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Viscosity in molecular dynamics with periodic boundary conditions

S. Viscardy and P. Gaspard
Center for Nonlinear Phenomena and Complex Systems, Universite´ Libre de Bruxelles, Campus Plaine, Code Postal 231,

B-1050 Brussels, Belgium
~Received 7 February 2003; published 23 October 2003!

We report a study of viscosity by the method of Helfand moment in systems with periodic boundary
conditions. We propose a new definition of Helfand moment which takes into account the minimum image
convention used in molecular dynamics with periodic boundary conditions. Our Helfand-moment method is
equivalent to the method based on the Green-Kubo formula and is not affected by ambiguities due to the
periodic boundary conditions. Moreover, in hard-ball systems, our method is equivalent to that developed by
Alder, Gass, and Wainwright@J. Chem. Phys.53, 3813 ~1970!#. We apply and verify our method in a fluid
composed ofN>2 hard disks in elastic collisions. We show that the viscosity coefficients already take values
in good agreement with Enskog’s theory forN52 hard disks in a hexagonal geometry.
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I. INTRODUCTION

Viscosity is the fundamental mechanism of dissipation
momentum in a fluid. Viscosity is described at the mac
scopic level by the Navier-Stokes equations which are
equations of balance of momentum in a fluid. At the mic
scopic level, viscosity arises because of a transfer of mom
tum between fluid layers moving at different velocities
already explained by Maxwell thanks to kinetic theory.

In the 1950’s, Green, Kubo, Mori, and others provided
explanation of all the transport properties in terms of tim
dependent statistical correlations of microscopic currents
sociated with each transport property@1–4#. They showed
that the transport coefficients are given as the time integ
of the time autocorrelation functions of the microscopic c
rents, yielding the famous Green-Kubo formulas. Thereaf
Helfand showed in the early 1960’s that the transport coe
cients can be expressed by Einstein-like formulas in term
moments—the so-called Helfand moments—which are
time integrals of the microscopic currents@5#.

These methods by Green, Kubo, Mori, Helfand, and o
ers have been applied to the computation of transport p
erties by molecular-dynamics simulations, in particular,
Alder et al. @6#. In molecular-dynamics simulations the sy
tem is necessarily composed of a finite number of partic
that are usually moving in a domain defined with period
boundary conditions in order to simulate the bulk properti
The periodic boundary conditions~PBC! usually considered
in molecular dynamics are based on the so-calledminimum
image conventionaccording to which interaction should oc
cur between pairs of particles separated by the minim
distance among the infinitely many images of the partic
allowed by the PBC. In molecular-dynamics simulations,
minimum image convention plays a fundamental role to
fine the microscopic current entering the Green-Kubo f
mula.

We may wonder if the Helfand-moment method could
applied to molecular dynamics simulations with PBC. T
advantage of the Helfand-moment method is that it expre
the transport coefficients by Einstein-like formulas, direc
showing their positivity. Moreover, this method is very ef
1063-651X/2003/68~4!/041204~19!/$20.00 68 0412
f
-
e
-
n-

n
-
s-

ls
-
r,
-

of
e

-
p-
y

s

.

m
s
e
-
-

es

cient because it is based on a straightforward accumula
which is numerically robust. Actually, it is a Helfand
moment method that has been numerically implemented
Alder et al. for viscosity in hard-ball fluids@6#. Several other
implementations of the Helfand-moment method have b
considered and discussed in the literature@7–9#. However,
the implementation of this method for systems subject
PBC other than hard-ball fluids seems to remain ambigu
as reported by Erpenbeck in Ref.@9#.

The purpose of the present paper is to propose a Helfa
moment method that is appropriate for molecular-dynam
simulations with PBC and that is strictly equivalent to calc
lations with the Green-Kubo formula. For this purpose,
show the need to take into account the minimum image c
vention. In this way, we are able to obtain a Helfand mom
giving viscosity thanks to an Einstein-like formula in mo
lecular dynamics with PBC. The so-obtained value of visc
ity is in full agreement with the value of the Green-Kub
formula and also with the value obtained by Alderet al. @6#.

Our method is applied to the hard-disk fluid. We study
detail the simple model composed of two hard disks in el
tic collisions in a domain defined by PBC. Due to the de
cusing character of the disks, this model is chaotic. Bu
movich and Spohn have demonstrated that the visco
already exists in this system with only two particles@10#.
The model they studied is defined with PBC in a squ
geometry. It presents a fluid and a solid phase which
separated by a phase transition. The problems presente
the model in a square geometry are that~i! the viscosity
exists only in the solid phase;~ii ! the viscosity tensor which
is of fourth order isanisotropicon a square lattice. In the
present work, we solve these problems by considering a h
agonal geometry. Indeed, in the hexagonal geometry,
fourth-order viscosity tensor is isotropic and we can pro
the existence of viscosity already in the fluid phase.

Furthermore, we apply our method to systems contain
more and more hard disks. We show that the values of
shear viscosity obtained by our Helfand-moment method
in good agreement with Enskog’s theory already for the fl
of two-hard disks.

The paper is organized as follows. In Sec. II, we der
©2003 The American Physical Society04-1
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our expression for the Helfand moment for the viscosity t
sor to be of application in molecular-dynamics simulatio
with PBC. In Sec. III, we describe the model of two ha
disks in the hexagonal and square geometries. In Sec. IV
study different properties of the model such as the mean
path and the hydrostatic pressure, in particular, across
fluid-solid phase transition. In Sec. V, the Helfand-mome
method is applied to the two-disk model to calculate
shear and bulk viscosities. We show how the fluid-so
phase transition affects the viscosities in this model.
Sec. VI, we extend our results to systems withN
54,8,12, . . . ,40hard disks. We show that the shear viscos
already takes a value in good agreement with Ensko
theory in the two-hard-disk system. Our results are discus
and conclusions are drawn in Sec. VII.

II. HYDRODYNAMICS, HELFAND MOMENT,
AND VISCOSITY

A. Viscosity and hydrodynamics

The hydrodynamic theory provides us with the equatio
of motion for the conserved quantities in a fluid. In partic
lar, the local conservation of momentum is expressed by
well-known Navier-Stokes equations@11#:

]rv i

]t
52

]P i j

]r j
, ~1!

where

P i j 5rv iv j1Pd i j 2s i j8 ~2!

is the momentum flux density tensor,rv i is the momentum
density,P is the hydrostatic pressure, ands i j8 is the viscosity
stress tensor. This last tensor takes into account the inte
friction occurring in a fluid when different parts of the flui
move with different velocities. Therefore,s i j8 has to be pro-
portional to the space derivatives of the velocities:

s i j8 5h i j ,kl

]vk

]r l
, ~3!

whereh i j ,kl is theviscosity tensor.
For isotropic systems, the theory of Cartesian tens

shows that the basic isotropic tensor is the Kronecker ten
d i j and that all the isotropic tensors of even order can
written like a sum of products of tensorsd i j @12#:

h i j ,kl5ad i j dkl1bd ikd j l 1cd jkd i l , ~4!

wherea, b, andc are scalars. Since the viscosity stress ten
is symmetrics i j8 5s j i8 , only two of these coefficients ar
independent becauseb5c. After a rearrangement, we have

s i j8 5hS ]v i

]r j
1

]v j

]r i
2

2

d
d i j

]v l

]r l
D1zd i j

]v l

]r l
~5!

for a d-dimensional system. The coefficientsh5b and z
5a1(2/d)b are, respectively, theshear and bulk viscositie
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and they can be expressed in terms of the elements of
fourth-order viscosity tensor as

h5hxy,xy ,

z5
1

d
hxx,xx1

d21

d
hxx,yy . ~6!

B. The Green-Kubo formula in molecular dynamics with PBC

Several techniques have been developed during the
century to evaluate the transport coefficients. One of
most important methods was established by Green, Ku
and Mori@1–4#. It consists in having a relation between ea
transport coefficient and the autocorrelation function of
associated flux or microscopic current. In our case~see Ap-
pendix A!, we have

h i j ,kl5
b

VE0

`

@^Ji j ~0!Jkl~ t !&2^Ji j &^Jkl&#dt, ~7!

with the microscopic current

Ji j 5 (
a51

N
paipa j

m
1

1

2 (
aÞb51

N

Fi~ra2rb!~r a j2r b j!, ~8!

pa and ra being the momentum and the position of theath
particle, whileF(ra2rb) is the force between particlesa and
b. In Eq. ~7! the averagê•& is performed with respect to th
equilibrium state. We notice that, for the microcanonic
state,

b5
1

kBT

N

N21
, ~9!

