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Thermodynamically consistent fluid particle model for viscoelastic flows
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A recently proposed viscoelastic dissipative particle dynamics model is put into a thermodynamically con-
sistent form that allows for nonisothermal situations. This model consists of fluid particles that have an
additional elastic vector characterizing the state of elongation of the molecules within the fluid particle. Very
simple physical mechanisms are proposed for the dynamics of the elastic vector that, with the help of the
GENERIC formalism, allows us to derive the full set of dynamic equations for the model. The model is further
generalized to include polymer diffusion. The connection of the present model with theCONNFFESSITapproach
and the Brownian configuration field approach is discussed.

DOI: 10.1103/PhysRevE.68.041504 PACS number~s!: 83.10.Rs, 02.70.Ns, 05.40.Jc, 05.70.Ln
pa
o-
d

ac
m
th

p
ne
ce
l

an
d
e

ffi
r,

na

us
an
av
lu
d
n
g

n
e
by
g
e
c-

e
A
u-

r-
ten

o-
e
e
-

l.
t to
d
in
ar-

e-
Of

ired
is-
of
rse
o-
m-

p-
ed

tual
y-
ry
ed
late
of
o-

sch
or-
I. INTRODUCTION

Dissipative particle dynamics~DPD!, as originally in-
vented by Hoogerbrugge and Koelman, is a stochastic
ticle model for the simulation of Newtonian fluids at mes
scopic scales@1,2#. In DPD, a Newtonian fluid is represente
by a collection of points with prescribed stochastic inter
tions that conserve momentum and produce hydrodyna
behavior. DPD bears a strong resemblance with
smoothed particle hydrodynamics~SPH! method for solving
the Navier-Stokes equations@3#, except that DPD includes
thermal fluctuations and it is thus applicable to mesosco
scales where diffusive processes are important. The con
tion between SPH and DPD has been made clear in a re
paper@4# where it is shown that by including in the origina
DPD model two extra state variables, the internal energy
the volume of the particles, one can construct a SPH mo
which is thermodynamically consistent, has a well-defin
physical scale, allows for input transport properties~without
the need of kinetic theory to find out the transport coe
cients!, and allows for arbitrary thermodynamic behavio
thus solving the conceptual shortcomings of the origi
DPD model.

The primary objective of DPD research has been to
this stochastic fluid solver for the study of nonNewtoni
fluids displaying interesting and complex rheological beh
ior, for example, colloidal suspensions and polymeric so
tions. The simple Newtonian fluid of DPD has been ma
‘‘complex’’ by introducing additional interactions betwee
the dissipative particles. For example, the complex rheolo
cal behavior of colloidal suspensions has been simulated
freezing spheres~i.e., introducing a rigid interaction betwee
particles! of DPD particles that behave like solid suspend
objects @5–7#. Polymer solutions have been simulated
connecting some of the dissipative particles with sprin
@8,9#. Binary mixtures have been also modeled by consid
ing two types of particles that interact with different intera
1063-651X/2003/68~4!/041504~19!/$20.00 68 0415
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tion parameters@10–12#. In this respect, DPD turns out to b
a versatile method for the simulation of complex fluids.
couple of recent reviews on applications of DPD to the sim
lation of complex fluids can be found in Refs.@13,14#.

A very interesting generalization of the dissipative pa
ticle dynamics model has been recently introduced by
Bosch in order to study polymer flows@15#. The idea is to
capture the complex behavior of polymeric fluids by intr
ducing an additional variableQ associated with each particl
@15#. The vectorQ collects the elastic information about th
fluid at scales ‘‘within’’ the dissipative particles. The intro
duction of the additional internal variableQ is a radically
different way of introducing complexity in the DPD mode
It actually changes the scale of the technique with respec
those DPD simulations in which elasticity is modele
through springs connecting dissipative particles. A particle
the ten Bosch model would represent large portions of p
ticles in previous DPD simulations of polymers. It repr
sents, therefore, a serious computational advantage.
course, the price to pay for this advantage is the requ
profound knowledge of the physics of the mesoscopic v
coelasticity in order to formulate the suitable equations
motion forQ. Because the ten Bosch model is a more coa
grained model than the usual DPD models for polymers, m
lecular details are hidden in the phenomenological para
eters of the model. However, from the point of view of a
plications and computer time saving, this might be regard
in some cases as a benefit.

The ten Bosch model suffers from the same concep
shortcomings of the original DPD model: it is not thermod
namically consistent, it cannot possibly specify arbitra
thermodynamic behavior, does not a have well-defin
physical scale, and one needs to use kinetic theory to re
the transport coefficients of the fluid with the parameters
the model. The aim of this paper is to formulate in a therm
dynamically consistent way a generalization of the ten Bo
model to nonisothermal situations. To this end we first f
©2003 The American Physical Society04-1
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mulate a model in which each fluid particle contains a fix
number of dumbbells. This model can be understood a
Lagrangian SPH version of theCONNFFESSIT approach
@16,17#. Inspired by this model, in the second step we co
sider only one elongation variable per fluid particle, as in
ten Bosch model. This second model is much faster to si
late because of the large reduction of dumbbell variable
the system. In addition, the second model incorporates
number of dumbbells in the cell as an additional variable a
allows one to study polymer diffusivity problems. The mod
is essentially a version of the smoothed particle hydro
namic model such as the one presented in Ref.@4#, with
additional elastic variables. As a final remark, we note t
the hydrodynamic equations for a viscoelastic fluid descri
by a suitableconstitutive equationhave been discretized b
using smoothed particle hydrodynamics very recently@18#.

II. FLUID PARTICLES OF POLYMER SOLUTIONS

A very convenient way to construct new discrete mod
for fluid dynamics which are consistent with thermodyna
ics is by using theGENERIC framework@19# which we sum-
marize in Appendix A. This framework, introduced by O¨ t-
tinger and Grmela, captures in a very synthetic way all
required constraints that a model should satisfy in orde
comply with the first and second laws. It also describes h
to introduce thermal fluctuations in a consistent way throu
the fluctuation-dissipation theorem. No additional physics
introduced inGENERICfurther than the first and second Law
and the fluctuation-dissipation theorem. However, it fac
tates enormously the task of constructing new models wh
are compatible with these physical laws. This approach
been successfully used in Refs.@4,20,21#, where mesoscale
fluid particle models for Newtonian fluids have been co
structed.

In this paper, we model a polymeric solution through
collection ofM fluid particleswith positionsr i and velocities
vi which are understood as representing real portions of
material. They are regarded actually as small thermodyna
subsystems that move following the flow. Each thermo
namic subsystem is composed byNi

s molecules of the sol-
vent plus theNi

d polymer molecules. We will assume initiall
that the numbersNi

s and Ni
d are fixed, and, therefore, th

mass of each fluid particle is constant. In Sec. VI we w
relax the condition of constant number of dumbbellsNi

d per
fluid particle. The simplest model for a polymer molecule
a dumbbell, where two beads are connected with a spr
and for the sake of presentation we will focus on this sim
model. Every dumbbell in the fluid particle is characteriz
by its end-to-end vector or elongationQi

a , where a
51, . . . ,Ni

d runs over the different dumbbells of the flu
particle i. We show schematically a fluid particle in Fig. 1

Every fluid particle has two additional thermodynam
variables, which are the internal energyEi and the volume
Vi . The internal energyEi represents the contributions o
kinetic energy of the solvent and bead particles with resp
to the center of mass of the fluid particle plus the poten
energy of interaction~including solvent-solvent, solvent
bead, and bead-bead interactions!. The volume of a fluid par-
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ticle is not an independent variable but rather depends on
positions of the given particle and its neighbors. In so
recent works@22,21# the partitioning of the space occupie
by the fluid has been done through the Voronoi tessellat
In this case, each particle has associated a cell around it
a given volume that depends on the location of the neighb
ing particles. In the DPD or SPH philosophy@4#, one rather
provides a volumeVi to each particle through the inverse
a densitydi , which is defined by

1

Vi
5di5(

j
W~r i j !. ~1!

Here, r i j 5ur i2r j u and W(r ) is a bell-shaped function o
finite supportr c and which is normalized to unity

E drW~r !51. ~2!

Note that if particlei has many neighboring particles withi
r c , then the densitydi in Eq. ~1! will be large. Consistently,
we associate a smaller volumeVi with it.

Finally, every fluid particle, that is, every thermodynam
subsystem, has associated an entropy functionSi(Ei ,Qi).
The microscopic definition of this entropy function is give
by the logarithm of the ‘‘number of microstates,’’ which ar
compatible with the prescribed values ofEi ,Qi @23#. In more
precise terms,

S~Ei ,Qi !5kBlnE dzd~H~z!2Ei !d„Qi~z!2Qi…, ~3!

wherez is the set of microscopic degrees of freedom~posi-
tions and velocities of the solvent molecules and beads! and
H(z) is the Hamiltonian of the fluid particle. If the Diracd
functions containingQi were not present, Eq.~3! would be
the equilibrium thermodynamic entropy of the fluid particl
The introduction of thesed functions arises from our require

FIG. 1. A schematic representation of a fluid particle contain
Ni

d dumbbells. The set of the elongations of the dumbbell within
fluid particle i is denoted byQi .
4-2
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ment of describing the system at a more refined level
description through theQ variables.

