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Correlations and scaling in one-dimensional heat conduction
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We examine numerically the full spatiotemporal correlation functions for all hydrodynamic quantities for the
random collision model introduced recently. The autocorrelation function of the heat current, through the Kubo
formula, gives a thermal conductivity exponent of 1/3 in agreement with the analytical prediction and previous
numerical work. Remarkably, this result depends crucially on the choice of boundary conditions: for periodic
boundary conditiongas opposed to open boundary conditions with heat lpdlies exponent is=1/2. All
primitive hydrodynamic quantities scale with the dynamic critical exponent predicted analytically.
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[. INTRODUCTION and collision time. However, as we will argue, the existence
of larger corrections to scaling for the heat current is perhaps
Heat conduction in one-dimensional systems is a simpleot surprising. Moreover, the continuity relation connects the
example of the general problem of singular transport coeffiheat current to the primitive hydrodynamic quantities, so
cients[1]. Apart from this theoretical significance, there is these corrections must vanish on suitably large length and
increasing experimental relevance due to the tremendous atime scales. In accordance with this expectation, the autocor-
vances in nanotube technolof®,3], and the importance of relation function of the total heat curreimtegrated over the
understanding their thermal properties. It appears that thentire systery Cj4(t), is much better behaved. The integral
thermal conductivityx(L), as a function of the system size

L, divergeswith increasingL for one-dimensional momen- I(t)EEJ’tdt’ ot @
tum conserving systempi—7]. Recently[7], a hydrody- LJo 3
namic description has been proposed, which obtained the
analytic prediction of scales witht with an exponent close to 1/3, although depend-
ing on the model parameters chosercan be as large as
k(L)~L3 (1) ~10000 before the asymptotic scaling behavior is seen.

The autocorrelation functio€;;(t) was measured with
for such momentum conserving systefBs7]. Numerical re-  two different boundary conditions: open boundary conditions
sults on various systeni$,6], most recently work on Sinai with heat baths at the ends and periodic boundary conditions.
and Chernov’s pencase modél and the random collision In both cases|(t) looks the same at short times, and has
(RC) model[9], confirm this prediction. oscillatory behavior fot~L. For open boundary conditions,

Despite the numerical confirmation, there is reason to inthe oscillations damp out rapidly, and therefore asymptote on
vestigate the analytical predictions further. The hydrody-a time scale~L, as assumed in the analytical treatment.
namic description makes detailed predictions about the dyThus I(t—), which is connected to the conductivity
namical behavior of all conserved quantities in the systemthrough the Kubo formula, scales asL'®. On the other
energy, momentum, and mass. The heat conductivity is onljziand, with periodic boundary conditionit) continues to
a single, and rather indirect, verification of the theoreticalgrow after the oscillations set in, afg«)~L2 This de-
picture. In addition, there are significant corrections to thependence on boundary conditions, although highly unusual,
scaling form predicted fok(L), so that it is appropriate to is consistent with the analytical picture: the dynamical expo-
explore whether they are indeed simply corrections to scalrent of 3/2 would normally convert@&’ scaling toL*?, but
ing for smallL, or reflect a departure from the hydrodynamic with open boundary conditions the cutoff to the time integral
description. Finally, the connection between conductivity ands set by the modes propagating to the heat baths at the ends,
correlation functions through the Kubo formyi&0], exam- i.e., att of O(L).
ined briefly in our earlier paper, is worth further examination.

In this paper, we study the RC modg], which was Il. EARLIER RESULTS
recently introduced for one-dimensional transport, and nu-
merically obtain the full spatiotemporal form of all correla- A large number of systems with dimensiah=1 have
tion functions between the conserved hydrodynamic varibeen analyticallf11-13 or numerically[2,5,6,13,14found
ables. We find both propagating and dispersive modes with & have a singular heat conductivity(L)~L® with a>0.
dispersion relation in agreement with the analytical result. Various values ofxr have been obtained for different models.