~see Appendix A!.
A very important point is that, in a system with PBC a

considered in molecular-dynamics simulations, the diff
ence of positionsra2rb must satisfy theminimum image
conventionthat

ur a j2r b ju<
L

2
for j 51, . . . ,d, ~10!

for a cubic geometry. More generally, the difference of po
tions must remain within a unit cell of the Bravais lattic
used to define the PBC. With PBC, there is indeed an infin
lattice of images of each particle. All these images move
parallel. If the force has a finite range, the particlea interacts
only with the particlesb within its interaction range. The
force field F(r ) has a finite range of interaction beyon
which it vanishes. The interaction range is supposed to
smaller than the sizeL of the box containing all the particles
It is important to notice that we do not suppose here that
force field is periodic. In order to define a dynamics that
periodic in the box of sizeL the positions should jump in
order to satisfy the minimum image convention. As a con
quence of this assumption, the positions and momenta u
to calculate the viscosity by the Green-Kubo method actu
obey modified Newton’s equations
4-2



m
nd

-
o
-

ce

ui-

pa

te
th

ffi

el

th

te

an
the
d

tial
of

at
the

and

or
-
the
ems

or-

be

.

n-

nts
the
m

-
as
spe-
tity
und-

be-
ned
to

VISCOSITY IN MOLECULAR DYNAMICS WITH . . . PHYSICAL REVIEW E68, 041204 ~2003!
dra

dt
5

pa

m
1(

s
Dra

(s)d~ t2ts!,

dpa

dt
5 (

b(Þa)
F~ra2rb!, ~11!

whereDra
(s) is the jump of the particlea at timets in order to

satisfy the minimum image convention. Moreover, we i
pose that particle 1 does not jump. To satisfy these co
tions, the jumps at the timets when ur a j(ts)2r b j(ts)u5L/2
can be given by

for a,b:5
Dr a j

(s)50,

Dr b j
(s)5«L,

Dr c j
(s)50 for cÞa,b,

Dr dk
(s)50 for kÞ j and ;d,

~12!

with «5sgn@pa j(ts)2pb j(ts)#. The modified Newton equa
tions ~11! define a dynamics that is periodic on the torus
the relative coordinatesra2r1 because the jumps of the rela
tive coordinates are vectors of the Bravais cubic latti
Dr a j

(s)2Dr 1 j
(s)50,6L, while the momentapa remain func-

tions of the time without singularities worst than discontin
ties. We notice that modified Newton’s equations~11! con-
serve energy, total momentum, and preserve phase-s
volumes~Liouville’s theorem!.

C. Helfand moment for molecular dynamics with PBC

In the 1960’s, Helfand has derived quantities associa
with the different transport processes, in particular for
viscosities@5#. These new quantitiesGi j (t) are such that we
can obtain an Einstein-like relation for each transport coe
cient. For the shear viscosity coefficient, we have

h5 lim
t→`

b

2tV
^@Gxy~ t !2Gxy~0!#2&. ~13!

More generally, we can define such a relation for each
ment of the viscosity tensor:

h i j ,kl5 lim
t→`

b

2tV
@^Gi j ~ t !Gkl~ t !&2^Gi j ~ t !&^Gkl~ t !&#

~14!

if we takeGi j (0)50. TheHelfand moment Gi j (t) is defined
as the integral of the microscopic current appearing in
Green-Kubo relation:

Gi j ~ t !5Gi j ~0!1E
0

t

Ji j ~t!dt. ~15!

As a consequence of definition~15!, the Einstein-Helfand
formula ~14! is equivalent to the Green-Kubo formula~7!, as
proved in Appendix B. In a system ofN particles on a torus
and satisfying the minimum image convention, we can in
grate current~8! with modified Newton’s equations~11! to
get
04120
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Gi j ~ t !5 (
a51

N

pai~ t !r a j~ t !2 (
a51

N

(
s

pai
(s)Dr a j

(s)u~ t2ts!,

~16!

whereGi j (0)50, pai
(s)5pai(ts), andu(t2ts) is the Heavi-

side step functionat the timets of the jumps:

u~ t2ts!5H 1 for t.ts ,

0 for t,ts .
~17!

Expression~16!, which we propose in the present paper, c
be used to obtain the viscosity coefficients thanks to
Einstein-like formulas~14! in a molecular dynamics define
on the torus. We emphasize that expression~16! may apply
to systems of particles interacting with a smooth poten
under the condition that the range is finite or to systems
hard balls in elastic collisions. We show in Appendix C th
the hydrostatic pressure can also be written in terms of
Helfand moment~16!.

Our Helfand-moment method has several theoretical
numerical advantages.

~i! It is strictly equivalent to the Green-Kubo method.
~ii ! The Einstein-like formula~13! or ~14! directly shows

the positivity of the viscosity coefficient or viscosity tens
becauset, b, andV are positive. Moreover, the Helfand mo
ments directly obey central-limit theorems, expressing
Gaussian character of the dynamical fluctuations in syst
with finite viscosity.

~iii ! Thanks to our expression~16! of the Helfand mo-
ment, the viscosity coefficients are given by a straightf
ward accumulation over the successive jumpss. For a given
system with N particles, numerical convergence can
reached in the limit of an arbitrarily large number of jumpss,
under conditions of existence of the viscosity coefficients

By defining the Helfand moment as integral~15! of the
microscopic current for a system with minimum image co
vention, we obtain expression~16! which can be used to
directly calculateDGi j (t)5Gi j (t)2Gi j (0) for the Einstein-
Helfand relation, remaining consistent with the requireme
imposed by the periodic boundary conditions and with
Green-Kubo formula for a system satisfying the minimu
image convention.

D. Comparison with other methods

In the 1970’s, Alderet al. @6# calculated the viscosity co
efficients of hard-ball systems with Einstein-like formul
based on expressions for Helfand moments which are
cific to hard-ball systems. Instead of adding a new quan
to the Helfand moment at each passage through the bo
aries of the minimum image convention as in Eq.~16!, their
expression takes into account only the elastic collisions
tween the hard balls. The Helfand moment can be obtai
by direct integration of the microscopic current according
Eq. ~15! with Gi j (0)50:
4-3
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Gi j ~ t !5E
0

t

dtJi j ~t! ~18!

5E
0

t

dtF (
a51

N
paipa j

m
1

1

2 (
aÞb

Fi~ra2rb!~r a j2r b j!G .

~19!

Between the collisions the trajectory is a straight line and
particle velocities change only at each collision. Therefo
the first term in the integral, the kinetic term, is consta
during two successive collisions and changes only at the
lisions. The second term, the potential term, vanishes
tween two successive collisions and contributes only at
lisions. Indeed, for a hard-ball potential, the forces betwe
the particlesa andb colliding at the timetc of the collisionc
can be written in terms of the changeDpa

(c)5pa(tc1e)
2pa(tc2e) of momentum of the particlea at the collisionc
as

F~ra2rb!51Dpa
(c)d~ t2tc!,

F~rb2ra!52Dpa
(c)d~ t2tc!, ~20!

for tc2e,t,tc1e, becauseDpb
(c)52Dpa

(c) . The forces
with the other particles which are not engaged in the co
sion vanish. Therefore, we obtain

Gi j ~ t !5 (
(c21,c)

S (
a51

N
paipa j

m D
(c21,c)

Dtc21,c

1(
c

Dpai
(c)r ab j

(c) u~ t2tc!, ~21!

where, in the first term,Dtc21,c is the time of flight between
the collisionsc21 andc during which the momenta remai
constant and, in the second term,a andb denote the particles
interacting at the collisionc and r ab j

(c) 5r a j(tc)2r b j(tc). The
first sum runs over the intercollisional free flights (c21,c)
between the initial timet50 and the current timet, while the
second sum runs over the collisions occurring between
time t50 and t. If C denotes the last collision before th
current timet, we notice that the last term of the first sum
DtC,C115t2tC . Hence, if we differentiate Eq.~21! with
respect to time and use Eq.~20! we recover the microscopi
current ~8!. Therefore, expression~21! is equivalent to our
expression~16! in the case of hard-ball systems. Howev
our expression~16! extends to systems with a smooth inte
action potential.

