd,. We define a refer- wherey=dv,/dy is the shear rate. Let us consider now only

ence velocity in terms of the primary variables 8§  the polymeric contribution to the pressure tensor. It can be
=Lo/Ny. By using these units, we can make the aboveyitien in tensorial notation as

equations dimensionlegsariables with an overline are di-

W(r)=cu(1+3r/re)(1—r/ry)3, (58)

U=y, vy=0, (63)

mensionless The= ks Ton§das—HNGQ,LQp, (64)
dr_izvia, where the greek indices indicate the spatial coordinates. For
Hookean dumbbells, it can be shown that the stress compo-
L M nents and material functions in the final steady-state configu-
dp; = —Piz =v;;- wy;dt, ration are[26]
P :
o o Tf()y: - nngTo)\H Y, (65)
=S I, 1| — ot )
vz m ;2—i+ 7 -w;jdt ™ — 0= 2ngks ToA g ¥2. (66)
E. - From Eqs.(65) and(66), we obtain the polymer contribution
-C.> _mi[vij + (g 7” )&;1dt, to the shear viscosity,, and the first normal stress difference
I pip; v,
_ O I P
dQ|:p_IE mwijVijdt_ EQldt—’_dQl , (59) 77p:_$/:nngT0)\H ) (67)
i J
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PP fects. Indeed, foN®=0 we recover the Newtonian fluid dy-
\Iflzyy.—ZXX=2nngTo)\a_ (68) namics. The value oY is determined accordingly with all
Y the other parameters in order to obtain a suitable polymeric

) ) ) viscosity consistent with Eq(67). Here we assumed\®
In this Hookean model, all material functions are constant— 18, Wjth these parameters and by using formulé®—
independent of the shear rate. It is also found that the globgksg) e obtain the polymeric contribution to the viscosity

dumbbell stretching takes the for(@D) 7p=4.142<10"* kgm ! s™* and the first normal stress co-
) efficient ¥,=8.284<10 °kgm™?! in SI units. Therefore,
(Q% —1+(\ 5/)2 (69) in our numerical framework, their dimensionless values are
(Q%y nr 7p=4.142<10"% and ¥,=8.284x10 3. As already no-

ticed, these viscometric functions for a Hookean spring
This shows that the Hookean dumbbells continue to stretcimodel should be independent of the shear rate. The spring
indefinitely as the shear rate is increased. This characteristizonstantd can be determined using the the Stokes-Einstein
of the dynamics based on the Hookean model is inadequatelation, so thaH =6mn.a/4\, wherea is the radius of a
for the description of realistic polymeric solutions. In fact, it bead and\y the reference time. Here we chose=4.0
is well known that the viscosity and the first normal stressx 10 1° m, which gives a value off=1.88x10 © kgs 2.
coefficient should decrease for increasing shear rate instead addition, the equilibrium value fo(rQ§q> in Eq. (69) (av-
of remaining constant. The failure of the model is related toeraged over all the box domaifor zero shear rate should be
the infinite extensibil_ity which is shown in Eq_69). Never-  equal to<Q§,eq>+<Q)2/,eq>:2C2:2kBTO/H L2=4.4x10"°
theless, although this model does not provide an accurat@ dimensionless units.
description of a polymeric solution, it allows for exact com-  |n the equation of statec, is chosen equal to
parisons with numerical results. More complex models suchig2 Jkg ! K=1. As the speed of sound is defined es

as the FENE(finitely extensible nonlinear elaslicspring  —./5p/9p= lc,To, we obtain a value equal to 372.3 m's

model can be easily taken into account. Its value in reduced units is 37.2, which is almost ten times
larger than the typical box velocity whose maximum value is
B. Setup of the numerical simulations 5 (corresponding to the highest shear rate simulajed

In order to produce a uniform stable shear flow, we apply=10). This choice ot prevents compressibility effects and
the well-known Lees-Edwards boundary conditiof]. retains the divergence-free velocity conditions according to
The periodic image criterion is applied in both spatial direc-Monaghan28.
tions in order to simulate an infinite periodic medium. In  The cutoff radiug ¢ for the “smoothed particle” is chosen
addition, a shear is imposed along thaxis simply by mov- 0.08 in reduced units. From a computational point of view,
ing in opposite directions the periodic boxes at the top anguch a choice of . involves nearly 50 neighbors for each

the bottom of the central simulation box. Their respectiveSmoothed particle, which is a quite large but necessary num-
velocities are+vpo,= yLo, Where v is the desired shear ber for an accurate estimate of the viscometric functions.

