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Pulse dynamics in a chain of granules with friction
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We study the dynamics of a pulse in a chain of granules with friction. We present theories for chains of
cylindrical granulegHertz potential with exponent=2) and of granules with other geometrigsX2). Our
results are supported via numerical simulations for cylindrical and for spherical gramuwHes2).

DOI: 10.1103/PhysReVvE.68.041304 PACS nuni)erd5.70—n, 05.45:-a, 45.05+X

[. INTRODUCTION The displacement of thkth granule k=1,2,...L) in
the chain from its equilibrium position in a frictional medium
The propagation of pulses in granular materials has beenia governed by the equation of motion
subject of vigorous recent interest. Seminal work on this sub-
ject was carried out by Nesterenkb| two decades ago in his d?yy ~dy n—1
analysis of the propagation of nonlinear compression pulses ™ 2 =~ Y, kY )" POV Vi d)
along a line of particles. This early work firmly established
the nonlinear flavor of the problem: Nesterenko showed that +a(yYe_1— Y0 0V 1—Yi)- 3)
under appropriate assumptions, among them the slow spatial
variation of the displacements of the particles, the equationklere 6(y) is the Heaviside functiong(y)=1 for y>0,
of motion for granular particles could in most cases be apf(y) =0 for y<0, and §(0)=1/2. It ensures that the par-
proximated by a continuous nonlinear partial differentialticles interact only when in contact. Note that for open
equation that admits a soliton solutidkater shown to actu- boundary conditions the second term on the right hand side
ally be a solitary wave solutiof2,3]) for a propagating per- Of this equation is absent for the last granule and the third
turbation in the chain. The recent revival of interest in theterm is absent for the first, while for periodic boundary con-
subject[2—16] has been triggered in part by a concern withditionsyy.| =Y. In terms of the rescaled variables and pa-
important technological applications such as the design ofameters
efficient shock absorbef44], the detection of buried objects

2\ 1n 1 2\ 1n

[5—8], and the fragmentation of granular chaf8g. The re- _[Mo} 2 (MY
vival has involved advances in the modeling, simulation, and Yk a ko vo\ a ’
solution of the equations associated with important features
of granular materials such as their discreter{&ss8,10,14, Y (mu3)
dimensionality[ 14], disordef7,11,14, and loading provided Yo\ a | 4
by gravitational force$4,7,13,14,17,1B The preponderance
of the work has been numerical, but important analytic ad£q. (3) can be rewritten as
vances have also been made, as well as experimental verifi-
cations of some of the theoretical predictid6sl6]. Xe=— YXk— (Xe— Xper )" 100X — X 1)
The standard generic model potential between monodis- no1
perse elastic granules that repel upon overlap according to (X 1= X)X 17 X, 5

the Hertz law is given by19.2q where a dot denotes a derivative with respect to

Initially the granules are placed along a line so that they
just touch their neighbors in their equilibrium positiofro
precompression and all but one granule, granuigare at
rest. The velocity of granulé is vy (the impulse. In the
rescaled variables the initial conditions becomg(0)
=x(0)=0V k#i, x,(0)=0, andx;(0)= 1. In our work we
seti=1.

In the absence of the frictional contributienydy, /dr or

— ¥Xx, whenn>2 an initial impulse settles into a pulse that
Skk+1=Yk+ 1~ Yio (2) becomes increasingly narrow with increasimgand propa-
gates at a velocity that is essentially constant and determined
a is a constant that depends on the Young’'s modulus anly n and by the amplitude of the pulse. For=2 the pulse
Poisson’s ratio, ang is the displacement of granukefrom  spreads in time and travels at a constant velocity independent
its equilibrium position. The exponentis 5/2 for spheres, it of pulse amplitude. In the latter case there is considerable
is 2 for cylinders, and in general depends on geometry.  backscattering that leads to backward motion of all the gran-

a n
V(kk+1) :ﬁ| Slkkr1, 0<0,

V(8kki1)=0, 5>0. (1)