We compute the entropy of a fluid particle through Eq.~3!
in Appendix B under the basic assumption that the susp
sion is dilute~so we may neglect the interactions among
dumbbells and between the dumbbells and the solvent!. The
result is

S~E,Q!5Ss~E!2
V~Q!

Ts~E!
1kBNd~11 ln ndld

D!, ~4!

where the dumbbell density number isnd5Nd/V. In obtain-
ing this equation, we have neglected terms that scale as
inverse 1/Ns of the number of solvent molecules. We ha
introduced the solvent entropySs(E), which is assumed to
be a known function of its arguments. The generalized
tropy depends on the dumbbell potential

V~Q!5(
a

Nd

Vd~Qa!, ~5!

whereVd(Q) is the spring potential of a single dumbbell.
is possible to show that for multi-bead-spring models,
entropy has a form identical to Eq.~4! except that an effec
tive potential appears instead ofVd(Q). The solvent tem-
perature introduced in Eq.~4! is defined by

1

Ts~E!
5

]Ss~E!

]E
, ~6!

whereas the thermal wavelengthld of the dumbbells is

ld5S h2

2pmdkBTs~E!
D 1/2

. ~7!

The constantskB , h, md , andD are the Boltzmann constan
the Planck constant, the mass of one bead of the dumb
and the dimension of physical space, respectively.

III. GENERIC FORMULATION

We will denote byx5$r i ,vi ,Ei ,Qi , i 51, . . . ,M %, the
full state of the system, whereQi5$Qi

a ,a51, . . . ,Ni
d% is

the collection of the elongations of the dumbbells of parti
i. The total energy of the system is given by

E~x!5(
i

M
m

2
vi

21Ei . ~8!

Here,Ei must be understood as the total internal energy
the fluid particle, including elastic contributions from th
suspended dumbbells. The total entropy of the system wil

S~x!5(
i

S~Ei ,Qi ,Vi !. ~9!

Note that the entropy of the full system is defined as the s
of the entropies of each cell taken as thermodynamic s
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systems, that is, by the sum of function~3! evaluated atEi ,
Qi , Vi . This is the well-knownlocal equilibrium assump-
tion.

For future reference we present here the derivatives of
energy and entropy functions~computed in Appendix B!
with respect to the state variables,

]E

]x
51

]E

]r i

]E

]vi

]E

]Ei

]E

]Qi
b

2 5S 0

mvi

1

0
D , ~10!

]S

]x
51

]S

]r i

]S

]vi

]S

]Ei

]S

]Qi
b

2 5S (
k

Vjk

Pk

dk
2Tk

0

1

Tj

Fj
b

Tj

D , ~11!

where we have introduced the following vector that depe
only on the position of the particles:

Vi j 52
]dj

]r i
52Fv i j 1d i j (

k
v ikG , ~12!

where

v i j 52W8~r i j !ei j . ~13!

Here, the prime denotes the derivative andei j 5r i2r j /
ur i2r j u is the unit vector joining particlesi , j .

The temperature appearing in Eq.~11! is given by the
derivative of the entropy~4! with respect to energy, that is,

1

T
5

]S~E,Q!

]E
5

1

Ts~E!
1O~1/Ns!. ~14!

The temperature is given, therefore, by the solvent temp
ture, because we are neglecting terms that are inversely
portional to the size of the fluid particles.

The pressurePk of the fluid particlek is given by the
usual thermodynamic definition

P

T
5

]S~E,Q!

]V . ~15!

By taking the volume derivative of Eq.~4! we obtain
4-3
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P5Ps1kBTsnd, ~16!

where Ps is the solvent pressure and the last term is
osmotic pressure of the dumbbells.

Finally, we have introduced in Eq.~11! the dumbbell
force

Fj
b52

]Vd~Qj
b!

]Qj
b

. ~17!

The physics that we want to introduce in this model c
be summarized in rather simple terms. The fluid solv
moves hydrodynamically and a fixed number of dumbbe
Ni

d are transported by each fluid particle in its overall m
tion. If the fluid is in an extensional state, the elongati
vector Qi

a of the dumbbella within the i th fluid particle
should increase, as if both ends of the dumbbell were ‘‘
chored’’ in the flow field. To this elongation due to the flo
field there is an opposite relaxation effect due to the und
lying spring that tries to reduce as much as possible the m
nitude ofQi . Our aim in the following sections is to transla
in mathematical terms this physical picture.

IV. REVERSIBLE PART OF THE DYNAMICS

In this section, we formulate the reversible part of t
dynamics for the set of variablesx. According toGENERIC,
the reversible part of the dynamics represents purely k
matic effects on the evolution of the variables, and it is giv
by @see Eq.~A1! in Appendix A#

ẋurev5L
]E

]x
, ~18!

whereL is an antisymmetric matrix. We wish that the reve
ible part of the dynamics produces the following equations
motion for the positions of the fluid particles:

ṙ i5vi . ~19!

The simplest nontrivial reversible partL(]/]x)E that pro-
duces the above equaton~19! has the following form

S ṙ i

v̇i

Ėi

Q̇i
a

D
rev

5(
j

L i j S 0

mvj

1

0

D , ~20!

where the blockL i j has the structure

L i j 5
1

mS 0 1d i j 0 0

21d i j 0 Di j Lib j

0 2Dj i 0 0

0 2Lj a i

T 0 0

D .

~21!
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Note that in order to have antisymmetry ofL, we must have
L i j 5L j i

T , where the superscriptT means matrix transposi
tion. The first row ofL i j ensures the equation of motion~19!.
The first column is fixed by antisymmetry ofL. We have set
to zero the right lower block in order to satisfy the dege
eracy conditionL(]/]x)S50 in Eq. ~A2! in Appendix A.
The only nontrivial part of this degeneracy condition b
comes, after the matrix multiplication of Eq.~21! with Eq.
~11!,

2(
j

Vi j

Pj

dj
2Tj

1Di j

1

Tj
1(

b j

Lib j
•

Fj
b

Tj
50. ~22!

The simplest choice forDi j that satisfies Eq.~22! is

Di j 5Vi j

Pj

dj
2

2(
b

Lib j
•Fj

b . ~23!

The final reversible part of the dynamics will be

ṙ i urev5vi ,

mv̇i urev5(
j

Di j ,

Ėi urev52(
j

Dj i •vj ,

Q̇i
aurev52(

j
Lj a i

T
•vj . ~24!

Let us turn, now, to the specification ofLi j by requiring a
particular motion for the vectorQi due to the advection o
the fluid. From a continuum point of view, an arbitrary vect
A is advected under a velocity fieldv(r ) according to

Ȧ5A•¹v~r !, ~25!

where the dot stands for the substantial derivative@Eq. ~E3!
in Appendix E#. The physical picture is that the vectorA has
its both ends anchored in the fluid, as shown heuristically
Appendix C. We want that the elastic vectorQi

a evolves in a
similar way. We need, therefore, the gradient of the veloc
field at the point where particlei is. Following the SPH phi-
losophy, we interpolate the velocity field according to

v~r !5

(
j

W~r2r j !vj

(
j

W~r2r j !

. ~26!

By taking the gradient of this expression we obtain

¹v~r !5

(
j

¹W~r2r j !vj

(
j

W~r2r j !

2v~r !

(
j

¹W~r2r j !

(
j

W~r2r j !

. ~27!
4-4
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Therefore, at particlei we have the approximate expressi
for the gradient of the velocity field,

“v~r i !5

(
j

“W~r i2r j !vj

di
2v~r i !

(
j

“W~r i2r j !

di

'
1

di
(

j
v i j vi j , ~28!

wherevi j 5vi2vj andv i j is defined in Eq.~13!. Therefore,
the continuum advection equation~25! becomes the discret
equation for the kinematic motion ofQi

a

Q̇i
a5

Qi
a

di
•(

j
v i j vi j . ~29!

By comparing Eq.~29! with the last equation in Eqs.~24! we
obtain the explicit form for the matrix2Lj i

T , i.e.,

2Lj a i

T 5
Qi

a

di
•F2v i j 1d i j (

k
v ikG1

Lib j
52

Qj
b

dj
•Fv i j 1d i j (

k
v ikG152

Qj
b

dj
•Vi j 1. ~30!

With this particular form of the matrixLi j we can write the
vectorDi j in Eq. ~23! as

Di j 5
1

dj
2
Vi j •FPj11dj(

b
Fj

bQj
bG . ~31!

The term in brackets can be understood as the reversible
of the stress tensor of particlej, i.e.,

Pj5Pj11dj(
b

Fj
bQj

b . ~32!