The autocorrelation function of the heat current, whichPositive values ofx are seen either when a model is inte-
can be obtained in terms of the primitive hydrodynamicgrable, when the value ok depends on the details of the
guantities has a spatiotemporal structure that is not amenabigodel, or when the interparticle interactions in the model are
to any simple scaling description for length and time scalesnomentum conserving.
much larger tharfabout thirty timegthe interparticle spacing For any nonintegrable system, it is possible to construct a
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hydrodynamic description, where it is assumed that local
thermal equilibrium is reachdd,15]. Since long range order
is precluded ind=1, the hydrodynamic description is only
in terms of conserved quantities: energy, number, @iten
momentum is conservédnomentum densities. This is the
standard hydrodynamic treatment of a normal fluid. There
are two propagating sound modes and a diffusive mode fo
heat transport. The addition of thermal noise to the hydrody-
namic equations leads to singular corrections wher2.
The spreading of a sound pulse is now superdiffusive: th
width | is related to time ast~ 1%, with a dynamic exponent

zexactly equal to 3/2 fod=1. The heat diffusion mode is 5 1 Grayscale plot of the autocorrelation function of the
no longer diffusive: contributions to the heat current that argomentum densitC,, (x,t). The vertical and horizontal directions
propagating and bilinear in the primitive hydrodynamic den-5rex andt, respectively. Periodic boundary conditions are used for
sities, that are inconsequential for-2, dominate(for long  the x direction. The length of the system Is=512. The bright
wavelength and low frequengyor d=1. The autocorrela-  regions correspond to intensity peaks, and clearly show the propa-
tion function of the heat current decays @g;(t)~t 2> If  gating sound modes.

one integrates this function, with open boundary conditions

and heat baths, the propagating nature of the modes cuts affith a mass ratio of 2.62. This indicates that corrections to
the integrall (t) att of O(L). Using the Kubo formula, one the asymptotic scaling form, although much reduced, have
obtainsk(L)~L“ with a=1/3. not been completely eliminated.

Ill. THE MODEL IV. SPATIOTEMPORAL CORRELATIONS

There have been numerical studies of heat conduction in In this section, we present numerical results for the spa-
various one-dimensional mode]g,5,6,13,14 One of the tiotemporal dependence of the correlation functions of the
simplest such models is that of a chain of point particlegorimitive hydrodynamic densities: energy, momentum, and
undergoing one-dimensional elastic collisions with heathumber. The motivation for carrying out this study has been
baths at the two ends of the chain. The drawback of thigliscussed at the beginning of this paper.
model is that it is not chaotif5]; in fact, when the particles Figure 1 shows the autocorrelation function of the mo-
in the chain are all of equal mass, the model is integrable. A;ventum densityC,,(x,t), as a function of positiorx and
explained in the preceding section, the hydrodynamic detime t. The size of the system is=512, all particles have
scription that yields a universal value @f=1/3 is only valid  unit mass, and periodic boundary conditionsxiare used.
if the system reaches local thermal equilibrium. Even wherOne can clearly see two pulses propagating in opposite di-
the masses of the particles in the chain alternatis found  rections at constant speed, corresponding to the two sound
to converge very slowly towards its asymptotic value, requir-nodes. Even when the pulses collide with each other, they
ing system sizes of- 16 000 or larger. emerge essentially unaffected. The figure also shows a slight

To alleviate this problem, we recently introduced the RCbroadening of the pulses ass increased. To make this pic-
model[9]. This can be viewed as the limit of rough particles ture quantitative, Fig. 2 plot€,,(x,t) as a function ok for
confined to a narrow tube, with the width of the tube suffi- various values of.
ciently small so that particles cannot pass each other, in the

limit that the size of the particle@nd the width of the tube 0.02 : . 3
approach zero. In this limit, the particles move along a one- A t=64 =
dimensional line, but possess longitudinal as well as trans- 0.015 t =128 -
verse momentum, both of which contribute to the particle !