Here
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ules behind the pulse, whereas the backscattering is miniméihuum approximations are two-body or three-body phenom-
for n>2 [9]. The pulse is a completely conservative solitaryenologies. These provide considerable qualitative insight into
wave in the limitn— . some consequences of discreteness, but are quantitatively not
Our interest lies in ascertaining the effects of the fric- sufficiently accurate because the true dynamics extend over
tional contributions on these resultalthough friction is on ~ more than two or three granules. In this paper, even while
occasion mentioned in theoretical and numerical work, it isfocusing on the effects of friction, we make an attempt to
usually mentioned as an element that is neglected or omitte@ovide some clarity on these issues.
However, its presence and importance in experiments is rec- Numerical simulations are of course extremely helpful
ognized as inevitablg16]. Note that frictional effects may and ultimately an accurate test of theory. the that the re-
arise not only from the forces between the granular chain angcaled system, Eg5), has no free parameters in the absence
the surrounding medium but also from the conversion ofof friction and only a single parameter when there is friction,
translational motion to other degrees of freedéeny., rota- and_ therefore .num_erlcal_ characterization is partlpular!y
tion) [16]. In an earlier paper we analyzed in detail the ef_stralgr_1tfo_r\Nard in this particular system: .HO\_/vever, this uni-
fects of frictional forces on the dynamics of two granules,Ver_Sa“ty |sllost with any number of.modlflcatlons that might
specifically the way in which forward and backward motion be interesting a_nd have been cons_ldered recently such as, for
of the granules is affected by these for¢@4]. Herein we ©€Xample, tapering of the masses in the chaf,16,23 and
extend that work to a chain of granules. mas_s[?,ll] or frictional [21] dlsorder. Consequently, it is
Since our approach will in general follow establisheddesirable to have a strong analytic backdrop. _
methods, it is useful to lay out at the outset an overview of 1he paper is organized as follows. Section Il deals with a
the principal approaches that have been implemented in tr@am of cylindrical granuleg. F|rst' we review existing results
study of pulse dynamics in frictionless chains, and the varifor frictionless granules, discussing them in the context of
ous features that determine these dynamics. Theoretical stulfl€ issues and uncertainties noted earlier. We then extend the
ies of pulse dynamics in frictionless chains have mainly reIheory to granules subject to friction, and present numerical
lied on three approache€l) numerical solution of the simulations in supp_ort of these results. In Sec. I_II we _foIIow
equations of motior(4,7,9-11,14,18 (2) continuum ap- the same prefsentatlon sequence for granulesrmtﬁ,_wnh_
proximations to the equations of motion followed by exact Orspgual attention to spherical granules in our _num.encall simu-
approximate solutions of these approximate equation&at'ons- A summary of results and of future directions is pre-
[1,9,18; and (3) phenomenology about properties of pair- S€nted in Sec. IV.
wise (or at times three-bodycollisions together with the
assumption that pulses are sufficiently narrow to be princi-
pally determined by these propertigkb,22,.
From these studies it is clear that three features determine Cylindrical granules have provided a theoretical test bed
the dynamics in these chaind) the powern in the poten-  for dynamics in granular chains because the exponern2
tial; (2) the absence of a restoring force; @Biithe discrete- leads to analytic manageability not available for other poten-
ness of the system. tials. Although sometimes called the “harmonic” case, it
While each of these leads to essential aspects of the dwhould be remembered that the Hertz potential is quite dif-
namics, the literature is not always entirely clear on whichferent because there is no restoring force, that is, the cylin-
feature is determinant in a particular behavior, nor is it al-drical Hertz potential is half of a harmonic potential. The
ways clear which of these features is being approximated aderivative of the force law therefore changes discontinuously
even ignored. One example is the equivocal connection bedetween extension and compression. This leads to consider-
tween the dynamics of granular systems and systems witable differences in the chain dynamics. Nevertheless, some
power law interaction potentials thanclude a restoring aspects of the cylindrical chain dynamics can be inferred
force. For instance, there is an extensive literature on th&om those of a harmonic chain, and this can be exploited to
Fermi-Pasta-UlanfFPU) chain with purely nonlinear inter- great advantage in the analysis.
actions of the form appearing in E(p) with n>2 but with- If one were to ignore the absence of a restoring force and
out the Heaviside? functions[23]. Highly localized pulses implement the simplest continuum approximation to Exj.
propagate in these systerfis4,24], but their relation to the in the absence of friction, the result would be a simple wave
localized solutions in granular systems is by no means cleaequation with diffusive coupling whose solutions do not rep-
This ambiguity is exacerbated by the fact that discrete sysresent the observed behavior of the 2 chain. In reality, an
tems are frequently approximated by continuum equationgnitial impulse in the chain described by E) in the ab-
While the pulselike(soliton or solitary wavgsolutions that  sence of friction moves as a spreading pulse. Although the
emerge from these approximations are assuifaedl even pulse spreads and sheds some energy, the waveform can nev-
shown numerically to describe certain aspects of granularertheless be clearly identified as a pul8&. Its maximum
system, the continuum approximations never explicitly re-k,,,,(t) travels forward with a constant unit velocity and a
spect the absence of a restoring force, i.e., they are momisplacement amplitude that increases t4§. The pulse
clearly justifiable for FPU-like systems. And so with thesespreads in time as’3, more slowlythan it would in a system
solutions in hand, it is not clear what consequences of thevith diffusive coupling. It is interesting to understand which
absence of a restoring force and of the discreteness of thef these features are due to the discrete nature of the chain,
system have been lost. In some sense opposite to the coand which are due to the absence of a restoring force. Fur-

Il. CYLINDERS (n=2)
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ther, once these questions have been answered, it is interestanifestation of discretenes9ne assumes that the absence
ing to explore what happens to these features in the presenoé a restoring force does not affect this result because the
of friction. granules within the pulse are in fact overlapping most of the
Our presentation of the chain of cylindrical granules con-time and hence subject mainly to the repulsive portion of the
sists of three parts. First we review the results of Hinch angotential. Note that the continuum approximation together
Saint-Jean(HSJ [9] for a frictionless chain, and we recast with the conservation of energy are then sufficient to arrive
the problem in a way that clarifies some of the approxima-at the conclusion thab(t)~t'® i.e., the pulse amplitude
tions made in that work and pinpoints the sources of differ-actually grows with time.
ences between the=2 chain and a purely diffusive cou- (4) It is not yet clear that Eq(6) is actually compatible
pling. We supplement this review with our analytic resultswith Eq. (7) until one determines the functidnSubstitution
that reproduce some of their purely numerical ones. Then wef Eq. (6) into Eq. (7) and retention of leading terms in
modify this analysis to include the effects of weak hydrody-leads to the equation fdi(£),
namic friction on the granules. Finally, we complement this
analytic(and necessarily approximateeatment with a com- f"—8&f"—4t"=0. ©)
parison with numerical simulation results for the frictional

chain of cylindrical granules. This equation has four solutions. The one consistent with the

requirement thaf(¢) decays for large (i.e., ahead of the
wave and consistent with the assumption of energy conser-
vation by the pulse i§26]
The HSJ theory is based on the following approximations
implemented consecutively and independently. f(&)= NJ AiZ(213y)dy, (10)
é

A. Frictionless granules—theory

(1) The solution is assumed to be described by a traveling
pulse of constant form which propagates at constant unit
speed and has an amplitudeand width\ that vary slowly — where Ai(z) is an Airy function and

with time: c "

k—t N=| ——>——| =3533/E,. (12
x(k,t)=b(t)f(—). (6) in4(21’3y)dy
éo

A(t)
(2) The pulse is assumed to retain almost all of its initial . 18, )
energy. HSJ show that assumption 1 leads to equipartition ozie(r;; Ep is the pulse energy and %o is the first zero of

this energy between potential and kinetic forms, as should be These features describe the traveling displacement pulse

the case for a harmonic potential. of increasing width and amplitude quite accurately, as shown
These two assumptions are sufficient to lead to the con;: gV ) mpiitude q Y,
clusion thath o b2. by the numerical simulations in Ref9]. We note that the

