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Reversible polydisperse parking lot model

Martin Wackenhut and Hans Herrmann
Institute for Computational Physics, University of Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany

~Received 3 March 2003; published 14 October 2003!

We use an improved reversible parking lot model to study the compaction of vibrated polydisperse media.
The particle sizes are distributed according to a truncated power law. We introduce a self-consistent desorption
mechanism with a hierarchical initialization of the system. In this way, we approach densities close to unity.
The final density depends on the polydispersity of the system as well as on the initialization and will reach a
maximum value for a certain exponent in the power law.
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I. INTRODUCTION

The vibratory compaction of granular materials has lo
been of importance in technological applications such
high performance concrete or ceramics which have to w
stand extreme stress. Extensive experimental studies
been conducted on monodisperse systems. Knightet al. @1#
investigated density relaxation of a column containing mo
disperse spherical beads subject to a long sequence of
while Nowak et al. @2# studied density fluctuations in vi
brated granular materials.

Theoretical work dealing with vibrated powders was co
ducted by Barker and Mehta@3,4#. Studies addressing th
compaction under shear and/or tapping were done by P
iquenet al. @5#, Nicolaset al. @6#, and Ludinget al. @7#.

Several models were introduced to describe the dynam
of a granular system under compaction, including a latt
model @8# and the Tetris model@9# as a special case of
frustrated lattice gas. The study of polydisperse syste
dates back to the ancient Greeks where Apollonius of Pe
studied the problem known as ‘‘Apollonian packing
@10,11#. This problem deals with the question of how to ti
the space with circles by iteratively placing between ev
three circles a circle tangentially touching all three. T
Apollonian packing is a special case of the so called ‘‘sp
filling bearings’’ in which a plane is tiled with circles touch
ing one another such that the whole area is covered w
circles@12–15#. These space filling bearings fill space with
particle size distribution given by a truncated power la
Different studies of polydisperse packings were conduc
by Aste @16#, Dodds and Weitz@17#, and Brilliantov et al.
@18,19#.

The aim of our work is to study the time evolution o
density in polydisperse systems under vibratory compact
The size distribution of the particles obeys a truncated po
law ~different than the one used by Brilliantov!. We modified
the one-dimensional reversible parking lot model@20–22#
where identical particles adsorb on an interval with an
sorption ratek1 and desorb with a ratek2, such that the
system is hierarchically initialized and the equilibrium sta
with the highest density is reached through self-consis
desorption.

II. THE MODEL

We first explain the classical parking lot model@21# and
its reversible variant@20#. Afterwards we introduce our gen
1063-651X/2003/68~4!/041303~7!/$20.00 68 0413
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eralization to polydisperse systems and the self-consis
desorption probability.

A. The parking lot model

In the classical parking lot model~PLM!, identical par-
ticles of sizer try to adsorb with an adsorption ratek1 on
randomly chosen places along an interval of lengthl. The
adsorption fails if the chosen place is partially occupied b
previously adsorbed particle. Because of the irreversible
sorption mechanism the system will reach a so cal
jammed state with a final density ofr jam'0.7475.

Krapivsky and Ben-Naim extended this model to the
versible parking lot model@20#. Here particles will addition-
ally desorb with a desorption ratek2 ~Fig. 1! and the density
of the system’s equilibrium state can be different fromr jam .
This equilibrium state is determined by the ratio between
adsorption and the desorption rates,k5k1/k2. For the final
densityrss the following leading behavior in the two limiting
cases was found:

rss~k!>H k for k!1

12 ln~k!21 for k@1.
~1!

In the limit of k→` (k151,k2→0), also called the desorp
tion controlled limit, the interval is completely filled with
particles andrss51 when time goes to infinity.

B. Generalization to a polydisperse model

Granular materials that reach highest densities consis
particles with different sizes. Such media are called polyd
perse. We will simulate such media using a polydispe
PLM.

The behavior of a polydisperse PLM is governed by t
size distribution of the particles, the amount of particl

FIG. 1. The reversible parking lot model with an interval
lengthl and particles of equal sizer. Particles adsorb with a ratek1

and desorb with a ratek2.
©2003 The American Physical Society03-1
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available in the system, the initialization process, and
dependence of the desorption rate on the particle size. Fi
2 shows the setup for the polydisperse parking lot mode

Unlike the case of monodisperse systems we introduc
reservoir because it turns out to be necessary to restric
number of particles of each size in order to impose a gi
size distribution. For a system withK particles of whichK1
are adsorbed on the interval, this reservoir will contain
remainingK25K2K1 particles.

