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Viscosity in molecular dynamics with periodic boundary conditions
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We report a study of viscosity by the method of Helfand moment in systems with periodic boundary
conditions. We propose a new definition of Helfand moment which takes into account the minimum image
convention used in molecular dynamics with periodic boundary conditions. Our Helfand-moment method is
equivalent to the method based on the Green-Kubo formula and is not affected by ambiguities due to the
periodic boundary conditions. Moreover, in hard-ball systems, our method is equivalent to that developed by
Alder, Gass, and WainwrigHtl. Chem. Phys53, 3813(1970]. We apply and verify our method in a fluid
composed oN=2 hard disks in elastic collisions. We show that the viscosity coefficients already take values
in good agreement with Enskog’s theory fd=2 hard disks in a hexagonal geometry.
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[. INTRODUCTION cient because it is based on a straightforward accumulation
which is numerically robust. Actually, it is a Helfand-

Viscosity is the fundamental mechanism of dissipation ofmoment method that has been numerically implemented by
momentum in a fluid. Viscosity is described at the macro-Alder et al. for viscosity in hard-ball fluid$6]. Several other
scopic level by the Navier-Stokes equations which are thémplementations of the Helfand-moment method have been
equations of balance of momentum in a fluid. At the micro-considered and discussed in the literatlife9]. However,
scopic level, viscosity arises because of a transfer of momerithe implementation of this method for systems subject to
tum between fluid layers moving at different velocities asPBC other than hard-ball fluids seems to remain ambiguous
already explained by Maxwell thanks to kinetic theory. as reported by Erpenbeck in R¢®].

In the 1950's, Green, Kubo, Mori, and others provided an The purpose of the present paper is to propose a Helfand-
explanation of all the transport properties in terms of time-moment method that is appropriate for molecular-dynamics
dependent statistical correlations of microscopic currents asimulations with PBC and that is strictly equivalent to calcu-
sociated with each transport propefti—4]. They showed lations with the Green-Kubo formula. For this purpose, we
that the transport coefficients are given as the time integralshow the need to take into account the minimum image con-
of the time autocorrelation functions of the microscopic cur-vention. In this way, we are able to obtain a Helfand moment
rents, yielding the famous Green-Kubo formulas. Thereaftergiving viscosity thanks to an Einstein-like formula in mo-
Helfand showed in the early 1960's that the transport coeffilecular dynamics with PBC. The so-obtained value of viscos-
cients can be expressed by Einstein-like formulas in terms aty is in full agreement with the value of the Green-Kubo
moments—the so-called Helfand moments—which are théormula and also with the value obtained by Aldsral. [6].
time integrals of the microscopic currefts. Our method is applied to the hard-disk fluid. We study in

These methods by Green, Kubo, Mori, Helfand, and oth-detail the simple model composed of two hard disks in elas-
ers have been applied to the computation of transport progic collisions in a domain defined by PBC. Due to the defo-
erties by molecular-dynamics simulations, in particular, bycusing character of the disks, this model is chaotic. Buni-
Alder et al. [6]. In molecular-dynamics simulations the sys- movich and Spohn have demonstrated that the viscosity
tem is necessarily composed of a finite number of particleslready exists in this system with only two particlgi].
that are usually moving in a domain defined with periodicThe model they studied is defined with PBC in a square
boundary conditions in order to simulate the bulk propertiesgeometry. It presents a fluid and a solid phase which are
The periodic boundary conditiof®BC) usually considered separated by a phase transition. The problems presented by
in molecular dynamics are based on the so-catfedimum  the model in a square geometry are tl@atthe viscosity
image conventiomccording to which interaction should oc- exists only in the solid phaséij) the viscosity tensor which
cur between pairs of particles separated by the minimunis of fourth order isanisotropicon a square lattice. In the
distance among the infinitely many images of the particlegpresent work, we solve these problems by considering a hex-
allowed by the PBC. In molecular-dynamics simulations, theagonal geometry. Indeed, in the hexagonal geometry, the
minimum image convention plays a fundamental role to defourth-order viscosity tensor is isotropic and we can prove
fine the microscopic current entering the Green-Kubo forthe existence of viscosity already in the fluid phase.
mula. Furthermore, we apply our method to systems containing

We may wonder if the Helfand-moment method could bemore and more hard disks. We show that the values of the
applied to molecular dynamics simulations with PBC. Theshear viscosity obtained by our Helfand-moment method are
advantage of the Helfand-moment method is that it expressas good agreement with Enskog’s theory already for the fluid
the transport coefficients by Einstein-like formulas, directlyof two-hard disks.
showing their positivity. Moreover, this method is very effi-  The paper is organized as follows. In Sec. Il, we derive
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our expression for the Helfand moment for the viscosity ten-and they can be expressed in terms of the elements of the
sor to be of application in molecular-dynamics simulationsfourth-order viscosity tensor as
with PBC. In Sec. lll, we describe the model of two hard
disks in the hexagonal and square geometries. In Sec. IV, we 7= Mxy.xys
study different properties of the model such as the mean free
- : - 1 d—1
path and the hydrostatic pressure, in particular, across the (= = Pyt —— 7 6)
fluid-solid phase transition. In Sec. V, the Helfand-moment d oot d oYy
method is applied to the two-disk model to calculate the
shear and bulk viscosities. We show how the fluid-solid g The Green-Kubo formula in molecular dynamics with PBC

phase transition affects the viscosities in this model. In . )
Sec. VI, we extend our results to systems with Several techniques have been developed during the last

—4,8.12 ... 40hard disks. We show that the shear viscositycentury to evaluate the transport coefficients. One of the
already takes a value in good agreement with Enskog’§n°St important methods was established by Green, Kubo,

theory in the two-hard-disk system. Our results are discusse@f’d Mori[1-4l. It consists in having a relation between each
and conclusions are drawn in Sec. VIL. transport coefficient and the autocorrelation function of the

associated flux or microscopic current. In our césse Ap-

pendix A), we have
IIl. HYDRODYNAMICS, HELFAND MOMENT,

AND VISCOSITY B (=

K=o Jii (0) 31 (t)) — (Jii (I 1dt, 7

A. Viscosity and hydrodynamics 7ij K VJo [< ”( M )> < ”>< k|>] @
The hydrodynamic theory provides us with the equation%vith the microscopic current

of motion for the conserved quantities in a fluid. In particu-

lar, the local conservation of momentum is expressed by the N . 1 N
. . . PaiPaj
well-known Navier-Stokes equatiori1]: Jj=2 += X Fira=rp)(ra—rp), (8
a=1 M 2 afb=1
Ipv; oIT;; . .
TR (1) p, andr, being the momentum and the position of
J particle, whileF(r,—r}) is the force between particlesand
Where b. In Eq.(7) the averagé- ) is performed with respect to the
equilibrium state. We notice that, for the microcanonical
Hij=pviv]-+P5ij—0'i’j (2) state,
is the momentum flux density tensaiy; is the momentum B= % % 9
5T N—

density,P is the hydrostatic pressure, anq is the viscosity
stress tensor. This last tensor takes into account the intern@iee Appendix A

friction occurring in a fluid when different parts of the fluid A very important point is that, in a system with PBC as
move with different velocities. Thereforey; has to be pro-  ¢ynsidered in molecular-dynamics simulations, the differ-

portional to the space derivatives of the velocities: ence of positions ,—r, must satisfy theminimum image
conventionthat
, (9Uk
TN = MK Gy 3 L
|raj—rbj|s§ for j=1,...d, (10

where 7;; | is theviscosity tensar

For isotropic systems, the theory of Cartesian tensor$or a cubic geometry. More generally, the difference of posi-
shows that the basic isotropic tensor is the Kronecker tensdions must remain within a unit cell of the Bravais lattice
;; and that all the isotropic tensors of even order can baised to define the PBC. With PBC, there is indeed an infinite

written like a sum of products of tensof [12]: lattice of images of each particle. All these images move in
parallel. If the force has a finite range, the part@liateracts
7ij k1= a8ij 6+ b & 5j + €O Iy (4)  only with the particlesb within its interaction range. The