rate. Particles crossing the edge at the top of the simulatio inally, the total numbeM of simulated fluid particle is

box are re-inserted at the bottom with the sanm@mponent >00.

of the velocityv, but with oppositev,. A linear stable ve- .

locity profile corresponding to Eq(63) is therefore pro- C. Numerical results

duced. In this section we present the results of a Couette shear

The numerical parameters of our simule}tions are: the refflow experiment. The polymeric viscosity,,, first normal
erence temperature, chosen to be the typical room temperatress coefficient';, and global stretchindQ?) are ex-
ture To=300 K, the reference tima;=1.0<x10""s, and tracted from seven different runs corresponding to different

the reference lengtho=1.0<10"° m, which corresponds to 4 es of the shear rate Finally, we compare the numerical
the length of the b?X' The reference velocity is therefore.oqits with the analytical ones coming from E€G5)—(69).
vo=Lo/Ay=10ms~. We choose a value foms corre- Given the homogeneous flow field developed by the
spon_d;(r;g to the mass of a water moleculns€2.98 5 nqary conditions, we evaluate the global quantities which
X10"**kg) and total number of solvent moleculd$® \ e are interested in by taking the average of their local val-

=3.35< 10", This gives a solvent densifyo=10° kgm > ;05 defined at the position of every fluid particle. For ex-
corresponding to typical values for water under standar%mme,

conditions.
There are other input parameters which influence the dy- 1M
namics. The solvent shear viscosipy=10"3kgm ! s 1. (Tap)= i 21 Tops (70)
=

The reference dumbbell number density is definedngs

=NYL2, whereN¢ is an arbitrary number corresponding to whereM is the number of the simulated SPH particles. In
the total number of dumbbells contained in the simulationFigs. 2 and 3 we plof7y,) and(r,,— 7y,), respectively, as
box. The viscoelastic behavior is due to the last term in thédunctions of the shear rate. The symbols correspond to the
stress tensor in Eq57). This term is proportional tti® and  results of the simulations while the solid lines are the theo-
controls the magnitude of the deviatoric non-Newtonian ef+etical previsions corresponding to E(q$5) and (66). As
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10~1 ¢ — — g 0.01 T
3 ° ° ° ° °
0.008 F* &
0.006 |- -
—(Tay) 7, ¥1
0.004 £ d < < < < q o
0.002 |- .
1074 b 0 T
01 1 10 0.1 1 10
v 5
FIG. 2. Steady-state off-diagonal component of the polymeric  F|G. 4. Dimensionless polymeric viscosity, (<I) and the first
dimensionless stress tensgy, as a function of shear ratg. Tri-  pormal stress coefficieny, (®) vs shear ratey. The numerical

prediction in Eq(65). The numerical errors are comparable to sym-from Eqs.(67) and (68) in solid lines.

bol size.

previous figure because of its smallness compared with the
prescribed, their values increase respectively linearly angalues corresponding to higp. In the next figure the tem-
quadratically withy. Thex andy-scale are both logarithmic poral evolution of(Q?) for a shear flow withy=0.156 is
and cover a range qffrom about 0.1 to 10 in reduced units. shown. The agreement with the theoretical prevision for

As already pointed out, the components of the ponmerlc(Qeq> is clearly visible in Fig. 6.
stress should increase with the shear rate in such a way that Finally, in Fig. 7 we present snapshots of tQevector
the viscosity and the first normal stress coefficient remairtonfiguration at different times and for a fixed shear r'jate
constant as prescribed by Ed67) and (68). In Fig. 4 we =10, Thex andy axes represent, respectively g andQ,
plot 7, and ¥, and compare them with their theoretical components of the elongation of the dumbbell representanve
constant values. This shows that the agreement is also quagf every simulated fluid particle. The snapshots correspond
titatively good over all the range of simulated. It must be to timest = 0.1, 0.3, 0.6, 1.0, 2.0, and 4.0. As expected, we
pointed out that no fit parameters have been used. observe the stretching €, component while in thg direc-
Equation (69) shows that the dumbbells continue to tion the configuration tends to that of equilibrium at zero

stretch as the shear is increased. This is a particular properghear rate. We notice also that at every time the stretching in
of the Hookean dumbbell model. In Fig. 5 we plot the globalthe x direction increases, but always preserving the symme-
molecular stretchingQ?). Even in the global stretching we try of the particle distribution around the origin in th@
achieved a very good quantitative agreement with the angplane, that is, on average over all the box the components of
lytical results. In addition, also the exact output equilibriumthe Q vector are zero.
value for the average square elongation vector is recovered
in the limiting case of small shear rate. In this regime a VIIl. CONCLUSIONS
limiting value is obtained corresponding to the equilibrium

