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Pulse dynamics in a chain of granules with friction
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We study the dynamics of a pulse in a chain of granules with friction. We present theories for chains of
cylindrical granules~Hertz potential with exponentn52) and of granules with other geometries (n.2). Our
results are supported via numerical simulations for cylindrical and for spherical granules (n55/2).
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I. INTRODUCTION

The propagation of pulses in granular materials has be
subject of vigorous recent interest. Seminal work on this s
ject was carried out by Nesterenko@1# two decades ago in hi
analysis of the propagation of nonlinear compression pu
along a line of particles. This early work firmly establish
the nonlinear flavor of the problem: Nesterenko showed
under appropriate assumptions, among them the slow sp
variation of the displacements of the particles, the equati
of motion for granular particles could in most cases be
proximated by a continuous nonlinear partial different
equation that admits a soliton solution~later shown to actu-
ally be a solitary wave solution@2,3#! for a propagating per-
turbation in the chain. The recent revival of interest in t
subject@2–16# has been triggered in part by a concern w
important technological applications such as the design
efficient shock absorbers@14#, the detection of buried object
@5–8#, and the fragmentation of granular chains@9#. The re-
vival has involved advances in the modeling, simulation, a
solution of the equations associated with important featu
of granular materials such as their discreteness@2,3,10,14#,
dimensionality@14#, disorder@7,11,14#, and loading provided
by gravitational forces@4,7,13,14,17,18#. The preponderance
of the work has been numerical, but important analytic
vances have also been made, as well as experimental v
cations of some of the theoretical predictions@6,16#.

The standard generic model potential between mono
perse elastic granules that repel upon overlap accordin
the Hertz law is given by@19,20#

V~dk,k11!5
a

n
uduk,k11

n , d<0,

V~dk,k11!50, d.0. ~1!

Here

dk,k11[yk112yk, ~2!

a is a constant that depends on the Young’s modulus
Poisson’s ratio, andyk is the displacement of granulek from
its equilibrium position. The exponentn is 5/2 for spheres, it
is 2 for cylinders, and in general depends on geometry.
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The displacement of thekth granule (k51,2, . . . ,L) in
the chain from its equilibrium position in a frictional medium
is governed by the equation of motion

m
d2yk

dt2
52g̃

dyk

dt
2a~yk2yk11!n21u~yk2yk11!

1a~yk212yk!
n21u~yk212yk!. ~3!

Here u(y) is the Heaviside function,u(y)51 for y.0,
u(y)50 for y,0, andu(0)51/2. It ensures that the par
ticles interact only when in contact. Note that for op
boundary conditions the second term on the right hand s
of this equation is absent for the last granule and the th
term is absent for the first, while for periodic boundary co
ditions yk1L5yk . In terms of the rescaled variables and p
rameters

yk5S mv0
2

a D 1/n

xk , t5
1

v0
S mv0

2

a D 1/n

t,

g5
g̃

mv0
S mv0

2

a D 1/n

, ~4!

Eq. ~3! can be rewritten as

ẍk52g ẋk2~xk2xk11!n21u~xk2xk11!

1~xk212xk!
n21u~xk212xk!, ~5!

where a dot denotes a derivative with respect tot.
Initially the granules are placed along a line so that th

just touch their neighbors in their equilibrium positions~no
precompression!, and all but one granule, granulei, are at
rest. The velocity of granulei is v0 ~the impulse!. In the
rescaled variables the initial conditions becomexk(0)
5 ẋk(0)50 ; kÞ i , xi(0)50, andẋi(0)51. In our work we
set i 51.

In the absence of the frictional contribution2g̃dyk /dt or
2g ẋk , whenn.2 an initial impulse settles into a pulse th
becomes increasingly narrow with increasingn, and propa-
gates at a velocity that is essentially constant and determ
by n and by the amplitude of the pulse. Forn52 the pulse
spreads in time and travels at a constant velocity indepen
of pulse amplitude. In the latter case there is considera
backscattering that leads to backward motion of all the gr
©2003 The American Physical Society04-1
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ules behind the pulse, whereas the backscattering is min
for n.2 @9#. The pulse is a completely conservative solita
wave in the limitn→`.

Our interest lies in ascertaining the effects of the fr
tional contributions on these results.Although friction is on
occasion mentioned in theoretical and numerical work, i
usually mentioned as an element that is neglected or omi
However, its presence and importance in experiments is
ognized as inevitable@16#. Note that frictional effects may
arise not only from the forces between the granular chain
the surrounding medium but also from the conversion
translational motion to other degrees of freedom~e.g., rota-
tion! @16#. In an earlier paper we analyzed in detail the
fects of frictional forces on the dynamics of two granule
specifically the way in which forward and backward moti
of the granules is affected by these forces@21#. Herein we
extend that work to a chain of granules.

Since our approach will in general follow establish
methods, it is useful to lay out at the outset an overview
the principal approaches that have been implemented in
study of pulse dynamics in frictionless chains, and the v
ous features that determine these dynamics. Theoretical s
ies of pulse dynamics in frictionless chains have mainly
lied on three approaches:~1! numerical solution of the
equations of motion@4,7,9–11,14,18#; ~2! continuum ap-
proximations to the equations of motion followed by exact
approximate solutions of these approximate equati
@1,9,18#; and ~3! phenomenology about properties of pa
wise ~or at times three-body! collisions together with the
assumption that pulses are sufficiently narrow to be prin
pally determined by these properties@15,22#.

From these studies it is clear that three features determ
the dynamics in these chains:~1! the powern in the poten-
tial; ~2! the absence of a restoring force; and~3! the discrete-
ness of the system.