force field F(r) has a finite range of interaction beyond
wherea, b, andc are scalars. Since the viscosity stress tensoyhich it vanishes. The interaction range is supposed to be
is symmetricoj;=oj;, only two of these coefficients are smaller than the size of the box containing all the particles.
independent because=c. After a rearrangement, we have |t is important to notice that we do not suppose here that the

force field is periodic. In order to define a dynamics that is

g P00 2 du o o (5  Periodic in the box of sizd. the positions should jump in
I arj orp dYor, Yor, order to satisfy the minimum image convention. As a conse-

quence of this assumption, the positions and momenta used
for a d-dimensional system. The coefficienis=b and /  to calculate the viscosity by the Green-Kubo method actually
=a+(2/d)b are, respectively, thehear and bulk viscosities obey modified Newton's equations
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dry pa N N
-t ArPat-ty), Gij()= 2 paira(— >, > pPAret—ty),
m s a=1 a=1 s
(16)
d
CPa_ > F(ra—ry), (11)
dt  v{Fa)

whereG;;(0)=0, p§)=pai(ts), and 6(t—ts) is the Heavi-
whereArEf) is the jump of the particla at timetg in orderto  side step functiomt the timetg of the jumps:
satisfy the minimum image convention. Moreover, we im-
pose that particle 1 does not jump. To satisfy these condi-

tions, the jumps at the timg when|r,;(ts) —rp;(ts)[=L/2 1 for t>ts,
. O(t—ty)= 17
can be given by 0 for t<t.
Ard=o0,
Arﬁfj)=sL, Expression(16), which we propose in the present paper, can
for a<b: Ar®=g for c#ab (12 be used to obtain the viscosity coefficients thanks to the
¢l T Einstein-like formulag14) in a molecular dynamics defined
Ar{)=0 for k#j and Vd, on the torus. We emphasize that expressith) may apply

. - to systems of particles interacting with a smooth potential
with &= sgrf paj(ts) — Ppj(ts) ]. The modified Newton equa- ynder the condition that the range is finite or to systems of
tions (11) define a dynamics that is periodic on the torus ofjyard palls in elastic collisions. We show in Appendix C that

the relative coordinates, —r, because the jumps of the rela- the hydrostatic pressure can also be written in terms of the
tive coordinates are vectors of the Bravais cubic latticeHelfand moment16).

Argsj)—Ar(ljf)=0,i L, while the momentg, remain func- Our Helfand-moment method has several theoretical and
tions of the time without singularities worst than discontinui- numerical advantages.
ties. We notice that modified Newton’s equatigiid) con- (i) It is strictly equivalent to the Green-Kubo method.
serve energy, total momentum, and preserve phase-space (ji) The Einstein-like formulg13) or (14) directly shows
volumes(Liouville’s theorem). the positivity of the viscosity coefficient or viscosity tensor
becausd, B, andV are positive. Moreover, the Helfand mo-
C. Helfand moment for molecular dynamics with PBC ments directly obey central-limit theorems, expressing the

In the 1960's, Helfand has derived quantities associate&saussian character of the dynamical fluctuations in systems
! with finite viscosity.

with the different transport processes, in particular for the™ " .

viscosities[5]. These new quantitieG;; (t) are such that we ("L) tEhan_ks to.tour e>f<fpr_esst|o(16) OT the bHeIfantd 'mr?t_f

can obtain an Einstein-like relation for each transport coeffiNeNt the VISCosIty coetlicients are given by a straightior-
ward accumulation over the successive jurapBor a given

cient. For the shear viscosity coefficient, we have X ; .
system with N particles, numerical convergence can be
B reached in the limit of an arbitrarily large number of jungps
7= lim 5 {([Guy () — Gyy(0)1%). (13 under conditions of existence of the viscosity coefficients.
t=e By defining the Helfand moment as integi@dh) of the
More generally, we can define such a relation for each eler_nicr_oscopic current for a system With. minimum image con-
ment of the viscosity tensor: vgnnon, we obtain expressiofi6) which can be _useq to
directly calculateA G;; (t) = G;;(t) — G;;(0) for the Einstein-
B Helfand relation, remaining consistent with the requirements
Nij K= Iimm[(Gij(t)Gk,(t»—(Gij(t))(Gk|(t))] imposed by the periodic boundary conditions and with the
toee Green-Kubo formula for a system satisfying the minimum
(14 image convention.

if we takeG;;(0)=0. TheHelfand moment ¢(t) is defined

as the integral of_ the microscopic current appearing in the D. Comparison with other methods
Green-Kubo relation:

In the 1970’s, Alderet al. [6] calculated the viscosity co-
efficients of hard-ball systems with Einstein-like formulas
based on expressions for Helfand moments which are spe-
cific to hard-ball systems. Instead of adding a new quantity
As a consequence of definitiofl5), the Einstein-Helfand to the Helfand moment at each passage through the bound-
formula(14) is equivalent to the Green-Kubo formuld), as  aries of the minimum image convention as in Etg), their
proved in Appendix B. In a system of particles on a torus expression takes into account only the elastic collisions be-
and satisfying the minimum image convention, we can intetween the hard balls. The Helfand moment can be obtained
grate current8) with modified Newton’s equation€ll) to by direct integration of the microscopic current according to
get Eq. (15 with G;;(0)=0:

t
Glj(t)zG”(O)'f'fo\]”(T)dT (15)
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t [8,9] that the expression in RdfL3] is in general not valid to
Gij(t):f d7J;i(7) (18 calculate the shear viscosity. We notice that both the original
0 Helfand moment and the expression in REE3] do not
. N a1 strictly apply to_ systems SL_iject to PB€ee discgssions in
:f dT{E PaiPaj L 2 Fi(Fa—Tp)(Faj— o)) |- Refs.[8,_9]). This problem is solve_d by expressi@¢@l) of _
0o |a=1 M 2 37b Ref.[6] in the case of hard-ball fluids and by our expression

(29 (16) in the general case.

Between the collisions the trajectory is a straight line and the
particle velocities change only at each collision. Therefore,
the first term in the integral, the kinetic term, is constant By symmetry, most of the elements of the viscosity tensor
during two successive collisions and changes only at the coRre either equal or vanish. First, we have

lisions. The second term, the potential term, vanishes be-

tween two successive collisions and contributes only at col- i k1= Tk1ij = Wi k1= 7ij Ik (22

lisions. Indeed, for a hard-ball potential, the forces betweerbecause of the stationarity of the equilibrium average, the

the particlesa andb colliding at the timet, of(tcr;(icolhsmnc reversibility of the microscopic equations, and the fact that
can be written in terms of the changep;”=pa(tct€)  Fr_—r.)=F(|r,—r,|) is a central force. Second, in our

— Pa(tc—€) of momentum of the particla at the collisionc  \york | the fluid is invariant under rotations ley= /3 for the

E. Symmetry considerations in two-dimensional systems

S hexagonal geometry and lpy= /2 for the square one. If we
F(ry—rp) = +Ap§f)5(t—tc), deflqe the V|scos.|ty ten§or as a linear operayoactlr]g on
matricesA according to (A);; = 7j Ak - Then our discrete
F(rp—rga)=—Apds(t—t,), (200  symmetry can be written as
for t,—e<t<t,+e, becauseAp{®=—Ap{?. The forces 7(R7*AR)=R Y (7A)R, (23

with the other particles which are not engaged in the coIIi-f I icesA. R beina th . .
sion vanish. Therefore, we obtain or all matricesA, eing the rotation matrix

Cose —sine
Gij()= > ( > pa'pa') Ate g R=\ sin ¢ cosg |’ 24
(c=1¢) \a=12 M (c-10)
and ¢ is equal torr/3 or 7/2, respectively, for the hexagonal
+ 2 Apgci)rgcgj o(t—t.), (21) or square systems. Thanks to this symmetry, the only nonva-
c nishing elements arg;; ;; = »; ;j and 7;; ;i = n;; j; - Further-

) ) ) _ ) more, fori#j, k#1,
where, in the first termAt._, . is the time of flight between

the collisionsc—1 andc dUring which the momenta remain Dijii = Tkikl Miii = WjLii 0 MiiLjj = Tkk - (25)
constant and, in the second teraandb denote the particles

interacting at the collisiore andfécb),:faj(tc)—Fbj(tc)- The Hence, there are in fact only three independent elements:

first sum runs over the intercollisional free flights{1,c)  xxxx: Txyxys Txxyy- ON the other hand, for an isotropic
between the initial imé=0 and the current timg while the ~ Systém, we can see that
second sum runs over the collisions occurring between the _

time t=0 andt. If C denotes the last collision before the 7= Txyxy
current timet, we notice that the last term of the first sum is r=1( i ) 27)
Atcci1=t—tc. Hence, if we differentiate Eq(21) with 2L houxx ™ Txxyy)-
respect to time and use EQ0) we recover the microscopic  The third elementy,, yy is in fact a combination of the two
current(8). Therefore, expressiofR1) is equivalent to our  giher elements: '

expression(16) in the case of hard-ball systems. However,

our expressior{16) extends to systems with a smooth inter- Maxyy= Mxxoxx— 2xy.xy - (28)
action potential.