(zero shear rajestretching. This cannot be observed in the NSPired by a dissipative particle dynamics model formu-

lated by ten Boschil5], we have proposed a fluid particle

1072
1071
1072 | 107°
(Tyy = Taa)
1073 | (@)
L 10—4
107% ¢
105 e I
0.1 1 10 10-5 e e
Y 0.1 1 10
FIG. 3. Difference between the steady-state diagonal compo- i
nents of the polymeric dimensionless stress tengor 7, as a FIG. 5. Steady-state molecular dimensionless stretof@fy vs
function of shear ratey. Bullets are the simulation results and the shear rate. Triangles are the simulation results and the solid line is
solid line is the theoretical prediction in E(66). the theoretical prediction in E¢69).
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5% 107° . . | tions has been presented in Rgf9], which makes use of a
P e conformation tensor for describing the microstructure of the
4% 1075 I - melt. The continuum equations for polymer melts in Ref.
[29] could also be discretized in terms of fluid particles with
3% 105 a well-defined underlying physical picture that respects the
(@2 laws of thermodynamics.
2% 10-5 F _ In this paper, we have presented numerical simulations for
isothermal homogeneous shear flow without polymer diffu-
sivity. For reasons of simplicity, we have modeled the poly-
mer molecules with Hookean dumbbells, although more re-
alistic models for polymer molecules can also be considered.
0 2 4 6 8 10 Finite extensibility and more complex bead-spring models
t [26] are easily implemented. The simulation results are pre-
) } ) liminary but, nevertheless, reproduce the known theoretical
FIG. 6. Molecular dlmgnsmnless stretching growth curve corre-predic»[ionS without fitting parameters. Of course, the poten-
sponding to a shear rate=0.156. It can be observed that the tjg| of the method lies in the possibility of exploring more
steady-state value G(QZ) fluctuates around the equilibrium value complex nonisothermal, nonhomogeneous, and non-
corresponding to zero shear rate. This shows that the agreemepiyokean situations.
with the theory is achieved quantitatively also in the small shear A final comment on the connection between our model
rate regime. and the Brownian Configuration fiel(BCF) method is in

model for the simulation of dilute polymeric solutions. Spe-°rder- In BCF, there is also only one elastic variable per
cial attention has been paid to the thermodynamic consisEulerian computational cell, and the goal is to reduce the

tency of the model by writing it within theENERIC frame- noise inherent in the method by using the same sequence of

work. Actually, several basic differences between the modef@ndom kicks for all the position over the domain. Then one

presented and that of ten Boskts] arise from the thermo- @S one realization of the vector fie@ (and consequently
dynamic consistency of our model. First, our model includeN€ realization of the polymeric pressure tensahich are
a fluid particle volume variable and, therefore, the conservaSOMPletely correlated over all the space. When the diver-
tive forces in the momentum equation are replaced by actu&lence of the stress tensor is evaluated in the momentum
pressure forces. As we have shown in Rél, the conserva- equf':\tlo'n, it is usually done by a two-point 'dlfference dis-
tive forces in the original classic DPD model are not Verycretlzatlon, and, because of the total correlation between ten-
physical and do not allow us to studybitrary equations of sor fields in d|fferen_t pomts,_the noise is dramatically re-
state. Second, our model includes an internal energy variabfced. In the SPH discretization of the momentum equation,
and it allows us to study nonisothermal processes. Again, thid1® gradients are represented by a simorder to have an
can be regarded as an improvement over the classic Dp@Ntisymmetric force in the particle indeand not by a dif-
model. Finally, we have introduced the number of dumbbelld€"€nce. Therefore, our method is intrinsically noisy and the
as an additional variable, which allows us to study diffusiven0iS€ level cannot be reduced by the trick in BGFF we
processes of dumbbells which are absent in the ten Bosciould lose exact momentum conservalidn order to study
model. nonhomogeneous flows, the two options are either to use a
From a more technical point of view, we observe that our@'9e number of dumbbells per fluid particle as in tenN-
model has a smaller number of parameters and functiong ESSIT @pproach or to use a sufficiently large number of
than the ten Bosch model. For example, the antisymmetry dfuid particles in such a way that we can perform spatial
L forces thea and 8 parameters of the ten Bosch model to averages over many particles underly!ng the same shear flow.
be exactly the same. Also, the solvent parameters are tH40re Work deserves to be done in this respect.
physical transport coefficients, which are directly given as an