While each of these leads to essential aspects of the
namics, the literature is not always entirely clear on wh
feature is determinant in a particular behavior, nor is it
ways clear which of these features is being approximate
even ignored. One example is the equivocal connection
tween the dynamics of granular systems and systems
power law interaction potentials thatinclude a restoring
force. For instance, there is an extensive literature on
Fermi-Pasta-Ulam~FPU! chain with purely nonlinear inter
actions of the form appearing in Eq.~5! with n.2 but with-
out the Heavisideu functions@23#. Highly localized pulses
propagate in these systems@14,24#, but their relation to the
localized solutions in granular systems is by no means cl
This ambiguity is exacerbated by the fact that discrete s
tems are frequently approximated by continuum equatio
While the pulselike~soliton or solitary wave! solutions that
emerge from these approximations are assumed~and even
shown numerically! to describe certain aspects of granu
system, the continuum approximations never explicitly
spect the absence of a restoring force, i.e., they are m
clearly justifiable for FPU-like systems. And so with the
solutions in hand, it is not clear what consequences of
absence of a restoring force and of the discreteness of
system have been lost. In some sense opposite to the
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tinuum approximations are two-body or three-body pheno
enologies. These provide considerable qualitative insight
some consequences of discreteness, but are quantitativel
sufficiently accurate because the true dynamics extend
more than two or three granules. In this paper, even w
focusing on the effects of friction, we make an attempt
provide some clarity on these issues.

Numerical simulations are of course extremely help
and ultimately an accurate test of theory. Note that the
scaled system, Eq.~5!, has no free parameters in the absen
of friction and only a single parameter when there is frictio
and therefore numerical characterization is particula
straightforward in this particular system. However, this u
versality is lost with any number of modifications that mig
be interesting and have been considered recently such as
example, tapering of the masses in the chain@15,16,25# and
mass@7,11# or frictional @21# disorder. Consequently, it is
desirable to have a strong analytic backdrop.

The paper is organized as follows. Section II deals wit
chain of cylindrical granules. First we review existing resu
for frictionless granules, discussing them in the context
the issues and uncertainties noted earlier. We then extend
theory to granules subject to friction, and present numer
simulations in support of these results. In Sec. III we follo
the same presentation sequence for granules withn.2, with
special attention to spherical granules in our numerical sim
lations. A summary of results and of future directions is p
sented in Sec. IV.

II. CYLINDERS „nÄ2…

Cylindrical granules have provided a theoretical test b
for dynamics in granular chains because the exponentn52
leads to analytic manageability not available for other pot
tials. Although sometimes called the ‘‘harmonic’’ case,
should be remembered that the Hertz potential is quite
ferent because there is no restoring force, that is, the cy
drical Hertz potential is half of a harmonic potential. Th
derivative of the force law therefore changes discontinuou
between extension and compression. This leads to cons
able differences in the chain dynamics. Nevertheless, s
aspects of the cylindrical chain dynamics can be infer
from those of a harmonic chain, and this can be exploited
great advantage in the analysis.

If one were to ignore the absence of a restoring force
implement the simplest continuum approximation to Eq.~5!
in the absence of friction, the result would be a simple wa
equation with diffusive coupling whose solutions do not re
resent the observed behavior of then52 chain. In reality, an
initial impulse in the chain described by Eq.~5! in the ab-
sence of friction moves as a spreading pulse. Although
pulse spreads and sheds some energy, the waveform can
ertheless be clearly identified as a pulse@9#. Its maximum
kmax(t) travels forward with a constant unit velocity and
displacement amplitude that increases ast1/6. The pulse
spreads in time ast1/3, more slowlythan it would in a system
with diffusive coupling. It is interesting to understand whic
of these features are due to the discrete nature of the ch
and which are due to the absence of a restoring force.
4-2
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PULSE DYNAMICS IN A CHAIN OF GRANULES WITH . . . PHYSICAL REVIEW E68, 041304 ~2003!
ther, once these questions have been answered, it is inte
ing to explore what happens to these features in the pres
of friction.

Our presentation of the chain of cylindrical granules co
sists of three parts. First we review the results of Hinch a
Saint-Jean~HSJ! @9# for a frictionless chain, and we reca
the problem in a way that clarifies some of the approxim
tions made in that work and pinpoints the sources of diff
ences between then52 chain and a purely diffusive cou
pling. We supplement this review with our analytic resu
that reproduce some of their purely numerical ones. Then
modify this analysis to include the effects of weak hydrod
namic friction on the granules. Finally, we complement t
analytic~and necessarily approximate! treatment with a com-
parison with numerical simulation results for the friction
chain of cylindrical granules.

A. Frictionless granules—theory

The HSJ theory is based on the following approximatio
implemented consecutively and independently.

~1! The solution is assumed to be described by a trave
pulse of constant form which propagates at constant
speed and has an amplitudeb and widthl that vary slowly
with time:

x~k,t !5b~ t ! f S k2t

l~ t ! D . ~6!

~2! The pulse is assumed to retain almost all of its init
energy. HSJ show that assumption 1 leads to equipartitio
this energy between potential and kinetic forms, as should
the case for a harmonic potential.

These two assumptions are sufficient to lead to the c
clusion thatl}b2.

~3! A continuum approximation is implemented that tak
into account some discreteness effects. In the lowest o
diffusive coupling approximation, one would set the diffe
encexk111xk2122xk']2x(k)/]k2. Retention of the next
term in a Taylor series expansion ofxk61 aboutxk leads to
the continuum approximation that incorporates some of
effects of discreteness:

]2x~k,t !

]t2
5

]2x~k,t !

]k2
1

1

12

]4x~k,t !

]k4
. ~7!

Note that this expansion includes a restoring force. A trans-
formation to a moving frame with unit propagation velocit
i.e., a change of variables fromk and t to n5k2t and t,
transforms this equation to

]2x

]t2
2

]2x

]t ]n
5

1

12

]4x

]n4
. ~8!

Regardless of the form ofb(t) or of the functionf, this is
sufficient to establish that the solution, Eq.~6!, is consistent
with this equation only ifl;t1/3, and also that the next term
in the Taylor series expansion is unimportant for this res
The width of the pulse is therefore governed by the fi
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manifestation of discreteness.One assumes that the absen
of a restoring force does not affect this result because
granules within the pulse are in fact overlapping most of
time and hence subject mainly to the repulsive portion of
potential. Note that the continuum approximation togeth
with the conservation of energy are then sufficient to arr
at the conclusion thatb(t);t1/6, i.e., the pulse amplitude
actually grows with time.