(3) A continuum approximation is implemented that takestoutlasleegfrgr{eOf rtgr?ufgsitseT/gv 't_?htgen:Jnr:giclg:'tr;’;ﬁgtz f"IT—]|-SJ
into account some discreteness effects. In the lowest ord éad to an asgm totic ulsé eneray Bf—0.48. that is
diffusive coupling approximation, one would set the differ- 0 ymp puise gy B=0.48, '
enceX, 1+ X 1— 2%~ d2x(K)/ k%, Retention of the next 96.2% of the energy resides in the pulse. Below we calculate

ot Tkl hy . the pulse energy analytically.
term in a Taylor series expansion xf.; aboutx, leads to

the continuum approximation that incorporates some of the ;Tei?]ilt:ggézaﬁsnzozv&:g tr:r\{i?:lllgg g:'cst‘:d"'bsa‘l I?vlvsa?rtljn;/seihe
effects of discreteness: 9 p ]

pulse goes by. That particles must be ejected is a conse-

2x(kt) xkt) 1 ax(kit) quence of the conservathn of mc_)mentym: the trayelmg pulse
= +— ) 7 of constant energy and increasing width and displacement

at? k> 12 pk# amplitude carries increasing forward momentum, which
must be balanced by the backward momentum of the ejected

Note that this expansion includes a restoring forgdrans-  particles. One then arrives at the next item on the list of
formation to a moving frame with unit propagation velocity, assumptions.

i.e., a change of variables frokandt to »=k—t andt, (5) The absence of a restoring force is explicitly recog-
transforms this equation to nized in the calculation of the momentum of the ejected par-
ticles, which simply keep traveling backward with the mo-
S 1 J*x mentum they acquire at the moment of separation from the
2 dtav 12 g A (8) pulse. Equating the rate of change of the momentum of the

forward pulse at timé to that of the particle ejected at that
Regardless of the form df(t) or of the functiorf, thisis  time leads to the conclusion that the backward momentum of
sufficient to establish that the solution, E), is consistent thenth particle isx,= —ct~%%= —cn~%5, the latter equality
with this equation only i\ ~tY3 and also that the next term arising from the unit speed of pulse propagation. The nu-
in the Taylor series expansion is unimportant for this resultmerical simulations of HSJ lead to the valae=0.158, a
The width of the pulse is therefore governed by the firstvalue that we obtain analytically.
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To obtain analytic results for the pulse enefgyand the Like the continuum equation, this of course includes restor-
constant of proportionalitg, we note that the forward mo- ing forces. This equation can be solved exaf¥|,
mentum of the propagating pulse is

t
- b(t) X()=| Jpe_o(2t")dt’ (19
P= 2 x(ki= 2 f'(8) ‘ e |
x(k,t)>0 x(k,t)>0 A (D) °
=b(t)fwf’(§)d§=Nb(t) (12) whereJ, (2) is the Bessel function of the first kif@6]. The
£ ' solution is a moving spreading pulse along with oscillatory
displacements that are left in its wakprecisely because
where there are restoring forcesThe peak and width of the pulse
can be obtained from the properties of the Bessel functions,
S | a2l _ oE. in particular, from knowledge of their first two zeroes and the
N NLOAI (276)de=1.37THE,. (13 first maximum[27]. The maximum of the pulse occurs at

Kmaxd(t)=t+O(t®), so the pulse velocity is unity. Its width
The rate of change of the forward momentum thenPis increases as'>. In these features the solution is similar to

—Nb(t). Since the pulse velocity is unity, this is the momen-the one assumed in E¢6). However, the amplitude of the
tum transferred to the last particle as it is ejected: displacement pulse does not grow but is instead constant in

time.[If we write the Bessel function solution in forfé) but

. N N with b(t) equal to a constant independenttpfve find from

vp=—P=—Nb(t)=— <t ¥=—_n=5%_ (19 substitution into Eq.(7) that f satisfies the equatiorf”
6 6 —8zf"—8f'=0.] The pulse energy according to this de-

scription is not constant but instead decreases &S. The

The backscattered energy then is energy that is lost goes into the oscillatory displacements in

~\2 o the wake of the harmonic pulse caused by the restoring
Eb=£(ﬂ) 2 k~553=0.056 (15) forces. Th_ea;jditional and appropriate assumpti.on ehergy
216/ =1 P conservatiorin HSJ adds this lost energy back into the pulse
without affecting its spreading rate or velocifyhis indicates
and for the total energy we obtain that (in then=2 problen) energy conservation is an appro-
priate additional assumption in lieu of the absence of a re-
E=E,+E,=1.056,, (16)  storing force

o _ _ In summary, the fact that the solution of the=2 Hertz
from whlch it |mme(_j|ately follows that asymptotically the problem is a spreading pulse of unit velocity and of width
energy in the pulse is that increases as’® is purely a consequence of the discrete-
E —0094F 17 ness of the system and not d_ependent on the presence or
P : absence of restoring forces; it is a feature of a discrete har-
Thus, 94.7% of the energy resides in the pulsebe com- monic system. Thénea) con;ervation of energy in the_ pulse
pared to the HSJ value of 96.2% obtained from simulanionsIs nota f‘?‘?‘t“fe of a harmonlc system _and must be included
and the remainder is backscattered. With the initial conditiorf> aradditionalassumption. anservatlon of energy must be
E=1/2 used in all simulations we thus have for the constantémplemented not only to desprlbe all the features of the trav-

i ) = . eling pulse but also to describe the backward momentum of
defined earlieN=2.431 andN=0.949. The constant i {he particles ejected as the pulse moves along. Extensive
HSJ isc=N/6=0.158, exactly as they obtained from nu- numerical results quantitatively supporting the features just
merical simulations. described can be found in R¢f].