We restrict the size of the particles to the intervalR̄
5@r min ,r max# which we will refer to as the ‘‘range of par
ticle sizes.’’ For all simulations discussed here,r max is set to
unity and the size distribution of all particles is given by
truncated power law

P~r !5ar2b, r PR̄, ~2!

where a is a normalization factor chosen such th
* r min

r maxP(r )dr5 l . We allow the exponentb to take values in

the range of 1.306,b,1.802, the same range as that fou
for two-dimensional space filling bearings@13#. We also ap-
ply periodic boundary conditions to the system. Its densitr
is given by

r5(
i 51

K1

r i / l , ~3!

whereK1 is the total number of adsorbed particles andr i is
the length of thei th adsorbed particle.

As in the classical PLM, the particles attempt to be a
sorbed with the adsorption ratek1. This rate is defined as th
number of particles attempting to be adsorbed per time u
A particle of given sizer, randomly chosen among the a
sorbed particles, will desorb with a conditional desorpti
probability p(r ).

Desorbed particles are put back into the reservoir. T
conditional probability can be calculated through

p~r !5(
i 51

K1

8~hi2r !/ l . ~4!

HereK1 is the total number of holes which is the same as
number of adsorbed particles when using periodic bound
conditions. The variablehi is the length of a single hole
which can be zero in the case of two touching particles. T
primed sum only considers terms withhi.r . Thusp(r ) will
be zero if the particle sizer is larger than any available hole

FIG. 2. The self-consistent reversible polydisperse parking
model with an interval of lengthl, particles of different sizesr, and
the reservoir. Particles adsorb with a ratek1 and desorb with a
conditional probabilityp(r ) which also depends on the distributio
of holes in the interval.
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We callp(r ) the ‘‘self-consistent desorption probability’’ be
cause of its dependence on the hole distribution. It chan
in time as the configuration in the interval changes.

This approach is justified because in an experimen
particle can only leave its place if there is a large enou
hole where it can move to. The holes of the system are sto
in a list H which is updated after each adsorption and deso
tion.

In the monodisperse parking lot model a constant deso
tion rate removes particles regardless of their local envir
ment. Therefore, the system ultimately reaches an equ
rium state independent of the initial condition. This is not t
case in a polydisperse system where the self-consisten
sorption is implemented. If we would use a constant deso
tion rate in the polydisperse system, the result would b
final density lower than ther jam obtained in the monodis
perse model.

1. Dynamics

Now we will explain the dynamics of the system. Th
word ‘‘random’’ will denote a homogeneously distribute
random number generator unless stated otherwise.

First the particles available to the system are genera
For this a total number ofK particles is put into an initially
empty reservoir~list!. The sizer k of each particle is sampled
randomly from the power law distribution given in Eq.~2!.
The total numberK of particles is given by(k50

K r k5 l . Thus
the generation of particles is stopped as soon as the su
the lengths of all particles is equal to or larger thanl. We call
the size distribution of particles in the reservoir at this tim
(t50) the ‘‘t0 distribution.’’

Next an initial distribution of particles on the interval
generated. We will call this the ‘‘initialization of the inter
val.’’ This is necessary because for an almost empty inter
p(r ) is close to unity for all particles and any adsorbed p
ticle would most likely desorb again. A further justificatio
for this initialization is given in Sec. III A.

In order to reach highest densities a hierarchical initiali
tion is used. This idea was inspired during a visit to Lose
@23# laboratory at the University of Maryland. The reservo
is sorted by size such thatr 1.r 2.•••.r K . Then each par-
ticle, starting with the biggest particler 1, is givenI trials to
adsorb. During the initialization, the desorption probability
set to zero. This resembles the filling of a recipient in
experiment, where the large particles are loaded first and
system is not vibrated.

For each adsorption trial, a random point in the interva
chosen. If the chosen place is not even partially occupied
particle will adsorb. If the particle did not adsorb after itsI th
trial it is left in the reservoir and one continues with the ne
smaller one. The initialization is finished when each parti
had up toI trials for adsorption. The density resulting from
this initialization is calledr init .

The parameterI has a meaning only during the initializa
tion process. It plays no role during the adsorptio
desorption mechanism. Here, with a ratek1, a particle is
randomly picked from the reservoir and adsorbed if poss
on a random position. If the adsorption is not possible,
particle will be put back into the reservoir. For desorption

t
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REVERSIBLE POLYDISPERSE PARKING LOT MODEL PHYSICAL REVIEW E68, 041303 ~2003!
particle on the interval is randomly picked at each time st
With the probabilityp(r ), given by Eq.~4!, it is put back
into the reservoir. Each time the distribution of particles
the interval changes, the list of holesH is updated accord
ingly.