A comment is in order here about another method that has
been considered and discussed in the literafidre9]. This
other method implements an expression printed in the middle In the present work, we apply our method to a simple
of a presentation given in Refl3] for the calculation of model that we describe in the present section. The model is
shear viscosity with the Helfand-moment method. This ex-composed of two hard disks in elastic collisions on a torus.
pression differs from the Helfand moment by the mere exBunimovich and Spohn have previously studied this model
change of a square and a sum over the particles. The equivier a square geometryl0]. By periodicity, the system ex-
lence of the expression in R¢.3] with the Helfand moment tends to a two-dimensional lattice made of infinitely many
depends on the vanishing of some cross terms as pointed outages of the two disks. For PBC on a square domain, the
in Ref. [7]. Numerical evidence has been obtained in Refsinfinite images form a square lattice, in which each cell con-

(26)

IIl. DESCRIPTION OF THE TWO-HARD-DISK MODEL
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(a) (b)
FIG. 1. The model of two hard diskga) in the hexagonal ge-
ometry and(b) in the square geometry. FIG. 2. Basis vectord ande’), position vector , of particlea

in the cell, and the position vectog,a|é in the lattice.
tains two diskgdsee Fig. 1b)].

In the present work, we generalize this model to the hex- %: ﬁ+2 ArOs(t—ty)
agonal geometrysee Fig. 1a)]. The possibility of such a dt m %5 ! s
model was pointed out in Reff14]. The images of each disk
now form a triangular lattice. The two diskthe white and dr, p, ©
the black oneshave the same diameterand massn. They gtom’ ES Ary76(t—ts), (32

follow different trajectories. All the black disks move to-
gether and all the white ones move together. The system is

periodic and the dynamics of the disks can be reduced to the % =Fy,
dynamics in the unit cell or torus. dt
dp>
A. Hexagonal geometry Tl Fa, (33

Let us first introduce some parameters of the systers.

the distance between the centers of two neighboring cells. t;ﬁrefﬁea% ?Eé;;e tr;ieeén:)ergegé%\?;th;t\évigkdslSlléla’nzngFgl_hese
also corresponds to the distance between two opposi 9 PP P y ’

. orces equal zero wh —T,||>0 and are infinitely repul-
boundaries of a cell. q gv—rof>0o y rep

By a linear combination of two vectors sive whenlr, —r5| = o. t; denotes the time of the jump to
satisfy the minimum image convention.

e=(L,0), At this stage, we can do the following change of vari-
ables:
1 3 _
N Bt r=rq—ry,
e (2 L, 5 L, (29
ry+r,
we can spot all the cells of the lattice and then localize the R=——, (34)
center of a disk thanks to
fa = Tatlaet 1€ for a=12, (30) o= pl;pz,
wherel, andl} are integer and, is the position vector of P=p.+p,. (35)

the diska with respect to the center of the cdlrig. 2).
Therefore, the distance between the two disks is expresseaflwe introduce the reduced mags=m/2, we can write
by

dr_ + D uArOs(t—ty)=puv+ >, nAr®st—ty)
Ira=ral=lri=ra+(i=l)er (1 =l)ell, (31) pag=PT< TRV M s
(36)
wherer=r,—r, is the relative position between both disks.
By the minimum image convention, the relative distafide dp FoF.— _F 3
should take the smallest value among the infinitely many a1 2 (37)

possible values. Of course, this distance has to be greater

than or equal to the disk diametdfr(=|r,—r,|=c). As  wherev is the relative velocity and\r®=Ar{d—Ar{ .

we have a hard-disk potential, the disks move in a free moHere we suppose that we are in the reference frame of the
tion between each collision. Therefore, the equations of momass centefthat is P=0). Accordingly, the energy of the
tion are written as system is reduced to
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* 00
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two-disk model periodic Sinai billiard two-disk model periodic Sinai billiard

FIG. 3. The model of two hard disks in the hexagonal geometry FIG. 4. The model of two hard disks in the square geometry is
is reduced to the periodic Sinai billiard thanks to a change of variteduced to the periodic Sinai billiard thanks to a change of vari-
ables. ables.

p’ (39) wherelL is the length of a side of the square unit cell that

2w’ contains two moving disks of diameter. We perform the
same change of variables to reduce the dynamics of two hard
The interest of this change of variables is to reduce thejisks to that of the fictitious pointlike particle of a Sinai
number of variables. Indeed, the only variables that remaimjlliard in a square unit cell. Here also, the sitef the cells

are the relative position and velocityr=(x,y) and v of the Sinai billiard is the same as for the cells of the two
=(vx,vy)]. We can associate a fictitious pointlike particle hard disks modeld=L.

with these variables, which moves in a reduced system,
known as theperiodic Sinai billiard (see Fig. 3.

The billiard is also a triangular lattice of hexagonal cells.
The sized of these cells is equal to the size of the cells of the ) i o . .
model itself @d=L). A hard disk is fixed on the center of The physical quantity determining the size of the cell in
each cell. Its radius is equal to the diameteof the two  OUr model is the density that corresponds to the number of
moving disks. disks per unit volume or, in our case, the number of disks per

The basis vectors of this lattice are the same as those &fit area. Each cell contains two disks. Therefore, the density
the original dynamicg32) and (33) if we replaceL by d, is n=2N, whereV=|lex¢e'| is the area of a cell. In our
which gives us the possibility of spotting a cell in the lattice study, we have chosen that the diameter of the moving disks

E

C. The different dynamical regimes of the model

thanks to the vector is equal to unity:oc=1.
As a function of the density, we observe different dynami-
re=lce+lge, (39 cal regimes. At low density, the disks are able to move in the
whole lattice so that the disks are not localized in bounded
wherel . andl; are integer. phase-space regions. In this case, the billiard may have a

In the Sinai billiard, the system is described by a trajec-finite or an infinite horizon depending on the geometry and
tory in a four-dimensional phase space, the dimensions beingn the density. In the opposite, at high density, the disks are
the Cartesian coordinates,{,p,,p,) or the polar coordi- so close to each other that they cannot travel across the sys-
nates K,y,p,,0). However, since the energy of the systemtem and we refer to this regime as tlogalized regimeThe
is conserved, this space is reduced to the three-dimensionaditical density between the nonlocalized and localized re-
space of the variablex(y, ). Furthermore, in hard-ball sys- gimes corresponds to the situation where both disks have a
tems, the topology of the trajectory is independent of thedouble contact with each other in the configuration shown in
energy level. Therefore, we can study the system on an arbFig. 5.
trary energy level. This energy determines the temperature of
the system and is equal 6= (d/2)(N—21)kgT=kgT be-
cause we have only two degrees of freedahs@, N=2).

Sinai and Bunimovich have demonstrated that the dynamics
in such billiards is ergodic on each energy lejEb,16.

B. Square geometry

The case of the square geometfjg. 4) is similar to the
hexagonal one except that the basis vectors are here given by

e=(L,0),
e=(0L), (40 FIG. 5. Hexagonal system at the critical density.
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FIG. 6. Typical configuration of the system in the infinite-  F|G. 8. Typical configuration of the system in the localized
horizon regime. regime.