This stress tensor includes an isotropic component given
pressure in Eq.~16! and a nondiagonal part. Substitution
~12! and~32! into Eqs.~24! leads to the finalreversiblepart
of the dynamics for the viscoelastic model:

ṙ i urev5vi ,

mv̇i urev5(
j

FPi

di
2

1
Pj

dj
2G•v i j ,

Ėi urev52
Pi

di
2

:(
j

v i j vi j ,

Q̇i
aurev5

Qi
a

di
•(

j
v i j vi j . ~33!

These equations~33! conserve total energy~due to the anti-
symmetry ofL) and leave the entropy unchanged~due to the
degeneracyL]S/]x50). They also conserve total mome
04150
art

y

tum P(x)5( imvi due to the symmetries under exchange
the indicesi, j in the momentum equation.

Let us summarize now the line of reasoning followed
this section. We have assumed a particular equation of
tion for Qi

a in which this vector is anchored in the solven
This implies a particular form for the matrixLib j

in Eq. ~30!.
The conservation of energy implied by the antisymmetry
the matrixL imposes that this matrixLib j

should appear in
an additional term in the momentum equation. The particu
form of this term is dictated by the degeneracy conditi
L]S/]x50, Eq. ~23! which ensures that there is no entrop
production due to the reversible part of the dynamics. A
result, we have been able to identify a reversible part of
stress tensor, which depends on the configurationQi

a of the
dumbbells. It is quite remarkable that the small physical
put given by the anchoring ofQi

a translates, through the
GENERIC formalism, into a very specific form for the stres
tensor. Finally, the energy equation in Eqs.~33! describes
how the mechanical work is transformed into internal ene
in a reversible way.

V. IRREVERSIBLE PART OF THE DYNAMICS

As shown in Appendix A, in order to derive the irrever
ible part of the dynamics of the viscoelastic nonisotherm
DPD model, a very useful route is tofirst postulate the ther-
mal noisesdx̃ andafterwardscompute the dissipative matri
M through the fluctuation-dissipation theorem:

M5
dx̃dx̃T

2kBdt
. ~34!

This procedure ensures thatM defined through Eq.~34! is
automatically symmetric and positive semidefinite. We p
tulate the following form for the thermal noisesdx̃

5$0,dṽi ,dẼi ,dQ̃i
a%. Note that we do not assume any the

mal noise for the position of the fluid particles, as we want
respect the equation of motionṙ i5vi . In Ref. @4# we have
discussed how to introduce the thermal noisesdṽi ,dẼi in
order to recover a matrixM which produces an irreversibl
part of the dynamics that can be understood as a smoo
particle hydrodynamics discretization of the irreversib
terms of the Navier-Stokes equations. We only have to p
tulate now the noise termsdQ̃i

a . We discuss in Appendix D
that a reasonable assumption for the stochastic force onQi

a is
given by

dQ̃i
a5S 4

kBTi

6phaD 1/2

dUa i
, ~35!

wheredUa i
is an independent increment of the Wiener pr

cess, satisfying

dUa i
dUb j

5da ib j
1dt. ~36!
4-5
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We recognize in the prefactor of Eq.~35! the diffusion coef-
ficient of the beads of radiusa given by the Stokes-Einstei
relation. We will assume that the noisedQ̃i

a are statistically

independent ofdṽi ,dẼi .
According to Eq.~34!, the matrixM→M i j is given by

S 0 0 0 0

0
dṽidṽj

T

2kBdt

dṽidẼj

2kBdt
0

0
dẼidṽj

T

2kBdt

dẼidẼj

2kBdt
0

0 0 0
dQ̃i

adQ̃j
b

2kBdt

D .

~37!

The central diagonal block has been computed in Ref.@4#
and we have to compute only the last diagonal elem
which is

dQ̃i
adQ̃j

b

2kBdt
5

2Ti

z
dabd i j 1. ~38!

Now we are in position to write the deterministic irreversib
part of the dynamicsẋu irr5M•]S/]x which, after use of Eq.
~11! for the derivative of the entropy, becomes

S ṙ i

v̇i

Ėi

Q̇i
a

D
u irr

5(
j

M i jS (
k

VjkPk /dk
2Tk

0

1

Tj

Fj
b

Tj

D , ~39!

By collecting the results of Ref.@4# ~once we neglect, for
simplicity, the bulk viscosity! for the diagonal blocks ofM i j
together with Eq.~38! we obtain the following irreversible
part of the dynamics:

ṙ i u irr50,

mv̇i u irr52
5h

3 (
j

Fi j

didj
@vi j 1~ei j •vi j !ei j #,

Ėi u irr5
1

2

5h

3 (
j

Fi j

didj
@vi j

2 1~vi j •ei j !
2#22k(

j

Fi j

didj
Ti j ,

Q̇i
au irr5

2

z
Fi

a , ~40!

whereh is the shear viscosity of the solvent andk the ther-
mal conductivity. The geometrical factorFi j is given by
04150
t,

Fi j 52
W8~r i j !

r i j
. ~41!

Note that concerning the irreversible part of the dynami
the solvent and dumbbells are completely uncoupled a
therefore, the solvent irreversible dynamics is identical
that in Ref.@4#.

By collecting the reversible part of the dynamics, Eq
~33!, and the irreversible part of the dynamics, Eqs.~40!, we
obtain the following set ofdeterministicequations, corre-
sponding to Eq.~A1!:

ṙ i5vi ,

mv̇i5(
j

FPi

di
2

1
Pj

dj
2G•v i j 2

5h

3 (
j

Fi j

didj
@vi j 1~ei j •vi j !ei j #,

Ėi52
Pi

di
2

:(
j

v i j vi j 1
1

2

5h

3 (
j

Fi j

didj
@vi j

2 1~vi j •ei j !
2#

22k(
j

Fi j

didj
Ti j ,

Q̇i
a5

Qi
a

di
•(

j
v i j vi j 1

2

z
Fi

a . ~42!

This set of equations have the very appealing features
conserving energy and total momentumP5( imvi , and
leading to a positive production of entropyṠ(x)>0.

The evolution ofr i , vi , and Ei is identical to that of a
simple fluid without dumbbells, as given in Ref.@4#, except
for the additional dumbbell contribution to the stress ten
in Eq. ~32!. Apart from that, we recognize in these equatio
the different physical processes involved. In the moment
equation, viscous forces proportional to the viscosity try
reduce velocity differences between fluid particles. In t
energy equation, a viscous heating term proportional to
shear viscosity describes how the kinetic energy which
dissipated by the friction forces leads to an increase of in
nal energy of the particles. Also in this energy equation,
heat conduction term, with overall magnitude given by t
thermal conductivity of the solvent, tries to reduce tempe
ture differences between fluid particles.

Finally, the last set of equations governs the dynam
of the elongation of every single dumbbell in the solutio
Let us discuss in detail this set of equations for the simp
case of Hookean dumbbells. For Hookean dumbbellsFi

a

52HQi
a , whereH is the spring constant, and the last irr

versible term describes an exponential decay governed
time scale given byz/2H. Given an initial elongation of
every dumbbell in each fluid particle, this terms relaxes
towards a zero elongation. The advective term cannot
anything against this relaxation and, actually,Qi

a50 is the
final solution of the equations for the dumbbell elongatio
4-6
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Apparently, we have derived a model in which the dumbbe
just relax towards zero elongations, the dumbbell contri
tion to the stress tensor vanish, and we are back to the m
for a Newtonian fluid.

Of course, an essential element is lacking in the above
of equations, which is the presence of thermal fluctuatio
Thermal fluctuations are the crucial bit that make the mo
sound and useful for the simulation of polymer solution
The way to proceed is to formulate theGENERIC stochastic
differential equations as shown in Appendix A. This has be
done for the Newtonian model in Ref.@4# and leads to a
proper thermodynamic version of the original dissipat
particle dynamics model. A particularly interesting feature
this version of DPD is that thermal fluctuations depend
the size of the fluid particles, in accordance with usual c
cepts of equilibrium statistical mechanics. Therefore,
large enough fluid particles, the thermal fluctuations in
momentum and energy equation can be neglected. Of co
this is consistent with the fact that in order to simulate
basket ball in a swimming pool we do not introduce therm
fluctuations in the description whereas if we want to simul
a micron sized colloidal particle we will necessarily need
introduce thermal fluctuations. The essential physical rea
for the dependence of the thermal fluctuations on the siz
the fluid particle is that the momentum and energy are ex
sive quantities.

Whereas thermal fluctuations can be neglected in the fi
stochastic equations for the momentum and energy, they
not be neglected at all for the dynamics of the dumbb
elongation. The dumbbell elongation is not an extensive v
able, it is rather a mesoscopic variable for which the fluct
tions are an important component of its full dynamics. T
effect of the thermal fluctuations in the dynamics of the elo
gation variable is quite dramatic. Although the dumbbe
want to relax towards zero elongation, the thermal no
guarantees a permanent kickoff of this state of zero elon
tion. This slight deviation from zero is sufficient for the co
vective term in the elongation equation in Eq.~42! to ‘‘drag’’
the ends of the dumbbell apart. In a steady shear flow,
example, the system will reach a stationary situation wh
although the elongation of each dumbbell is zero on avera
the resulting distribution is not isotropic, leading to a no
zero contribution to the stress tensor~see Sec. VII!.