A comment is in order here about another method that
been considered and discussed in the literature@7–9#. This
other method implements an expression printed in the mid
of a presentation given in Ref.@13# for the calculation of
shear viscosity with the Helfand-moment method. This
pression differs from the Helfand moment by the mere
change of a square and a sum over the particles. The eq
lence of the expression in Ref.@13# with the Helfand moment
depends on the vanishing of some cross terms as pointe
in Ref. @7#. Numerical evidence has been obtained in Re
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@8,9# that the expression in Ref.@13# is in general not valid to
calculate the shear viscosity. We notice that both the orig
Helfand moment and the expression in Ref.@13# do not
strictly apply to systems subject to PBC~see discussions in
Refs. @8,9#!. This problem is solved by expression~21! of
Ref. @6# in the case of hard-ball fluids and by our express
~16! in the general case.

E. Symmetry considerations in two-dimensional systems

By symmetry, most of the elements of the viscosity ten
are either equal or vanish. First, we have

h i j ,kl5hkl,i j 5h j i ,kl5h i j ,lk , ~22!

because of the stationarity of the equilibrium average,
reversibility of the microscopic equations, and the fact th
F(ra2rb)5F(ira2rbi) is a central force. Second, in ou
work, the fluid is invariant under rotations byw5p/3 for the
hexagonal geometry and byw5p/2 for the square one. If we
define the viscosity tensor as a linear operatorĥ acting on
matricesA according to (ĥA) i j 5h i j ,klAkl . Then our discrete
symmetry can be written as

ĥ~R21AR!5R21~ ĥA!R, ~23!

for all matricesA, R being the rotation matrix

R5S cosw 2sin w

sin w cosw
D , ~24!

andw is equal top/3 or p/2, respectively, for the hexagona
or square systems. Thanks to this symmetry, the only non
nishing elements areh i j ,i j 5h j i ,i j andh i i ,i i 5h j j , j j . Further-
more, for iÞ j , kÞ l ,

h i j ,i j 5hkl,kl , h i i ,i i 5h j j , j j , h i i , j j 5hkk,l l . ~25!

Hence, there are in fact only three independent eleme
hxx,xx , hxy,xy , hxx,yy . On the other hand, for an isotropi
system, we can see that

h5hxy,xy , ~26!

z5 1
2 ~hxx,xx1hxx,yy!. ~27!

The third elementhxx,yy is in fact a combination of the two
other elements:

hxx,yy5hxx,xx22hxy,xy . ~28!

III. DESCRIPTION OF THE TWO-HARD-DISK MODEL

In the present work, we apply our method to a simp
model that we describe in the present section. The mode
composed of two hard disks in elastic collisions on a tor
Bunimovich and Spohn have previously studied this mo
for a square geometry@10#. By periodicity, the system ex
tends to a two-dimensional lattice made of infinitely ma
images of the two disks. For PBC on a square domain,
infinite images form a square lattice, in which each cell co
4-4
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tains two disks@see Fig. 1~b!#.
In the present work, we generalize this model to the h

agonal geometry@see Fig. 1~a!#. The possibility of such a
model was pointed out in Ref.@14#. The images of each dis
now form a triangular lattice. The two disks~the white and
the black ones! have the same diameters and massm. They
follow different trajectories. All the black disks move to
gether and all the white ones move together. The syste
periodic and the dynamics of the disks can be reduced to
dynamics in the unit cell or torus.

A. Hexagonal geometry

Let us first introduce some parameters of the system.L is
the distance between the centers of two neighboring cell
also corresponds to the distance between two oppo
boundaries of a cell.

By a linear combination of two vectors

e5~L,0!,

e85S 1

2
L,

A3

2
L D , ~29!

we can spot all the cells of the lattice and then localize
center of a disk thanks to

ralal
a8
5ra1 l ae1 l a8e8 for a51,2, ~30!

where l a and l a8 are integer andra is the position vector of
the disk a with respect to the center of the cell~Fig. 2!.
Therefore, the distance between the two disks is expre
by

ir1l 1l
18
2r2l 2l

28
i5ir12r21~ l 12 l 2!e1~ l 182 l 28!e8i , ~31!

wherer5r12r2 is the relative position between both disk
By the minimum image convention, the relative distanceir i
should take the smallest value among the infinitely ma
possible values. Of course, this distance has to be gre
than or equal to the disk diameter (ir i5ir12r2i>s). As
we have a hard-disk potential, the disks move in a free m
tion between each collision. Therefore, the equations of m
tion are written as

FIG. 1. The model of two hard disks:~a! in the hexagonal ge-
ometry and~b! in the square geometry.
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dr1

dt
5

p1

m
1(

s
Dr1

(s)d~ t2ts!,

dr2

dt
5

p2

m
1(

s
Dr2

(s)d~ t2ts!, ~32!

dp1

dt
5F1 ,

dp2

dt
5F2 , ~33!

wherep1 andp2 are the momenta of the two disks,F1 andF2
being the forces applied respectively to disks 1 and 2. Th
forces equal zero whenir12r2i.s and are infinitely repul-
sive whenir12r2i5s. ts denotes the time of the jump t
satisfy the minimum image convention.

At this stage, we can do the following change of va
ables:

r5r12r2 ,

R5
r11r2

2
, ~34!

p5
p12p2

2
,

P5p11p2 . ~35!

If we introduce the reduced massm5m/2, we can write

m
dr

dt
5p1(

s
mDr (s)d~ t2ts!5mv1(

s
mDr (s)d~ t2ts!,

~36!

dp

dt
5F5F152F2 , ~37!

where v is the relative velocity andDr (s)5Dr1
(s)2Dr2

(s) .
Here we suppose that we are in the reference frame of
mass center~that is P50). Accordingly, the energy of the
system is reduced to

FIG. 2. Basis vector (e ande8), position vectorra of particlea
in the cell, and the position vectorralal

a8
in the lattice.
4-5
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E5
p2

2m
. ~38!

The interest of this change of variables is to reduce
number of variables. Indeed, the only variables that rem
are the relative position and velocity@r5(x,y) and v
5(vx ,vy)]. We can associate a fictitious pointlike partic
with these variables, which moves in a reduced syste
known as theperiodic Sinai billiard ~see Fig. 3!.

The billiard is also a triangular lattice of hexagonal cel
The sized of these cells is equal to the size of the cells of t
model itself (d5L). A hard disk is fixed on the center o
each cell. Its radius is equal to the diameters of the two
moving disks.

The basis vectors of this lattice are the same as thos
the original dynamics~32! and ~33! if we replaceL by d,
which gives us the possibility of spotting a cell in the lattic
thanks to the vector

r c5 l ce1 l c8e8, ~39!

wherel c and l c8 are integer.
In the Sinai billiard, the system is described by a traje

tory in a four-dimensional phase space, the dimensions b
the Cartesian coordinates (x,y,px ,py) or the polar coordi-
nates (x,y,pu ,u). However, since the energy of the syste
is conserved, this space is reduced to the three-dimensi
space of the variables (x,y,u). Furthermore, in hard-ball sys
tems, the topology of the trajectory is independent of
energy level. Therefore, we can study the system on an a
trary energy level. This energy determines the temperatur
the system and is equal toE5(d/2)(N21)kBT5kBT be-
cause we have only two degrees of freedom (d52, N52).
Sinai and Bunimovich have demonstrated that the dynam
in such billiards is ergodic on each energy level@15,16#.

B. Square geometry

The case of the square geometry~Fig. 4! is similar to the
hexagonal one except that the basis vectors are here give

e5~L,0!,

e85~0,L !, ~40!

FIG. 3. The model of two hard disks in the hexagonal geome
is reduced to the periodic Sinai billiard thanks to a change of v
ables.
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whereL is the length of a side of the square unit cell th
contains two moving disks of diameters. We perform the
same change of variables to reduce the dynamics of two h
disks to that of the fictitious pointlike particle of a Sina
billiard in a square unit cell. Here also, the sized of the cells
of the Sinai billiard is the same as for the cells of the tw
hard disks model:d5L.

C. The different dynamical regimes of the model

The physical quantity determining the size of the cell
our model is the density that corresponds to the numbe
disks per unit volume or, in our case, the number of disks
unit area. Each cell contains two disks. Therefore, the den
is n52/V, whereV5ie3e8i is the area of a cell. In our
study, we have chosen that the diameter of the moving d
is equal to unity:s51.