107 7

input. There is no need to perform a kinetic theory of the ACKNOWLEDGMENTS
model in order to obtain the transport coefficients in terms of i e
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Our approach also puts the ten Bosch model in a Conceﬁremely valuable_ discussions about this work. This researqh
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for dilute polymeric solutions. Semidilute solutions could
perhaps be treated by inclu_ding' exclud_ed volume effects of APPENDIX A: REVIEW OF GENERIC
the dumbbells and mean field interactions between dumb-
bells using similar ideas as those of van der Waals for simple In this appendix, we present a summary of thENERIC
fluids. Polymer melts cannot be described by our model. Aramework[19]. The state of a system at a given level of
continuum theory for polymer melts in nonisothermal situa-description is described by a set of variables that form a
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0.05 - 0.05 |- - FIG. 7. The dimensionless

elongation of the dumbbell repre-
N sentative of every fluid particle in
Qy Of » - Qy Of M - a start up of the shear flow at
T times t=0.1, 0.3, 0.6, 1.0, 2.0,
and 4.0. Initially the dumbbells

-0.05 - ] -0.05 - ] distribute isotropically, but as time
proceeds the distribution becomes
0.1 1 I I 0.1 1 I I more and more anisotropic.
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vectorx. The energy and the entropy are two of the basicand positive semidefinite. Most important, the followideg-
building blocks of thesENERICformalism and they should be generacyconditions should hold:

expressed as functions of the state variables at the given level

of description. TheGENERIC dynamic equations are then S

given by ox 0,

(9E_0 A2
=0, (A2

These properties ensure that the energy is a dynamical in-
(A1) variant,E=0, and that the entropy is a nondecreasing func-

tion of time, S=0, as can be proved by a simple application
of the chain rule and the equations of motighl). In the
The first term on the right-hand side is called the reversiblease that other dynamical invariah{x) exist in the system
part of the dynamics and the second term is called the irredfor example, linear or angular momentynthen further
versible part. The predictive power GENERIC relies in the — conditions must be satisfied hyandM. In particular,

fact that very strong requirements exist on the matriced

leaving relatively small room for the physical input about the ﬂ ﬁ _ ﬂM iS:
system. FirstL is antisymmetric wherea®l is symmetric X ax T axX X

dx_LaE+M&S
dt —ox | ox’

0, (A3)
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which ensure that=0. N p2 2N¢ 2

The deterministic equatiori&\1) are, actually, an approxi- E +V5(r +Vv39r,R,Q)+VYQ).
mation in which thermal fluctuations are neglected. If ther-
mal fluctuations are not neglected, the dynamics is described (B1)
by the following stochastic differential equatiof®3]:

Here we have introduced the potential energy of the solvent
moleculesV3(r), which depends only on the coordinates of
the solvent molecules, the potential energy of interaction be-
tween solvent and bead¢3%(r,R,Q) of the dumbbells, and
finally, the potential energy of interaction of the dumbbells,
VY(R,Q). In order to be able to obtain analytical expres-
sions, we will assume that the suspension is dilute in such a
vay that the potential energy of interaction between solvent
and dumbbells can be neglected in front of the solvent po-

dx= LaE+MaS+k J M |dt+ dx A4
x=|L— EVRl ™ X, (Ad)

to be compared with the deterministic equatidAd). The

deterministic additional term involving the Boltzmann con-

stantkg appears due to the stochastic interpretation of th
i hich is tak he i ion. Th -

equation which is taken to be the lioterpretation. The sto tential energy, that isy>%(r.R,Q) = 0. Also, we will assume

chastic termdx in Eq. (A4) is a linear combination of inde- 4 the interaction between different dumbbells is negligible
pendent mcrt_ameFts of the Wiener process. It satisfies thg,q therefore, the potential energy of the dumbbells does not
mnemotechnical ftoule depend on the center of mass variables, i¥!(R,Q)
=VvY(Q).
dxdx"=2kgMdt, (A5) The entropy, defined as the logarithm of the number of
microstates compatible with a given macrost&eQ is

. . o given by the classic Boltzmann definition
which means thatlx is an infinitesimal of order 1/230].

