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Reversible polydisperse parking lot model
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We use an improved reversible parking lot model to study the compaction of vibrated polydisperse media.
The particle sizes are distributed according to a truncated power law. We introduce a self-consistent desorption
mechanism with a hierarchical initialization of the system. In this way, we approach densities close to unity.
The final density depends on the polydispersity of the system as well as on the initialization and will reach a
maximum value for a certain exponent in the power law.
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[. INTRODUCTION eralization to polydisperse systems and the self-consistent
desorption probability.

The vibratory compaction of granular materials has long
been of importance in technological applications such as
high performance concrete or ceramics which have to with-
stand extreme stress. Extensive experimental studies have In the classical parking lot modéPLM), identical par-
been conducted on monodisperse systems. Kreéght. [1] ticles of sizer try to adsorb with an adsorption rak& on
investigated density relaxation of a column containing mono+andomly chosen places along an interval of lenigtithe
disperse spherical beads subject to a long sequence of tapdsorption fails if the chosen place is partially occupied by a
while Nowak et al. [2] studied density fluctuations in vi- previously adsorbed particle. Because of the irreversible ad-
brated granular materials. sorption mechanism the system will reach a so called

Theoretical work dealing with vibrated powders was con-jammed state with a final density pf,,~0.7475.
ducted by Barker and Mehte,4]. Studies addressing the  Krapivsky and Ben-Naim extended this model to the re-
compaction under shear and/or tapping were done by Poulersible parking lot mod€l20]. Here particles will addition-
iguenet al. [5], Nicolaset al. [6], and Ludinget al. [7]. ally desorb with a desorption rake (Fig. 1) and the density

Several models were introduced to describe the dynamicsf the system’s equilibrium state can be different frpp,, .
of a granular system under compaction, including a latticeThis equilibrium state is determined by the ratio between the
model [8] and the Tetris modell9] as a special case of a adsorption and the desorption ratks;k*/k ™. For the final
frustrated lattice gas. The study of polydisperse systemgensitypssthe following leading behavior in the two limiting
dates back to the ancient Greeks where Apollonius of Pergeases was found:
studied the problem known as “Apollonian packing”

[10,11). This problem deals with the question of how to tile k for k<1
the space with circles by iteratively placing between every psd k)= 1-In(k)~t for k>1. @
three circles a circle tangentially touching all three. The

Apollonian packing is a special case of the so called “spacefn the limit of ko (k* =1k~ —0), also called the desorp-

f'”'ng bearings” in which a plane is tiled with plrcles tOUCh'. tion controlled limit, the interval is completely filled with
ing one another such that the whole area is covered with

circles[12—-15. These space filling bearings fill space with a particles ancpss=1 when time goes to infinity.
particle size distribution given by a truncated power law.

Different studies of polydisperse packings were conducted B. Generalization to a polydisperse model
by Aste[16], Dodds and Weit417], and Brilliantov et al.
[18,19.

The aim of our work is to study the time evolution of
density in polydisperse systems under vibratory compactio
The size distribution of the particles obeys a truncated power
law (different than the one used by BrilliantowVe modified
the one-dimensional reversible parking lot mof20—22
where identical particles adsorb on an interval with an ad-

A. The parking lot model

Granular materials that reach highest densities consist of
particles with different sizes. Such media are called polydis-
erse. We will simulate such media using a polydisperse

The behavior of a polydisperse PLM is governed by the
size distribution of the particles, the amount of particles

sorption ratek® and desorb with a rat&™, such that the \1, k*
system is hierarchically initialized and the equilibrium state - 1‘ k™
with the highest density is reached through self-consistent I e
desorption.
— ! —1
Il. THE MODEL