&

A\

1. Hexagonal geometry We notice that Figs. 6—8 are not depicted at the same

In the hexagona| geometry, the area of the System i§Ca|e since the disk diameter is fixed to Un|ty:(1) and it

V=|lex e[| =(y3/2)L? and the critical density is equal to IS the interdisk distanc that varies.
The infinite- and finite-horizon regimes extend over the

J3 densities GZn<n,. The localized regime corresponds to the
ncr=?20.5774, (41)  densitiesn,<Nn<np.. Figure 9 shows the different regimes
in the hexagonal geometry. The remarkable feature of the
hexagonal geometry is that there exists a finite-horizon re-
gime that is not localized, in contrast to the square geometry
(see below.

even though the maximum densifthe close-packing den-
sity) is
4.3
nmax_s;fzo-7698- (42) 2. Square geometry
In the square geometry, the volume \s=|lex e'||=L>2
At the close-packing density, the system forms a triangula@nd the critical density is

crystal. =
In the Sinai billiard, it is well known that there exist dif- Ner=0.5, (43)

ferent kinds of regimes according to the dynamics of thewhich is the density of the transition between the infinite-
particles. As a function of the density we observe three horizon and the localized regimes. The close-packing density

regimes: is equal to
The infinite-horizon regimeAt the low densities &n
< /3/4, the particles can move in free flight over arbitrarily Nmax=1. (44)
large distances. In this regime, the self-diffusion coefficient . . . . .
is infinite. (See Fig. 6. In Fig. 10, we have depicted the different regimes in the

square geometry. In the square geometry, there also exist
nonlocalized and localized regimes, but the horizon is always
infinite in the nonlocalized regime. Therefore, it is only in
the localized regime that the horizon is finite in the square
geometry. This is an important difference with respect to the
hexagonal geometry.

The finite-horizon regimeFor the intermediate densities
J3/4<n<n,, the free flights between the collisions are al-
ways bounded by a finite distance of the order of the interd
isk distanced. Therefore, the horizon is finite and the self-
diffusion coefficient is positive and finitéSee Fig. 7).

The localized regimeAt the highest densitiesi,<n
<nNpnax, the images of the disk overlap each other in the
billiard so that the relative motion of the particles is localized IV. PROPERTIES OF THE MODEL
in bounded regions. Therefore, the self-diffusion coefficient A. Mean free path

vanishes(See Fig. 8.
{ 9-8 The mean free patil) is the average distance between

two successive collisions. It is known that, in two-

fluid phase solid phase

0 0433 n, 0.770
=0577

finite localized

infinite horizon . .
horizon regime

FIG. 7. Typical configuration of the system in the finite-horizon  FIG. 9. The different dynamical regimes and thermodynamic
regime. phases of the model in the hexagonal geometry vs the demsity
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fluid phase o solid phase . OS5 T TTTTTT T T T T T T T T T T T T T T TTTT]

é - 1 n = 04 B .
05 2 B ]

2 - ]

t g 03— —]

infinite horizon regime localized regime . 9 » T

= B ]

FIG. 10. The different dynamical regimes and thermodynamic% - .

) : 8 02 —

phases of the model in the square geometry vs the demsity g L -
8 B ]

dimensional billiards, the mean free path is related to the& ,, [ .
areaA of the billiard and its perimetef according t/17] r ]
T A ol v b b b L 11

=7 (45) 05 055 06 06 07 075 08

density

In the different regimes, the mean free path is given by FIG. 11. Theoreticalcontinuous ling and numerical(dots val-

ues of the mean free path vs the densityin the hexagonal

hexagonal geometry geometry.

(i) (1)= 1 . n<n B. Pressure and the different phases of the model
n —ters

N 2 The hydrostatic pressure allows us to interpret the differ-
(if) ent regimes in terms of thermodynamic phases. The pressure
can be calculated in terms of the time average of the Helfand

2 1 6 1 moment as shown in Appendix C. In the two-disk model
——+6 arcco - \/ 1-—— with N=2 andd=2, the pressure is given by
n / /
3n 3n \/En
(Y= \/— \/— , PV=kgT+R, (46)
1

where the rest can be calculated according to(E®) as

)
CA(Ate )

2m—12 arcco

3

nN=nNg,; R

(47)

square geometry where(At._; ) is the mean intercollisional time. If we de-

1 note by #(® the angle between the velocity at collision and

(i) (Iy==—- T n<ng the normal to the disk of the Sinai billiard, the average in the
n 2 numerator becomes

R ! 2\F - i
ﬁ_ﬂ- arccoﬁ— ﬁ —%

1 1
27—8 arccoé —)

V2n

(i) ()=

—
(9.}

n=ng.

—_

cr

ollision length

We show in Figs. 11 and 12 the excellent agreement be-3
tween the above expressions and the values obtained by nig
merical simulations. The break observed in Figs. 11 and 12“8’ 0.5
between the nonlocalized and localized regimes can be ex
plained thanks to Eq45). Indeed, at the critical density,,
the disks form a horn. Above criticality, the horn becomes a
corner with a finite angle so that the perimettdecreases 0
very fast. But, on the other hand, the atdaremains rela-
tively constant. Therefore the ratid/£ increases withn
until this effect disappears. At higher densities, the mean free FIG. 12. Theoreticalcontinuous ling and numerical(dots val-
path decreases again. ues of the mean free path vs the densitin the square geometry.

0.3 04 0.5 0.6 0.7 0.8 0.9
density

S
—_
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12 _I TTTTTTTT TTTTTTTTT TTTTTTTTT TrTTrrrrTrTT 12 T 17T LI LU T 17T T TT LU
10 = 10 :
s . 8- S
N 6 1 e .
‘F . 4 .
2| : 2| .
O :I N T O T I | I | T T T | I | T Y I | I | T I O I | I: i L1 1 | L1 1 I | | | L1 1 | L1 11 I | - ]
0.5 0.55 0.6 0.65 0.7 0.3 04 0.5 0.6 0.7 0.8 0.9
density density
FIG. 13. Theoretica{continuous ling and numericaldots val- FIG. 14. Theoreticalcontinuous ling and numerica(dots val-
ues of the reduced pressur& vs the densityn in the hexagonal ues of the reduced pressuR vs the densityn in the square
geometry. geometry.
(A p(lc) . r(102)>= mv o(Cos ¢(c)>, (48) function of the density and we observe the manifestation of a

phase transition around the critical density. The hard-ball
o being the diameter of the disks. In the case where the totalystems are known to present a fluid-solid phase transition
momentum vanishes, the velocityof the trajectory in the that we here already observe in the two-disk model.

billiard is related to the relative momentup) the energy, At low density, the fictitious particle of the Sinai billiard
and the temperature by can diffuse in the whole lattice. This means that the two
) ) ) ) disks move over arbitrarily large distances one with respect
E—keT= p_p_av_m (49) to the other, which is a feature of a fluid phase. In contrast, at

2u m 2 4 high density, the fictitious particle is trapped between three
(or four) disks and its motion is reminiscent of the vibration
so thatv=2p/m. At collision, sing® is uniformly distrib-  of atoms in a solid. Of course, it is not really a vibration
uted in the interval —1,+ 1] so that since the disks bounce in a chaotic motion because of the
elastic collisions whereas, in a solid, the atoms have quasi-
harmonic oscillations around their equilibrium position. Nev-
(50 : .
ertheless, we are in the presence of a solid phase because the
translational invariance is broken. Indeed, the motion is no
On the other hand, the mean intercollisional time of the bil-jonger ergodic because the motion now is confined to one
liard is related to the mean free path) and the speed  among several phase-space domains of the energy shell.
= ||| by A phase transition occurs between the fluid and solid
phases. At the critical density,,, the pressure has a maxi-
(Ate_10)= Q (51) mum. Aboven,,, the pressure decreases, reaches a minimum
' v at a valuen/>n, before increasing again. Far,<n
<n(,, the compressibility would be negative so that this
state would be unstable from a thermodynamic viewpoint.
Tomu? o This suggests a Maxwell construction to determine a fluid-
= ——+=-—7kgT. (52 solid coexistence in the interval of densitigs<n<ng with
16(1)  4(I) , s
ne<ne and n,<ns. The values that would delimit this