As a function of the density, we observe different dynam
cal regimes. At low density, the disks are able to move in
whole lattice so that the disks are not localized in bound
phase-space regions. In this case, the billiard may hav
finite or an infinite horizon depending on the geometry a
on the density. In the opposite, at high density, the disks
so close to each other that they cannot travel across the
tem and we refer to this regime as thelocalized regime. The
critical density between the nonlocalized and localized
gimes corresponds to the situation where both disks hav
double contact with each other in the configuration shown
Fig. 5.

y
i-

FIG. 4. The model of two hard disks in the square geometry
reduced to the periodic Sinai billiard thanks to a change of va
ables.

FIG. 5. Hexagonal system at the critical densityncr .
4-6
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VISCOSITY IN MOLECULAR DYNAMICS WITH . . . PHYSICAL REVIEW E68, 041204 ~2003!
1. Hexagonal geometry

In the hexagonal geometry, the area of the system
V5ie3e8i5(A3/2)L2 and the critical density is equal to

ncr5
A3

3
.0.5774, ~41!

even though the maximum density~the close-packing den-
sity! is

nmax5
4A3

9
.0.7698. ~42!

At the close-packing density, the system forms a triangu
crystal.

In the Sinai billiard, it is well known that there exist dif
ferent kinds of regimes according to the dynamics of t
particles. As a function of the densityn, we observe three
regimes:

The infinite-horizon regime. At the low densities 0,n
,A3/4, the particles can move in free flight over arbitrari
large distances. In this regime, the self-diffusion coefficie
is infinite. ~See Fig. 6.!

The finite-horizon regime. For the intermediate densitie
A3/4,n,ncr , the free flights between the collisions are a
ways bounded by a finite distance of the order of the inte
isk distanced. Therefore, the horizon is finite and the se
diffusion coefficient is positive and finite.~See Fig. 7.!

The localized regime. At the highest densitiesncr,n
,nmax, the images of the disk overlap each other in t
billiard so that the relative motion of the particles is localiz
in bounded regions. Therefore, the self-diffusion coefficie
vanishes.~See Fig. 8.!

FIG. 6. Typical configuration of the system in the infinite
horizon regime.

FIG. 7. Typical configuration of the system in the finite-horizo
regime.
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We notice that Figs. 6–8 are not depicted at the sa
scale since the disk diameter is fixed to unity (s51) and it
is the interdisk distanced that varies.

The infinite- and finite-horizon regimes extend over t
densities 0,n,ncr . The localized regime corresponds to th
densitiesncr,n,nmax. Figure 9 shows the different regime
in the hexagonal geometry. The remarkable feature of
hexagonal geometry is that there exists a finite-horizon
gime that is not localized, in contrast to the square geome
~see below!.

2. Square geometry

In the square geometry, the volume isV5ie3e8i5L2

and the critical density is

ncr50.5, ~43!

which is the density of the transition between the infinit
horizon and the localized regimes. The close-packing den
is equal to

nmax51. ~44!

In Fig. 10, we have depicted the different regimes in t
square geometry. In the square geometry, there also e
nonlocalized and localized regimes, but the horizon is alw
infinite in the nonlocalized regime. Therefore, it is only
the localized regime that the horizon is finite in the squa
geometry. This is an important difference with respect to t
hexagonal geometry.

IV. PROPERTIES OF THE MODEL

A. Mean free path

The mean free patĥ l & is the average distance betwee
two successive collisions. It is known that, in two

FIG. 8. Typical configuration of the system in the localize
regime.

FIG. 9. The different dynamical regimes and thermodynam
phases of the model in the hexagonal geometry vs the densityn.
4-7
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S. VISCARDY AND P. GASPARD PHYSICAL REVIEW E68, 041204 ~2003!
dimensional billiards, the mean free path is related to
areaA of the billiard and its perimeterL according to@17#

^ l &5
pA
L . ~45!

In the different regimes, the mean free path is given by

hexagonal geometry

~ i! ^ l &5
1

n
2

p

2
, n<ncr ,

( ii)

^ l &5p

2

n
2p16 arccosS 1

AA3n
D 2

6

AA3n
A12

1

A3n

2p212 arccosS 1

AA3n
D ,

n>ncr ;

square geometry

~ i! ^ l &5
1

n
2

p

2
, n<ncr ,

~ ii ! ^ l &5p

2

n
2p14 arccosS 1

A2n
D 22A2

n
A12

1

2n

2p28 arccosS 1

A2n
D ,

n>ncr .

We show in Figs. 11 and 12 the excellent agreement
tween the above expressions and the values obtained by
merical simulations. The break observed in Figs. 11 and
between the nonlocalized and localized regimes can be
plained thanks to Eq.~45!. Indeed, at the critical densityncr ,
the disks form a horn. Above criticality, the horn becomes
corner with a finite angle so that the perimeterL decreases
very fast. But, on the other hand, the areaA remains rela-
tively constant. Therefore the ratioA/L increases withn
until this effect disappears. At higher densities, the mean f
path decreases again.

FIG. 10. The different dynamical regimes and thermodynam
phases of the model in the square geometry vs the densityn.
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B. Pressure and the different phases of the model

The hydrostatic pressure allows us to interpret the diff
ent regimes in terms of thermodynamic phases. The pres
can be calculated in terms of the time average of the Helf
moment as shown in Appendix C. In the two-disk mod
with N52 andd52, the pressure is given by

PV5kBT1R, ~46!

where the rest can be calculated according to Eq.~C8! as

R5
^Dp1

(c)
•r12

(c)&
4^Dtc21,c&

, ~47!

where^Dtc21,c& is the mean intercollisional time. If we de
note byf (c) the angle between the velocity at collision an
the normal to the disk of the Sinai billiard, the average in t
numerator becomes

c

FIG. 11. Theoretical~continuous line! and numerical~dots! val-
ues of the mean free path vs the densityn in the hexagonal
geometry.

FIG. 12. Theoretical~continuous line! and numerical~dots! val-
ues of the mean free path vs the densityn in the square geometry
4-8
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VISCOSITY IN MOLECULAR DYNAMICS WITH . . . PHYSICAL REVIEW E68, 041204 ~2003!
^Dp1
(c)
•r12

(c)&5mvs^cosf (c)&, ~48!

s being the diameter of the disks. In the case where the t
momentum vanishes, the velocityv of the trajectory in the
billiard is related to the relative momentump, the energy,
and the temperature by

E5kBT5
p2

2m
5

p2

m
5

mv2

2
5

mv2

4
, ~49!

so thatv52p/m. At collision, sinf(c) is uniformly distrib-
uted in the interval@21,11# so that

^cosf (c)&5
p

4
. ~50!

On the other hand, the mean intercollisional time of the b
liard is related to the mean free path^ l & and the speedv
5ivi by

^Dtc21,c&5
^ l &
v

. ~51!

Gathering the results, we obtain the rest as

R5
psmv2

16̂ l &
5

ps

4^ l &
kBT. ~52!

Accordingly, the hydrostatic pressure of the model is giv
by

PV5kBTS 11
ps

4^ l & D5kBTS 11
sL
4AD . ~53!

In our work, we introduce the reduced pressure defined

P* [bP
V

N
5

PV

~N21!kBT
511

ps

4^ l &
511

sL
4A . ~54!

In Figs. 13 and 14, the reduced pressure is depicted

FIG. 13. Theoretical~continuous line! and numerical~dots! val-
ues of the reduced pressureP* vs the densityn in the hexagonal
geometry.
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function of the density and we observe the manifestation o
phase transition around the critical density. The hard-b
systems are known to present a fluid-solid phase transi
that we here already observe in the two-disk model.

At low density, the fictitious particle of the Sinai billiard
can diffuse in the whole lattice. This means that the t
disks move over arbitrarily large distances one with resp
to the other, which is a feature of a fluid phase. In contras
high density, the fictitious particle is trapped between th
~or four! disks and its motion is reminiscent of the vibratio
of atoms in a solid. Of course, it is not really a vibratio
since the disks bounce in a chaotic motion because of
elastic collisions whereas, in a solid, the atoms have qu
harmonic oscillations around their equilibrium position. Ne
ertheless, we are in the presence of a solid phase becaus
translational invariance is broken. Indeed, the motion is
longer ergodic because the motion now is confined to
among several phase-space domains of the energy shel

A phase transition occurs between the fluid and so
phases. At the critical densityncr , the pressure has a max
mum. Abovencr , the pressure decreases, reaches a minim
at a valuencr8 .ncr , before increasing again. Forncr,n
,ncr8 , the compressibility would be negative so that th
state would be unstable from a thermodynamic viewpo
This suggests a Maxwell construction to determine a flu
solid coexistence in the interval of densitiesnF,n,nS with
nF,ncr and ncr8 ,nS. The values that would delimit this
small coexistence interval in a thermodynamic interpretat
of the transition would be given by

nF50.5760.01, nS50.6060.01 for hexagonal geometry

~55!

and

nF50.4960.01, nS50.5560.01 for square geometry

~56!