FIG. 1. The reversible parking lot model with an interval of
We first explain the classical parking lot modefl] and lengthl and particles of equal size Particles adsorb with a rake
its reversible varianf20]. Afterwards we introduce our gen- and desorb with a rate™.
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l' kT l We callp(r) the “self-consistent desorption probability” be-
h; | p(7) V__ cause of its dependence on the hole distribution. It changes
in time as the configuration in the interval changes.
This approach is justified because in an experiment, a
particle can only leave its place if there is a large enough
FIG. 2. The self-consistent reversible polydisperse parking lothole where it can move to. The holes of the system are stored
model with an interval of length particles of different sizes and  in a listH which is updated after each adsorption and desorp-
the reservoir. Particles adsorb with a r&te and desorb with a tion.
conditional probabilityp(r) which also depends on the distribution In the monodisperse parking lot model a constant desorp-
of holes in the interval. tion rate removes particles regardless of their local environ-
ment. Therefore, the system ultimately reaches an equilib-
available in the system, the initialization process, and thgjum state independent of the initial condition. This is not the
dependence of the desorption rate on the particle size. Figuigse in a polydisperse system where the self-consistent de-
2 shows the setup for the polydisperse parking lot model. sorption is implemented. If we would use a constant desorp-
Unlike the case of monodisperse systems we introduce fion rate in the polydisperse system, the result would be a
reservoir because it turns out to be necessary to restrict thghal density lower than thej., Obtained in the monodis-
number of particles of each size in order to impose a giverperse model.
size distribution. For a system witk particles of whichK,
are adsorbed on the interval, this reservoir will contain the 1. Dynamics

remainingK,=K—K particles. _ Now we will explain the dynamics of the system. The
We restrict the size of the particles to the inten®l  word “random” will denote a homogeneously distributed
=[Fmin."max] Which we will refer to as the “range of par- random number generator unless stated otherwise.

Reservoir

ticle sizes.” For all simulations discussed hergg, is set to First the particles available to the system are generated.
unity and the size distribution of all particles is given by aFor this a total number ok particles is put into an initially
truncated power law empty reservoiflist). The sizer, of each particle is sampled
_ randomly from the power law distribution given in E@®).
P(r)=ar™® reR, (2)  The total numbeK of particles is given b £_r=1. Thus

) o the generation of particles is stopped as soon as the sum of
vvrhere a is a normalization factor chosen such _thatthe lengths of all particles is equal to or larger thawe call
Jm@P(rydr=1. We allow the exponert to take values in  the size distribution of particles in the reservoir at this time

the range of 1.306 b<1.802, the same range as that found(t=0) the “t, distribution.”

for two-dimensional space filling bearings3]. We also ap- Next an initial distribution of particles on the interval is
ply periodic boundary conditions to the system. Its density 9generated. We will call this the “initialization of the inter-
is given by val.” This is necessary because for an almost empty interval,

p(r) is close to unity for all particles and any adsorbed par-
K1 ticle would most likely desorb again. A further justification
pzz ri/l, (3 for this initialization is given in Sec. Il A.
=1 In order to reach highest densities a hierarchical initializa-
tion is used. This idea was inspired during a visit to Losert’s
the length of the th adsorbed particle. [23] laboratory at the University of Maryland. The reservoir

As in the classical PLM, the particles attempt to be ad-> isorted by 5|z¢hsuk§:h éha;>r2>- > Then eapT par-
sorbed with the adsorption raké . This rate is defined as the ticle, starting with the biggest particty, is given| trials to
. N . .adsorb. During the initialization, the desorption probability is
number of particles attempting to be adsorbed per time unit

A particle of given sizer randomlv chosen amond the ad- Set to zero. This resembles the filling of a recipient in an
P '9 ) ’ ny . 9 .__experiment, where the large particles are loaded first and the
sorbed particles, will desorb with a conditional desorption

probability p(r). system is not vibrated.