2. Definitions of time

In this model we introduce two different definitions o
time. The first definition covers the initialization of the sy
tem. Here one time step consists of a single adsorption t
The second definition considers the dynamic part of
model. Here a single time step consists of an adsorption
a desorption trial. Adsorption is attempted with the ratek1

while desorption is checked every time step. These two d
nitions are of significant difference. Nevertheless we will p
them on the same scale in our density plots in order to
vestigate dependencies on different parameters. When
ing about time we mostly refer to the definition of time du
ing the initialization.

III. MONTE CARLO RESULTS

In this section we give an overview of the perform
simulations. We always use an adsorption ratek151. Thus,
one adsorption trial is performed during each time step in
dynamic regime.

Let us first investigate the behavior of the system dur
the initialization. The alignment of the particles on the int
val l at a certain time during the initialization is visualized
a spatiotemporal diagram by plotting at each time step
system with a height of one pixel and a width proportional
l. The density is gray scale encoded using white pixels
zero density and black pixels for density one. The darkn
of the pixel depends linearly on the density. Arranging the
pictures in chronological order results in the spatiotempo
diagram as displayed in Fig. 3 which shows the time evo
tion of the system during the initialization process.

Because of the hierarchical initialization the big particle
shown as regions of high density, are adsorbed first. As t
progresses the interval is consecutively filled with sma
and smaller particles which settle in the remaining gaps u
the system reaches a high density before dynamics star

A. Size distribution

The hierarchical initialization avoids the exclusion
large particles and thus leads to an adsorption of almos
particles. In the ideal case of a completely filled interval,
t0 distribution and the distribution of adsorbed particles fo
system in its final state would be identical.

In Fig. 4 we display the size distribution of the adsorb
particles at the end of the dynamic part of the simulati
The solid line shows the distribution for a self-consiste
desorption rate as given by Eq.~4! at the end of the simula
tion which coincides very well with thet0 distribution which
is omitted for clarity. The slope in this plot corresponds
the exponent of the power law, which is 1.33 in this case.
simulations show the same overall behavior for different v
ues ofR̄ and b. In addition, we show the distribution for
04130
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system with constant desorption rate using no initializati
For large particles the distribution deviates very stron
from the t0 distribution which justifies our hierarchical ini
tialization.

B. Desorption probability

The desorption probabilityp(r ) right after the initializa-
tion of the interval and at the end of the dynamic part of t
simulation is shown in Fig. 5. The probability depends on
hole distribution and therefore changes in time. The so
line in Fig. 5 shows the probability at the end of the initia
ization process (t'107). At this time, the transition from the
initialization to the adsorption/desorption process tak

FIG. 3. Spatiotemporal diagram of the initialization proce
System parameters:l 5300, r min50.001, r max51, k151, I
51000, b51.33, andK55420. Density at the end of the initial
ization: r'0.985.

FIG. 4. Particle size distribution for the self-consistent syst
~solid line, I 51000) and a system with a constant desorption r
using no initialization~dotted line!. The slope in the plot corre-
sponds to the exponent of the power law, which is21.33. In both
cases we display the distribution at the end of the simulation.
3-3
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place. The dotted line showsp(r ) at the end of our simula
tion (t'109). The probabilityp(r ) decreases as the syste
gets denser.

The probabilityp(r ) will become zero for large particle
at some time and they will not be able to desorb anymo
This leads to a stable configuration with highest densi
including all the large particles in the interval.

C. Density evolution

The development of the density is shown in Fig. 6. He
the density evolution for different numbers of trialsI are
shown. The inset enlarges the time interval where the tra
tion from the initialization to the adsorption/desorption pr

FIG. 5. Desorption probability of the self-consistent system a
function of the particle size in a semilogarithmic plot. For a den
system the probability is smaller. The solid line is the probability
the end of the initialization process (t'107). The dotted line shows
p(r ) at the end of the simulation (t'109). System parameters:l
55000, r min50.001, r max51, k151, I 51000, b51.33, and av-
erageK589 618. Data are averaged over ten runs.