~4! It is not yet clear that Eq.~6! is actually compatible
with Eq. ~7! until one determines the functionf. Substitution
of Eq. ~6! into Eq. ~7! and retention of leading terms int
leads to the equation forf (j),

f 9928j f 924 f 850. ~9!

This equation has four solutions. The one consistent with
requirement thatf (j) decays for largej ~i.e., ahead of the
wave! and consistent with the assumption of energy cons
vation by the pulse is@26#

f ~j!5NE
j

`

Ai2~21/3y!dy, ~10!

where Ai(z) is an Airy function and

N5F Ep

E
j0

`

Ai4~21/3y!dyG 1/2

53.533AEp. ~11!

Here Ep is the pulse energy and 21/3j0 is the first zero of
Ai( z).

These features describe the traveling displacement p
of increasing width and amplitude quite accurately, as sho
by the numerical simulations in Ref.@9#. We note that the
total energy of the system with the initial unit velocity im
pulse at one granule is 1/2. The numerical results of H
lead to an asymptotic pulse energy ofEp50.48, that is,
96.2% of the energy resides in the pulse. Below we calcu
the pulse energy analytically.

In addition to the forward traveling pulse, HSJ also inve
tigate the momentum of the particles ejected backward as
pulse goes by. That particles must be ejected is a co
quence of the conservation of momentum: the traveling pu
of constant energy and increasing width and displacem
amplitude carries increasing forward momentum, wh
must be balanced by the backward momentum of the eje
particles. One then arrives at the next item on the list
assumptions.

~5! The absence of a restoring force is explicitly reco
nized in the calculation of the momentum of the ejected p
ticles, which simply keep traveling backward with the m
mentum they acquire at the moment of separation from
pulse. Equating the rate of change of the momentum of
forward pulse at timet to that of the particle ejected at tha
time leads to the conclusion that the backward momentum
thenth particle isẋn52ct25/652cn25/6, the latter equality
arising from the unit speed of pulse propagation. The
merical simulations of HSJ lead to the valuec50.158, a
value that we obtain analytically.
4-3
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A. ROSAS AND K. LINDENBERG PHYSICAL REVIEW E68, 041304 ~2003!
To obtain analytic results for the pulse energyEp and the
constant of proportionalityc, we note that the forward mo
mentum of the propagating pulse is

P5 (
ẋ(k,t).0

ẋ~k,t !5 (
ẋ(k,t).0

b~ t !

l~ t !
f 8~j!

5b~ t !E
j0

`

f 8~j!dj5Ñb~ t !, ~12!

where

Ñ5NE
j0

`

Ai2~21/3j!dj51.379AEp. ~13!

The rate of change of the forward momentum then isṖ

5Ñḃ(t). Since the pulse velocity is unity, this is the mome
tum transferred to the last particle as it is ejected:

vb52 Ṗ52Ñḃ~ t !52
Ñ

6
t25/652

Ñ

6
n25/6. ~14!

The backscattered energy then is

Eb5
1

2
S Ñ

6
D 2

(
k51

`

k25/350.056Ep ~15!

and for the total energy we obtain

E5Ep1Eb51.056Ep , ~16!

from which it immediately follows that asymptotically th
energy in the pulse is

Ep50.947E. ~17!

Thus, 94.7% of the energy resides in the pulse~to be com-
pared to the HSJ value of 96.2% obtained from simulatio!
and the remainder is backscattered. With the initial condit
E51/2 used in all simulations we thus have for the consta
defined earlierN52.431 andÑ50.949. The constantc in
HSJ is c5Ñ/650.158, exactly as they obtained from n
merical simulations.

This essentially completes the solution. The summary
scription is then that an initial velocity impulse propaga
forward at unit speed, with a width that grows ast1/3 and a
displacement amplitude that grows ast1/6. This pulse carries
almost all of the initial energy and its momentum increas
This increase in momentum is compensated by granules
are ejected backward as the pulse passes. The speed
ejected granules decreases, thenth granule being ejected
with a speed proportional ton25/6.

Further insights can be gained by viewing this problem
bit differently. Suppose that we do not implement a co
tinuum approximation at all, but instead focus on the f
discrete equation

ẍk5xk111xk2122xk . ~18!
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Like the continuum equation, this of course includes res
ing forces. This equation can be solved exactly@24#,

xk~ t !5E
0

t

J2k22~2t8!dt8, ~19!

whereJn(z) is the Bessel function of the first kind@26#. The
solution is a moving spreading pulse along with oscillato
displacements that are left in its wake~precisely because
there are restoring forces!. The peak and width of the puls
can be obtained from the properties of the Bessel functio
in particular, from knowledge of their first two zeroes and t
first maximum @27#. The maximum of the pulse occurs a
kmax(t)5t1O(t1/3), so the pulse velocity is unity. Its width
increases ast1/3. In these features the solution is similar
the one assumed in Eq.~6!. However, the amplitude of the
displacement pulse does not grow but is instead constan
time. @If we write the Bessel function solution in form~6! but
with b(t) equal to a constant independent oft, we find from
substitution into Eq.~7! that f satisfies the equationf 99
28z f928 f 850.] The pulse energy according to this d
scription is not constant but instead decreases ast21/3. The
energy that is lost goes into the oscillatory displacement
the wake of the harmonic pulse caused by the resto
forces. Theadditional and appropriate assumption ofenergy
conservationin HSJ adds this lost energy back into the pu
without affecting its spreading rate or velocity.This indicates
that ~in the n52 problem! energy conservation is an appro
priate additional assumption in lieu of the absence of a
storing force.

In summary, the fact that the solution of then52 Hertz
problem is a spreading pulse of unit velocity and of wid
that increases ast1/3 is purely a consequence of the discre
ness of the system and not dependent on the presenc
absence of restoring forces; it is a feature of a discrete
monic system. The~near! conservation of energy in the puls
is not a feature of a harmonic system and must be includ
as anadditionalassumption. Conservation of energy must
implemented not only to describe all the features of the tr
eling pulse but also to describe the backward momentum
the particles ejected as the pulse moves along. Exten
numerical results quantitatively supporting the features
described can be found in Ref.@9#.