This essentially completes the solution. The summary de-
scription is then that an initial velocity impulse propagates
forward at unit speed, with a width that grows &8 and a
displacement amplitude that growstd€. This pulse carries Here we generalize the previous theories to a chain in
almost all of the initial energy and its momentum increaseswhich the granules experience frictipef. Eq. (5)]. We gen-
This increase in momentum is compensated by granules thatalize the HSJ theory to this case and also use the solution
are ejected backward as the pulse passes. The speed of tifethe damped harmonic chain to complement these results.
ejected granules decreases, titb granule being ejected (1) The solution is assumed to be a traveling pulse of
with a speed proportional to~ >, constant shape which propagates at unit speed, has awidth

Further insights can be gained by viewing this problem athat varies slowly in time, and an amplitude tleside from
bit differently. Suppose that we do not implement a con-an exponential decay due to the frictiaiso varies slowly
tinuum approximation at all, but instead focus on the fullwith time:
discrete equation

B. Granules with friction—theory

x(K,t) =e‘7”2b(t)f(g) . (20)

.).(k:Xk+1+Xk—l_2Xk' (18) )\(t)
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We _retain on_ly they—indepen_de_nt portions of the slowly P27 92z 192 ¥
varying functions\ and b. This is thus a “lowest order” — =5t Z (27
ansatz. Indeed, we will show later that corrections to this gt? dtov 1244 4

lowest order ansatz seem to ®¢y°). The pulse energy then

decays exponentially as . Explicitly, the kinetic energy ~With the ansatz
is obtained as follows. Retaining only leading orders in time,

the pulse velocity that follows from Eq20) is

z(k,t)=Db(t)f O

k—t
—) (28

5<(k,t)=—e—7“2@f'(E +O(yt). (21

NOEYD)

associated with Eq20) this is again sufficient to establish
that the pulse widens as~t3. Corrections begin to set in

Therefore, the kinetic energy ©(1) is when the last term in Eq27) becomes important, i.e., for
. b . 5 timest=y~ %2 For smally this is a time much longer than
K(t)=e "= 2 [ﬂf,(_t” the entire lifetime of the pulse, which @(y 1) due to the
2K MY N overall exponential decay. As before, we are again led to the

conclusion thab(t) ~t%S.
fc[f’(g)]zdg (4) The envelope function is again the solution of E9).
& with correctionsO(y?).
) (5) As before, as the pulse travels forward granules are
E —yt b™(t) (22) ejected backwards. In the frictionless problem these granules
2 NGON continue moving backward with the same velocity forever
after ejection because they are simply freely moving gran-
whereE, is the undamped pulse energy. On the other handjles. In the problem with friction these granules progres-
the potential energy may be written as sively slow down because they, too, are damped, but it is of
interest to calculate their momentum at the moment of ejec-
ax(k,t)]? tion from the pulse. Indeed, we now show that in the pres-
Tk | (23 ence of damping the backward ejection momentugréster
than in the undamped chain, a result consistent with that

L b%(1)
2 N D)

1 1
u(t)= > ; (X1~ Xp) 2= > zk

which also leads to found in a two-granule systef21].
The forward momentum of the propagating pulse to
Ep 7ytb2(t) O(’yt) is
U(t)—?e NG (24) ot
P= x(k,t)= e W2__" ¢/
to O(yt). The total pulse energy to this order then is ;<(|<%>o (k) k(%m A(t) (8)
b2(t) a2 f* , N2
Ep(t):Epefth. (25) e b(t) gof (§)d§ Ne b(t), (29)

(2) We assume that almost all of the energy resides in thevhere N is given in Eq.(13). The rate of change of the
decaying pulse. forward momentum is
These results and assumptions are thus again sufficient to

conclude thaicb?. It then follows from Eq.(25) that the b(t)
only effect of friction to this order is thus the overall expo- P=Nb(t)e™ yt/Z( 1— 7_) ) (30)
nential decay of the energy. 2b(t)

(3) As before, a continuum approximation is implemented
that takes into account some discreteness effects and ghe last particle in the pulse loses momentdnthrough
course the frictional contributiowhile still including the  dissipation as the pulse moves across it. This momentum loss
nonexistent restoring force, as befprEor this purpose itis s the difference in the momentum of this particle when it is
convenient to implement the change of variabE%,t)  in the middle of the pulséi.e., when it is maximally com-
=e"?x(k,t). Retention of the next term in a Taylor expan- pressed, at which point its momentum is 2eamnd when it is
sion of z,.; aboutz, beyond the purely diffusive approxi- at the end of the pulse and about to be eje¢s&avhich point

mation leads to its compression is zeyo
Pz(k,t)  *z(k,t) 1 d*z(kt 2 W Ax— — A Ne- 2
(2 ) _ 7« )+_ ( )+7_Z(k,t)_ 26 8= — yAX=— yXmax= — YNe~ "2p(t). (3D
at ok 12 k4 4

Since the pulse velocity is still unity, the momentum trans-
The associated moving frame equation=k—t) is ferred to the last particle as it is ejected is
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) ~ . b(t b(t 10
vp=—P+ 5=—Ne7“2b(t)(1—7.—()+7.—())
2b(t)  b(t) A
N
=— e A1+ 3y). (32
6 >
. . . . -t
To facilitate comparison of this result with that of the fric- J;é 10

tionless chain we expand the exponential and retain term¢
O(t):

N 5
Ub:_gt_S/G(l‘l‘ E’yt). (33)
-4 \ 1 L 1 L 1 L
_ . o - 10y 2000 4000 6000 8000
This confirms that the backward ejection momentum is in- t

deed greater than in the undamped chain

The forward moving pulse of the=2 Hertz problem FIG. 1. Total energy decay as a function of time. The energy

. e . - o decays exponentially & ”* (lines). The symbols are the numerical
with small friction is essentially identical in shape to that of simulations: circles fory—0.001, squares foy=0.005, diamonds

the frictionless problem except for an overall exponential _
: - . . for y=0.007.
decay. The pulse travels at unit speed and its width increases