FIG. 6. Density as a function of time in the self-consistent s
tem for different values ofI. The dotted line is the fitted curve
according to Eq.~5!. Fit parameters:r`51, Dr`50.967, B
52.829, andt519 339. Data are averaged over ten runs. The s
tem parameters are the same as in Fig. 5.
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cess takes place and we use a different definition of the t
from this point on. Now adsorption and desorption take pla
simultaneously; the density rises logarithmically with time

Knight @1# and Nowak@2# measured experimentally tha
the time evolution of density in monodisperse systems can
asymptotically fitted by the expression

r~ t !5r`2
Dr`

11Bln~11t/t!
, ~5!

where the parametersr` , Dr` , B, and t depend on the
experimental setup. Herer` is the final density whileDr` is
the difference between this value and the density att50.
The parametersB and t fit the logarithmic behavior of the
curve. The same asymptotic behavior was obtained
Krapivsky and Ben-Naim for the reversible parking l
model using a variable desorption constant@2#. For a com-
parison we plotted the fit of Eq.~5!, using a dotted line, in
Fig. 6. As we are using a dynamics different from the one
the experiment, the curves do not fit.

One can see that the density after the initialization is v
close to the final density. Thus the dominating part in o
simulations is the initialization process which we will inve
tigate more closely in the following section. As the fin
density depends on the initialization, this means that
model is nonergodic.

D. Discussion

The final density mostly depends on the initialization
large particles that could not adsorb during the initializati
are, in general, excluded from the interval for the rest of
simulation. Therefore we will concentrate our discussion
the initialization process. The initialization is characteriz
by r init which itself depends on three parameters. The nu
ber of trialsI, the exponent in the power lawb and the range
of particle sizesR̄.

1. Dependence on I

As already seen in Fig. 6 a larger number of trialsI in-
creases considerably the initial densityr init of the system. In
Fig. 7 the dependence ofr init on I is displayed. Starting from
a low density of about 0.55 the density of the system
creases until it reaches its maximum density for this value
r min . Because the system is hierarchically initialized the
nal density depends onI. This dependence can be fitted by

r init~ I !5rmax~r min!2DrI 2 f . ~6!

Herermax(r min) is the maximum density the system ca
reach for the chosen value ofr min in the limit I→` andDr
is the difference betweenrmax(r min) and the initialization
density for I 51. The exponentf is a fit parameter (f
50.4406 forr min50.001) giving the logarithmic relaxation
towards the highest density. In Fig. 8 the curve fitted w
Eq. ~6! is the dotted line.

A better fit can be accomplished when in Eq.~6! the last
term is multiplied by the last term given in Eq.~5!. The
resulting expression has the form:

a
r
t

-
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REVERSIBLE POLYDISPERSE PARKING LOT MODEL PHYSICAL REVIEW E68, 041303 ~2003!
r init~ I !5rmax2
Dr

11Bln~11I /t!
I 2 f n. ~7!

In Fig. 8 this results in the full line coinciding with the simu
lation data. The value off n is f n50.3163 forr min50.001.

The number of trialsI also influences the size distributio
of the particles. In Fig. 9 the size distribution for two diffe
ent values ofI is displayed. The distribution of adsorbe
particles at the end of the simulation coincides better w
the t0 distribution for largerI.

The deviation from the original distribution depends
the value ofI because a largerI gives each particle more
trials for adsorption. For largeI, big particles adsorb firs
because of the hierarchical initialization and a deviation
only noticeable for small particles. Comparing Fig. 9 w
Fig. 4 reveals that the deviation from thet0 distribution
~large I ) after the initialization almost vanishes when t

FIG. 7. Dependence ofr init on the number of trialsI. Three
curves are displayed with differentr min while r max51 is kept con-
stant for all three runs. The maximal possible density is determi
by r min and reached for very largeI. System parameters:l 55000,
r max51, k151, b51.33 andK'89 000. Data are averaged ov
nine independent runs.

FIG. 8. Simulation data of Fig. 7 fitted by Eq.~6!~dotted line,
rmax51, Dr50.4406, f 50.4109) and Eq.~7! ~solid line, rmax

51, Dr50.4406, B50.636, t521.3, f n50.3163). The system
parameters are the same as in Fig. 7.
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adsorption/desorption mechanism is activated. Finally,
study what effectI has on the self-consistent desorptio
probability p(r ).