~see Figs. 9 and 10!. In the square geometry, the horizon
infinite in the fluid phase. In the hexagonal geometry,

FIG. 14. Theoretical~continuous line! and numerical~dots! val-
ues of the reduced pressureP* vs the densityn in the square
geometry.
4-9
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S. VISCARDY AND P. GASPARD PHYSICAL REVIEW E68, 041204 ~2003!
horizon may also be finite in the fluid phase, which leads
finite viscosity coefficients in the fluid phase of this model
shown in the following.

V. VISCOSITY IN THE TWO-HARD-DISK MODEL

A. The Helfand moment in the two-hard-disk model

In our model defined with Eqs.~34! and ~35! and with a
vanishing total momentumP50, the forces obeyF152F2
5F and the microscopic current can be written in relat
coordinates as

Ji j 52
pipj

m
1Fir j , ~57!

where r5$r j% is the smallest distance between the disks
and 2. Following the minimum image convention the po
tion vector presents discontinuities because of the pass
of the relative position through a boundary, after which it
reinjected into the cell at the opposite boundary. We den
the vectors normal to the boundaries of the unit cell by

c15a, c252a, c35b, c452b, c55b2a,

c65a2b, hexagonal geometry ~58!

and

c15a, c252a, c35b, c452b, square geometry.

~59!

In order to satisfy the minimum image convention, the re
tive position undergoes jumps by vectors which are the v
tors normal to the unit cell so thatDr (s)52cvs

, wherevs

denotes the label of the boundary crossed by the particl
the sth passage at timets . In these notations, Hamilton’
equations take the form

dr

dt
5

2p

m
2(

s
cvs

d~ t2ts!,

dp

dt
5F. ~60!

In this periodic system, the expression for the Helfa
moment is given by a reasoning similar to that leading to
~16!. We obtain

Gi j ~ t !5pi~ t !r j~ t !1(
s

pi~ ts!cvsju~ t2ts!. ~61!

Finally, the viscosity coefficients have the expressions

h i j ,kl5 lim
t→`

b

2tV S K (
ts,t

pi~ ts!cvsj (
ts8,t

pk~ ts8!cvs8l L
2K ( pi~ ts!cvsj L K ( pk~ ts8!cvs8l L D . ~62!
ts,t ts8,t
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Let us remark that the termspi(t) r j (t) do not appear in this
relation because they do not contribute to the viscosity co
ficients. Indeed, the relative positionr (t) and momentum
p(t) remain bounded in the course of time and their con
bution disappears in the limitt→`.

In the following, the numerical results are presented
terms of a reduced viscosity tensor, which is defined by

h i j ,kl* [
h i j ,kl

2AmkBT
. ~63!

B. Hexagonal geometry

In the hexagonal geometry the fourth-order tensor of v
cosity is isotropic. Indeed, since the system is invariant un
rotations by p/3, we obtain the relationhxx,yy5hxx,xx
22hxy,xy which implies the full rotation invariance of th
viscosity tensor. We depict in Figs. 15 and 16 the resu
obtained for the reduced viscosities (h* , z* ) and relation
~28! is checked in Fig. 17.

In the infinite-horizon regime, the trajectory can prese
arbitrarily large displacements in the system without und
going any collision. Accordingly, the variance of the Helfan
moment Gyx increases faster than linearly ast ln t, which
implies an infinite viscosity coefficient after averaging ov
an infinite time interval. However, the factor lnt generates a
growth so weak that it does not manifest itself much over
finite time of the simulation. This is the reason why we o
tain finite values for the viscosity coefficients in Fig. 1
However, these values are only indicative, since they sho
be infinite, strictly speaking.

On the other hand, in the finite-horizon regime, the va
ance of the Helfand moment has a strictly linear increase
time and the viscosity coefficients are finite and positiv

FIG. 15. Shear viscosity coefficienth* vs the density in the
hexagonal geometry. The part in dashed line corresponds to
density in which the coefficient would not exist in the limitt→`
because the horizon is infinite. The long dashed vertical lines s
rate the different regimes: on the left-hand side, the horizon-infin
regime~fluid phase!; at the center, the horizon-finite regime~fluid
phase!; and on the right-hand side, localized regime~solid phase!.
4-10



he
b
b

e
ity
n
.
lid
h

r
tr

ffi-
ies.
nsor
.
he

(
ith
-
is-

ve
d

riti-
f-

ity

nal
n-

y
tion

o

VISCOSITY IN MOLECULAR DYNAMICS WITH . . . PHYSICAL REVIEW E68, 041204 ~2003!
This is the result of a central-limit theorem that holds in t
finite-horizon regime of the hexagonal geometry, as can
proved by considerations similar to those developed
Bunimovich and Spohn@10#. We observe in Fig. 15 that th
viscosity has a diverging singularity at the critical dens
(ncr5A3/3) which corresponds to the fluid-solid phase tra
sition. We shall explain below the origin of this singularity

Finally, in the localized regime corresponding to the so
phase, the viscosity is finite and positive, and decreases w
the density increases until the maximum density.

C. Square geometry

In the square geometry, the fourth-order viscosity tenso
not isotropic. Indeed, the tensor is transformed by the ma
Ri j (w) of rotation by an anglew into

h i j ,kl~w!5Rii 8~w!Rj j 8~w!Rkk8~w!Rll 8~w!h i 8 j 8,k8 l 8~0!.

~64!

For example, ifw5p/4, we have

hxx,xxS p

4 D5
1

2
@hxx,xx~0!1hxx,yy~0!12hxy,xy~0!#,

hxy,xyS p

4 D5
1

2
@hxx,xx~0!2hxx,yy~0!#, ~65!

FIG. 16. Bulk viscosity coefficientz* vs the density in the
hexagonal geometry.
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hxx,yyS p

4 D5
1

2
@hxx,xx~0!1hxx,yy~0!#2hxy,xy~0!.

Since the system is not isotropic, one more viscosity coe
cient is required besides the shear and bulk viscosit
Therefore, we have to evaluate the three independent te
elementshxx,xx , hxy,xy , hxx,yy which are depicted in Figs
18 and 19 with respect to two different axis frames: in t
first one the axes are parallel to the sides of the squarew
50) and, in the second, they form an angle of 45° w
respect to the lattice (w5p/4). Figure 19 shows that rela
tions ~65! are well satisfied between the elements of the v
cosity tensor.

In the square geometry, Bunimovich and Spohn ha
proved a central-limit theorem for viscosity in the localize
regime which coincides with the solid phase above the c
cal density@10#. In this range of density, the viscosity coe
ficient is thus guaranteed to be positive and finite.

In the fluid phase, the horizon is infinite and the viscos
is infinite because of a growth ast ln t of the variance of the
Helfand moment for a reason similar as in the hexago
geometry. In our numerical simulation over a finite time i

FIG. 17. Tensor elementhxy,xy* of shear viscosity vs the densit
in the hexagonal geometry. The dots represent the results of rela
~28!: hxy,xy* 5

1
2 (hxx,xx* 2hxx,yy* ). The continuous line corresponds t

the data of Fig. 15.
FIG. 18. Square geometry: The three independent tensor elements~a! hxx,xx* , ~b! hxx,yy* , ~c! hxy,xy* for w50.
4-11
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FIG. 19. Square geometry: The three independent tensor elements~a! hxx,xx* , ~b! hxx,yy* , ~c! hxy,xy* for w5p/4. The continuous line
corresponds to the results obtained numerically and the dots to the values obtained by relations~65!.
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terval, the viscosity takes finite values because the loga
mic growth is very slow.

An important difference with respect to the hexagonal
ometry is the absence of a singularity of the viscosity co
ficient hxy,xy* (0) at the phase transition in the square geo
etry. However, such a singularity still appears in the squ
geometry in the coefficientshxx,xx* (0), hxx,yy* (0), and
hxy,xy* (p/4).

Moreover, in the solid phase, the coefficienthxy,xy* (0) in-
creases with the density, as explained below.