Desorbed particles are put back into the reservoir Thec For each adsorption trial, a random point in the interval is
conditional probability can be calculated through hosen. If the chosen place is not even partially occupied the

particle will adsorb. If the particle did not adsorb afterlitls
Kq trial it is left in the reservoir and one continues with the next
p(r)= E’(hi—r)ll. (4) smaller one.'The |n|t|aI|zat|qn is finished vyhen eaqh particle
=1 had up tol trials for adsorption. The density resulting from
this initialization is calledo;y;; -
HereK is the total number of holes which is the same as the The parametel has a meaning only during the initializa-
number of adsorbed particles when using periodic boundargion process. It plays no role during the adsorption/
conditions. The variabldy; is the length of a single hole, desorption mechanism. Here, with a r&é, a particle is
which can be zero in the case of two touching particles. Theandomly picked from the reservoir and adsorbed if possible
primed sum only considers terms witk>r. Thusp(r) will on a random position. If the adsorption is not possible, the
be zero if the particle sizeis larger than any available hole. particle will be put back into the reservoir. For desorption a

whereK is the total number of adsorbed particles ands
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particle on the interval is randomly picked at each time step.
With the probabilityp(r), given by Eq.(4), it is put back

into the reservoir. Each time the distribution of particles in
the interval changes, the list of holékis updated accord-
ingly.
2. Definitions of time
In this model we introduce two different definitions of
time. The first definition covers the initialization of the sys- l

tem. Here one time step consists of a single adsorption trial
The second definition considers the dynamic part of the
model. Here a single time step consists of an adsorption an
a desorption trial. Adsorption is attempted with the rate

while desorption is checked every time step. These two defi
nitions are of significant difference. Nevertheless we will put
them on the same scale in our density plots in order to in-
vestigate dependencies on different parameters. When tal
ing about time we mostly refer to the definition of time dur-

nit time

«—

ing the initialization. FIG. 3. Spatiotemporal diagram of the initialization process.
System parameterst=300, r,,;,=0.001, r.=1, k¥=1, |
lIl. MONTE CARLO RESULTS =1000, b=1.33, andK=5420. Density at the end of the initial-

ization: p~0.985.
In this section we give an overview of the performed

simulations. We always use an adsorption fate=1. Thus,  gystem with constant desorption rate using no initialization.
one adsorption trial is performed during each time step in the-,, large particles the distribution deviates very strongly

dynamic regime. _ _ from thet, distribution which justifies our hierarchical ini-
Let us first investigate the behavior of the system during;jzjization.

the initialization. The alignment of the particles on the inter-
val | at a certain time during the initialization is visualized in
a spatiotemporal diagram by plotting at each time step the
system with a height of one pixel and a width proportional to  The desorption probability(r) right after the initializa-
|. The density is gray scale encoded using white pixels fotion of the interval and at the end of the dynamic part of the
zero density and black pixels for density one. The darknessimulation is shown in Fig. 5. The probability depends on the
of the pixel depends linearly on the density. Arranging theseéhole distribution and therefore changes in time. The solid
pictures in chronological order results in the spatiotemporaline in Fig. 5 shows the probability at the end of the initial-
diagram as displayed in Fig. 3 which shows the time evoluization processt¢ 107). At this time, the transition from the
tion of the system during the initialization process. initialization to the adsorption/desorption process takes
Because of the hierarchical initialization the big particles,
shown as regions of high density, are adsorbed first. As time 10000 . .
progresses the interval is consecutively filled with smaller
and smaller particles which settle in the remaining gaps until 1000 |
the system reaches a high density before dynamics start.

B. Desorption probability

§ 100
A. Size distribution £
[=%
The hierarchical initialization avoids the exclusion of & 10
large particles and thus leads to an adsorption of almost al8
particles. In the ideal case of a completely filled interval, the 2 1
to distribution and the distribution of adsorbed particles for a
system in its final state would be identical. o1}
In Fig. 4 we display the size distribution of the adsorbed
particles at the end of the dynamic part of the simulation. 0.01 s .
The solid line shows the distribution for a self-consistent 0.001 0.01 0.1 1
desorption rate as given by E@) at the end of the simula- particle size r

tion which coincides very well with thg, distribution which FIG. 4. Particle size distribution for the self-consistent system

is omitted for clarity. The slope n th|_s plot gorre_sponds to(solid line,1=1000) and a system with a constant desorption rate
the exponent of the power law, which is 1.33 in this case. AIIusing no initialization(dotted ling. The slope in the plot corre-