1/3 - - - _
ast™, these two featyres again being a consequence of dI%jected as the pulse moves along. This backward momentum
creteness and essentially unaffected by friction. The assum

tion that the pulse energy decreases only because of the fri%ygtfmater in the chain with friction than in the rictioniess

tion is an additional assumption. This feature must again bé
implemented separately to describe the amplitude of the trav- _ _ _
eling pulse correctly, and also to describe the backward mo- C. Numerical simulations

mentum of the granules ejected as the pulse moves along. |n this section we check the accuracy of our analytic re-
An analysis of the full discrete equatidwith restoring  sults for then= 2 frictional chain through numerical simula-

forceg starts from the linear equation tions. First, we note that the total energy of the system de-
. . creases exponentially, as seen in Fig. 1 for various values of
X=Xt 1 F X177 2X— YXic- (34 the friction coefficient. For times=<10y™ !, aside from the

overall exponential decay of the energy the system behavior

; _ a2 ; ;
The change of variablez(t) =e”"*x(t) immediately leads is indeed the same as that of the frictionless system in that it

o broadens as*® and propagates at unit velocity. We find that
) 2 the pulse ceases to exist at a time of the ordert of
L =Zyi 1+ 21— 27+ 7 % (35 ~10y~*. More specifically, we find that at a time 8.6y *
the pulse energy decreases abrufihpre rapidly than expo-
and consequently to the solution nentia) and at a time~15.7y"* the backscattered energy

becomes greater than the pulse energy.
t e ) We must check our prediction for the self-similar impulse
fOJZk—Z(Zt )dt’ +0(y?)|. (36) wave f(£) propagating along the chain of particles. We fol-
low HSJ and plot the scaled velocity as a function of the

The solution is a moving spreading decaying pulse alongcaled position for different times in Fig. 2. From Hg1)
with decaying oscillatory displacements. As before, the peakn€ appropriate scaled velocity to leading order in the friction
of the pulse occurs akna(t)=t+O(tYd), its width in- is f’(&)=x\e??/boxtY®%e"2 and this is the ordinate in the
creases as'®, and the amplitude of the pulse decays expo-panels. The abscissa isé&=(k—t—0.25)A«(k—t
nentially. —0.25% 3. The shift 0.25, which also occurs in the fric-
In summary, the fact that the solution of the=2 Hertz  tionless case, is carefully explained and derived in HSJ and
problem with friction is an exponentially decaying spreadingcomes about because the scaling function solution has ve-
pulse of unit velocity and of width that increasest&S is  locities in the propagating impulse wav@(t~ %) (here
purely a consequence of the discreteness of the system anwbdified by the exponential friction facfomhile the re-
not dependent on the presence or absence of restoring forcdmund velocity of particles i©(t~*%) (again modified by
it is a feature of a discrete harmonic system. The assumptiotine exponential factor This indicates that there must be a
that the pulse retains almost all of the system enérdyich  correctionO(t~??) to the leading-order term, and this cor-
decays exponentiallyis againnot a feature of a harmonic rection appears as a shift in the scaling. The solid curfé is
system and must be included as aditional assumption. as obtained from Eq10), while the points are the results of
This conservation feature must be implemented not only t@ur numerical simulations. The agreement is very good pro-
describe correctly all the features of the traveling pulse buvided the damping is small, but serious deviations begin to
also to describe the backward momentum of the particleset in with increasing damping, as seen in padgl

X(t)=e "2
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0.8

-2 -1 0 1 2 3 -2 -1 0 1 2 3
(a) (x-t-0.25)t 173 (b) (x-1-0.25)t 173 FIG. 2. Chain of cylindrical granules: scaled
velocity pulse as a function of scaled position for
different friction coefficients.

2 4 0o 1 2 3 2 4 0 1 2 3
(0) (x-t-0.25)f 13 (d) (x-t-0.25)t 3

We have not calculated further corrections analytically,higher with increasing friction, up to a time beyond which
but a numerical test is possible. One might test a correctiomore complex behavior not captured by our lowest order
O(y) [cf. Eq. (2D], e.g., of the form b(t)=tYf1  theory sets in. In the second panel we have scaled the veloci-
+yC(w,1)], orO(¥?) [cf. Eq.(36)]. The coefficienCinthe  ties by the factor (¥ 2 yt) which, according to our theory,
correction would in general be a function of We have  should collapse the curves. At very early times, while the
tested various corrections with thadmittedly unjustifiel  collapse occurs with the scaling predicted by our theory, the
assumption tha€ does not depend on (the numerical effort  resulting curve is not yet the theoretical one because the
to do otherwise seems unwarranteahd have found that the pyise is not yet clearly defined. However, after this early
leading correction seems to b8(y"), specifically b(t) = period we see both the collapse as well as agreement with the
=t"(1+27y°1). This result is analytically appealing but is theoretical line up to times at which higher order effects set
purely a numerical outcome. The rescaled velocity results argy indicating that our theory captures the correct behavior up

shown in Fig. 3. to those times.
Finally, we have predicted a somewhat unexpected feature
of the backscattered granules, namely, that at the moment of lll. SPHERES (n=5/2)
ejection their velocity igreaterthan that of the correspond-
ing ejected granules in the absence of frictich Eq. (33)]. The archetypal system for the study of impulse dynamics

This is seen in Fig. 4. In the first panel we show the velocityassociated with a Hertz potential of exponent2 consists
of the last ejected granule as a function of time for differentof spherical granules. Such a nonlinear potential gives rise to
values of the friction coefficient. The velocity is indeed a traveling pulse of essentially constant speed that seems to

-2 -1 0 1 2 3 -2 -1 0 1 2 3

() (x4.0.25)3 (b) (x0.251/3 FIG. 3. Chain of cylindrical granules: velocity

pulse corrected for higher order frictional effects
as a function of scaled position for different fric-
tion coefficients.