The final set of stochastic equations in this model a
therefore,

dr i5vidt,

mdvi5(
j

FPi

di
2

1
Pj

dj
2G•v i j dt

2
5h

3 (
j

Fi j

didj
@vi j 1~ei j •vi j !ei j #dt,
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dEi52
Pi

di
2

:(
j

v i j vi j dt1
1

2

5h

3 (
j

Fi j

didj
@vi j

2 1~vi j •ei j !
2#dt

22k(
j

Fi j

didj
Ti j dt,

dQi
a5

Qi
a

di
•(

j
v i j vi j dt2

2H

z
Qi

adt1dQ̃i
a . ~43!

Of course, due to the coupling between equations, the full
of equations is stochastic even though there is only one n
sourcedQ̃i

a . It may appear odd that having neglected th
mal fluctuations in the momentum and energy equations,
equations for these variables still retain a stochastic cha
ter. However, we should remark that what we have neglec
are spontaneous thermal fluctuations as they appear in
Landau-Lifshitz theory of fluctuating hydrodynamics. I
physical origin is the random interchange of solvent m
ecules between fluid particles, and these fluctuations
small as compared with the total amount of momentum
energy in the fluid particle. However, the fluctuations in t
Qi

a variables have anindirect effect on the momentum an
energy variables through the coupling via the stress ten
The importance of this indirect coupling depends, of cour
on the concentration of polymer molecules and the stren
of the springs, and can make a crucial contribution to
dynamic behavior of the fluid.

VI. POLYMER DIFFUSIVITY

The model governed by Eqs.~43! describes the dynamic
of every single dumbbell in the system. This approach i
similar to CONNFFESSIT@16,17#, where a stochastic simula
tion of the dumbbells is coupled with a numerical solution
the fluid flows. Of course, having to keep track of the ev
lution of every single dumbbell in each fluid particle is a
expensive task. Note that, according to the last equatio
Eq. ~43!, all the dumbbells of a given fluid particle will dis
play essentially the same behavior, at least in a statist
sense. The dynamics of different dumbbells of the same fl
particle differs only by the initial conditions and the actu
sequence of random numbers used for the stochastic t
For this reason, we could focus on a given tagged dumb
within each fluid particle and assume that the rest of dum
bells of that fluid particle ‘‘are doing the same thing.’’

In addition, the model presented above has a cons
number of dumbbells in every fluid particle. This does n
seem to be a very reasonable assumption. After all, if
beads of each dumbbell are subject to thermal fluctuatio
then the center of mass of the dumbbell will suffer also fro
thermal fluctuations, leading to a diffusion of the center
mass of the dumbbells within the region of a fluid partic
until they cross the fluid particle’s ‘‘boundary.’’ This, even
tually, should lead to an interchange of dumbbells betwe
fluid particles. The model in Eqs.~43! does not allow for a
change in time of the number of dumbbells in a fluid partic

In order to encompass the possibility of describing po
mer diffusion and, at the same time, reduce the numbe
4-7
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variables to simulate, we present in this section a new mo
that differs from the one presented in the previous section
the variables used to describe the state of the system. N
each fluid particle will be characterized by its positionr i , its
velocity vi , its internal energyEi , a uniquevector Qi de-
scribing the elongation of a statistical representative of
dumbbells, and the number of dumbbellsNi

d within the fluid
particle. By selecting a single elongation vector for eve
fluid particle we return to a version of the ten Bosch mo
which, in turn, is analogous to a Lagrangian version of
Brownian configuration field approach@24#. The Brownian
configuration field approach is similar to theCONNFFESSIT

approach except that only one suitably correlated elonga
variable is kept for each fluid element. The connection
tween both approaches has been elucidated in Ref.@25#
where it is shown that the Brownian configuration field a
proach can be understood as a variance reduction versio
the CONNFFESSITapproach.

Let us proceed to formulate the equations of motion
this new set of variables by following theGENERIC strategy
again. The total energyE(x) of the system in the new vari
ables is still given by Eq.~8! and the total entropyS(x) has
the same form as in Eq.~9!, but now the entropy of a fluid
particle is not given by Eq.~4! but rather it is postulated to
be

S~E,Q!5Ss~E!2
NdVd~Q!

Ts~E!
1kBNd~11 ln ndld

D!.

~44!

Despite of its similar notation, the fluid particle entropy po
tulated in Eq.~44! depends on the energy, asingle variable
Q, and the number of dumbbellsNd whereas the fluid par
ticle entropy~4! depends on the energy and theNd elonga-
tion variables of each dumbbell in the fluid particle.

The derivatives of the energy and entropy with respec
the new variables are

]E

]x
5S 0

mvi

1

0

0

D ,
]S

]x
51

(
k

Vjk

P

dk
2Tk

0

1

Tj

Fj

Tj

2
m j

d

Tj

2 , ~45!

where we have introduced the chemical potential throug

md

T
52

]S

]Nd
5kBln~ndld

D!1
Vd~Q!

T
. ~46!
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Due to the dilute assumption, we expect that the variation
the number of dumbbells does not affect appreciably
massm of the fluid particle, which is still assumed to b
constant. However, it might strongly affect the elastic pro
erties of the fluid particle and for this reason we retainNd as
a variable.

Concerning the dynamics of the new variables, we ba
cally construct a system ofGENERIC equations by proposing
L andM matrices. As far as the reversible part of the dyna
ics is concerned we choose the followingL matrix, to be
compared with Eq.~21!:

L i j 5
1

mS 0 1d i j 0 0 0

21d i j 0 Di j Li j 0

0 2Dj i 0 0 0

0 2Lj i
T 0 0 0

0 0 0 0 0

D .

~47!

This matrix ensures thatṄi
durev50, that is, the reversible par

of the dynamics does not change the number of dumbbel
each fluid particle. The dumbbells are simply transported
the reversible dynamics. From the argument in Appendix
concerning the advection of a vector, theLi j element is
given by

Li j 52
Qj

dj
•Vi j 1, ~48!

and the degeneracy conditionL]S/]x50 now leads to

Di j 5
1

dj
2
Vi j •Pj , ~49!

where the stress tensor of particlej now takes the form

Pj5Pj11djNj
dFjQj , ~50!

to be compared with Eq.~32!.
For the irreversible matrixM we now select
4-8
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T dẼidẼj
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1 0
2kBdt 2kBdt

0 0

0 0 0
dQ̃idQ̃j

2kBdt
0

0 0 0 0
dÑi

ddÑj
d

2kBdt

2 ,
~51!
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where we have introduced a noise termdÑi
d , which is sta-

tistically independent ofdṽi , dẼi , anddQ̃i . In the discus-
sion in Appendix D we see that the mechanism by which
center of mass of the dumbbells diffuses is essentially
same as the mechanism by which the elongationQi

a of the
dumbbells change, that is, the diffusion of each bead of
dumbbells. In that respect, one would expect certain corr
tion between the process by which the number of dumbb
in a region of the fluid changes and the process of chang
Q. However, note that the elementary process by whichNi

d

changes is the diffusion of the center of mass for th
dumbbells that are in the boundary between two fluid p
ticles. The diffusion of these small numbers of particles n
the boundary should not affect strongly the stochastic cha
of Qj and, for this reason, we assumedÑi

d to be uncorrelated

with dQ̃i , i.e., dÑi
ddQ̃j50, leading to the block diagona

form of the matrixM.
Now, concerning the stochastic changes of the numbe

dumbbells, we identify the elementary stochastic process
which this number changes the random interchange of du
bells between fluid particles due to the diffusive nature of
center of mass of the dumbbells within a fluid particle. T
mechanism is essentially the same as that of heat condu
as considered in Ref.@4# and we postulate the matrix term

dÑi
ddÑj

d

2kBdt
5

1

2kB
Fd i j (

k
Dik

2 2Di j
2 G , ~52!

whereDi j 5D ji . The irreversible evolution of the number o
dumbbells will be, therefore,

Ṅi
du irr52(

j

Di j
2

2kB
Fm i

d

Ti
2

m j
d

Tj
G . ~53!

After the discussion in Appendix E, we find that a reasona
functional form for the coefficientsDi j is simply

Di j 5F Fi j

didj

2

z
~Tini

d1Tjnj
d!G1/2

. ~54!

In this way, Eq.~53! becomes a smoothed particle hydrod
namics discretization of an advection-diffusion equation.
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We have thus completed the formulation of this ne
model. The equations are simply Eqs.~43! with only one
elongation variable per fluid particle, the stress tensor gi
by Eq. ~50!, coupled to the diffusion equation

dNi
d52(

j
F Fi j

didj

2

z
~Tini

d1Tjnj
d!G1/2Fm i

d

Ti
2

m j
d

Tj
Gdt.