simulations show the same overall behavior for different valgyonds to the exponent of the power law, which-is.33. In both
ues of R andb. In addition, we show the distribution for a cases we display the distribution at the end of the simulation.
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0.006 - - cess takes place and we use a different definition of the time
from this point on. Now adsorption and desorption take place
0.005 simultaneously; the density rises logarithmically with time.
a Knight [1] and Nowak[2] measured experimentally that
£ 0004 | the time evolution of density in monodisperse systems can be
g \. asymptotically fitted by the expression
g 0.003 . o Ap.. .
b= P()=pe— T w7 o
=
§ 0.002 ] 1+BIn(1+t/7)
where the parameters.., Ap.,, B, and = depend on the
0.001 1  experimental setup. Hege, is the final density whilé\ p.. is
\ the difference between this value and the density=a0.
3001 0'01 0'1 y The parameter8 and 7 fit the logarithmic behavior of the

curve. The same asymptotic behavior was obtained by
Krapivsky and Ben-Naim for the reversible parking lot

FIG. 5. Desorption probability of the self-consistent system as anodel using a variable desorption constg2}t For a com-
function of the particle size in a semilogarithmic plot. For a densermparison we plotted the fit of Eq5), using a dotted line, in
system the probability is smaller. The solid line is the probability atFig. 6. As we are using a dynamics different from the one in
the end of the initialization process~10"). The dotted line shows the experiment, the curves do not fit.

particle size r

p(r) at the end of the SimUlatifrt%log)- System parameters: One can see that the density after the initialization is very
=5000, 1 in=0.001,rma=1, k" =1, 1=1000,b=1.33, and av-  close to the final density. Thus the dominating part in our
erageK =89 618. Data are averaged over ten runs. simulations is the initialization process which we will inves-

tigate more closely in the following section. As the final
place. The dotted line showxr) at the end of our simula- density depends on the initialization, this means that our
tion (t=10°%). The probabilityp(r) decreases as the system model is nonergodic.
gets denser.
The probabilityp(r) will become zero for large particles
at some time and they will not be able to desorb anymore.

This leads to a stable configuration with highest densities The final density mostly depends on the initialization as
including all the large particles in the interval. large particles that could not adsorb during the initialization

are, in general, excluded from the interval for the rest of the
simulation. Therefore we will concentrate our discussion on
o o the initialization process. The initialization is characterized
The development of the density is shown in Fig. 6. Hereby pinic Which itself depends on three parameters. The num-

the density evolution for different numbers of tridlsare  per of trialsl, the exponent in the power lalvand the range
shown. The inset enlarges the time interval where the transi- =

tion from the initialization to the adsorption/desorption pro- of particle sizeR.

D. Discussion

C. Density evolution

. 1. Dependence on |

"""""""""""""""""""""""""" As already seen in Figs a larger number of trialt in-
creases considerably the initial density;; of the system. In
Fig. 7 the dependence pf,,;; onl is displayed. Starting from

a low density of about 0.55 the density of the system in-
creases until it reaches its maximum density for this value of
I min- Because the system is hierarchically initialized the fi-
nal density depends dn This dependence can be fitted by

08

06

1
0.98
0.96
094
092

0.9

density

04
Pinit(l):pmaﬁrmin)_Apl_f- (6)

02 r

, , Here pmadmin) IS the maximum density the system can
10®  10® reach for the chosen value of,;, in the limit | —o andAp
- : ‘ . is the difference betweep,.{min) @nd the initialization
1 100 10* 108 10° density for I=1. The exponentf is a fit parameter f(
time =0.4406 forr ,,;,=0.001) giving the logarithmic relaxation
FIG. 6. Density as a function of time in the self-consistent sys-towards the highest density. In Fig. 8 the curve fitted with
tem for different values of. The dotted line is the fitted curve EQ. (6) is the dotted line.

according to Eq.(5). Fit parametersip..=1, Ap,=0.967, B A better fit can be accomplished when in Ef) the last
=2.829, andr=19 339. Data are averaged over ten runs. The systerm is multiplied by the last term given in Eg5). The
tem parameters are the same as in Fig. 5. resulting expression has the form:
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. R 0.001 0.01 0.1 1 0.001 0.01 0.1 1
| (number of trials during initialization) R . . X
particle size r particle size r

FIG. 7. Dependence gb;,;; on the number of triald. Three
curves are displayed with different,;, while r,,,=1 is kept con-
stant for all three runs. The maximal possible density is determine
by r in and reached for very large System parameters= 5000,
Mmax=1, k*=1, b=1.33 andK~89 000. Data are averaged over
nine independent runs.