Accordingly, the hydrostatic pressure of the model is givensma” coexist_ence interval ir_l a thermodynamic interpretation
by of the transition would be given by

a
(cos ()= 7

Gathering the results, we obtain the rest as

ol ng=0.57£0.01, ng=0.60+0.01 for hexagonal geometry
1+4— (53 (55)

PV=KgT il

1+ %Fkg

and
In our work, we introduce the reduced pressure defined as
ng=0.49+0.01, ng=0.55+0.01 for square geometry
prepgpy— TV TT 4, %E (s (56)
S PUN (N=21)kgT A1) 4A°
(see Figs. 9 and 10In the square geometry, the horizon is
In Figs. 13 and 14, the reduced pressure is depicted asiafinite in the fluid phase. In the hexagonal geometry, the
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horizon may also be finite in the fluid phase, which leads to Sl e R R RN R N R R
finite viscosity coefficients in the fluid phase of this model as - .
shown in the following. e TF E
:3 3k =
V. VISCOSITY IN THE TWO-HARD-DISK MODEL ‘J.o:)‘ E 3
25 =
A. The Helfand moment in the two-hard-disk model § E ]
In our model defined with Eq$34) and(35) and with a % e =
vanishing total momenturR=0, the forces obey,;=—F, 2 150 =
=F and the microscopic current can be written in relative ‘> E ]
coordinates as g8 1F =
.-5 F n .
1Y 0.5 I— =
Jy=2- S +Firj, (57 e <
0 CL11l | T; 11 |"|--|"|"| ] 1111 | 1a 1| | 111 | 117
_ _ _ 0 01 02 03 04 05 06 07 08
wherer={r;} is the smallest distance between the disks 1 density

and 2. Following the minimum image convention the posi-
tion vector presents discontinuities because of the passagesFIG. 15. Shear viscosity coefficienf* vs the density in the
of the relative position through a boundary, after which it ishexagonal geometry. The part in dashed line corresponds to the
reinjected into the cell at the opposite boundary. We denotéensity in which the coefficient would not exist in the linbi> oo
the vectors normal to the boundaries of the unit cell by because the horizon is infinite. The long dashed vertical lines sepa-
rate the different regimes: on the left-hand side, the horizon-infinite
c,=a, C=-—a G=b, c¢=-b, c=b—a regime (fluid phasg; at the center, the horizon-finite reginfiuid
phasg; and on the right-hand side, localized regifselid phasg
Ce=a~b, hexagonal geometry 8 Let us remark that the ternpg(t) r;(t) do not appear in this
relation because they do not contribute to the viscosity coef-
ficients. Indeed, the relative positiar{t) and momentum
g=a C=-a Ccs=b, c,=—b, square geometry. p(t)_ remain boundgd in the course of time and their contri-
bution disappears in the limft— o,
(59) In the following, the numerical results are presented in

In order to satisfy the minimum image convention, the rela-terms of a reduced viscosity tensor, which is defined by
tive position undergoes jumps by vectors which are the vec-

and

tors normal to the unit cell so thatr®=—c, , wherews « _ Tk 63
denotes the label of the boundary crossed by the particle at i K 2ym kBT'

the sth passage at timg;. In these notations, Hamilton's
equations take the form B. Hexagonal geometry

dr 2p In the hexagonal geometry the fourth-order tensor of vis-
E Co 5(t cosity is isotropic. Indeed, since the system is invariant under
rotations by 7/3, we obtain the relationzy, yy= 7xx xx
q —27yy,xy Which implies the full rotation invariance of the
_p:F' (60) viscosity tensor. We depict in Figs. 15 and 16 the results
dt obtained for the reduced viscositieg*(, {*) and relation
(28) is checked in Fig. 17.

In this periodic system, the expression for the Helfand |n the infinite-horizon regime, the trajectory can present
moment is given by a reasoning similar to that leading to Eqarbitrarily large displacements in the system without under-
(16). We obtain going any collision. Accordingly, the variance of the Helfand

momentG,, increases faster than linearly at, which
implies an infinite viscosity coefficient after averaging over

Gi(U=pi(Vr; (t)+2 Pi(ts)Cogj Ot L) (61) an infinite time interval. However, the factortligenerates a
growth so weak that it does not manifest itself much over the
Finally, the viscosity coefficients have the expressions finite time of the simulation. This is the reason why we ob-
tain finite values for the viscosity coefficients in Fig. 15.
However, these values are only indicative, since they should

7ij k1= 2tV( < Z Pi(ts)Cy, Jy 2 Pi(ts)Co ,|> be infinite, strictly speaking.

On the other hand, in the finite-horizon regime, the vari-
ance of the Helfand moment has a strictly linear increase in
_<t§<:t pi(ts)cwsj> <t§;t pk(tsr)cws,|>). (62) time and the viscosity coefficients are finite and positive.
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5 .F ] i i
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FIG. 16. Bulk viscosity coefficient* vs the density in the density

hexagonal geometry. FIG. 17. Tensor elemeng}, ,, of shear viscosity vs the density

L o . in the hexagonal geometry. The dots represent the results of relation
'I_'h_ls is th_e result _of a central-limit theorem that holds in the(28): gt o=L(n  — ). The continuous line corresponds to
finite-horizon regime of the hexagonal geometry, as can b gata of Fig. 15. 7Y
proved by considerations similar to those developed by
Bunimovich and Spohhl0]. We observe in Fig. 15 that the o1
viscosity has a diverging singularity at the critical density ) _
(ng=+/3/3) which corresponds to the fluid-solid phase tran- 77><x,yy( 4) 2 Lo 0% Ty O]~ Ty 0).
sition. We shall explain below the origin of this singularity.

Finally, in the localized regime corresponding to the solidsjnce the system is not isotropic, one more viscosity coeffi-
phase, the viscosity is finite and positive, and decreases wheffent is required besides the shear and bulk viscosities.

the density increases until the maximum density. Therefore, we have to evaluate the three independent tensor
elementsn,, xx, 7xy.xy: Mxxyy Which are depicted in Figs.
C. Square geometry 18 and 19 with respect to two different axis frames: in the

In the square geometry, the fourth-order viscosity tensor i§irst one the axes are parallel to the sides of the square (

not isotropic. Indeed, the tensor is transformed by the matrix=0) and, in the second, they form an angle of 45° with
Rij(¢) of rotation by an angle into respect to the latticef= 7/4). Figure 19 shows that rela-

tions (65) are well satisfied between the elements of the vis-
7ij k(@) =Rii (@) Rjj (@) R (@) Ry (@) 7177 111 (0). cosity tensor.

(64) In the square geometry, Bunimovich and Spohn have

] proved a central-limit theorem for viscosity in the localized
For example, ifo= /4, we have regime which coincides with the solid phase above the criti-

1 cal density[10]. In this range of density, the viscosity coef-

Mex XX(_) = = 7 0) + gy (0) + 27755y (0) ], ficient is thus guaranteed to be positive and finite.
4] 2 ' ’ ’ In the fluid phase, the horizon is infinite and the viscosity
is infinite because of a growth &t of the variance of the

m 1 0)— 0 65 Helfand moment for a reason similar as in the hexagonal
Nxyxyl 4 __[ﬂxx,xx( ) nxx,yy( )1 (65) : f - . . .
4/ 2 geometry. In our numerical simulation over a finite time in-
1 F [
05 i
0 :
a8 -0.5 o
3 8F
2 s 6F
2 4F
25 2t
3 : 0 b .
0.4 05 0.6 0.7 0.3 0.4 0.5 0.6 0.7 0.3
density density

FIG. 18. Square geometry: The three independent tensor eleagnis, ., (0) 7xy,y, (©) 7kyx, for ¢=0.
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04 0.5 0.6 0.7 0.8

04 05 06 07 08 ;
density

derisity

FIG. 19. Square geometry: The three independent tensor eleff@nig, .., (b) 7%xyy, (©) 7%y xy for ¢=m/4. The continuous line
corresponds to the results obtained numerically and the dots to the values obtained by re8&tions

terval, the viscosity takes finite values because the logarithwhereuv (t;) is they component of the velocity at the tintg
mic growth is very slow. of the jump.