B. Granules with friction—theory

Here we generalize the previous theories to a chain
which the granules experience friction@cf. Eq. ~5!#. We gen-
eralize the HSJ theory to this case and also use the solu
of the damped harmonic chain to complement these resu

~1! The solution is assumed to be a traveling pulse
constant shape which propagates at unit speed, has a widl
that varies slowly in time, and an amplitude thataside from
an exponential decay due to the frictionalso varies slowly
with time:

x~k,t !5e2gt/2b~ t ! f S k2t

l~ t ! D . ~20!
4-4
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We retain only theg-independent portions of the slowl
varying functionsl and b. This is thus a ‘‘lowest order’’
ansatz. Indeed, we will show later that corrections to t
lowest order ansatz seem to beO(g3). The pulse energy then
decays exponentially ase2gt. Explicitly, the kinetic energy
is obtained as follows. Retaining only leading orders in tim
the pulse velocity that follows from Eq.~20! is

ẋ~k,t !52e2gt/2
b~ t !

l~ t !
f 8S k2t

l~ t ! D1O~gt !. ~21!

Therefore, the kinetic energy toO(gt) is

K~ t !5e2gt
1

2 (
k

Fb~ t !

l~ t !
f 8S k2t

l~ t ! D G
2

.e2gt
1

2

b2~ t !

l~ t ! Ej0

`

@ f 8~j!#2dj

5
Ep

2
e2gt

b2~ t !

l~ t !
, ~22!

whereEp is the undamped pulse energy. On the other ha
the potential energy may be written as

U~ t !5
1

2 (
k

~xk112xk!
2.

1

2 (
k

F]x~k,t !

]k G2

, ~23!

which also leads to

U~ t !5
Ep

2
e2gt

b2~ t !

l~ t !
~24!

to O(gt). The total pulse energy to this order then is

Ep~ t !5Epe2gt
b2~ t !

l~ t !
. ~25!

~2! We assume that almost all of the energy resides in
decaying pulse.

These results and assumptions are thus again sufficie
conclude thatl}b2. It then follows from Eq.~25! that the
only effect of friction to this order is thus the overall exp
nential decay of the energy.

~3! As before, a continuum approximation is implement
that takes into account some discreteness effects an
course the frictional contribution~while still including the
nonexistent restoring force, as before!. For this purpose it is
convenient to implement the change of variablesz(k,t)
5egt/2x(k,t). Retention of the next term in a Taylor expa
sion of zk61 aboutzk beyond the purely diffusive approxi
mation leads to

]2z~k,t !

]t2
5

]2z~k,t !

]k2
1

1

12

]4z~k,t !

]k4
1

g2

4
z~k,t !. ~26!

The associated moving frame equation (n5k2t) is
04130
s

,

d,

e

to
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]2z

]t2
2

]2z

]t ]n
5

1

12

]4z

]n4
1

g2

4
z. ~27!

With the ansatz

z~k,t !5b~ t ! f S k2t

l~ t ! D ~28!

associated with Eq.~20! this is again sufficient to establis
that the pulse widens asl;t1/3. Corrections begin to set in
when the last term in Eq.~27! becomes important, i.e., fo
times t*g23/2. For smallg this is a time much longer than
the entire lifetime of the pulse, which isO(g21) due to the
overall exponential decay. As before, we are again led to
conclusion thatb(t);t1/6.

~4! The envelope function is again the solution of Eq.~9!
with correctionsO(g2).

~5! As before, as the pulse travels forward granules
ejected backwards. In the frictionless problem these gran
continue moving backward with the same velocity forev
after ejection because they are simply freely moving gr
ules. In the problem with friction these granules progre
sively slow down because they, too, are damped, but it is
interest to calculate their momentum at the moment of e
tion from the pulse. Indeed, we now show that in the pr
ence of damping the backward ejection momentum isgreater
than in the undamped chain, a result consistent with t
found in a two-granule system@21#.

The forward momentum of the propagating pulse
O(gt) is

P5 (
ẋ(k,t).0

ẋ~k,t !5 (
ẋ(k,t).0

e2gt/2
b~ t !

l~ t !
f 8~j!

5e2gt/2b~ t !E
j0

`

f 8~j!dj5Ñe2gt/2b~ t !, ~29!

where Ñ is given in Eq. ~13!. The rate of change of the
forward momentum is

Ṗ5Ñḃ~ t !e2gt/2S 12
gb~ t !

2ḃ~ t !
D . ~30!

The last particle in the pulse loses momentumd through
dissipation as the pulse moves across it. This momentum
is the difference in the momentum of this particle when it
in the middle of the pulse~i.e., when it is maximally com-
pressed, at which point its momentum is zero! and when it is
at the end of the pulse and about to be ejected~at which point
its compression is zero!:

d52gDx52gxmax52gÑe2gt/2b~ t !. ~31!

Since the pulse velocity is still unity, the momentum tran
ferred to the last particle as it is ejected is
4-5
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vb52 Ṗ1d52Ñe2gt/2ḃ~ t !S 12
gb~ t !

2ḃ~ t !
1

gb~ t !

ḃ~ t !
D

52
Ñ

6
e2gt/2t25/6~113gt !. ~32!

To facilitate comparison of this result with that of the fri
tionless chain we expand the exponential and retain te
O(gt):

vb52
Ñ

6
t25/6S 11

5

2
gt D . ~33!

This confirms that the backward ejection momentum is
deed greater than in the undamped chain.

The forward moving pulse of then52 Hertz problem
with small friction is essentially identical in shape to that
the frictionless problem except for an overall exponen
decay. The pulse travels at unit speed and its width incre
as t1/3, these two features again being a consequence of
creteness and essentially unaffected by friction. The assu
tion that the pulse energy decreases only because of the
tion is an additional assumption. This feature must again
implemented separately to describe the amplitude of the t
eling pulse correctly, and also to describe the backward
mentum of the granules ejected as the pulse moves alon

An analysis of the full discrete equation~with restoring
forces! starts from the linear equation

ẍk5xk111xk2122xk2g ẋk . ~34!