D. Explanation of the numerical observations

1. Solid phase

The behavior of the viscosity tensor is clearly different
the two geometries. In this section, we explain these dif
ences by comparing the topology of the trajectories in b
geometries, since these trajectories form the basis of the
lution of the Helfand moment. More precisely, we will com
pare the behavior ofhxy,xy* between the hexagonal an
square geometries forw50. This viscosity coefficient is
given by

hxy,xy* 5hyx,yx* ;
^Gyx~ t !2&

t
, ^Gyx~ t !&50,

Gyx;(
s

vy~ ts!cvsx
, ~66!

FIG. 20. Part of a typical trajectory in the square geometry wh
the density tends to the closed-packing density.
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wherevy(ts) is they component of the velocity at the timets
of the jump.

When the density tends to the closed-packing density,
accessible domain of the particles tends to a perfect trian
in the hexagonal geometry. On the other hand, in the squ
geometry, it tends to a perfect square. This difference is
the origin of the different behaviors of thehxy,xy* in both
lattices.

First, let us consider the case of the square geometry
Fig. 20, we depict a typical trajectory of the fictitious partic
moving in the Sinai billiard. We observe that this trajecto
presents a regular motion between two opposite ‘‘wal
~these walls are made of parts of the fixed hard disks in
billiard!. At the limit where the billiard is a perfect square
the trajectories will bounce back and forth in a regular m
tion. Indeed the square billiard is anintegrable system.

As we have seen before, the evolution of the Helfa
moment along the trajectories is determined by the passa
through the boundaries~see Fig. 21!. Both horizontal bound-
aries~3 and 4! do not contribute to the evolution ofGyx since
the x component of the normal vectors to these boundar
equals zero. Therefore, only the passages through the ver
boundaries contribute to the Helfand moment in the squ
geometry.

To understand the behavior of the Helfand moment, let
take a small part of the typical trajectory drawn in Fig. 2
~see Fig. 22!. First, let us consider the part denoted by t
letter a in Fig. 22. This one crosses the boundary in t
direction 1→2, which means thatcvsx

is positive ~since

c1x5d/2). On the other hand, they component of the veloc-
ity, vy , is also positive. Therefore, the contribution of th
small parta to the evolution ofGyx is positive.

n FIG. 21. Geometry and notation for the boundaries in the c
of the square geometry at high density.
4-12
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VISCOSITY IN MOLECULAR DYNAMICS WITH . . . PHYSICAL REVIEW E68, 041204 ~2003!
Now, let us take the part of the trajectory denotedb in Fig.
22. In this case, the particle crosses the boundary in the
rection 2→1 andc2x is negative. Sincevy is also negative,
the product of these two quantities is positive, and so at e
successive crossings of the 122 boundary. Consequently
we obtain a sum of positive terms and the Helfand mom
quickly increases along a trajectory as the one of Fig. 20

However, the square is not perfect and the walls are
slightly convex. Therefore, after a certain time, the traject
shown in Fig. 20 goes into a transient regime shown on
left-hand side of Fig. 23 before another regime in which
particle collides most often the two other walls~see the right-
hand side of Fig. 23!.

With the same reasoning as before, we conclude that
contributions are negative in this new regime and the H
fand moment decreases during a long-time interval.

The evolution of the Helfand moment along the who
trajectory is depicted in Fig. 24 where we observe the s
cession of the three types of regimes which we have
scribed above. We notice that the nearly constant part co
sponds to the transient regime.

The larger the density is, the more perfect the squar
and the longer the trajectory remains in a particular regim
Therefore, the Helfand moment can have larger and la
variations, which implies an increase of the coefficie
hxy,xy* (0) of shear viscosity with density.

In the hexagonal geometry~see Fig. 25!, the trajectories

FIG. 22. Part of a typical trajectory in the square geometry
high density.

FIG. 23. Square geometry at high density: The trajectory is
picted~a! during a transient regime before~b! another regime with
most bounces on the two other opposite walls.
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present another behavior. We show in Fig. 25 a typical t
jectory in this geometry with a density larger than the critic
density. We observe that the trajectory visits the whole b
liard in different directions and therefore goes into very d
ferent velocities. Accordingly, the particle crosses the bou
aries with random values of its velocity in contrast to i
behavior in the square geometry. Consequently, the quan
cvsx

can be positive at a particular crossing and negative
the next one. Hence the Helfand moment cannot increas
decrease over long periods as in the square geometry~see
Fig. 26!. This explains qualitatively why, in the solid phas
the coefficienthxy,xy* (0)5h* is much smaller in the hexago
nal geometry than in the square one.

In the square geometry withw5p/4, the same argument
as in the hexagonal case explain the decrease ofhxy,xy* (p/4)
at high density. By the relations between the different e
ments of the viscosity tensor, we can also understand
behavior of the other elements in both geometries.

2. Fluid-solid phase transition

In both the hexagonal and square geometries, the two-
model presents a phase transition. This transition is remi
cent of the fluid-solid phase transition in the many-disk sy
tem where the viscosity coefficient is also singular. In th
regard, the two-disk model can contribute to the understa
ing of the changes in the transport properties across the fl
solid phase transition.

We first explain whyhxy,xy* presents a diverging singular
ity at the critical density in the hexagonal geometry and n
in the square geometry forw50. Here again, we compare

t

-

FIG. 24. Evolution of the Helfand moment along a typical tr
jectory in the square geometry at high density.

FIG. 25. Geometry and notation for the boundaries in the c
of the hexagonal geometry at high density.
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FIG. 26. Hexagonal geometry
at high density.~a! Part of a typi-
cal trajectory when the density
tends to the closed-packing den
sity. ~b! Evolution of the Helfand
moment along this typical trajec
tory.
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the topology of the trajectories in both geometries and
way in which the Helfand moment evolves along these
jectories. At densities close to the critical density, both
ometries present what we calltraps.

Figure 27 shows an example of a trap. These traps
particular regions of the billiard where the particle can
main during a long-time interval. Figure 28 depicts typic
examples of a particle moving in such traps. When the p
ticle travels out of the traps, the Helfand moment does
increase quickly in both geometries. Therefore, it is the pr
ence of the traps which is at the origin of the differen
between both geometries.

In the square geometry, the traps do not influence
evolution of Gyx . Indeed, as we have already mention
above, the passages through the horizontal boundary 324 do
not contribute sincec3x5c4x50 ~see Fig. 21 for the defini-
tions of the boundaries in the square geometry!. Therefore,
the horizontal traps around these boundaries do not con
ute. There remain the vertical traps. When a particle boun
for a long time in one of these traps,c1x and c2x are not
vanishing, but the velocityvy is almost equal to zero so tha
the vertical traps do not contribute much either. This impl
that both kinds of traps contribute very slightly to the evo
tion of the Helfand moment. To conclude the Helfand m
ment diffuse in the same way as for the other densities
the coefficienthxy,xy* (0) does not present any divergence

FIG. 27. Example of traps in which the particles can enter a
remain a long time.
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the fluid-solid transition in the square geometry.
On the other hand, in the hexagonal geometry, the tr

along the boundaries making an angle of 30° with respec
the horizontal are very important for the evolution ofGyx ,
whereas the vertical traps do not participate significan
Figure 29 shows a typical diffusion of the Helfand mome
We observe in Fig. 29 the presence of jumps which cor
spond to the passages in the traps such as the one draw
the left-hand side of Fig. 28. Because of these jumps,
Helfand moment quickly diffuses. Furthermore, the impo
tance of these traps in the hexagonal geometry can als
understood by comparing the behavior of the Helfand m
ment as a function of time at densities below and above
critical onencr .

We illustrate this point in Fig. 30 where we observe th
there are no more jumps above the critical density. The
fore, Gyx does not vary much, contrary to the case of den
ties just belowncr . Above criticality, the size of the trap
decreases so quickly that the contribution of these traps
creases and, thus, the viscosity coefficienthxy,xy* 5h* also
decreases. By these arguments, we have an explanatio
the diverging singularity of the shear viscosity at the pha
transition in the hexagonal geometry.

This result shows that at a fluid-solid phase transition
viscosity coefficients may depend sensitively on the geo
etry of the lattice of the solid phase in formation.

d
FIG. 28. Particle trapped between two disks very close to e

other in the hexagonal geometry. The line joining their centers
ther ~a! forms an angle with the horizontal or~b! is horizontal.
4-14
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VISCOSITY IN MOLECULAR DYNAMICS WITH . . . PHYSICAL REVIEW E68, 041204 ~2003!
E. Viscosity by the method of Alderet al.