An important difference with respect to the hexagonal ge- When the density tends to the closed-packing density, the
ometry is the absence of a singularity of the viscosity coefaccessible domain of the particles tends to a perfect triangle
ficient 75, ,(0) at the phase transition in the square geom-n the hexagonal geometry. On the other hand, in the square
etry. However, such a singularity still appears in the squargeometry, it tends to a perfect square. This difference is at
geometry in the coefficientsyy, ,x(0), 7x.y,(0), and the origin of the different behaviors of thgj, ,, in both

n:y,xy( wl4). lattices.
Moreover, in the solid phase, the coefficieyf, ,,(0) in- First, let us consider the case of the square geometry. In
creases with the density, as explained below. Y Fig. 20, we depict a typical trajectory of the fictitious particle

moving in the Sinai billiard. We observe that this trajectory
presents a regular motion between two opposite “walls”
(these walls are made of parts of the fixed hard disks in the
1. Solid phase billiard). At the limit where the billiard is a perfect square,

The behavior of the viscosity tensor is clearly different in the trajectories will bounce back and forth in a regular mo-
the two geometries. In this section, we explain these differlion- Indeed the square billiard is amegrable system

ences by comparing the topology of the trajectories in both AS We have seen before, the evolution of the Helfand
geometries, since these trajectories form the basis of the ev§ioment along the trajectories is determined by the passages
lution of the Helfand moment. More precisely, we will com- through the boundarigsee Fig. 21 Both horizontal bound-
pare the behavior Ofmfy » between the hexagonal and aries(3 and 4 do not contribute to the evolution @, since _
square geometries fop=0. This viscosity coefficient is the x component of the normal vectors to these boundaries

equals zero. Therefore, only the passages through the vertical

D. Explanation of the numerical observations

) b . - |

e boundaries contribute to the Helfand moment in the square
* * (ny(t)2> geometry.

xyxy™ Myxyx ™ (Gyx(1))=0, To understand the behavior of the Helfand moment, let us

take a small part of the typical trajectory drawn in Fig. 20
(see Fig. 22 First, let us consider the part denoted by the
ny~2 vy(ts)Coxs (66) letter a in Fig. 22. This one crosses the boundary in the
s direction 1—2, which means that:wSX is positive (since
C1x=0/2). On the other hand, thecomponent of the veloc-
ity, vy, is also positive. Therefore, the contribution of the
small parta to the evolution ofG,, is positive.

FIG. 20. Part of a typical trajectory in the square geometry when FIG. 21. Geometry and notation for the boundaries in the case
the density tends to the closed-packing density. of the square geometry at high density.
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Helfand moment
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collision number
FIG. 22. Part of a typical trajectory in the square geometry at
high density. FIG. 24. Evolution of the Helfand moment along a typical tra-

jectory in the square geometry at high density.

Now, let us take the part of the trajectory denotbad Fig.
22. In this case, the particle crosses the boundary in the dpresent another behavior. We show in Fig. 25 a typical tra-
rection 2—1 andc,, is negative. Since, is also negative, jectory in this geometry with a density larger than the critical
the product of these two quantities is positive, and so at eactiensity. We observe that the trajectory visits the whole bil-
successive crossings of the-2 boundary. Consequently, liard in different directions and therefore goes into very dif-
we obtain a sum of positive terms and the Helfand momenterent velocities. Accordingly, the particle crosses the bound-
quickly increases along a trajectory as the one of Fig. 20. aries with random values of its velocity in contrast to its

However, the square is not perfect and the walls are stilbehavior in the square geometry. Consequently, the quantity
slightly convex. Therefore, after a certain time, the trajectoryc,, x can be positive at a particular crossing and negative at
shown in Fig. 20 goes into a transient regime shown on théhe next one. Hence the Helfand moment cannot increase or
left-hand side of Fig. 23 before another regime in which thedecrease over long periods as in the square geonistey
particle collides most often the two other waliee the right-  Fig. 26. This explains qualitatively why, in the solid phase,
hand side of Fig. 28 the coefficientn}, ,,(0)=»* is much smaller in the hexago-

With the same reasoning as before, we conclude that thgal geometry than in the square one.
contributions are negative in this new regime and the Hel- | the square geometry with= /4, the same arguments
fand moment 'decreases during a long-time interval. as in the hexagonal case explain the decreasgpf,(/4)

The evolution of the Helfand moment along the whole 4t high density. By the relations between the different ele-
trajectory is depicted in Fig. 24 where we observe the sUCients of the viscosity tensor, we can also understand the

cession of the three types of regimes which we have depenayior of the other elements in both geometries.
scribed above. We notice that the nearly constant part corre-

sponds to the transient regime. 2. Fluid-solid phase transition

The larger the density is, the more perfect the square is ) _
and the longer the trajectory remains in a particular regime. N both the hexagonal and square geometries, the two-disk

Therefore, the Helfand moment can have larger and largefodel presents a phase transition. This transition is reminis-
variations, which implies an increase of the coefficientcent of the fluid-solid phase transition in the many-disk sys-
ﬁfy ,,(0) of shear viscosity with density. tem where the viscosity coefficient is also singular. In this
In the hexagonal geometiigee Fig. 25 the trajectories regard, the two-disk model can contribute to the understand-
ing of the changes in the transport properties across the fluid-
solid phase transition.
(b) - : x Carging <
We first explain why»;, ., presents a diverging singular-
ity at the critical density in the hexagonal geometry and not
in the square geometry fas=0. Here again, we compare

X

FIG. 23. Square geometry at high density: The trajectory is de-
picted (a) during a transient regime befofb) another regime with FIG. 25. Geometry and notation for the boundaries in the case
most bounces on the two other opposite walls. of the hexagonal geometry at high density.
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(b)
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5 FIG. 26. Hexagonal geometry
g 1 at high density(a) Part of a typi-
g \ cal trajectory when the density
= 0} ‘ i tends to the closed-packing den-
q§ 1 ] sity. (b) Evolution of the Helfand
< moment along this typical trajec-
T, ] tory.
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—4

0 50 100 150 200 250 300
collision number

the topology of the trajectories in both geometries and thehe fluid-solid transition in the square geometry.
way in which the Helfand moment evolves along these tra- On the other hand, in the hexagonal geometry, the traps
jectories. At densities close to the critical density, both ge-along the boundaries making an angle of 30° with respect to
ometries present what we cathps the horizontal are very important for the evolution ®f,,
Figure 27 shows an example of a trap. These traps ar@hereas the vertical traps do not participate significantly.
particular regions of the billiard where the particle can re-Figure 29 shows a typical diffusion of the Helfand moment.
main during a long-time interval. Figure 28 depicts typical We observe in Fig. 29 the presence of jumps which corre-
examples of a particle moving in such traps. When the parspond to the passages in the traps such as the one drawn on
ticle travels out of the traps, the Helfand moment does nothe left-hand side of Fig. 28. Because of these jumps, the
increase quickly in both geometries. Therefore, it is the presHelfand moment quickly diffuses. Furthermore, the impor-
ence of the traps which is at the origin of the differencetance of these traps in the hexagonal geometry can also be
between both geometries. understood by comparing the behavior of the Helfand mo-
In the square geometry, the traps do not influence thenent as a function of time at densities below and above the
evolution of G,. Indeed, as we have already mentionedcritical onen,.
above, the passages through the horizontal bounda# 8o We illustrate this point in Fig. 30 where we observe that
not contribute sinces,=c4,=0 (see Fig. 21 for the defini- there are no more jumps above the critical density. There-
tions of the boundaries in the square geometiherefore, fore, Gy, does not vary much, contrary to the case of densi-
the horizontal traps around these boundaries do not contriliies just belown.,. Above criticality, the size of the traps
ute. There remain the vertical traps. When a particle bouncegecreases so quickly that the contribution of these traps de-
for a long time in one of these traps;, and c, are not  creases and, thus, the viscosity coefficieg} ,,= 7* also
vanishing, but the velocity,, is almost equal to zero so that decreases. By these arguments, we have an explanation for
the vertical traps do not contribute much either. This impliesthe diverging singularity of the shear viscosity at the phase
that both kinds of traps contribute very slightly to the evolu-transition in the hexagonal geometry.
tion of the Helfand moment. To conclude the Helfand mo-  This result shows that at a fluid-solid phase transition the
ment diffuse in the same way as for the other densities andiscosity coefficients may depend sensitively on the geom-
the coefficientry, ,,(0) does not present any divergence atetry of the lattice of the solid phase in formation.