The change of variableszk(t)5egt/2xk(t) immediately leads
to

z̈k5zk111zk2122zk1
g2

4
zk ~35!

and consequently to the solution

xk~ t !5e2gt/2F E
0

t

J2k22~2t8!dt81O~g2!G . ~36!

The solution is a moving spreading decaying pulse alo
with decaying oscillatory displacements. As before, the p
of the pulse occurs atkmax(t)5t1O(t1/3), its width in-
creases ast1/3, and the amplitude of the pulse decays exp
nentially.

In summary, the fact that the solution of then52 Hertz
problem with friction is an exponentially decaying spreadi
pulse of unit velocity and of width that increases ast1/3 is
purely a consequence of the discreteness of the system
not dependent on the presence or absence of restoring fo
it is a feature of a discrete harmonic system. The assump
that the pulse retains almost all of the system energy~which
decays exponentially! is againnot a feature of a harmonic
system and must be included as anadditional assumption.
This conservation feature must be implemented not only
describe correctly all the features of the traveling pulse
also to describe the backward momentum of the partic
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ejected as the pulse moves along. This backward momen
is greater in the chain with friction than in the frictionles
system.

C. Numerical simulations

In this section we check the accuracy of our analytic
sults for then52 frictional chain through numerical simula
tions. First, we note that the total energy of the system
creases exponentially, as seen in Fig. 1 for various value
the friction coefficient. For timest&10g21, aside from the
overall exponential decay of the energy the system beha
is indeed the same as that of the frictionless system in th
broadens ast1/3 and propagates at unit velocity. We find th
the pulse ceases to exist at a time of the order ot
;10g21. More specifically, we find that at a time;8.6g21

the pulse energy decreases abruptly~more rapidly than expo-
nential! and at a time;15.7g21 the backscattered energ
becomes greater than the pulse energy.

We must check our prediction for the self-similar impul
wave f (j) propagating along the chain of particles. We fo
low HSJ and plot the scaled velocity as a function of t
scaled position for different times in Fig. 2. From Eq.~21!
the appropriate scaled velocity to leading order in the frict
is f 8(j)5 ẋlegt/2/b} ẋt1/6egt/2, and this is the ordinate in the
panels. The abscissa is j5(k2t20.25)/l}(k2t
20.25)t21/3. The shift 0.25, which also occurs in the fric
tionless case, is carefully explained and derived in HSJ
comes about because the scaling function solution has
locities in the propagating impulse waveO(t21/6) ~here
modified by the exponential friction factor! while the re-
bound velocity of particles isO(t25/6) ~again modified by
the exponential factor!. This indicates that there must be
correctionO(t22/3) to the leading-order term, and this co
rection appears as a shift in the scaling. The solid curve isf 8
as obtained from Eq.~10!, while the points are the results o
our numerical simulations. The agreement is very good p
vided the damping is small, but serious deviations begin
set in with increasing damping, as seen in panel~d!.

FIG. 1. Total energy decay as a function of time. The ene
decays exponentially ase2gt ~lines!. The symbols are the numerica
simulations: circles forg50.001, squares forg50.005, diamonds
for g50.007.
4-6
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FIG. 2. Chain of cylindrical granules: scale
velocity pulse as a function of scaled position f
different friction coefficients.
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We have not calculated further corrections analytica
but a numerical test is possible. One might test a correc
O(g) @cf. Eq. ~21!#, e.g., of the form b(t)5t1/6@1
1gC(n,t)#, or O(g2) @cf. Eq.~36!#. The coefficientC in the
correction would in general be a function ofn. We have
tested various corrections with the~admittedly unjustified!
assumption thatC does not depend onn ~the numerical effort
to do otherwise seems unwarranted!, and have found that the
leading correction seems to beO(g3), specifically b(t)
5t1/6(1127g3t). This result is analytically appealing but
purely a numerical outcome. The rescaled velocity results
shown in Fig. 3.

Finally, we have predicted a somewhat unexpected fea
of the backscattered granules, namely, that at the mome
ejection their velocity isgreaterthan that of the correspond
ing ejected granules in the absence of friction@cf. Eq. ~33!#.
This is seen in Fig. 4. In the first panel we show the veloc
of the last ejected granule as a function of time for differe
values of the friction coefficient. The velocity is indee
04130
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higher with increasing friction, up to a time beyond whic
more complex behavior not captured by our lowest or
theory sets in. In the second panel we have scaled the ve
ties by the factor (11 5

2 gt) which, according to our theory
should collapse the curves. At very early times, while t
collapse occurs with the scaling predicted by our theory,
resulting curve is not yet the theoretical one because
pulse is not yet clearly defined. However, after this ea
period we see both the collapse as well as agreement with
theoretical line up to times at which higher order effects
in, indicating that our theory captures the correct behavior
to those times.

III. SPHERES „nÄ5Õ2…

The archetypal system for the study of impulse dynam
associated with a Hertz potential of exponentn.2 consists
of spherical granules. Such a nonlinear potential gives ris
a traveling pulse of essentially constant speed that seem
ts
-

FIG. 3. Chain of cylindrical granules: velocity
pulse corrected for higher order frictional effec
as a function of scaled position for different fric
tion coefficients.
4-7
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FIG. 4. Backward velocity of the last ejected granule as a function of time. The curves are forg50 ~thick line!, 0.001~dash-dotted line!,
0.005~dashed line!, 0.007~dotted line!, and 0.01~thin line!. The line with the star symbols in the second panel has slope25/6. The slope
of the frictionless curve is exactly25/6, as predicted by HSJ.
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retain its shape for very long times, i.e., it travels with e
sentially constant amplitude and constant width. We say ‘‘
sentially’’ because this is the outcome of approximate th
ries @1,9# and of numerical simulations@9# but is not a
rigorous result~except forn→`). The pulse arises from th
balance of the dispersive forces that tend to spread the e
tation, and the nonlinear and discrete nature of the sys
that focuses it. As we saw in the last section, discretenes
not sufficient to stop the widening of the pulse, but only
slow it down. Nonlinearity is necessary to obtain a pulse
constant width, at the very least approximately. The resu
a narrow pulse, involving no more than a handful of partic
at any time. The pulse is narrower with increasingn, but it is
already sharply defined in the classic casen55/2. This sort
of behavior is also known from the classic FPU proble
where the potential typically considered is quartic,n54 ~or
a combination ofn54 and lower order contributions!, and
includes restoring forces@24#. The absence of dispersive re
storing forces in a Hertz system causes the localized ex
tion to be even more stable than in the associated FPU
tem.