Equation (A5) is a compact and formal statement of the

fluctuation-dissipation theorem. S(E,Q)=kBInf dzo(H(z)-E)é(Q(2)—-Q). (B2
In order to guarantee that the total energy and dynamical

invariants do not change in time, a strong requirement on th§he measuredz is given by the product of solvent and

form of dx holds: dumbbell measures
s s d d d
9E _ al - _dVpd“r  d®MPdVQdV'R
gdx 0, —.dx=0, (AB) dz= OV poeNNd (B3)

Here, kg is the Boltzmann constant ardis the Planck con-
stant. The factorialdN®! and N9 come from the quantum
indistinguishability of the molecules and dumbbells. Note
that the entropyS(E,Q) depends implicitly oriN$, N9, and
V, where the volumeé/ appears because the integrals over
coordinate variables are defined over the physical volume.
Under the dilute assumption, it is possible to perform ex-
plicitly the integrals over the center of mass variables. In this
case, the integrand of E€B2) does not depend on the center
APPENDIX B: MICROSCOPIC CALCULATION OF THE of mass variable and each integral over the center of mass
ENTROPY OF A DUMBBELL SOLUTION vector produces just a volume factdr We can also perform

the integral over the elongation variables in théunctions
In this appendix we compute the entropy of a thermody-n Eq. (B2), with the result

namic system composed of a set\dfsolvent molecules and

N? dumbbells. We understand this system as the portion of v o g2Np dV°pdNr

fluid that constitutes a fluid particle. The dumbbells are a  S(E,Q)=KkgIn—- 3 f f NS

highly simplified model of a real polymer molecule. The N h= N>
purpose of this calculation is to provide specific analytical oNnd P2
expressions for the entropy which may have some resem- s e vdn N
blance with the actual entropy of a dilute polymer system. X5< HA(rp) = E=VA(Q) 2 2my )
We denote by the set of microscopic degrees of freedom of
the system, which are, p; for the position and momentum
of the solvent molecules};, Q; for the center of mass and
relative position of the dumbbells, ari®] for the bead mo-
mentum. We will denote schematicallyr={r;,i NS o

=1...N} R={R,i=1,...N% and Q={Q H P =S o 4 vs(r). (B5)
=1, ... N9. The Hamiltonian is given by T 2mg

implying the last equations in Eq6A2) and (A3). The geo-
metrical meaning of Eq(A6) is clear. The random kicks
produced bydx on the statex are orthogonal to the gradients
of E andl. These gradients are perpendicular vectstsctly
speaking they are if one fonmo the hypersurfacdz(x)
=Egq,l(X)=1,. Therefore, the kicks let the statealways
within the hypersurface of dynamical invariants.

hDZNd

(B4)

where the solvent Hamiltonian is

041504-15



ELLERO, ESPANDL, AND FLEKKQY

PHYSICAL REVIEW E 68, 041504 (2003

If we introduce the solvent entropy through the usual defini- N 1 2N9p
tion S(E,Q)IkB|nﬁ6X4k—BSS(5)] W{
NS NS
pd™r 2Nd p2
Ssgzklnf —S5H3r £ B6 1
(&=keln | e dHTPI=),  (BO) Xexp{ oS o ) o1
we can write Eq(B4) in the following way. where we have introduce®(€) = 1/kgT3(€). The Gaussian
oNd integral is now trivially performed and we obtain
S(E,Q)=ksln—f —Sond
N S(E,Q)=S(E—V(Q))+k In VY (2mmy) T (L
2nd p2 ° h?gs NS/
xexp - ss E-V4Q)— E — . (B12)
(B7) Of course, within the same approximation of neglecting

This equation is exact as far as the dilute assumption hold
Of course, we would like to have a more manageable expres-
sion not involving an integral over dumbbell momenta. For
this reason, we will expand the solvent entropy in the fol-

lowing way:

2Nd o 2Nd o
P: 1 P:
S| E-2 | =56 —
( Z 2m ) () TS(&) 2my
2Nd 2 )\ 2
p:
p

1
_|._
2C3(8)

2my

(B8)

where£=E—VY(Q) and we have introduced the usual ther- wheren=

terms that scale as the inverse of the number of solvent mol-

gcules we can also write
d
“[ 27rmy| " 1
h2pe +0 E‘ .