~55!

This equation conserves the total number of dumbb
( i Ṅi

d50. The evolution of the number of dumbbells in ea
fluid particle is governed by the unbalance of dumbb
chemical potentials between neighboring fluid particles t
will produce an exchange of dumbbells between fluid p
ticles. This equation couples with the momentum and ene
equations through the stress tensor. Note that the variablNi

d

is extensive and we do not consider additional stocha
forces in Eq.~55! that are assumed to be negligible. In th
way, we are assuming that even though the suspensio
dilute, every fluid particle contains a sufficiently large num
ber of dumbbells for the fluctuations on the number of dum
bells to be negligible. It is of course possible to validate t
assumption by explicitly including the thermal noise and
assess its effect. For the sake of simplicity, we neglect in
paper the stochastic forces on the number of dumbbells.

VII. SIMULATION RESULTS

In this section, we present simulation results in order
check and validate the present model. As a first step, we
assume that the number of dumbbells within each fluid p
ticle is a constant equal toN0

d , thus neglecting dumbbel
diffusion between fluid particles. We will also assume th
the thermal conductivity is very large in such a way that t
temperature is already equilibrated to the sameT0 in all the
fluid particles. A Hookean dumbbell spring will be assum
in this paper. Although the model permits to study more g
eral situations, the isothermal and constant dumbbell den
case allows for a comparison with analytically known pr
dictions for Hookean dumbbells.

The simulated isothermal equations are

dr i5vidt,
4-9
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dr i52r i(
j

m

r j
vi j •v i j dt,

mdvi5(
j

FPi

di
2

1
Pj

dj
2G•v i j dt

2
5hs

3 (
j

Fi j

didj
@vi j 1~ei j •vi j !ei j #dt,

dQi5
Qi

di
•(

j
v i j vi j dt2

2H

z
Qidt1dQ̃i , ~56!

with

Pi5~Pi
s1kBT0n0

d!12Hn0
dQiQi , ~57!

wherer i5mdi is the solvent mass density andn0
d5Nd/V is

the constant dumbbells number density. Note that we so
explicitly the equation for the density, which is easily o
tained from definition~1!. We evolve the density rather tha
computing it from definition~1! because we foresee futur
applications where the presence of walls makes the eva
tion of the density through~1! less accurate near the wall@3#.
We select an ideal gas equation of state for the solvent p
sure Pi

s5cpr iT0, wherecp is the specific heat at consta
pressure. For the weight function, we have chosen the L
function

W~r !5cW~113r /r c!~12r /r c!
3, ~58!

wherecW55/pr c
2 in two dimensions andcW5105/16pr c

3 in
three dimensions.

In order to make the previous equations dimensionle
we consider the following basic units: unit of massms ~mass
of a solvent molecule!, unit of lengthL0 ~box dimension!,
unit of timelH5j/4H ~viscoelastic decay time for Hookea
dumbbell model!, unit of temperatureT0. We define a refer-
ence velocity in terms of the primary variables asv0
5L0 /lH . By using these units, we can make the abo
equations dimensionless~variables with an overline are di
mensionless!:

dr̄ i5 v̄idt,

dr̄ i52 r̄ i(
j

m̄

r̄ j

v̄i j •v̄ i j dt,

dv̄i5(
j

m̄F P̄i

r̄ i
2

1
P̄j

r̄ j
2G•v̄ i j dt

2C1(
j

m̄
F̄ i j

r̄ i r̄ j

@ v̄i j 1~ei j • v̄i j !ei j #dt,

dQ̄i5
Q̄i

r i
•(

j
m̄v̄ i j vi j dt2

1

2
Q̄idt1dQ̃̄i , ~59!
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with

dQ̃̄i5C2dŪi ,

P̄i5~ P̄i
s1C3!12C4Q̄iQ̄i ,

P̄i
s5C5r̄ i . ~60!

Five nondimensional constants appear in Eqs.~59! and~60!:

C15
5hs

3r0L0v0
, C25AkBT0

HL0
2
, ~61!

C35
NdkBT0

r0v0
5lH

3
, C45

NdH

r0v0
3lH

, C55
cpT0

v0
2

. ~62!

The reference density isr05msN
s/L0

3. Here ms represents
the mass of a single-solvent molecule andNs the total num-
ber of solvent molecules contained in the box. Note that
have the usual dimensions for density, pressure, visco
etc., corresponding to three-dimensional~3D! systems. On
the other hand, we are performing 2D simulations, under
assumption of translationally invariant behavior in thez di-
rection.

A. Theoretical results for Hookean dumbbells

Analytical results for an isothermal Couette flow fo
Hookean dumbbells are available in the literature@26#, and
give exact prescriptions for the dependence of the mate
functions and the stretching of the dumbbells^Q2& as a func-
tion of the shear rate in a steady shear flow. Let us assum
2D steady shear flow. The Cartesian components of the
locity field are by definition

vx5ġy, vy50, ~63!

whereġ5]vx /]y is the shear rate. Let us consider now on
the polymeric contribution to the pressure tensor. It can
written in tensorial notation as

tab
p 5kBT0n0

ddab2Hn0
dQaQb , ~64!

where the greek indices indicate the spatial coordinates.
Hookean dumbbells, it can be shown that the stress com
nents and material functions in the final steady-state confi
ration are@26#

txy
p 52n0

dkBT0lHġ, ~65!

tyy
p 2txx

p 52n0
dkBT0lH

2 ġ2. ~66!

From Eqs.~65! and~66!, we obtain the polymer contribution
to the shear viscosityhp and the first normal stress differenc
C1,

hp52
txy

p

ġ
5n0

dkBT0lH , ~67!
4-10
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C15
tyy

p 2txx
p

ġ2
52n0

dkBT0lH
2 . ~68!

In this Hookean model, all material functions are consta
independent of the shear rate. It is also found that the glo
dumbbell stretching takes the form~2D!

^Q2&

^Qeq
2 &

511~lHġ !2. ~69!

This shows that the Hookean dumbbells continue to stre
indefinitely as the shear rate is increased. This character
of the dynamics based on the Hookean model is inadeq
for the description of realistic polymeric solutions. In fact,
is well known that the viscosity and the first normal stre
coefficient should decrease for increasing shear rate ins
of remaining constant. The failure of the model is related
the infinite extensibility which is shown in Eq.~69!. Never-
theless, although this model does not provide an accu
description of a polymeric solution, it allows for exact com
parisons with numerical results. More complex models s
as the FENE~finitely extensible nonlinear elastic! spring
model can be easily taken into account.

B. Setup of the numerical simulations

In order to produce a uniform stable shear flow, we ap
the well-known Lees-Edwards boundary conditions@27#.
The periodic image criterion is applied in both spatial dire
tions in order to simulate an infinite periodic medium.
addition, a shear is imposed along they axis simply by mov-
ing in opposite directions the periodic boxes at the top a
the bottom of the central simulation box. Their respect
velocities are6vbox5ġL0, where ġ is the desired shea
rate. Particles crossing the edge at the top of the simula
box are re-inserted at the bottom with the samey component
of the velocityvy but with oppositevx . A linear stable ve-
locity profile corresponding to Eq.~63! is therefore pro-
duced.

The numerical parameters of our simulations are: the
erence temperature, chosen to be the typical room temp
ture T05300 K, the reference timelH51.031026 s, and
the reference lengthL051.031025 m, which corresponds to
the length of the box. The reference velocity is therefo
v05L0 /lH510 m s21. We choose a value forms corre-
sponding to the mass of a water molecule (ms52.98
310226 kg) and total number of solvent moleculesNs

53.3531013. This gives a solvent densityr05103 kg m23

corresponding to typical values for water under stand
conditions.

There are other input parameters which influence the
namics. The solvent shear viscosityhs51023 kg m21 s21.
The reference dumbbell number density is defined asn0

d

5Nd/L0
3, whereNd is an arbitrary number corresponding

the total number of dumbbells contained in the simulat
box. The viscoelastic behavior is due to the last term in
stress tensor in Eq.~57!. This term is proportional toNd and
controls the magnitude of the deviatoric non-Newtonian
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fects. Indeed, forNd50 we recover the Newtonian fluid dy
namics. The value ofNd is determined accordingly with al
the other parameters in order to obtain a suitable polym
viscosity consistent with Eq.~67!. Here we assumedNd

5108. With these parameters and by using formulas~67!–
~68!, we obtain the polymeric contribution to the viscosi
hp54.14231024 kg m21 s21 and the first normal stress co
efficient C158.284310210 kg m21 in SI units. Therefore,
in our numerical framework, their dimensionless values
hp54.14231023 and C158.28431023. As already no-
ticed, these viscometric functions for a Hookean spr
model should be independent of the shear rate. The sp
constantH can be determined using the the Stokes-Einst
relation, so thatH56phsa/4lH , wherea is the radius of a
bead andlH the reference time. Here we chosea54.0
310210 m, which gives a value ofH51.8831026 kg s22.
In addition, the equilibrium value for̂Qeq

2 & in Eq. ~69! ~av-
eraged over all the box domain! for zero shear rate should b
equal to ^Qx,eq

2 &1^Qy,eq
2 &52C252kBT0 /HL0

254.431025

in dimensionless units.
In the equation of statecp is chosen equal to

462 J kg21 K21. As the speed of sound is defined ascs

5A]p/]r5AcpT0, we obtain a value equal to 372.3 m s21.
Its value in reduced units is 37.2, which is almost ten tim
larger than the typical box velocity whose maximum value
5 ~corresponding to the highest shear rate simulatedġ
510). This choice ofcs prevents compressibility effects an
retains the divergence-free velocity conditions according
Monaghan@28#.