In this section our analysis again consists of three pa
We begin by briefly reviewing the theory for a chain of fri
tionless spherical granules as first presented by Nester
@1#. Then we modify this analysis to include the effects
friction. In this case there is no exactly solvable discr
counterpart even if one includes restoring forces. Finally,
present numerical results to support our findings.

A. Frictionless granules—theory

The theory first introduced by Nesterenko@1# and later
augmented and complemented by others is based on
same approximation implemented in the case of cylindr
granules, i.e., a Taylor expansion ofxk61 aboutxk and reten-
tion of a term beyond the first~which here is no longer
purely diffusive coupling!. This continuum equation, as
sumed to hold within the compression pulse, again does
explicitly exclude restoring forces and is therefore equival
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to a continuum approximation with some contributions d
to discreteness for the FPU problem. The starting equatio
thus

ẍk52~xk2xk11!n211~xk212xk!
n21 ~37!

and the resulting continuum approximation is

]2x

]t2
5

]

]k F2S 2
]x

]kD n21

1
n21

24 S 2
]x

]kD n22 ]3x

]k3G
2

1

24

]3

]k3 F S 2
]x

]kD n21G . ~38!

This equation reproduces Eq.~7! whenn52.
As before, one implements a change of variables to

moving frame, withj5k2c0t. Here c0 is a speed to be
determined. The big difference between the equation one
tains withn.2 and that obtained earlier forn52 @Eq. ~8!# is
that it only involves the variablej; the variablet no longer
appears explicitly:

]

]j Fc0
2S 2

]x

]j D2S 2
]x

]j D n21

2
n21

24 S 2
]x

]j D n22 ]2

]j2 S 2
]x

]j D
2

1

24

]2

]j2 S 2
]x

]j D n21G50. ~39!

Nesterenko recognized that there is a simple solution
this nonlinear problem:

S 2
]x

]j D5A0 sinm aj, ~40!

whereA0 , m, anda are constants. Substitution of this sol
tion into the propagating equation leads to the following v
ues:
4-8
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PULSE DYNAMICS IN A CHAIN OF GRANULES WITH . . . PHYSICAL REVIEW E68, 041304 ~2003!
m5
2

n22
, a5S 6~n22!2

n~n21! D 1/2

, c05~2/n!1/2A0
(n22)/2.

~41!

An additional assumption is introduced at this point: a so
tary wave is ‘‘constructed’’ by retaining this solution ove
one period, 0<a(k2c0t)<p, and setting]x/]j equal to
zero outside of this range. Note that this solution does
satisfy the velocity pulse initial condition, but rather it d
scribes the solution that the system presumably settles
after a short initial transient, an assumption that is suppo
by numerical simulation results@9#. For spherical granules

S 2
]x

]kD52S 5c0
2

4 D 2

sin4A2

5
~k2c0t !. ~42!

If the initial velocity impulse is unity, then the initial tota
energy ~all kinetic! is 1/2. The solitary wave~40!, which
describes both the potential and kinetic energy of the sys
once it settles, is assumed to contain essentially all of
initial energy~the numerical simulation results confirm th
the energy of the solitary wave is 99.7% of the initial ener
@9#!. Because the potential is nonlinear, the potential a
kinetic energies are no longer equal, but one can use
generalized equipartition theorem@28# to calculate the aver
age contribution of each. One finds that the ratio isK/U
5n/2, so thatK5n/2(n12). Since the velocity is

ẋ~j!5c0A0 sin2/(n22) aj, ~43!

the total kinetic energy in the pulse is

K5
c0

2A0
2

2a
I S 4

n22D5
n

2~n12!
, ~44!

where@29#

I ~ l ![E
0

p

sinl u du52l

G2S l 11

2 D
G~ l 11!

. ~45!

The resulting pulse speedc0 and pulse amplitude forn
55/2 then are

c050.836, A050.765. ~46!

The numerical results of HSJ givec050.84.
Contrary to then52 case, here there is almost no bac

scattering@9#. Except for the first two or three granules th
are slightly scattered backwards, the granules in the pulse
simply displaced by a constant amount and come to rest o
the pulse passes. The total backward momentum is thus
tremely small and finite. Beyond the first two or three gra
ules, the forward moving pulse here retains its shape
amplitude and is therefore essentially conservative with
spect to both energy and momentum. This is to be contra
with the fact that for cylindrical granules, every granule a
quires a backward momentum.
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B. Granules with friction—theory

When friction is included, Eq.~38! is modified by the
addition of a frictional term

]2x

]t2
1g

]x

]t
5

]

]k F2S 2
]x

]kD n21

1
n21

24 S 2
]x

]kD n22 ]3x

]k3G
2

1

24

]3

]k3 F S 2
]x

]kD n21G . ~47!

For small values ofg, we expect solution~41! to be modified
in two ways. First, as we did with the cylindrical granule
we must take into account the overall decay of the energ
the pulse, being mindful of the fact that kinetic and potent
energies are not equal whenn.2. Second, since the speed
the pulse depends on its amplitude~and hence on its tota
energy!, we must include the fact that the pulse speed
creases with time. We assume a solution of the form

S 2
]x

]j D5A~ t !sin2/(n22)a j~ t !, ~48!

where

j~k,t !5k2E
0

t

c~ t !dt ~49!

and

c~ t !5A2

n
A(n22)/2~ t !. ~50!

Note that this form supposes that the widthp/a of the pulse
is not changed by friction@24#.

The decay ofA(t) @and hence ofc(t)] can be determined
by assuming that the pulse energy decays ase22ugt and
choosing the constantu so that Eq.~47! is satisfied to first
order in g. If the pulse energy decays ase22ugt, then the
pulse velocity decays ase2ugt. For the pulse velocity we
have, aside from itsj dependence,

]x

]t
;c~ t !A~ t !;An/2;e2ugt, ~51!

from which it follows that

A~ t !5A0e2(2u/n)gt, c~ t !5c0e2[(n22)u/n]gt ~52!

and therefore

j~k,t !5k2c0

n

ug~n22!
~12e2[(n22)u/n]gt!. ~53!