FIG. 9. Comparison of the size distribution at the end of the
(iEPitiaIization for a different number of trialk (dotted ling with the
o distribution (solid line). System parameters:=5000, r yin
=0.001,r pma=1, k"=1, b=1.33, andK~89 000.

adsorption/desorption mechanism is activated. Finally, we
Ap study what effectl has on the self-consistent desorption
| ~fn, (7) probability p(r).
In Fig. 10 the desorption probability right after the initial-
) ) ) ) o ) ) ization is displayed for three differeiht The larger thd the
In Fig. 8 this results in the full line coinciding with the simu- smajler the overall desorption probability. More tridlslur-
lation data. The value df, is f;,=0.3163 forri,=0.001. ~ ing the initialization result in smaller holes and a denser

The number of trial$ also influences the size distribution system. Hence the overall probability will be lower for a
of the particles. In Fig. 9 the size distribution for two differ- |arger|. In all three runs it is zero for the largest particles.
ent values ofl is displayed. The distribution of adsorbed
particles at the end of the simulation coincides better with
the ty distribution for larger.

The deviation from the original distribution depends on The maximum density also depends on the range of par-
the value ofl because a larger gives each particle more tjcle sizesR. In Fig. 11r ,,,,Was kept constar(unity) while
trials for adsorption. For largé, big particles adsorb first . was varied. The dependencewmf;, onr i, is displayed
because of the hierarchical initialization and a deviation iq:or two different values of. A larger range of particle sizes

o_nly noticeable for small pa_rtiqles. Compa””g F_ig. 9 Withﬁresults in a highep;,;; . This general behavior is indepen-
Fig. 4 reveals that the deviation from thg distribution 4.1t of the number of trialk

(large I) after the initialization almost vanishes when the

Pinit(1) = Pmax— m

2. Dependence on R

1 T T

1
0.95 0.1 ]
09 0.01 .
+ [}
2
£ 0.001 .
0.85 5
s .
08 S  0.0001 | 1
£ ; a 4 \
o075 § te0sf 1=10000 \ 1
’ 8 i
g te06| i 1
0.7 a Y H
3 y i
0.65 1e-07 | 5 E
06 1e-08 | ]
0.55 : : : 1e-09 . 5 :
1 10 100 1000 10000 0.001 0.01 0.1 1
| (number of trials during initialization) particle size r
FIG. 8. Simulation data of Fig. 7 fitted by E¢g)(dotted line, FIG. 10. Desorption probability for different number of tridls

Pmax=1, Ap=0.4406, f=0.4109) and Eq(7) (solid line, pmax in a double logarithmic plot, right after the initialization. It is zero
=1, Ap=0.4406,B=0.636, 7=21.3, f,,=0.3163). The system for the largest particles in all three cases. System paramdters:
parameters are the same as in Fig. 7. =5000, I »in=0.001,r =1, k=1, b=1.33, andK~89 000.
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1 T y
B e 0.582 |
09 1=1000 T 0578 1
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S . 0.574 |
* & 057
0s | \' 1 0.566 |-
N 0.562 |
£ o7l ] oss8 (et o, . . . L A
< 13 1.35 14 145 15 155 16 165 1.7 1.75 1.8 185
b (exponent in the power law)
06 | 1=1
| P S I N— e W e . 095 | 'W“Q\\
| TRy _ E 0948 |
08 gy ¢ o946 |
0.944 . . L
04 : ! 13 135 14 145 15 155 16 165 1.7 175 1.8 185
0.001 0.01 0.1 1

b (exponent in the power law)
FIG. 12. Dependence o0p;,i; on the exponenth. System
parameters: 1=5000, r.;,=0.001, rp.,=1, k*=1, K
~85000-422 000. Data are averaged over nine runs.