The cutoff radiusr c for the ‘‘smoothed particle’’ is chosen
0.08 in reduced units. From a computational point of vie
such a choice ofr c involves nearly 50 neighbors for eac
smoothed particle, which is a quite large but necessary n
ber for an accurate estimate of the viscometric functio
Finally, the total numberM of simulated fluid particle is
2500.

C. Numerical results

In this section we present the results of a Couette sh
flow experiment. The polymeric viscosityhp , first normal
stress coefficientC1, and global stretchinĝQ2& are ex-
tracted from seven different runs corresponding to differ
values of the shear rateġ. Finally, we compare the numerica
results with the analytical ones coming from Eqs.~65!–~69!.

Given the homogeneous flow field developed by t
boundary conditions, we evaluate the global quantities wh
we are interested in by taking the average of their local v
ues defined at the position of every fluid particle. For e
ample,

^tab&5
1

M (
i 51

M

tab
i , ~70!

whereM is the number of the simulated SPH particles.
Figs. 2 and 3 we plot̂txy& and ^tyy2txx&, respectively, as
functions of the shear rate. The symbols correspond to
results of the simulations while the solid lines are the th
retical previsions corresponding to Eqs.~65! and ~66!. As
4-11
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prescribed, their values increase respectively linearly
quadratically withġ. Thex andy-scale are both logarithmic
and cover a range ofġ from about 0.1 to 10 in reduced unit

As already pointed out, the components of the polyme
stress should increase with the shear rate in such a way
the viscosity and the first normal stress coefficient rem
constant as prescribed by Eqs.~67! and ~68!. In Fig. 4 we
plot hp and C1 and compare them with their theoretic
constant values. This shows that the agreement is also q
titatively good over all the range ofġ simulated. It must be
pointed out that no fit parameters have been used.

Equation ~69! shows that the dumbbells continue
stretch as the shear is increased. This is a particular prop
of the Hookean dumbbell model. In Fig. 5 we plot the glob
molecular stretchinĝQ2&. Even in the global stretching w
achieved a very good quantitative agreement with the a
lytical results. In addition, also the exact output equilibriu
value for the average square elongation vector is recov
in the limiting case of small shear rate. In this regime
limiting value is obtained corresponding to the equilibriu
~zero shear rate! stretching. This cannot be observed in t

FIG. 2. Steady-state off-diagonal component of the polyme

dimensionless stress tensortxy as a function of shear rateġ. Tri-
angles are the simulation results and the solid line is the theore
prediction in Eq.~65!. The numerical errors are comparable to sy
bol size.

FIG. 3. Difference between the steady-state diagonal com
nents of the polymeric dimensionless stress tensortyy2txx as a

function of shear rateġ. Bullets are the simulation results and th
solid line is the theoretical prediction in Eq.~66!.
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previous figure because of its smallness compared with
values corresponding to highġ. In the next figure the tem-
poral evolution of^Q2& for a shear flow withġ50.156 is
shown. The agreement with the theoretical prevision
^Qeq

2 & is clearly visible in Fig. 6.
Finally, in Fig. 7 we present snapshots of theQ-vector

configuration at different times and for a fixed shear rateġ
510. Thex andy axes represent, respectively theQx andQy
components of the elongation of the dumbbell representa
of every simulated fluid particle. The snapshots corresp
to timest 5 0.1, 0.3, 0.6, 1.0, 2.0, and 4.0. As expected,
observe the stretching ofQx component while in they direc-
tion the configuration tends to that of equilibrium at ze
shear rate. We notice also that at every time the stretchin
the x direction increases, but always preserving the symm
try of the particle distribution around the origin in theQ
plane, that is, on average over all the box the component
the Q vector are zero.

VIII. CONCLUSIONS

Inspired by a dissipative particle dynamics model form
lated by ten Bosch@15#, we have proposed a fluid particl

c

al
-

o-

FIG. 4. Dimensionless polymeric viscosityhp (v) and the first

normal stress coefficientc1 (d) vs shear rateġ. The numerical
results are compared with the theoretical constant values pred
from Eqs.~67! and ~68! in solid lines.

FIG. 5. Steady-state molecular dimensionless stretching^Q2& vs
shear rate. Triangles are the simulation results and the solid lin
the theoretical prediction in Eq.~69!.
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model for the simulation of dilute polymeric solutions. Sp
cial attention has been paid to the thermodynamic con
tency of the model by writing it within theGENERIC frame-
work. Actually, several basic differences between the mo
presented and that of ten Bosch@15# arise from the thermo-
dynamic consistency of our model. First, our model includ
a fluid particle volume variable and, therefore, the conser
tive forces in the momentum equation are replaced by ac
pressure forces. As we have shown in Ref.@4#, the conserva-
tive forces in the original classic DPD model are not ve
physical and do not allow us to studyarbitrary equations of
state. Second, our model includes an internal energy vari
and it allows us to study nonisothermal processes. Again,
can be regarded as an improvement over the classic D
model. Finally, we have introduced the number of dumbb
as an additional variable, which allows us to study diffus
processes of dumbbells which are absent in the ten Bo
model.

From a more technical point of view, we observe that o
model has a smaller number of parameters and funct
than the ten Bosch model. For example, the antisymmetr
L forces thea andb parameters of the ten Bosch model
be exactly the same. Also, the solvent parameters are
physical transport coefficients, which are directly given as
input. There is no need to perform a kinetic theory of t
model in order to obtain the transport coefficients in terms
the model parameters, as it is done in Ref.@15#.

Our approach also puts the ten Bosch model in a conc
tual framework that highlights the validity and limitations
the model as a tool for simulating viscoelastic materia
From the microscopic calculation of the entropy and
physical arguments used to derive the equations of motio
is apparent that this model should provide a good descrip
for dilute polymeric solutions. Semidilute solutions cou
perhaps be treated by including excluded volume effects
the dumbbells and mean field interactions between du
bells using similar ideas as those of van der Waals for sim
fluids. Polymer melts cannot be described by our mode
continuum theory for polymer melts in nonisothermal situ

FIG. 6. Molecular dimensionless stretching growth curve cor

sponding to a shear rateġ50.156. It can be observed that th
steady-state value of^Q2& fluctuates around the equilibrium valu
corresponding to zero shear rate. This shows that the agree
with the theory is achieved quantitatively also in the small sh
rate regime.
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tions has been presented in Ref.@29#, which makes use of a
conformation tensor for describing the microstructure of
melt. The continuum equations for polymer melts in R
@29# could also be discretized in terms of fluid particles w
a well-defined underlying physical picture that respects
laws of thermodynamics.

In this paper, we have presented numerical simulations
isothermal homogeneous shear flow without polymer dif
sivity. For reasons of simplicity, we have modeled the po
mer molecules with Hookean dumbbells, although more
alistic models for polymer molecules can also be conside
Finite extensibility and more complex bead-spring mod
@26# are easily implemented. The simulation results are p
liminary but, nevertheless, reproduce the known theoret
predictions without fitting parameters. Of course, the pot
tial of the method lies in the possibility of exploring mor
complex nonisothermal, nonhomogeneous, and n
Hookean situations.

A final comment on the connection between our mo
and the Brownian Configuration field~BCF! method is in
order. In BCF, there is also only one elastic variable p
~Eulerian! computational cell, and the goal is to reduce t
noise inherent in the method by using the same sequenc
random kicks for all the position over the domain. Then o
has one realization of the vector fieldQ ~and consequently
one realization of the polymeric pressure tensor!, which are
completely correlated over all the space. When the div
gence of the stress tensor is evaluated in the momen
equation, it is usually done by a two-point difference d
cretization, and, because of the total correlation between
sor fields in different points, the noise is dramatically r
duced. In the SPH discretization of the momentum equat
the gradients are represented by a sum~in order to have an
antisymmetric force in the particle index! and not by a dif-
ference. Therefore, our method is intrinsically noisy and
noise level cannot be reduced by the trick in BCF~or we
would lose exact momentum conservation!. In order to study
nonhomogeneous flows, the two options are either to us
large number of dumbbells per fluid particle as in theCONN-

FFESSIT approach or to use a sufficiently large number
fluid particles in such a way that we can perform spa
averages over many particles underlying the same shear
More work deserves to be done in this respect.
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APPENDIX A: REVIEW OF GENERIC

In this appendix, we present a summary of theGENERIC

framework @19#. The state of a system at a given level
description is described by a set of variables that form
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FIG. 7. The dimensionless
elongation of the dumbbell repre
sentative of every fluid particle in
a start up of the shear flow a
times t50.1, 0.3, 0.6, 1.0, 2.0,
and 4.0. Initially the dumbbells
distribute isotropically, but as time
proceeds the distribution become
more and more anisotropic.
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vector x. The energy and the entropy are two of the ba
building blocks of theGENERICformalism and they should b
expressed as functions of the state variables at the given
of description. TheGENERIC dynamic equations are the
given by

dx

dt
5L

]E

]x
1M

]S

]x
. ~A1!