2 4 0o 1 2 3 2 4 o0 1 2 3
(o) (x4-0.25)t 13 (d) (x-t-0.25)t 18
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loglo(—vb/(1+2.5 Yt)

] P P B

] 15 2
(b) log, (1)

FIG. 4. Backward velocity of the last ejected granule as a function of time. The curves are fofthick line), 0.001(dash-dotted ling
0.005(dashed ling 0.007(dotted ling, and 0.01(thin line). The line with the star symbols in the second panel has stop. The slope
of the frictionless curve is exactly 5/6, as predicted by HSJ.

retain its shape for very long times, i.e., it travels with es-to a continuum approximation with some contributions due
sentially constant amplitude and constant width. We say “esto discreteness for the FPU problem. The starting equation is
sentially” because this is the outcome of approximate theothus

ries [1,9] and of numerical simulation§9] but is not a )

rigorous resul{except forn—). The pulse arises from the Xk=— (Xe—Xper )" T+ (X1 —x)" ! (37
balance of the dispersive forces that tend to spread the exci-

tation, and the nonlinear and discrete nature of the systemnd the resulting continuum approximation is
that focuses it. As we saw in the last section, discreteness is

not sufficient to stop the widening of the pulse, but only to X 9 { ( ax)”‘l n—l( ax)“‘z(ﬁx

slow it down. Nonlinearity is necessary_to obtain a pulse qf 72 ok ok + 24 ok P
constant width, at the very least approximately. The result is

a narrow pulse, involving no more than a handful of particles 1 53 ox\ N1

at any time. The pulse is narrower with increasimdput it is - — —[( — —> } (38)
already sharply defined in the classic case5/2. This sort 24 g3 ok

of behavior is also known from the classic FPU problem
where the potential typically considered is quartie; 4 (or ~ This equation reproduces E(f) whenn=2.
a combination ofn=4 and lower order contributioisand As before, one implements a change of variables to a
includes restoring force®4]. The absence of dispersive re- moving frame, with{=k—cot. Herec, is a speed to be
storing forces in a Hertz system causes the localized excitgletermined. The big difference between the equation one ob-
tion to be even more stable than in the associated FPU sy#ins withn>2 and that obtained earlier for=2 [Eq. (8)] is
tem. that it only involves the variablé; the variablet no longer

In this section our analysis again consists of three partsappears explicitly:
We begin by briefly reviewing the theory for a chain of fric-

tionless spherical granules as first presented by Nesterenke | [ dx ax\""t n=1( ox\""2 §? X
[1_]. _Then We_mod|fy this an_aIyS|s to include the effe_cts of 9E Co 0E OE 24 9E PR
friction. In this case there is no exactly solvable discrete
counterpart even if one includes restoring forces. Finally, we 1 ox\n—1
resent numerical results to support our findings. - —|-= =0.
p pp g 24 52 ( &g) 0 (39
A. Frictionless granules—theory Nesterenko recognized that there is a simple solution to
The theory first introduced by Nesterenkb] and later ~ this nonlinear problem:
augmented and complemented by others is based on the
same approximation implemented in the case of cylindrical _ IX — A sin™
. . — | =Agsin™ aé, (40
granules, i.e., a Taylor expansionxqf. ; aboutx, and reten- 9é

tion of a term beyond the firstwhich here is no longer

purely diffusive coupling This continuum equation, as- whereA,, m, anda are constants. Substitution of this solu-
sumed to hold within the compression pulse, again does ndion into the propagating equation leads to the following val-
explicitly exclude restoring forces and is therefore equivalenues:
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B. Granules with friction—theory

1/2
_ 125 (n—2)/2
) - Co=(2/) T A ' When friction is included, Eq(38) is modified by the
(41) addition of a frictional term

2 _(6(n—2)2
-1

An additional assumption is introduced at this point: a soli- #°x  dx 4 (?x)“l n—l( ax>”283x

tary wave is “constructed” by retaining this solution over ¥+ Yookl \ "okl Toa |l Tk Pne

one period, B<a(k—cot)=<, and settingox/d¢ equal to

zero outside of this range. Note that this solution does not 1 5 ox\n—1

satisfy the velocity pulse initial condition, but rather it de- e (47
24 53 ak

scribes the solution that the system presumably settles into
after a short initial transient, an assumption that is supported ) N
by numerical simulation resulf®]. For spherical granules ~ For small values of, we expect solutio41) to be modified

in two ways. First, as we did with the cylindrical granules,

X 5c3\? 2 we must take into account the overall decay of the energy of
<__>__(T> sirt* g(k—Cot).

K (42 the pulse, being mindful of the fact that kinetic and potential

energies are not equal whap-2. Second, since the speed of
the pulse depends on its amplitu@end hence on its total
energy, we must include the fact that the pulse speed de-
freases with time. We assume a solution of the form

If the initial velocity impulse is unity, then the initial total
energy (all kinetic) is 1/2. The solitary wave&40), which
describes both the potential and kinetic energy of the syste
once it settles, is assumed to contain essentially all of this Ix
initial energy (the numerical simulation results confirm that (_ _) =A(1)si?" gy g(t), (48)
the energy of the solitary wave is 99.7% of the initial energy 43
[9]). Because the potential is nonlinear, the potential and
kinetic energies are no longer equal, but one can use th&"€re
generalized equipartition theorel@8] to calculate the aver- .
age contribution of each. One finds that the ratiokidJ g(k,t)zk—f c(t)dt (49)
=n/2, so thatk=n/2(n+2). Since the velocity is 0

X(€)=CoAo si" "2 u¢, (43 and
the total kinetic energy in the pulse is 2
ineti gy | pu I c(t)= \[EA(“‘Z)’Z(t). (50)
CCAS 4 n
 2a \n—2] 2(n+2)’ 449 Note that this form supposes that the widtha of the pulse

is not changed by frictiofi24].
where[29] The decay ofA(t) [and hence o€(t)] can be determined
by assuming that the pulse energy decaysead'”' and
) choosing the constant so that Eq.(47) is satisfied to first
w r order in y. If the pulse energy decays as2!"!, then the
|(|)Ef sin 0d9:2'm- (45  pulse velocity decays as Y. For the pulse velocity we
0 have, aside from it§ dependence,

I+1

The resulting pulse speed, and pulse amplitude fon g
X
=5/2 then are ENC(t)A(t)~An/z~e—u«yt, (51)

c;=0.836, Ay=0.765. (46)
from which it follows that

The numerical results of HSJ givgy=0.84. B o

Contrary to then=2 case, here there is almost no back- A(t) =Age” B e(t) =coe AU (52)
scattering 9]. Except for the first two or three granules that
are slightly scattered backwards, the granules in the pulse afd therefore
simply displaced by a constant amount and come to rest once
the pulse passes. The total backward momentum is thus ex- fkt)=k—c n
tremely small and finite. Beyond the first two or three gran- ' %uy(n—2)
ules, the forward moving pulse here retains its shape and
amplitude and is therefore essentially conservative with reTo determineu we note that Eq(48) implies thatx(t,¢)
spect to both energy and momentum. This is to be contrasted A(t)F (&), where the form ofF is unimportant for the
with the fact that for cylindrical granules, every granule ac-moment except that it depends only érand not separately
quires a backward momentum. ont. Therefore