To determineu we note that Eq.~48! implies thatx(t,j)
5A(t)F(j), where the form ofF is unimportant for the
moment except that it depends only onj and not separately
on t. Therefore
4-9
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]x

]t
5

dA

dt
F1AS ]j

]t D S dF

dj D5S 1

A

dA

dt D x1S ]j

]t D S ]x

]j D .

~54!

Similarly we find

]2x

]t2
5S 1

A

d2A

dt2
D x12S 1

A

dA

dt D S ]j

]t D S ]x

]j D1S ]2j

]t2 D S ]x

]j D
1S ]j

]t D
2S ]2x

]j2D . ~55!

Substitution of Eqs.~52! and ~53! into Eqs. ~54! and ~55!
gives

]2x

]t2
1g

]x

]t
5c0

2e2[2(n22)u/n]gt
]2x

]j82

1gS 4u

n
1

~n22!u

n
21D c0

3e2[(n22)u/n]gt1O~g2!. ~56!

One must then choose

u5
n

n12
~57!

to force theO(g) contribution to vanish. We are then le
with

]2x

]t2
1g

]x

]t
5c0

2e2[2(n22)/(n12)]gt
]2x

]j82
1O~g2!. ~58!

For gt!(n12)/2(n22), substitution into Eq.~47! leads
again to Eq.~39! to O(g2).

We thus conclude that toO(g2) and for timesgt!(n
12)/2(n22) ~which means essentially the entire lifetime
the pulse, see the following section! the solution for the
chain of spherical granules subject to weak friction is
assumed in Eqs.~48! and ~49! with

A~ t !5A0e2[2/(n12)]gt,

c~ t !5A2

n
A0

(n22)/2e2[(n22)/(n12)]gt. ~59!

The shape of the pulse is constant and the same as in
frictionless case. The width remains constant in time,
overall energy in the pulse decays ase2[2n/(n12)]gt, and the
pulse velocity ase2[n/(n12)]gt. For n55/2 these decays g
as e2(10/9)gt and e2(5/9)gt, respectively. It is an interestin
sideline to note the increase in the friction-induced de
rate of the velocity or energy of the compression pulse w
increasingn; for n→` it is the same as that of a sing
particle traveling in a viscous medium.

A remarkable difference between the frictionless and fr
tional chains of spherical granules lies in the backward s
04130
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tering. In the frictionless case we noted that there is alm
no backward scattering, and the very small amount of it
pears only in the first three or so particles. With friction,each
particle is scattered backward as the pulse leaves, more
the situation in the cylindrical granule case. Following t
reasoning implemented in that case we first calculate the
ward momentum of the pulse

P5 (
ẋ(k,t).0

ẋ~k,t !. (
ẋ(k,t).0

S ]x

]j D S ]j

]t D
5 (

ẋ(k,t).0

A~ t !c~ t !sin2/(n22)aj5
A~ t !c~ t !

a
I S 2

n22D
5

~2/n!1/2

a
A0

n/2I S 2

n22De2[n/(n12)]gt, ~60!

where I ( l ) is given in Eq.~45!. The rate of change of the
forward momentum then is

Ṗ52g
~2/n!1/2

a

n

~n12!
A0

n/2I S 2

n22De2[n/(n12)]gt.

~61!

On the other hand, the loss of momentum of the last part
in the pulse as the pulse moves across it is@cf. Eq. ~31!#

d52gDx52g
A~ t !

a
I S 2

n22D
52g

A0

a
I S 2

n22De2[2/(n12)]gt. ~62!

The momentum transferred to the last particle as it is ejec
from the pulse is therefore

vb52
Ṗ

c~ t !
1d522g

A0

a~n12!
I S 2

n22De2[2/~n12!]gt

~63!

@in Eqs.~14! and~32! the factorc(t) does not appear explic
itly because it is equal to unity#. For spherical granules

vb52gA5

2

pA0

6
e2(4/9)gt. ~64!

Every particle in the chain is therefore ejected with a~expo-
nentially decreasing! backward momentum, in contrast to th
frictionless chain. The loss of energy in the pulse due
friction is not balanced by a sufficiently large loss of mome
tum. This relative increase of pulse momentum must be b
anced by the momentum carried by the ejected granules

From Eq.~63! we can deduce two additional interestin
results. One is the dependence of the backward velocity
the powern of the potential of interaction. We find thatvb
decreases monotonically withn, and for largen,
4-10
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vb52

A2

3
pg

n
1OS ln~n!

n2 D ~65!

independently of time to leading order. The approach to
asymptotic result is shown in Fig. 5, where we presentvb /g
as a function of 1/n. The other is the nonmonotonic depe
dence ofvb on the damping, a result already found in o
two-granule analysis@21# and illustrated in Fig. 6. For
spherical granules we show this dependence ofvb on damp-
ing at different times. This qualitative behavior persists
other values ofn.2: asn increases the position of the min
mum is shifted to largerg and the absolute value of th
minimum decreases.

Equation ~48! with ~59! and Eq. ~63! are the principal
results of this section. They establish analytic expressions
the pulse and for the backscattered momentum that wil
checked against numerical simulations in the following s
tion.

C. Numerical simulations

First we note that even in the frictionless case the pu
velocity is lower here (c050.836) than in the cylindrica

FIG. 5. Backscattering velocity at the moment of ejection a
function of the powern in the Hertz potential. The dashed line is th
asymptote Eq.~65!, which in this representation is independent ofg
and of t. The dark curve is the full result Eq.~64! for gt51.