The first term on the right-hand side is called the revers
part of the dynamics and the second term is called the i
versible part. The predictive power ofGENERIC relies in the
fact that very strong requirements exist on the matricesL,M
leaving relatively small room for the physical input about t
system. First,L is antisymmetric whereasM is symmetric
04150
c

vel

e
e-

and positive semidefinite. Most important, the followingde-
generacyconditions should hold:

L
]S

]x
50, M

]E

]x
50. ~A2!

These properties ensure that the energy is a dynamica
variant,Ė50, and that the entropy is a nondecreasing fu
tion of time, Ṡ>0, as can be proved by a simple applicati
of the chain rule and the equations of motion~A1!. In the
case that other dynamical invariantsI (x) exist in the system
~for example, linear or angular momentum!, then further
conditions must be satisfied byL andM. In particular,

]I

]x
L

]E

]x
50,

]I

]x
M

]S

]x
50, ~A3!
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which ensure thatİ 50.
The deterministic equations~A1! are, actually, an approxi

mation in which thermal fluctuations are neglected. If th
mal fluctuations are not neglected, the dynamics is descr
by the following stochastic differential equations@23#:

dx5FL
]E

]x
1M

]S

]x
1kB

]

]x
M Gdt1dx̃, ~A4!

to be compared with the deterministic equations~A1!. The
deterministic additional term involving the Boltzmann co
stant kB appears due to the stochastic interpretation of
equation which is taken to be the Itoˆ interpretation. The sto-
chastic termdx̃ in Eq. ~A4! is a linear combination of inde
pendent increments of the Wiener process. It satisfies
mnemotechnical Itoˆ rule

dx̃dx̃T52kBMdt, ~A5!

which means thatdx̃ is an infinitesimal of order 1/2@30#.
Equation ~A5! is a compact and formal statement of t
fluctuation-dissipation theorem.

In order to guarantee that the total energy and dynam
invariants do not change in time, a strong requirement on
form of dx̃ holds:

]E

]x
dx̃50,

]I

]x
dx̃50, ~A6!

implying the last equations in Eqs.~A2! and~A3!. The geo-
metrical meaning of Eq.~A6! is clear. The random kicks
produced bydx̃ on the statex are orthogonal to the gradien
of E andI. These gradients are perpendicular vectors~strictly
speaking they are if one form! to the hypersurfaceE(x)
5E0 ,I (x)5I 0. Therefore, the kicks let the statex always
within the hypersurface of dynamical invariants.

APPENDIX B: MICROSCOPIC CALCULATION OF THE
ENTROPY OF A DUMBBELL SOLUTION

In this appendix we compute the entropy of a thermo
namic system composed of a set ofNs solvent molecules and
Nd dumbbells. We understand this system as the portion
fluid that constitutes a fluid particle. The dumbbells are
highly simplified model of a real polymer molecule. Th
purpose of this calculation is to provide specific analyti
expressions for the entropy which may have some res
blance with the actual entropy of a dilute polymer syste
We denote byz the set of microscopic degrees of freedom
the system, which arer i , pi for the position and momentum
of the solvent molecules,Ri , Qi for the center of mass an
relative position of the dumbbells, andPi for the bead mo-
mentum. We will denote schematically r5$r i ,i
51, . . . ,Ns%, R5$Ri ,i 51, . . . ,Nd%, and Q5$Qi ,i
51, . . . ,Nd%. The Hamiltonian is given by
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H~z!5(
i

Ns
pi

2

2ms
1(

i

2Nd
Pi

2

2md
1Vs~r !1Vsd~r ,R,Q!1Vd~Q!.

~B1!

Here we have introduced the potential energy of the solv
molecules,Vs(r ), which depends only on the coordinates
the solvent molecules, the potential energy of interaction
tween solvent and beads,Vsd(r ,R,Q) of the dumbbells, and
finally, the potential energy of interaction of the dumbbel
Vd(R,Q). In order to be able to obtain analytical expre
sions, we will assume that the suspension is dilute in suc
way that the potential energy of interaction between solv
and dumbbells can be neglected in front of the solvent
tential energy, that is,Vsd(r ,R,Q)50. Also, we will assume
that the interaction between different dumbbells is negligi
and, therefore, the potential energy of the dumbbells does
depend on the center of mass variables, i.e.,Vd(R,Q)
5Vd(Q).

The entropy, defined as the logarithm of the number
microstates compatible with a given macrostateE, Q is
given by the classic Boltzmann definition

S~E,Q!5kBlnE dzd„H~z!2E…d„Q~z!2Q…. ~B2!

The measuredz is given by the product of solvent an
dumbbell measures

dz5
dNs

pdNs
r

hDNs
Ns!

3
d2Nd

PdNd
QdNd

R

hD2Nd
Nd!

. ~B3!

Here,kB is the Boltzmann constant andh is the Planck con-
stant. The factorialsNs! and Nd! come from the quantum
indistinguishability of the molecules and dumbbells. No
that the entropyS(E,Q) depends implicitly onNs, Nd, and
V, where the volumeV appears because the integrals ov
coordinate variables are defined over the physical volum

Under the dilute assumption, it is possible to perform e
plicitly the integrals over the center of mass variables. In t
case, the integrand of Eq.~B2! does not depend on the cent
of mass variable and each integral over the center of m
vector produces just a volume factorV. We can also perform
the integral over the elongation variables in thed functions
in Eq. ~B2!, with the result

S~E,Q!5kBln
VNd

Nd!
E d2Nd

P

hD2NdE dNs
pdNs

r

hDNs
Ns!

3dS Hs~r ,p!2FE2Vd~Q!2(
i

2Nd
Pi

2

2md
G D ,

~B4!

where the solvent Hamiltonian is

Hs~r ,p!5(
i

Ns
pi

2

2ms
1Vs~r !. ~B5!
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If we introduce the solvent entropy through the usual defi
tion

Ss~E!5kBlnE dNs
pdNs

r

hDNs
Ns!

d„Hs~r ,p!2E…, ~B6!

we can write Eq.~B4! in the following way:

S~E,Q!5kBln
VNd

Nd!
E d2Nd

P

hD2Nd

3expH 1

kB
SsS E2Vd~Q!2(

i

2Nd
Pi

2

2md
D J .

~B7!

This equation is exact as far as the dilute assumption ho
Of course, we would like to have a more manageable exp
sion not involving an integral over dumbbell momenta. F
this reason, we will expand the solvent entropy in the f
lowing way:

SsS E2(
i

2Nd
Pi

2

2md
D 5Ss~E!2

1

Ts~E!
(

i

2Nd
Pi

2

2md

1
1

2CV
s ~E!

S (
i

2Nd
Pi

2

2md
D 2

2•••,

~B8!

whereE5E2Vd(Q) and we have introduced the usual the
modynamic derivatives of the entropy with respect to
energy, that is, the temperatureTs and the heat capacity a
constant volumeCV

s . Note that the solvent entropy is a firs
order function of its variables, that is,

Ss~E,Ns,V!5Nss~e,n!, ~B9!

where e5E/Ns is the energy per unit molecule andn
5Ns/V is the number density. Equation~B9! implies the
following scaling on the number of solvent moleculesNs of
the derivatives of the solvent entropy appearing in Eq.~B8!:

1

Ts~E!
5

]

]ESs~E,Ns!5s(1)~e,n!,

1

CV
s ~E!

5
]2

]E 2
Ss~E,Ns!5

1

Ns
s(2)~e,n!,

]M

]E M
Ss~E,Ns!5

1

Ns(M21)
s(M )~e,n!, ~B10!

where the superscriptM denotes theM th derivative with
respect toe of the solvent entropy per moleculess(e,n).
Given the scaling in Eq.~B10!, Eq. ~B7! becomes
04150
i-

s.
s-
r
-

e

S~E,Q!5kBln
VNd

Nd!
expH 1

kB
Ss~E!J E d2Nd

P

hD2Nd

3expH 2bs~E!(
i

2Nd
Pi

2

2md
J 1OS 1

NsD , ~B11!

where we have introducedbs(E)51/kBTs(E). The Gaussian
integral is now trivially performed and we obtain

S~E,Q!5Ss
„E2V~Q!…1kBln

VNd

Nd!
S 2pmd

h2bs D DNd

1OS 1

NsD .