(B13)

SY(E)— V@ +kBIn

E,
S(E,Q)= TE)

The last term corresponding to the integration over the
center of mass of the dumbbells has the form of an ideal gas
contribution. By using Stirling’s approximation (M
~NInN—N), this ideal gas term has the usual form

Nd

—nNd dy D
|HW—N (1+Inn\g),

(B14)

N9V is the dumbbell density and we have intro-

modynamic derivatives of the entropy with respect to theduced the thermal wavelength of the beads by

energy, that is, the temperatufé and the heat capacity at
constant volumeEy, . Note that the solvent entropy is a first-

order function of its variables, that is,

S(E,NS,V)=N°®s(e,n), (B9)
where e=&/N° is the energy per unit molecule ana
=N%/V is the number density. EquatioiB9) implies the
following scaling on the number of solvent moleculd$ of
the derivatives of the solvent entropy appearing in @BJ):

55(5 N®)=sW(e,n),

TS(&) T 9E
1 92 1
— S( NS)__S(Z)(e n)
CY(&) ge? NS
&M
S SENI= s™(e,n), (B10)

where the superscrip¥l denotes theMth derivative with
respect toe of the solvent entropy per molecuk(e,n).
Given the scaling in EqB10), Eq. (B7) becomes

h2 1/2
xd=(—) , (B15)
2 mmgksTS(E)

and our final result is

1
ViQ +kgNU(1+Inn\D)+0[ —
TS(E) NS

S(E,Q)= SS(E)—

(B16)

APPENDIX C: ADVECTION OF A VECTOR

We present here an heuristic argument in order to moti-
vate Eq.(25). Consider two neighboring points,r, in a
velocity field v(r). After a small timer, these points have
moved to positions;,r; which are given by

ri=ri+ro(ry)
r,=ro+7u(ry). (C1

If we consider the vectorAr=r,—r,; andAr'=r5,—r; we
have

Ar'=Ar+71((ry)—v(ry)). (C2
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By expanding the velocity field(r,) aroundr; we obtain center of mass diffuses withalf the diffusion coefficient of
each bead. We also need to compute
Ar'=Ar+7Ar-Vu(ry). (C3
Therefore, dQ-dQ=4Dydt. (D5)
This means that the average dumbbell elongaois sub-
=Ar-Vo(ry), (C4) j2ect to a random walk with a diffusion coefficient given by

Ar'—Ar
Ar=——

which provides the time rate of change in a Lagrangianyppenpix E: SMOOTHED PARTICLE DISCRETIZATION
frame of a small vectoAr as it moves anchored with the OF THE ADVECTION-DIFFUSION EQUATION

flow.
Consider the advection-diffusion equation for the concen-

APPENDIX D: DIFFUSION OF DUMBBELLS tration of a passive density(r,t) in a velocity fieldv(r,t),

Consider a dumbbell diffusing in a fluid at constant tem- an Tn_nu
perature. We understand that this fluid is that portion of the ot —V.nv+v. ?V?’ (ED)
fluid which is contained in a fluid particle with respect to the
reference frame of the fluid particle and with the temperaturavhere w= u(n(r,t)) is the chemical potential field and
corresponding to that fluid particle. For the sake of the dis=T(r) is the temperature field. For a very dilute system, one
cussion, though, we assume the fluid as infinite and at restan use the ideal gas form for the chemical potekgdlinn.
We assume that each bead of the dumbbell is describing & we further assume an isothermal system, the above equa-
diffusive overdamped motion governed by the following sto-tion becomes

chastic equations

Jn
—_—— . 2
drl_F(rl_r2)+(2D )1/2dW1 a7t V.-nv+DV-n, (EZ)
= 7 0 ,
¢ whereD =kgT/{ is the diffusion coefficient and=6mna is
F(r2—rl the friction coefficient of the beads of radiaswith the sol-
er:T +(2Dg)YdW?, (D1)  vent of shear viscosity.