FIG. 6. Backscattering velocity at the moment of ejection a
function of the friction parameter for spherical granules at differ
times as follows:t510 ~thick!, 15 ~dotted!, 20 ~dashed!, 40 ~dot-
dashed!, and 100~thin!.
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case~unit velocity!, a result obtained in the numerical simu
lations of HSJ as well as in our theory, cf. Eq.~46!. With
friction, the pulse speed decreases as the pulse loses en

As with cylindrical granules, for timest&10g21 the
pulse has the same shape in the presence of friction as in
frictionless case except for the overall exponential decay
illustrated in Fig. 7. Note that the decay is more rapid than
the case of cylindrical granules.

Contrary to the cylindrical granule case, the pulse a
slows down as its energy decreases. This behavior contin
until the energy begins to decrease abruptly~more rapidly
than exponentially! at a time;8.3g21. At a time;16.2g21

the backscattered energy becomes greater than the puls
ergy and at the same time the pulse stops moving. In Fi
we showkmax, the granules with the maximum velocity i
the pulse. The symbols are the results obtained from num
cal simulations, and the lines are@cf. Eq. ~53!#

kmax5
p

2a
1

c0

g

~n12!

~n22!
~12e2[(n22)/(n12)]gt!

5S 5

2D 1/2p

2
1

9c0

g
~12e2gt/9!, ~66!

a

a
t

FIG. 7. Total energy decay as a function of time. Within a tim
range ofO(10g21) the energy decays exponentially ase2(10/9)gt,
drawn as lines. The symbols are numerical simulation resu
From top to bottom the curves are forg50.010, 0.012, 0.014,
0.016, 0.018, and 0.020.

FIG. 8. Grain with the maximum velocity as a function of tim
The symbols are simulation results, and the lines are Eq.~66!. From
top to bottomg50, 0.001, 0.005, 0.01, 0.012, 0.014, 0.016, 0.01
0.02, and 0.03. Theg50 curve iskmax5(p/2a)1c0t.
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FIG. 9. Scaled velocity pulse as a function
scaled position for different friction coefficients
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where the last expression holds explicitly forn55/2. The
value used forc0 is as given in Eq.~46!. The agreement is
clearly excellent.

To check our prediction for the effect of friction on th
propagating pulse we present the scaled velocity pulse
function of scaled position for different friction coefficien
in Fig. 9. The agreement here is less satisfactory than in
cylindrical granule case. One difficulty is the fact that t
analytic theory is a continuum approximation while the ch
is discrete, and here only a very small number of granules
actually moving forward at any one time, that is, the pulse
very narrow. A second difficulty is that in addition to th
smooth envelope that the continuum theory attempts to c
ture, the narrow pulse actually experiences small amplit
oscillations as it moves forward. Our reported values in F
9 include values that might fall anywhere within these os
lations. It is nevertheless clear that the theory captures
qualitative features of the pulse. In particular, we point to
increasing backscattering with increasing friction that can
seen in these figures. This is a qualitative difference betw
the frictionless chain~where only about three granules bac
scatter slightly! to the chain with friction, where some back
scattering occurs at each granule as the pulse passes b
Fig. 10 the symbols are the simulation results and the li
represent Eq.~64!. The agreement is clearly excellent.

IV. CONCLUSIONS

In this work we have studied the dynamics of an init
velocity impulse in a chain of granules that interact on
when in contact, that is, they experience only a repuls
potential. Our interest has been in establishing the effect
hydrodynamic friction on these dynamics.

First we analyzed a chain of cylindrical granules, that
with a power law repulsive potential with exponentn52
~half a harmonic potential!. We presented the frictionles
case, and organized existing information in a particular w
to clarify the effects of discreteness and of the absence
restoring forces on these results. We were also able to ob
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a number of results analytically that had previously on
been obtained numerically@9#. In this chain the impulse trav
els at unit velocity as a spreading pulse~ast1/3) in which the
maximum displacement progressively grows with time~as
t1/6). While this traveling pulse carries most of the initi
energy, conservation of momentum requires that there
backscattering of each granule as the pulse passes by.
chain thus continually undergoes fragmentation.

We then generalized these results in the presence of
tion and found that the principal effect of weak friction is a
overall exponential decay of the energy. The pulse s
moves at unit velocity, still spreads ast1/3, and the maximum
displacement now varies ast1/3t2gt/2 throughout its lifetime.
There is again backscattering of each granule as the p
passes by. An interesting and unexpected effect of frictio
that the velocity of the backscattered particles at the mom
of ejection is greater than the velocity in the frictionless
chain @21#. The backscattered particles also slow down d
to friction, but this chain, too, undergoes continual fragme
tation. We supported our results via numerical simulation

Next we analyzed a chain of granules with a power l

FIG. 10. Backscattering velocity at the moment of ejection a
function of time for different friction coefficients. The symbols a
simulation results and the lines are Eq.~64!. From top to bottom on
the right side of the figureg50.010, 0.012, 0.014, 0.016, 0.018, an
0.020.
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repulsive potential with exponentn.2, with special atten-
tion to spherical granules (n55/2). We reviewed Nesteren
ko’s theory for the frictionless case, which leads to an ess
tially conservative pulse of constant width determined by
powern, traveling down the chain at a velocity that depen
on the energy of the pulse. This velocity is lower than that
the spreading pulse in the cylindrical granule case. H
again we obtained some results analytically that had pr
ously been reported numerically@9#. Contrary to then52
case there is essentially no backscattering~fragmentation! in
this system: only the first two or three granules acquir
very small backward momentum as the pulse passes ov

The generalization of these results in the presence of
tion is more complicated because an overall decay of
energy causes the pulse to slow down as it moves. We fo
that the solution is one in which the overall shape of
pulse as well as its width remain unchanged, the energy
cay is exponential, as is the decrease in the displacem
pulse amplitude and the pulse velocity. The exponential
f.

r.

-
-

s:
m-
f.

a,

04130
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cay factors are fixed by the powern of the potential. Most
dramatically, we found that in the presence of friction the
is now backscattering of each granule as the pulse passe
so that this chain experiences fragmentation. The velocity
the backscattered granules of course also decreases exp
tially. We supported these results for the case of spher
granules via numerical simulations.

A number of interesting problems immediately come
mind as a possible extension of this work. Among them
consideration of the effect of mass disorder and/or frictio
disorder in the chains and of mass tapering. Work along th
directions is in progress@30#.
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