~B12!

Of course, within the same approximation of neglecti
terms that scale as the inverse of the number of solvent m
ecules, we can also write

S~E,Q!5Ss~E!2
V~Q!

Ts~E!
1kBln

VNd

Nd!
S 2pmd

h2bs D DNd

1OS 1

NsD .

~B13!

The last term corresponding to the integration over
center of mass of the dumbbells has the form of an ideal
contribution. By using Stirling’s approximation (lnN!
'N ln N2N), this ideal gas term has the usual form

ln
VNd

Nd!ld
DNd 5Nd~11 ln ndld

D!, ~B14!

wherend5Nd/V is the dumbbell density and we have intr
duced the thermal wavelength of the beads by

ld5S h2

2pmdkBTs~E!
D 1/2

, ~B15!

and our final result is

S~E,Q!5Ss~E!2
V~Q!

Ts~E!
1kBNd~11 ln ndld

D!1OS 1

NsD .

~B16!

APPENDIX C: ADVECTION OF A VECTOR

We present here an heuristic argument in order to m
vate Eq.~25!. Consider two neighboring pointsr1 ,r2 in a
velocity field v(r ). After a small timet, these points have
moved to positionsr18 ,r28 which are given by

r185r11tv~r1!

r285r21tv~r2!. ~C1!

If we consider the vectorsDr5r22r1 andDr 85r282r18 we
have

Dr 85Dr1t„v~r2!2v~r1!…. ~C2!
4-16
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By expanding the velocity fieldv(r2) aroundr1 we obtain

Dr 85Dr1tDr•“v~r1!. ~C3!

Therefore,

Dr5
Dr 82Dr

t
5Dr•“v~r1!, ~C4!

which provides the time rate of change in a Lagrang
frame of a small vectorDr as it moves anchored with th
flow.

APPENDIX D: DIFFUSION OF DUMBBELLS

Consider a dumbbell diffusing in a fluid at constant te
perature. We understand that this fluid is that portion of
fluid which is contained in a fluid particle with respect to t
reference frame of the fluid particle and with the temperat
corresponding to that fluid particle. For the sake of the d
cussion, though, we assume the fluid as infinite and at r
We assume that each bead of the dumbbell is describin
diffusive overdamped motion governed by the following s
chastic equations

dr15
F~r12r2!

z
1~2D0!1/2dW1,

dr25
F~r22r1!

z
1~2D0!1/2dW2, ~D1!

wherer1,r2 are the positions of the first and second beads
the microscopic dumbbell,F(r12r2) is the force that bead
r2 exerts onr1, and D0 is the diffusion coefficient of the
beads, given by the Stokes-Einstein relationD0
5kBT/6pha, wherea is the bead of radiusa and h is the
solvent shear viscosity. The vectorial independent increm
of the Wiener process satisfy

dWadWb5dab1dt. ~D2!

By changing to center of massR5(r11r2)/2 and relative
coordinateQ5r12r2 variables, we have

dR5~2D0!1/2
dW11dW2

2
,

dQ5
F~Q!

z
1~2D0!1/2~dW12dW2!,

5
F~Q!

z
1dQ̃. ~D3!

In order to compute the diffusive motion of the center
mass of the dumbbells, we need

dR•dR5D0dt, ~D4!

which corresponds to a diffusion coefficientD0/2. The
physical meaning of this is that the dumbbell is subject
two friction forces ~one for each bead!, and therefore the
04150
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center of mass diffuses withhalf the diffusion coefficient of
each bead. We also need to compute

dQ̃•dQ̃54D0dt. ~D5!

This means that the average dumbbell elongationQ is sub-
ject to a random walk with a diffusion coefficient given b
2D0.

APPENDIX E: SMOOTHED PARTICLE DISCRETIZATION
OF THE ADVECTION-DIFFUSION EQUATION

Consider the advection-diffusion equation for the conc
tration of a passive densityn(r ,t) in a velocity fieldv(r ,t),

]n

]t
52“•nv1“•

Tn

z
“

m

T
, ~E1!

where m5m„n(r ,t)… is the chemical potential field andT
5T(r ) is the temperature field. For a very dilute system, o
can use the ideal gas form for the chemical potentialkBTlnn.
If we further assume an isothermal system, the above eq
tion becomes

]n

]t
52“•nv1D¹2n, ~E2!

whereD5kBT/z is the diffusion coefficient andz56pha is
the friction coefficient of the beads of radiusa with the sol-
vent of shear viscosityh.

We write Eq.~E1! in the Lagrangian form by using th
usual substantial derivative

d

dt
5

]

]t
1v•“, ~E3!

so we obtain

dn

dt
52n~“•v!1“•

Tn

z
“

m

T
, ~E4!

which expresses the time rate of change of the concentra
field as we move with the flow field.

Our aim is to discretize Eq.~E4! on the fluid particles
following the smoothed particle hydrodynamics philosoph
A discrete version of Eq.~E4! would read

ṅi52ni
d~“•v! i1S“•

Tn

z
“

m

T D
i

. ~E5!

Instead of working with the densityni
d we prefer to work

with Ni5ni /di , the actual number of suspended particles
the fluid particle of volumedi

21 . This variable evolves ac
cording to

Ṅi52Ni

ḋi

di
2

ni

di
~“•v! i1

1

di
S“•

Tn

z
“

m

T D
i

. ~E6!

This equation is still a meaningless collection of symb
until we specify how the derivatives in the parenthesis
computed. The divergence of the velocity field (“•v) i at the
4-17
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location of thei th fluid particle can be computed from Eq
~28!. The final result can be written as

~“•v! i5
V̇i

Vi
52

ḋi

di
. ~E7!

The physical meaning of this equation is clear, the div
gence of the velocity field is associated to the relative rate
change of the volume of the fluid particles, as expected.
ter substitution of Eq.~E7! into Eq. ~E6! one obtains

Ṅi5
1

di
S“•

Tn

z
“

m

T D
i

, ~E8!

and we observe that if the dynamics is given by t
advection-diffusion equation~E1!, then the rate of change o
the number of suspended particles as we follow the fluid
entirely due to irreversible processes~governed by the trans
port coefficientz). This is consistent with our requiremen
that the reversible part of the dynamics forṄi is zero, as
expressed in Eqs.~33!.

We still have to provide an expression for the derivativ
appearing in Eq.~E8!. We follow here the interpolant metho
first proposed by Cleary and Monaghan@31#. As a prelimi-
nary, we introduce the isotropic functionF(r ) through

“W~r !52rF~r !, ~E9!

which satisfies

E drr •••rF~r !50, ~E10!

if the number ofr ’s is odd by isotropy. It also satisfies

E drrr F~r !51, ~E11!

as can be proved from

E drr “W~r !521. ~E12!
de

eo

04150
-
f

f-

is

s

This equation is obtained from a partial integration and
normalization of the weight functionW(r ).

Now, consider the following integral:

E dr @B~r 8!1B~r !#@A~r 8!2A~r !#F~ ur2r 8u!,

~E13!

where A(r ) and B(r ) are arbitrary functions that chang
slowly on the scale of the range ofW(r ) and F(r ). By
Taylor expandingA(r 8),B(r 8) aroundr , neglecting terms of
order higher than the second, and using Eqs.~E10! and~E11!
we obtain that the above integral is given b
“•@B(r )“A(r )#, up to terms involving higher-order deriva
tives. The next step in SPH is to discretize the integral on
locations of the particles

E dr @B~r i !1B~r !#@A~r i !2A~r !#F~ ur2r i u!

'(
j

1

dj
@B~r i !1B~r j !#@A~r i !2A~r j !#F~ ur j2r i u!.

~E14!

So finally, we obtain the following interpolant for computin
the second derivatives at a particle location, i.e.,

$“•@B~r !“A~r !#% i'(
j

1

dj
~Bi1Bj !Ai j Fi j , ~E15!

whereBi5B(r i), Ai j 5A(r i)2A(r j ), andFi j 5F(ur j2r i u).
With this result ~E15! inserted into Eq.~E8!, we can

readily obtain a discretized version of Eq.~E1! on the La-
grangian grid of moving fluid particles in the form

Ṅi5
1

di
S“•

Tn

z
“

m

T D
i

5(
j

Fi j

djdi
S Tini

z
1

Tjnj

z D S m i

Ti
2

m j

Tj
D .

~E16!

Note that this equation conserves the total number of s
pended particles,( i Ṅi50.
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@19# H.C. Öttinger and M. Grmela, Phys. Rev. E56, 6633~1997!.
@20# P. Espan˜ol, M. Serrano, and H.C. O¨ ttinger, Phys. Rev. Lett.83,

4542 ~1999!.
@21# M. Serrano and P. Espan˜ol, Phys. Rev. E64, 046115~2001!.
@22# E.G. Flekko”y, P.V. Coveney, and G. DeFabritiis, Phys. Rev.

62, 2140~2000!.
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