We write Eqg.(E1) in the Lagrangian form by using the

wherer?,r2 are the positions of the first and second beads of'Sual substantial derivative
the microscopic dumbbelE(rt—r?) is the force that bead d

r? exerts onr®, and D, is the diffusion coefficient of the — = i+v-V, (E3)
beads, given by the Stokes-Einstein relatioB, dt dt
=kgT/6mna, wherea is the bead of radiua and 7 is the so we obtain
solvent shear viscosity. The vectorial independent increments
of the Wiener process satisfy dn Tn_u
—=-n(V-v\)+V.-—V—=, (E4)
dWedWA = 5*A1dt. (D2) dt ¢ T

which expresses the time rate of change of the concentration
field as we move with the flow field.

Our aim is to discretize EqE4) on the fluid particles
dWi+dw?2 following the smoothed particle hydrodynamics philosophy.
A discrete version of Eq.E4) would read

By changing to center of masR=(rl+r?)/2 and relative
coordinateQ=r!—r? variables, we have

dR=(2D,)*?

2 L
F(Q) ni=—nd(V-v)i+| v Tnv“) (ES)
n. = — n .V . «—_ e .
dQ:T+(2D0)1/2(dW1_dW2), i i i g T i
F(Q) Instead of working with the densitylid we prefer to work
=—+d0. (D3)  with N;=n;/d;, the actual number of suspended particles in
4 the fluid particle of volumed; *. This variable evolves ac-
In order to compute the diffusive motion of the center Ofcordlng to
mass of the dumbbells, we need :
RN SNy +1anv“) E6
dR-dR=Ddlt, (D4) T, di( Vi di\ "¢ T/ (E6)

which corresponds to a diffusion coefficielliy/2. The This equation is still a meaningless collection of symbols
physical meaning of this is that the dumbbell is subject tountil we specify how the derivatives in the parenthesis are
two friction forces (one for each beadand therefore the computed. The divergence of the velocity fieM (v); at the
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location of theith fluid particle can be computed from Eq.
(28). The final result can be written as

Vi d,
(V'V)i:§_—a- (E7)

The physical meaning of this equation is clear, the diver-
gence of the velocity field is associated to the relative rate of

change of the volume of the fluid particles, as expected. Af
ter substitution of Eq(E7) into Eq. (E6) one obtains

: (E8)

and we observe that if the dynamics is given by the

advection-diffusion equatio(El), then the rate of change of

the number of suspended particles as we follow the fluid is

entirely due to irreversible processgmverned by the trans-
port coefficient?). This is consistent with our requirement
that the reversible part of the dynamics ﬂisir is zero, as
expressed in Eqg33).

PHYSICAL REVIEW E 68, 041504 (2003

This equation is obtained from a partial integration and the
normalization of the weight functioldv(r).
Now, consider the following integral:

fdr[B(r')+B(r)][A(r')—A(r)]F(lr—r’D,
(E13

where A(r) and B(r) are arbitrary functions that change
slowly on the scale of the range &¥(r) and F(r). By
Taylor expandingA(r'),B(r’) aroundr, neglecting terms of
order higher than the second, and using E40) and(E12)

we obtain that the above integral is given by
V- [B(r)VA(r)], up to terms involving higher-order deriva-
tives. The next step in SPH is to discretize the integral on the
locations of the particles

fdr[B“i”B<f>1[A<ri>—A<r>]F<|r—ri|>

1
~2 g BI)+BINIAT) ~AMIF(r =T,
J

We still have to provide an expression for the derivatives

appearing in Eq(E8). We follow here the interpolant method
first proposed by Cleary and Monaghgsi]. As a prelimi-

nary, we introduce the isotropic functidf(r) through
VW(r)=—rF(r), (E9

which satisfies
J drr---rF(r)=0, (E10

if the number ofr’s is odd by isotropy. It also satisfies

f drrr F(r)=1, (E1)
as can be proved from
f drr VW(r)=—1. (E12

(E14

So finally, we obtain the following interpolant for computing
the second derivatives at a particle location, i.e.,

(V-[BINVANT}i=2 (E15

1
[
whereB;=B(r;), Ajj=A(r))—A(rj), andF;=F(|r;—r|).
With this result (E15 inserted into Eq.(E8), we can
readily obtain a discretized version of E@1) on the La-

grangian grid of moving fluid particles in the form

. 1 Tn o F” Tini T]nj)(/.L| /.LJ)

N=—|V.——ve| => i | Z0, T [ A

' di( £ Ty, ;djdi 4 ST T
(E16)

Note that this equation conserves the total number of sus-
pended particlesX;N;=0.
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