We have also verified numerically that our method of c
culation of the viscosity based on the Helfand moment~16!
gives the same values as the method of Alderet al. based on
expression~21! @6#. In the two-disk system, this expressio
reduces to

Gi j ~ t !5(
c

F2
pipj

m
Dtc21,c1Dpi

(c)r j~ tc!u~ t2tc!G .
~67!

As shown in Fig. 31 for the shear viscosity in the hexag
nal geometry, there is an excellent agreement between
values obtained by both methods, which confirms the ex
equivalence of both methods.

FIG. 29. Helfand moment in the hexagonal geometry evalua
along a particular trajectory at a density tending to the critical d
sity.

FIG. 30. Comparison of the evolution of the Helfand mome
for two different densities separated by the critical density in
hexagonal geometry.
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VI. VISCOSITY IN SYSTEMS OF N HARD DISKS

In the present section, we apply our Helfand-mome
method to systems ofN hard disks. Our purpose is to show
that the values of the shear viscosity obtained for the tw
hard-disk model are in good agreement with the values
larger systems, as well as with Enskog’s theory.

Figure 32 depicts the shear viscosity of systems conta
ing from N52 up toN540 hard disks. ForN52, we con-
sider here the hexagonal geometry. For the systems witN
54 –40 disks, the time evolution is simulated by molecu
dynamics with periodic boundary conditions in the squa
geometry. The viscosity is calculated by the Helfand-mom
method based on Eq.~21!.

d
-

t
e

FIG. 31. Shear viscosityh* in the hexagonal geometry calcu
lated by our Helfand moment~16! ~continuous line! and the one of
Alder et al. ~dots!.

FIG. 32. Shear viscosityh vs particle densityn in fluids at
temperatureT51 with N52,4, 8, 12, 16, 20, 40 hard disks of un
mass and diameter. The solid line is Enskog’s value~68!. For N
52, the data are the same as in Fig. 15 except that we here
h52h* instead ofh* as in Fig. 15.
4-15



a
e
tio
in
d-

y
-o
e

os
th

o
k

e

a-
n-

od
s.

g
nl
u
h
nu

og
en
re

n
ic
n
th
ic

ge
rgo
nd
of
la.
our
en-
rd-

is

be
for
ur
m-

cs
e

eri-
ad-

our
is-

ple
is
etry

e
we
he
m-

nite
t is
he
e

id
with
try.
ite
is-
ly
se,
use

ifies
sity
ing
iffu-
a

en a
the
ks.
es-
m.
ean
the
the
his
eo-

tra-
ain

S. VISCARDY AND P. GASPARD PHYSICAL REVIEW E68, 041204 ~2003!
We observe that, at low densities, the numerical values
in very good agreement between themselves. At higher d
sities, differences appear because the fluid-solid transi
shifts toward higher densities as the number of disks
creases. ForN52 disks in the hexagonal geometry, the flui
solid transition occurs in the intervaln50.57–0.60, while it
occurs in the intervaln50.87–0.90 forN540. The sharp
singularity of viscosity forN52 in the hexagonal geometr
is specific to the geometrical constraints of a two-degree
freedom system, as explained in the preceding section. N
ertheless, we notice that the decrease of the shear visc
just above the fluid-solid transition is also the feature of
large system withN540 disks.

Furthermore, the results of our Helfand-moment meth
are compared with Enskog’s theory. For a fluid of hard dis
of massm and diameters, Enskog’s theory predicts that th
shear viscosity is given by@18#

h5h0S 1

Y
12y13.4916Yy2D , ~68!

where

h05
1.022

2s
AmkBT

p
~69!

is the Boltzmann value of the shear viscosity,Y is the Enskog
factor entering the equation of state as follows:

P5nkBT~112yY! ~70!

andy5ps2n/4. For the hard-disk fluid, a good approxim
tion of the Enskog factor is given below the fluid-solid tra
sition by @19#

Y5

12
7

16
y

~12y!2
. ~71!

It is known that the Enskog approximation is not go
around the fluid-solid transition and at very high densitie

A remark is here in order. It is known@20# that the vis-
cosity coefficient of the infinite-hard-disk fluid is divergin
because of long-time tails. However, this divergence is o
logarithmic and does not manifest itself in numerical calc
lations before extremely long times. This explains why t
long-time tails do not spoil the agreement between the
merical values and Enskog’s theory.

We see in Fig. 32 the good agreement between Ensk
theory and the numerical values of our Helfand-mom
method at low densities showing the consistency of our
sults.

VII. CONCLUSIONS

In this paper, we propose an expression for the Helfa
moment associated with viscosity in molecular dynam
with periodic boundary conditions. This Helfand mome
takes into account the minimum image convention at
basis of molecular-dynamics simulations with period
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boundary conditions. In order to satisfy the minimum ima
convention, the position coordinates of the particles unde
jumps. These jumps modify both the equations of motion a
the Helfand moment which is given by the time integral
the microscopic current entering the Green-Kubo formu
As a consequence, the viscosity tensor calculated with
Helfand moment is equivalent to that based on the Gre
Kubo formula, as proved in Appendix B. In the case of ha
ball systems, we also prove in Sec. II D that our method
equivalent to the method by Alderet al. @6#. Moreover, we
show in Appendix C that the hydrostatic pressure can also
calculated thanks to the Helfand moment we propose
molecular dynamics with periodic boundary conditions. O
Helfand moment and our proofs bring a solution to the a
biguities and problems reported by Erpenbeck@9# about the
definition of a Helfand moment in a molecular dynami
with periodic boundary conditions. We think that th
Helfand-moment method can be very useful for the num
cal calculation of viscosity because this method has the
vantage of being numerically robust. We have applied
Helfand-moment method to the numerical calculation of v
cosity in systems of hard disks.

In Sec. V, viscosity has been studied in detail in a sim
model composed of two hard disks in elastic collision. Th
model has already been investigated in the square geom
by Bunimovich and Spohn@10#. In the present paper, w
generalize this model to the hexagonal geometry. First,
show that the fourth-order viscosity tensor is isotropic in t
hexagonal geometry although it is not in the square geo
etry. Second, we show the viscosity can be positive and fi
in the fluid phase of the hexagonal geometry, although i
always infinite in the fluid phase of the square geometry. T
reason is that the horizon of the Sinai billiard driving th
dynamics of the two-disk model is always infinite in the flu
phase of the square geometry although there is a regime
a finite horizon in the fluid phase of the hexagonal geome
In an infinite-horizon regime, the viscosity becomes infin
so that, from a physical point of view, the proof of the ex
tence of a positive and finite viscosity coefficient strict
holds in the hexagonal two-disk model. In the solid pha
the transport coefficients acquire a different meaning beca
the spontaneous breaking of translational invariance mod
the structure of the hydrodynamic modes and the visco
coefficient should be reinterpreted in terms of the damp
coefficients of the transverse sound modes and of the d
sive modes@21–23#. We hope to report on this question in
future publication.

The two-disk model presents a phase transition betwe
fluid and a solid phase. This transition is reminiscent of
fluid-solid transition in the system composed of many dis
Indeed, the transition manifests itself in the hydrostatic pr
sure in a very similar way as in the many-particle syste
The hydrostatic pressure can be directly related to the m
free path in the two-disk model and we can thus explain
manifestation of the transition on the pressure in terms of
behavior of the mean free path near the transition. In t
simple model, the transition can be understood as a g
metrical property of the dynamical system. Indeed, the
jectories are unbounded in the fluid phase albeit these rem
4-16
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VISCOSITY IN MOLECULAR DYNAMICS WITH . . . PHYSICAL REVIEW E68, 041204 ~2003!
localized in bounded domains in the solid phase where
godicity is broken. The fluid-solid transition also manifes
itself as a diverging singularity in the viscosity in the tw
disk model. We have here shown that this singularity in
viscosity versus the density may depend sensitively on
geometry of the lattice of the solid phase in formation.

In Sec. VI, we have extended the calculation of sh
viscosity to systems with many disks. The remarkable re
is that the two-disk systems already give the shear visco
in quantitative agreement with its values in larger systems
well as with Enskog’s theory at moderate densities.

In a companion paper, we report a study of viscosity
the escape-rate method@24#. In this other work, we use the
Helfand moment that we have introduced in the pres
paper.
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APPENDIX A: MICROSCOPIC DERIVATION
OF THE VISCOSITY TENSOR

In this appendix, we provide a short microscopic deriv
tion of the viscosity tensor.