Tmin
FIG. 11. Dependence o0pj,i; on rp;, fitted by Eq. (8)
[pPmax(1)=0.987, Ap=0.241, e=0.600 for | =1000 andp.1)
=0.562,Ap=0.093,e=0.519 forl =1]. The smallest particle size

I min IS varied whiler ., is kept constant. System parametdrs: . .
=5000, F =1, k=1, b=1.33, ancK ~5200-90 000. Data are Particles in the system must be equal to the lerigthi the
averaged over nine runs. interval for all values ob. Therefore, a system with a larger

b has more particles but their average size is smaller.

The hierarchical initialization, starting with the biggest AS mentioned in the preceding section, the hierarchical
particle, allows the system to densify better because th#ntialization generates small holes. Thus, increasng-
holes get smaller and smaller. If the initialization started withCréasein;; because more smaller particles able to fit into
the smallest particles first, the system would end up in a finaihese holes become available. On the other hand, during each

state with an extremely low density. The smallest sizg in  initialization, holes smaller thamy,, are generated. They
the range of particle sizé® determines the smallest hole that W'” never be filled and increasing ‘h?‘ humber of partidies
the system enhances the generation of these holes. These

can be filled and thus determines the highest reachable deﬁ,}lo effects act against each other and so there exists a value

sity. : ST ) ;
The dependence on the minimal particle size in Fig. 11$a2i§JmWh'Ch the initialization densitypini Will have a

can be fitted very well by the equation

Pinit(Fmin) = Pmax(!) = Apriin. (8) IV. CONCLUSION

: . . . . We extended the reversible parking lot mod¢i20] and
Hereppa(1) is the maximal possible density for the applied work done by Brilliantovet al. [18,19 by adding the self-

number of trialsl which occurs forr m;y—0. The variable consistent desorption to polydisperse random sequential ad-
Ap is the difference between this maximal density and the P polydisp q

density the monodisperse system reaches for the same aSI%QI'ptIOI’]. The use c_)f a constant desorption 1[2@ in-our
odel would result in an exclusion of larger particles. Avoid-

plied number of triald. Thus we can determine these values. . . ) )= MO X
ing segregation and reaching high densities is accomplished

through averaging over several independent simulations. The: . L ;
. _ — with a hierarchical initialization of the system. This makes
fit parametere has a value ofe=0.6 for I=1 and e : g ‘
—0.519 forl = 1000. the modgl' npne_rgodlc as this final density strongly depends
on the initialization.
The most interesting result is the existence of a specific
value for the exponertt of the power law of the size distri-
The most interesting behavior of the system is revealedution for which the initialization density reaches a maxi-
when investigating the dependence lenFigure 12 shows mum as seen in Fig. 12. Fitting the experimentally measured
this dependence for two different values lofFor a small  expression for the evolution of densitg,2] to our density
value ofl, pj,;; rises proportionally td. Increasing shows  evolution is not satisfactory since our model uses a dynamics
that for a certain value db, p;,;; reaches a maximum. For different from the one in the experiment.
=100, b is approximately 1.62 as shown in the figure. For  As the initialization is crucial in our model, it would be
I =1000 this value shifts to 1.42. Thus the exponbnis interesting to compare our data with experimental ones, us-
important to reach high densities. The fine tuning in thating a hierarchical initialization. Of special interest would be
regime can then be accomplished by adapting the param#éhe dependence of the finals density on the expohefu-
terl. ture work should also focus on the extension of this model in
The value ot corresponds to the slope in the log-log plot two or three dimensions. From small systems we know that
of the size distribution. For a largérthe probability to find  here initialization is even more important. In addition, we
a small particle will increase. The summed up length ofkhe would expect new and interesting effects due to gravity.

3. Dependence on b
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