In Fig. 10 the desorption probability right after the initia
ization is displayed for three differentI. The larger theI the
smaller the overall desorption probability. More trialsI dur-
ing the initialization result in smaller holes and a dens
system. Hence the overall probability will be lower for
larger I. In all three runs it is zero for the largest particles

2. Dependence on R¯

The maximum density also depends on the range of p
ticle sizesR̄. In Fig. 11r max was kept constant~unity! while
r min was varied. The dependence ofr init on r min is displayed
for two different values ofI. A larger range of particle size
R̄ results in a higherr init . This general behavior is indepen
dent of the number of trialsI.

d

FIG. 9. Comparison of the size distribution at the end of t
initialization for a different number of trialsI ~dotted line! with the
t0 distribution ~solid line!. System parameters:l 55000, r min

50.001, r max51, k151, b51.33, andK'89 000.

FIG. 10. Desorption probability for different number of trialsI
in a double logarithmic plot, right after the initialization. It is zer
for the largest particles in all three cases. System parametel
55000, r min50.001, r max51, k151, b51.33, andK'89 000.
3-5
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The hierarchical initialization, starting with the bigge
particle, allows the system to densify better because
holes get smaller and smaller. If the initialization started w
the smallest particles first, the system would end up in a fi
state with an extremely low density. The smallest sizer min in
the range of particle sizesR̄ determines the smallest hole th
can be filled and thus determines the highest reachable
sity.

The dependence on the minimal particle size in Fig.
can be fitted very well by the equation

r init~r min!5rmax~ I !2Drr min
e . ~8!

Herermax(I ) is the maximal possible density for the applie
number of trialsI which occurs forr min→0. The variable
Dr is the difference between this maximal density and
density the monodisperse system reaches for the same
plied number of trialsI. Thus we can determine these valu
through averaging over several independent simulations.
fit parametere has a value ofe50.6 for I 51 and e
50.519 forI 51000.

3. Dependence on b

The most interesting behavior of the system is revea
when investigating the dependence onb. Figure 12 shows
this dependence for two different values ofI. For a small
value of I, r init rises proportionally tob. IncreasingI shows
that for a certain value ofb, r init reaches a maximum. Fo
I 5100, b is approximately 1.62 as shown in the figure. F
I 51000 this value shifts to 1.42. Thus the exponentb is
important to reach high densities. The fine tuning in th
regime can then be accomplished by adapting the para
ter I.

The value ofb corresponds to the slope in the log-log pl
of the size distribution. For a largerb the probability to find
a small particle will increase. The summed up length of thK

FIG. 11. Dependence ofr init on r min fitted by Eq. ~8!
@rmax(I )50.987, Dr50.241, e50.600 for I 51000 andrmax(I )
50.562,Dr50.093,e50.519 forI 51]. The smallest particle size
r min is varied while r max is kept constant. System parametersl
55000, r max51, k151, b51.33, andK'5200–90 000. Data are
averaged over nine runs.
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particles in the system must be equal to the lengthl of the
interval for all values ofb. Therefore, a system with a large
b has more particles but their average size is smaller.

As mentioned in the preceding section, the hierarchi
initialization generates small holes. Thus, increasingb in-
creasesr init because more smaller particles able to fit in
these holes become available. On the other hand, during
initialization, holes smaller thanr min are generated. They
will never be filled and increasing the number of particlesK
in the system enhances the generation of these holes. T
two effects act against each other and so there exists a v
of b for which the initialization densityr init will have a
maximum.

IV. CONCLUSION

We extended the reversible parking lot model@20# and
work done by Brilliantovet al. @18,19# by adding the self-
consistent desorption to polydisperse random sequential
sorption. The use of a constant desorption rate@20# in our
model would result in an exclusion of larger particles. Avoi
ing segregation and reaching high densities is accomplis
with a hierarchical initialization of the system. This mak
the model nonergodic as this final density strongly depe
on the initialization.

The most interesting result is the existence of a spec
value for the exponentb of the power law of the size distri
bution for which the initialization density reaches a ma
mum as seen in Fig. 12. Fitting the experimentally measu
expression for the evolution of density@1,2# to our density
evolution is not satisfactory since our model uses a dynam
different from the one in the experiment.

As the initialization is crucial in our model, it would b
interesting to compare our data with experimental ones,
ing a hierarchical initialization. Of special interest would b
the dependence of the finals density on the exponentb. Fu-
ture work should also focus on the extension of this mode
two or three dimensions. From small systems we know t
here initialization is even more important. In addition, w
would expect new and interesting effects due to gravity.

FIG. 12. Dependence ofr init on the exponentb. System
parameters: l 55000, r min50.001, r max51, k151, K
'85 000–422 000. Data are averaged over nine runs.
3-6
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