First, we need the balance equation for the local con
vation of momentum. If we define the density of momentu
as

gi~r !5 (
a51

N

paid~r2ra!, ~A1!

the balance equation is

] tgi1] jt i j 50, ~A2!

with ] j5]/]r j . The microscopic momentum current dens
is given by

t i j 5 (
a51

N
pai pa j

m
d~r2ra!

1
1

2 (
aÞb51

N

Fi~ra2rb!

3E
0

1

dl
drab j

dl
d„r2rab~l!…, ~A3!

where rab(l) is the parametric equation of a curve joinin
the particlesa andb: rab(0)5rb and rab(1)5ra .

The microscopic current associated with viscosity is
fined by integrating the momentum current density over
volumeV:
04120
r-

e
e

r
lt
ty
as

y

t

or
h.
.
s-

-

r-

-
e

Ji j 5E
V
t i j ~r !dr , ~A4!

which is given by Eq.~8!. We notice that the hydrostati
pressure is given at equilibrium by

^Ji j &eq5PVd i j , ~A5!

if second-order tensors are isotropic in the system of inter
We suppose that, at the initial time, the fluid is close to

equilibrium and is described by the following nonequili
rium distribution:

P~G!5Peq~G!F11bE g~r !•v~r !dr G
5Peq~G!F11b (

a51

N

pa•v~ra!G , ~A6!

wherePeq is the equilibrium distribution andb is a normal-
ization constant such that

^paipb j&eq5
m

b
d i j dab . ~A7!

In the microcanonical state, we have that

b5
1

kBT

N

N21
. ~A8!

The aforementioned distribution describes a fluid with
macroscopic velocity fieldv(r ) since the nonequilibrium av
erage of the momentum density can easily be shown to
given by

^g~r !&noneq5reqv~r !, ~A9!

where

req5m
N

V
~A10!

is the mass density at equilibrium.
The time evolution of the probability density~A6! is ruled

by Liouville’s operator given by the Poisson bracket with t
Hamiltonian L̂5$H,•% or the pseudo-Liouville operator in
the case of hard-ball dynamics. This operator has the ef
of replacing the phase-space coordinatesG by G(2t)

Pt5eL̂tP05Peq~G!F11bE eL̂tg~r !•v~r !dr G
5Peq~G!F11b (

a51

N

pa~2t !•v@ra~2t !#G . ~A11!

Alternatively, we know that the time evolution of the mo
mentum density is given by Eq.~A2!. In this case, the mo-
mentum density should be considered as an observabl
that the solution of Eq.~A2! is
4-17
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g~r ,t !5e2L̂tg~r ,0!, ~A12!

so that

eL̂tg~r !5g~r ,2t ! ~A13!

is solution of the equation

] tgi5] jt i j . ~A14!

Integrating both sides over time we get

gi~r ,2t !5gi~r ,0!1E
0

t

dt8] jt i j ~ t8!. ~A15!

Close to equilibrium, we may consider the time evolution
deviations with respect to the equilibrium. We neglect ter
that are quadratic in the deviations such as the velocity fi
itself. The time evolution of these deviations is obtained
considering the nonequilibrium average of the balance eq
tion ~A2! for the deviations

] t^dgi&noneq1] j^dt i j &noneq50 ~A16!

with

dt i j 5t i j 2^t i j &eq. ~A17!

The nonequilibrium average of the deviation of the mom
tum current density is given by

^dt i j ~r !&noneq5E dt i j ~r !P~G,t !dG

5bE dr 8^dt i j ~r !gk~r 8,2t !&eqvk~r 8!.

~A18!

We use Eq.~A15! to transform the average as

^dt i j ~r !gk~r 8,2t !&eq5^dt i j ~r !gk~r 8,0!&eq

1E
0

t

dt8^dt i j ~r ,0!] l8dtkl~r 8,t8!&eq,

~A19!

where we have used the property that] l8^tkl&eq50 because
the equilibrium state is spatially uniform. We notice that t
first term in the right-hand side of Eq.~A19! vanishes be-
cause the equilibrium average of an odd power of part
momenta vanishes. After an integration by part over the
locity field, Eq. ~A18! becomes

^dt i j ~r !&noneq52bE dr 8

3E
0

t

dt8^dt i j ~r ,0!dtkl~r 8,t8!&eq] l8vk~r 8!

52h i j ,kl] lvk~r !, ~A20!
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where the identification with the viscosity tensor is carri
out in the limit t→` by

h i j ,kld~r2r 8!5bE
0

`

dt8^dt i j ~r ,0!dtkl~r 8,t8!&eq.

~A21!

Taking the double volume integral*Vdr*Vdr 8 of both sides
of Eq. ~A21! and dividing by the volumeV, we obtain the
viscosity tensor as

h i j ,kl5
b

VE0

`

dt^dJi j ~0!dJkl~ t !&eq, ~A22!

with

dJi j ~ t !5E
V
drdt i j ~r ,t !5Ji j ~ t !2^Ji j &eq, ~A23!

Q.E.D.

APPENDIX B: PROOF OF THE EQUIVALENCE
BETWEEN GREEN-KUBO AND EINSTEIN-HELFAND

FORMULAS

Our aim here is to deduce the Green-Kubo formula~7!
from the Einstein-Helfand formula~14!, proving the equiva-
lence between both formulas under the condition that
Helfand moment is defined by Eq.~15! as the time integral
of the microscopic current~8! and the further condition tha
the time autocorrelation functions decrease fast enough.

We start from the Einstein-Helfand formula~14! with

dGi j ~ t !5E
0

t

dJi j ~t!dt, ~B1!

dJi j being defined by Eq.~A23! and supposing for simplicity
that dGi j (0)50. Accordingly, we have successively from
Eq. ~14! that

h i j ,kl5 lim
T→`

b

2TV
^dGi j ~T!dGkl~T!&

5 lim
T→`

b

2TVE0

T

dt1E
0

T

dt2^dJi j ~ t1!dJkl~ t2!&

5 lim
T→`

b

2TVE2T

1T

dtE
utu/2

T2utu/2
dt^dJi j ~0!dJkl~ t !&

5 lim
T→`

b

2VE2T

1T

dtS 12
utu
T D ^dJi j ~0!dJkl~ t !&

5
b

2VE2`

1`

dt^dJi j ~0!dJkl~ t !&

5
b

VE0

1`

dt^dJi j ~0!dJkl~ t !&, ~B2!

where we have performed the change of integration varia
4-18
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t5t22t1 ,

t5
t11t2

2
, ~B3!

and supposed that

lim
T→`

1

TE2T

1T

dtutu^dJi j ~0!dJkl~ t !&50, ~B4!

which requires that the time autocorrelation functions
crease faster thanutu212e with e.0. Q.E.D.

APPENDIX C: PRESSURE AND HELFAND MOMENT

The hydrostatic pressure at equilibrium is given as
mean value of the momentum current density, i.e., as
mean value of the same microscopic current entering
Green-Kubo relation:

Pi j V5E
V
^t i j &eqdr5^Ji j &eq. ~C1!

The average over the thermodynamic equilibrium state
be replaced by a time average:

Pi j V5^Ji j &eq5 lim
t→`

1

t E0

t

dtJi j . ~C2!

We can here introduce the Helfand moment to obtain
hydrostatic pressure from the Helfand moment as
ys

id

04120
-

e
e
e

n

e

Pi j V5 lim
t→`

1

t
@Gi j ~ t !2Gi j ~0!#. ~C3!

In the microcanonical equilibrium state we have that

^paipa j&eq5mkBT
N21

N
d i j . ~C4!

If we assume that the system is isotropic,Pi j 5Pd i j and we
obtain

PV5~N21!kBT1R, ~C5!

where the restR provides the corrections to the law of pe
fect gases in dense systems. By using Eqs.~16! and~21!, the
virial can be computed alternatively by

R5K 1

2d (
aÞb51

N

F~rab!•rabL
eq

~C6!

5 lim
t→`

21

td (
s

(
a51

N

pa
(s)
•Dra

(s)u~ t2ts!

~C7!

5 lim
t→`

1

td (
c

Dpa
(c)
•rab

(c)u~ t2tc!, ~C8!

whered is the dimension,rab5ra2rb , ts are the times of
jumps to satisfy the minimum image convention, while t
last expression only holds for hard-ball systems,tc are the
collision times, andrab

(c)5ra(tc)2rb(tc).
ys.
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