(a)

trap

X

FIG. 28. Particle trapped between two disks very close to each
FIG. 27. Example of traps in which the particles can enter andbther in the hexagonal geometry. The line joining their centers ei-
remain a long time. ther (a) forms an angle with the horizontal ¢b) is horizontal.
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FIG. 29. Helfand moment in the hexagonal geometry evaluated

along a particular trajectory at a density tending to the critical den- FIG. 31. Shear viscosity* in the hexagonal geometry calcu-
sity gap ! y y 9 lated by our Helfand momerif6) (continuous ling¢ and the one of

Alder et al. (dots.

E. Viscosity by the method of Alderet al. VI. VISCOSITY IN SYSTEMS OF N HARD DISKS
We have also verified numerically that our method of cal-
culation of the viscosity based on the Helfand moméa)
gives the same values as the method of Aleteal. based on
expression21) [6]. In the two-disk system, this expression

In the present section, we apply our Helfand-moment
method to systems dfl hard disks. Our purpose is to show
that the values of the shear viscosity obtained for the two-
hard-disk model are in good agreement with the values for

reduces to . ,
larger systems, as well as with Enskog’s theory.
Pip: Figure 32 depicts the shear viscosity of systems contain-
Gij(t)ZE ZijﬁtcfchFApi(c)r,-(tc) O(t—to)|. ing from N=2 up toN=40 hard disks. FON=2, we con-
C m ' . .
67) sider here the hexagonal geometry. For the systems Mith
=4-40 disks, the time evolution is simulated by molecular

dynamics with periodic boundary conditions in the square
As shown in Fig. 31 for the shear viscosity in the hexago_geometry. The viscosity is calculated by the Helfand-moment

nal geometry, there is an excellent agreement between tHEethOd based on E¢21).
values obtained by both methods, which confirms the exact

equivalence of both methods. 100 ¢ T r T T
N=2
I LA Trrrrr T TV T T ] %:g
400 C 7 N=12 *
- ] N=16
200 [ S 10 N=20 ._
3 n=0.59>n, i : N=40 ]
8
= Q
) g
g 2 1} 3
=] EZl F -
% .
as) g °
[ ] o1 - v .0y
-800 |- n=0577<n, 0 0.2 0.4 0.6 0.8 1 1.2
21000 Lo L L L L f density n

0 20000 40000 60000 80000 100000

collision number FIG. 32. Shear viscosityy vs particle densityn in fluids at

temperaturdl =1 with N=2,4, 8, 12, 16, 20, 40 hard disks of unit
FIG. 30. Comparison of the evolution of the Helfand momentmass and diameter. The solid line is Enskog’s valé®. For N
for two different densities separated by the critical density in the=2, the data are the same as in Fig. 15 except that we here plot
hexagonal geometry. n=2n* instead of5»* as in Fig. 15.
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We observe that, at low densities, the numerical values arboundary conditions. In order to satisfy the minimum image
in very good agreement between themselves. At higher derconvention, the position coordinates of the particles undergo
sities, differences appear because the fluid-solid transitiojumps. These jumps modify both the equations of motion and
shifts toward higher densities as the number of disks inthe Helfand moment which is given by the time integral of
creases. FON=2 disks in the hexagonal geometry, the fluid- the microscopic current entering the Green-Kubo formula.
solid transition occurs in the interval=0.57-0.60, while it As a consequence, the viscosity tensor calculated with our
occurs in the intervah=0.87-0.90 forN=40. The sharp Helfand moment is equivalent to that based on the Green-
singularity of viscosity foN=2 in the hexagonal geometry kyho formula, as proved in Appendix B. In the case of hard-
is specific to the geometrical constraints of a two-degree-ofy 5| systems, we also prove in Sec. |1 D that our method is
freedom system, as explained in the preceding sectior_L Ne‘_é'quivalent to the method by Aldet al. [6]. Moreover, we
ertheless, we notice that the decrease of the shear viscosiyoy in Appendix C that the hydrostatic pressure can also be
just above the fluid-solid transition is also the feature of theygiculated thanks to the Helfand moment we propose for
large system witiN=40 disks. molecular dynamics with periodic boundary conditions. Our

Furthermore, the results of our Helfand-moment methodye|fand moment and our proofs bring a solution to the am-
are compared wlth Enskog’s theory. For a ﬂUId.Of hard d'Skaiguities and problems reported by Erpenbégkabout the
of massm and diameterr, Enskog’s theory predicts that the gefinition of a Helfand moment in a molecular dynamics

shear viscosity is given bj18] with periodic boundary conditions. We think that the
1 Helfand-moment method can be very useful for the numeri-
7= 10l = +2y+ 3.4916(y2>, (68)  cal calculation of viscosity because this method has the ad-
Y vantage of being numerically robust. We have applied our

Helfand-moment method to the numerical calculation of vis-
cosity in systems of hard disks.
1.022 [mkgT In Sec. V, viscosity has been studied in detail in a simple
0=\ [—— (699  model composed of two hard disks in elastic collision. This
g 77 model has already been investigated in the square geometry
by Bunimovich and Spohfl0]. In the present paper, we
generalize this model to the hexagonal geometry. First, we
show that the fourth-order viscosity tensor is isotropic in the
P=nkgT(1+2yY) (70) hexagonal geometry although it is not in the square geom-
etry. Second, we show the viscosity can be positive and finite
andy= mwo?n/4. For the hard-disk fluid, a good approxima- in the fluid phase of the hexagonal geometry, although it is
tion of the Enskog factor is given below the fluid-solid tran- always infinite in the fluid phase of the square geometry. The
sition by[19] reason is that the horizon of the Sinai billiard driving the
dynamics of the two-disk model is always infinite in the fluid
phase of the square geometry although there is a regime with
a finite horizon in the fluid phase of the hexagonal geometry.
Y= (1—y)2' (71) In an infinite-horizon regime, the viscosity becomes infinite
so that, from a physical point of view, the proof of the exis-
It is known that the Enskog approximation is not goodtence of a positive and finite viscosity coefficient strictly
around the fluid-solid transition and at very high densities. holds in the hexagonal two-disk model. In the solid phase,
A remark is here in order. It is knowf20] that the vis-  the transport coefficients acquire a different meaning because
cosity coefficient of the infinite-hard-disk fluid is diverging the spontaneous breaking of translational invariance modifies
because of long-time tails. However, this divergence is onlythe structure of the hydrodynamic modes and the viscosity
logarithmic and does not manifest itself in numerical calcu-coefficient should be reinterpreted in terms of the damping
lations before extreme|y |0ng times. This exp|ains Why thecoefﬁCientS of the transverse sound modes and of the diffu-
long-time tails do not spoil the agreement between the nusive mode§21-23. We hope to report on this question in a
merical values and Enskog’s theory. future publication.
We see in Fig. 32 the good agreement between Enskog's The two-disk model presents a phase transition between a
theory and the numerical values of our He|fand_momentﬂuid and a solid phase. This transition is reminiscent of the

method at low densities showing the consistency of our refluid-solid transition in the system composed of many disks.
sults. Indeed, the transition manifests itself in the hydrostatic pres-

sure in a very similar way as in the many-particle system.
VIl. CONCLUSIONS The hydro_static pressure can be directly related to the_ mean

free path in the two-disk model and we can thus explain the

In this paper, we propose an expression for the Helfanananifestation of the transition on the pressure in terms of the
moment associated with viscosity in molecular dynamicsbehavior of the mean free path near the transition. In this
with periodic boundary conditions. This Helfand momentsimple model, the transition can be understood as a geo-
takes into account the minimum image convention at themetrical property of the dynamical system. Indeed, the tra-
basis of molecular-dynamics simulations with periodicjectories are unbounded in the fluid phase albeit these remain

where

is the Boltzmann value of the shear viscositys the Enskog
factor entering the equation of state as follows:

17
ﬂ‘)y
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localized in bounded domains in the solid phase where er-
godicity is broken. The fluid-solid transition also manifests Jij:J 7 (r)dr, (A4)
itself as a diverging singularity in the viscosity in the two- v
disk model. We have here shown that this singularity in the, hich is given by Eq.(8). We notice that the hydrostatic
viscosity versus the density may depend sensitively on thBressure is given at equilibrium by
geometry of the lattice of the solid phase in formation.
In Sec. VI, we have extended the calculation of shear (Jij)e=PVéij, (A5)
viscosity to systems with many disks. The remarkable result
is that the two-disk systems already give the shear viscositif second-order tensors are isotropic in the system of interest.
in quantitative agreement with its values in larger systems, as We suppose that, at the initial time, the fluid is close to the
well as with Enskog’s theory at moderate densities. equilibrium and is described by the following nonequilib-
In a companion paper, we report a study of viscosity byrium distribution:
the escape-rate meth¢@4]. In this other work, we use the

Eaeiljf::d moment that we have introduced in the present P(F)=Peq(l“){1+,8f g(r)-v(r)dr}

ACKNOWLEDGMENTS = eq([‘) , (A6)
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In the microcanonical state, we have that
APPENDIX A: MICROSCOPIC DERIVATION
OF THE VISCOSITY TENSOR 1 N
. . , : o P T N=1 (A8)
In this appendix, we provide a short microscopic deriva- B
tion .Of the viscosity tensor. . The aforementioned distribution describes a fluid with a
First, we need the balance equation for the local conser-

vation of momentum. If we define the density of momentummacrOSCOpic velocity fiel#(r) since the nonequilibrium av-
' y erage of the momentum density can easily be shown to be

as given by
N
gi(r)zz PLid(r—ry), (A1) (9(r)) noned= Pegv(T), (A9)
a=1
where
the balance equation is
N
39i+d;7;;=0, (A2) Peq=My; (A10)
with d; =4/ r; . The microscopic momentum current density js the mass density at equilibrium.
is given by The time evolution of the probability densi¢p6) is ruled
N by Liouville’s operator given by the Poisson bracket with the
— %5(r—r ) HamiltonianL={H,-} or the pseudo-Liouville operator in
A om é the case of hard-ball dynamics. This operator has the effect

of replacing the phase-space coordindtely I'(—t)

1 N
*3 ;gz:l Fi(ra—ry) . )
a Pt=e"t730=7?eq(l“)[1+ﬁf e'-tg(r)~v(r)dr}
xfld)\Mﬁ(r—r H(\)) (A3)
0 d é '

A — PedT)

N
1+Bazl Da(—t)'V[ra(—t)]} (A11)

wherer ,,(\) is the parametric equation of a curve joining

the particlesa andb: r4,(0)=r, andrp(1)=r,. Alternatively, we know that the time evolution of the mo-
The microscopic current associated with viscosity is de-mentum density is given by EgA2). In this case, the mo-

fined by integrating the momentum current density over thenentum density should be considered as an observable so

volumeV: that the solution of Eq(A2) is
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g(r,t):e—litg(r,o)’ (A12) whe.re the .id(.antification with the viscosity tensor is carried
out in the limitt—oo by

so that -
77ij,k|5(r—r')=Bfo dt’ (7 (r,0087(r",t'))eq-
(A21)

e'g(r)=g(r,—t) (A13)

is solution of the equation ) ) )
Taking the double volume integrgl,dr [, dr’ of both sides

9Gi= 9, Ti; - (A14)  of Eg. (A21) and dividing by the volume/, we obtain the
viscosity tensor as
Integrating both sides over time we get

t 7ij k1= Bf dt<5‘]lj(0)5‘]k|(t >eq1 (A22)
gi(r,—t)=gi(r,0)+Jodt’ﬁjfij(t’). (AlS)
with
Close to equilibrium, we may consider the time evolution of
deviations with respect to the equilibrium. We neglect terms 83 ()= f drém(r,)=J;: (1) —(J;) (A23)
that are quadratic in the deviations such as the velocity field l il il 'i7eq:

itself. The time evolution of these deviations is obtained by
considering the nonequilibrium average of the balance equd?-E.D.
tion (A2) for the deviations
APPENDIX B: PROOF OF THE EQUIVALENCE
3 89i) nonegt 9j{ 97ij ) noneq= O (A16) BETWEEN GREEN-KUBO AND EINSTEIN-HELFAND
FORMULAS
with
Our aim here is to deduce the Green-Kubo form{(#ia
O7ij=7ij—(Tij)eq- (A17)  from the Einstein-Helfand formulél4), proving the equiva-
lence between both formulas under the condition that the

The nonequilibrium average of the deviation of the momenHelfand moment is defined by E¢L5) as the time integral

tum current density is given by of the microscopic current8) and the further condition that
the time autocorrelation functions decrease fast enough.
<5Tij(r)>noneq:f Sy (NP(I',H)dTl" We start from the Einstein-Helfand formu(a4) with

t
5Gi' )= 6J| d y B1
= dr'(omy (DG~ D)l 1) (0= im0 v

(A18) 8J;; being defined by EqA23) and supposing for simplicity

that 6G;;(0)=0. Accordingly, we have successively from
We use Eq(A15) to transform the average as Eq. (14) that

o ij /1_t eq— o ij ’10 e
( 7ij (1) gk (r )) q ( 7 () g (r ) q i k= 2-’?\/<5G|,(T)5Gk|('|')>

t
+ f dt'<57ij(r,0)5|' OTa(r',t'))eqs
o ) ﬁ T T
_ '[’Lﬁ jo dt, fo dty( 63, (t1) 8J(t))

(A19)
where we have used the property tidgg 7)eq=0 because T—[t]/2
the equilibrium state is spatially uniform. We notice that the I|m 2TV dt w2 d7(63i;(0) 8J(1))
first term in the right-hand side of EqA19) vanishes be-
cause the equilibrium average of an odd power of particle B It|
momenta vanishes. After an integration by part over the ve- = lim>5 dt( )(53|1(0) 83y (1))
locity field, Eq.(A18) becomes Toem
B[t
, =5 dt(8J;;(0) 83y (t
<5Tij(r)>noneq=_:3j dr ZVJ—oo < IJ( ) ki )>
t ﬁ + 00
XJ dt,<57ij(r,0)57k|(r,,t,)>eq07|,vk(r,) :v dt<5‘JIJ(0)5‘Jkl(t)>a (BZ)
0 0
== Nij kvk(r), (A20) where we have performed the change of integration variables
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t:tz_tl, ) 1
V= I|m?[G”-(t)—Gij(0)]. (C3
Ctitt a3 o
o2 (B3) In the microcanonical equilibrium state we have that
and supposed that N—1
PP <paipaj>eq:kaT N 5ij . (CH
ST
T“m ?f_T dt[t|(63;;(0) 83 (1)) =0, (B4 if we assume that the system is isotrod®; = P &;; and we
o obtain
which requires that the time autocorrelation functions de- PV=(N-1)kgT+R (C5)

crease faster thajt| ~1~ € with e>0. Q.E.D.
where the resR provides the corrections to the law of per-
APPENDIX C: PRESSURE AND HELFAND MOMENT fect gases in dense systems. By using Ef8). and(21), the

virial can be computed alternatively by
The hydrostatic pressure at equilibrium is given as the

mean value of the momentum current density, i.e., as the
mean value of the same microscopic current entering the >d az F(rap)-Tab (C6)
Green-Kubo relation: eq

V= [ (et =0 (o3 —hm—§ E P Argo(t—ty)
o (C7)
The average over the thermodynamic equilibrium state can
be replaced by a time average: _ I|m— Z Ap©.rQa(t—t,), (c8)

whered is the dimensionr,,=r,—ry, ts are the times of
jumps to satisfy the minimum image convention, while the
We can here introduce the Helfand moment to obtain thdast expression only holds for hard-ball systemsare the

1t
PijVI<Jij>eq=t|ImTjodT\]ij . (CZ)

hydrostatic pressure from the Helfand moment as collision times, and{$)=r,(t¢) — ry(te).
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