(l_ef[(nfz)u/n] yt). (53)
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ox _dA (ag)( ) (1dA) (ag) ax)
ot ar PAG) g T A an ) o) e
(54)
Similarly we find
#x [ 1 d°A ( )(ag)( ) azg (ax)
ae | Aae | Haar e e\
(ag)z 8%x

Substitution of Eqs(52) and (53) into Egs.(54) and (55)
gives

2 2
6_>2(+78X_C o[22 X
at at dE"?
4u (n—2)u
+’y —+ _1 CO
x e [n=2unlrty O(y?), (56)
One must then choose
n 5
U= nt2 &7

to force theO(y) contribution to vanish. We are then left

with

X X %X

c2e-[2(n-2)/(n+2)Int 2
2 +y o =Coe —570(y9). (58

For yt<(n+2)/2(n—2), substitution into Eq(47) leads
again to Eq(39) to O(»?).
We thus conclude that t®(y?) and for timesyt<(n

+2)/2(n—2) (which means essentially the entire lifetime of
the pulse, see the following sectjothe solution for the
chain of spherical granules subject to weak friction is as

assumed in Eqg48) and(49) with

A(t) — Aoef [2/(n+2)]yt

C(t) _ \/gAgn—Z)/Ze—[(n—2)/(n+2)]yt.

(59

PHYSICAL REVIEW E68, 041304 (2003

tering. In the frictionless case we noted that there is almost
no backward scattering, and the very small amount of it ap-
pears only in the first three or so particles. With frictieach
particle is scattered backward as the pulse leaves, more like
the situation in the cylindrical granule case. Following the
reasoning implemented in that case we first calculate the for-
ward momentum of the pulse

5%
x(k,t)>0 9]\ ot

x(k)= >,
A(t)c(t) ( 2 )
a I n—2

P= >

x(k,t)>0
= > A(c(t)sir? - Dag=
x(k,t)>0

(2/n)? 2
- A3

Z)e—[n/(n+2)]yt, (60)

wherel(l) is given in Eq.(45). The rate of change of the
forward momentum then is

(22 n

e—[n/(n+2)]yt
a (n+2) '

P=—vy A/2I<—

(61)

On the other hand, the loss of momentum of the last particle
in the pulse as the pulse moves across fcfs Eq. (31)]

N A(t)I 2
A

A 2
:_7;0|(n Z)e—[Z/(n+2)]yt (62)

The momentum transferred to the last particle as it is ejected
from the pulse is therefore

b= 2920 |
T 0T M ant2)

c(t)

) e [2/(n+2)]n

(63

n—-2

[in Egs.(14) and(32) the factorc(t) does not appear explic-
itly because it is equal to unityFor spherical granules

5 ’7TAO
_ (@9t
Y \[2 6 ©

(64)

The shape of the pulse is constant and the same as in the
frictionless case. The width remains constant in time, theEvery particle in the chain is therefore ejected witfeapo-

overall energy in the pulse decaysad?"("*2)1" and the

nentially decreasingbackward momentum, in contrast to the

pulse velocity ase™ ["("*21" For n=5/2 these decays go frictionless chain. The loss of energy in the pulse due to

(10/9)yt (5/9)yt

ase” ande”

respectively. It is an interesting friction is not balanced by a sufficiently large loss of momen-

sideline to note the increase in the friction-induced decayum. This relative increase of pulse momentum must be bal-
rate of the velocity or energy of the compression pulse withanced by the momentum carried by the ejected granules.

increasingn; for n—oo it is the same as that of a single

particle traveling in a viscous medium.

From Eq.(63) we can deduce two additional interesting
results. One is the dependence of the backward velocity on

A remarkable difference between the frictionless and fric-the powern of the potential of interaction. We find that,
tional chains of spherical granules lies in the backward scatdecreases monotonically with and for largen,
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FIG. 5. Backscattering velocity at the moment of ejection as a
function of the powen in the Hertz potential. The dashed line is the
asymptote Eq(65), which in this representation is independentyof
and oft. The dark curve is the full result E¢64) for yt=1.

FIG. 7. Total energy decay as a function of time. Within a time
range ofO(10y ) the energy decays exponentially es(1¥,
drawn as lines. The symbols are numerical simulation results.
From top to bottom the curves are far=0.010, 0.012, 0.014,

Up=— 5 (65  lations of HSJ as well as in our theory, cf. E@6). With

friction, the pulse speed decreases as the pulse loses energy.

independently of time to leading order. The approach to this AS Wwith cylindrical granules, for timeg¢=<10y~* the

asymptotic result is shown in Fig. 5, where we presgity  pulse has the same shape in the presence of friction as in the

as a function of Ii. The other is the nonmonotonic depen- frictionless case except for the overall exponential decay, as

dence ofy,, on the damping, a result already found in our illustrated in Fig. 7. Note that the decay is more rapid than in

two-granule analysi§21] and illustrated in Fig. 6. For the case of cylindrical granules.

spherical granules we show this dependence,odn damp- Contrary to the cylindrical granule case, the pulse also

ing at different times. This qualitative behavior persists forslows down as its energy decreases. This behavior continues

other values oh>2: asn increases the position of the mini- until the energy begins to decrease abrugthore rapidly

mum is shifted to largery and the absolute value of the than exponentiallyat a time~8.3y 1. Atatime~16.2y !

minimum decreases. the backscattered energy becomes greater than the pulse en-
Equation (48) with (59) and Eq.(63) are the principal ergy and at the same time the pulse stops moving. In Fig. 8

results of this section. They establish analytic expressions fae showk,,, the granules with the maximum velocity in

the pulse and for the backscattered momentum that will behe pulse. The symbols are the results obtained from numeri-

checked against numerical simulations in the following seccal simulations, and the lines ajef. Eq. (53)]

tion.

\/5 0.016, 0.018, and 0.020.

3™ O( In(n) case(unit velocity), a result obtained in the numerical simu-
J’_

n

n

T Co(n+2)
C. Numerical simulations Kmax=75, v (n—2)

1— ef[(n72)/(n+2)]‘yt)

velocity is lower here ¢,=0.836) than in the cylindrical

First we note that even in the frictionless case the pulse
= ( (1-e ), (66)

5\Y27  9c,
— — + JE—
2 2 y
600 : . —

0

-0.01R.

-0.02 400

kmax

=°-0.03

200
-0.04

-0.05

P 0 200 400 600 800 1000
Y ' t
FIG. 6. Backscattering velocity at the moment of ejection as a FIG. 8. Grain with the maximum velocity as a function of time.
function of the friction parameter for spherical granules at differentThe symbols are simulation results, and the lines arg@8). From

times as followst=10 (thick), 15 (dotted, 20 (dasheg 40 (dot- top to bottomy=0, 0.001, 0.005, 0.01, 0.012, 0.014, 0.016, 0.018,
dasheg, and 100(thin). 0.02, and 0.03. The=0 curve isky, = (7/2a) + Ct.

041304-11



A. ROSAS AND K. LINDENBERG PHYSICAL REVIEW E68, 041304 (2003

FIG. 9. Scaled velocity pulse as a function of
scaled position for different friction coefficients.
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where the last expression holds explicitly fo=5/2. The a number of results analytically that had previously only
value used forc, is as given in Eq(46). The agreement is been obtained numericall@]. In this chain the impulse trav-
clearly excellent. els at unit velocity as a spreading pulsst*’®) in which the

To check our prediction for the effect of friction on the maximum displacement progressively grows with tias
propagating pulse we present the scaled velocity pulse ast&®). While this traveling pulse carries most of the initial
function of scaled position for different friction coefficients energy, conservation of momentum requires that there be
in Fig. 9. The agreement here is less satisfactory than in theackscattering of each granule as the pulse passes by. The
cylindrical granule case. One difficulty is the fact that thechain thus continually undergoes fragmentation.
analytic theory is a continuum approximation while the chain  We then generalized these results in the presence of fric-
is discrete, and here only a very small number of granules argon and found that the principal effect of weak friction is an
actually moving forward at any one time, that is, the pulse isoverall exponential decay of the energy. The pulse still
very narrow. A second difficulty is that in addition to the moves at unit velocity, still spreads €&, and the maximum
smooth envelope that the continuum theory attempts to cagisplacement now varies a¥%~ "2 throughout its lifetime.
ture, the narrow pulse actually experiences small amplitud&here is again backscattering of each granule as the pulse
oscillations as it moves forward. Our reported values in Figpasses by. An interesting and unexpected effect of friction is
9 include values that might fall anywhere within these oscil-that the velocity of the backscattered particles at the moment
lations. It is nevertheless clear that the theory captures thef ejection isgreater than the velocity in the frictionless
qualitative features of the pulse. In particular, we point to thechain[21]. The backscattered particles also slow down due
increasing backscattering with increasing friction that can beo friction, but this chain, too, undergoes continual fragmen-
seen in these figures. This is a qualitative difference betweetation. We supported our results via numerical simulations.
the frictionless chaitfwhere only about three granules back-  Next we analyzed a chain of granules with a power law
scatter slightly to the chain with friction, where some back-
scattering occurs at each granule as the pulse passes by. In
Fig. 10 the symbols are the simulation results and the lines
represent Eq(64). The agreement is clearly excellent.

IV. CONCLUSIONS

In this work we have studied the dynamics of an initial
velocity impulse in a chain of granules that interact only
when in contact, that is, they experience only a repulsive ) , , , ,
potential. Our interest has been in establishing the effects of 0 200 400 600 800 1000
hydrodynamic friction on these dynamics.

First we analyzed a chain of cylindrical granules, that is, t

with a power law repulsive potential with exponemt 2 FIG. 10. Backscattering velocity at the moment of ejection as a
(half a harmonic potential We presented the frictionless function of time for different friction coefficients. The symbols are
case, and organized existing information in a particular waysimulation results and the lines are E64). From top to bottom on

to clarify the effects of discreteness and of the absence ahe right side of the figure=0.010, 0.012, 0.014, 0.016, 0.018, and
restoring forces on these results. We were also able to obtaio20.
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repulsive potential with exponemt>2, with special atten- cay factors are fixed by the powarof the potential. Most
tion to spherical granulem&5/2). We reviewed Nesteren- dramatically, we found that in the presence of friction there
ko's theory for the frictionless case, which leads to an esseris now backscattering of each granule as the pulse passes by,
tially conservative pulse of constant width determined by theso that this chain experiences fragmentation. The velocity of
powern, traveling down the chain at a velocity that dependsthe backscattered granules of course also decreases exponen-
on the energy of the pulse. This velocity is lower than that oftially. We supported these results for the case of spherical
the spreading pulse in the cylindrical granule case. Hergranules via numerical simulations.
again we obtained some results analytically that had previ- A number of interesting problems immediately come to
ously been reported numericall@]. Contrary to then=2 mind as a possible extension of this work. Among them is
case there is essentially no backscatteffinrggmentationin consideration of the effect of mass disorder and/or frictional
this system: only the first two or three granules acquire alisorder in the chains and of mass tapering. Work along these
very small backward momentum as the pulse passes over.directions is in progresg30].

The generalization of these results in the presence of fric-
tion is more complicated because an ovgrall decay of the ACKNOWLEDGMENT
energy causes the pulse to slow down as it moves. We found
that the solution is one in which the overall shape of the This work was supported by the Engineering Research
pulse as well as its width remain unchanged, the energy dd2rogram of the Office of Basic Energy Sciences at the U.S.
cay is exponential, as is the decrease in the displacemefepartment of Energy under Grant No. DE-FG03-
pulse amplitude and the pulse velocity. The exponential deS86ER13606.
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