energy. Interparticle collisions are elastic. Owing to the 2 0.01 1

roughness of the particles, particles emerge from a collision 0.005 |

with random momentdrespecting energy momentum con-

servation and detailed balancerhe transverse degree of 0

freedom effectively serves as a random source/sink of longi-

tudinal kinetic energy in any collision, while strictly main- -0.005 . . : . .
taining conservation of total energy. The extra randomization 0 50 100 150 200 250
introduced by the transverse momentum is expected to X

equilibrate the system much more effectively. Numerically, £ 2 autocorrelation function of the momentum density,
the conductivityx(L) is found to scale much better, with" ¢ (x 1), as a function ok for t=32, 64, and 128. Periodic bound-
scaling observed fol ~100-1000. However, depending on ary conditions are used for, and the length of the system s

the particle masses in the model, there is a slight variation iR-512. SinceC,, is symmetric inx, only x>0 is shown. As is
the measured, with =0.28 when all the particles have the shown in the figure, the data fit a Gaussian form excellently, propa-
same mass, and=0.33 when the particle masses alternategating outwards at constant speed and broadeningt&3.
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FIG. 3. Cross-correlation function of the mass and momentum FIG. 5. Autocorrelation function for the heat transport mode.
density,C,,(x,t), as a function of for t=32, 64, and 128. Peri- Periodic boundary conditions are used forand the length of the
odic boundary conditions are used forand the length of the sys- System isL=512. Comparing withC,,,(x,t) one can see that the
tem isL=512. Onlyx>0 is shown, since the function is antisym- sound peak has been eliminated. The fit shown in the figure is to a
metric. The large propagating peak, corresponding to the soungdiffusing form: a Gaussian that is centered at the origin, spreading
mode, is fitted to a Gaussian in the figure. The bump near the origifut ast”>. The fit is only approximate, as was the case for the peak
comes from the heat mode, and has not been fitted. at the origin forC,, in Fig. 4.

The lines going through the data points are fits to thdation function of
functional form C,,(x,t)=(A/t?3)exg —B(x—ct)Z/t*3], o
with A, B, andc as fitting parameters that are independent of a(x,t)=e(x,t) = (h/n)n(x,t), ©)
t [16]. The fitting form works surprisingly well. Although for L
spatial dimensiord>2 one indeed expects a propagatingwhereh andn are the spatially averaged enthalpy and num-
Gaussian pulse, fat<2 the scaling theory only predicts that ber density, respectively. At long wavelengths and low fre-
the pulse should spread out a8?, and does not require a guencies, this corresponds to the heat transport b8k

Gaussian form. The peak broadens with time with a widtht?3, but the fit is
Similar results are shown in Fig. 3 for the cross-not as good as for the previous plots.

correlation function of the number and momentum densities, The scaling ofCy4(x,t) requires careful consideration for

Cho (X,1). d<2. The hydrodynamic equation foi(x,t) is
Figure 4 shows the autocorrelation function for the num-
ber density,C,,,(x,t). In addition to the propagating parts, 3,9+ V- (vég+vade)=kyV>T+0(v?), (4)

one can see a peak near the origin. This peak comes from the
heat transport mode, which is diffusive fdi>2. The same Wwherex, is the bare heat conductivity, is the temperature,
structure is observed in the autocorrelation function for thedq and de are the deviations off ande from their average
energy densityCeq(X,t). values, anda=h/e—1. (For the RC modela=1.) When

In order to extract the heat transport mode, suppressinguctuations around average values are small, the second term
the sound modes, in Fig. 5 we plGY4(X,t), the autocorre- on the left-hand side of Eq4) is second order in the fluc-

tuating fields and can be neglected, yielding diffusive trans-
0.02

w32 . port for g. However, ford<2, one can seé7] that this
\ t_tng - advective contribution to the heat currentfg+uvade,
0.015 § - dominates at long wavelengths and low frequencies. Thus
E one expectg] to propagate, with the propagating behavior
Og 0.01 %g becoming increasingly important at long length and time

scales. This propagating behavior was used in R&f.to

argue for a cutoff of ~L for correlations in a system of size
0.005 |

L with heat baths at the ends. We will discuss this issue
further in the following section.
0
« V. HEAT CURRENT
FIG. 4. Autocorrelation function of the mass densy(x.t), We have seen in the preceding section that the conserved

as a function of for t=32, 64, and 128. Periodic boundary con- hydrodynamic quantities satisfy the_pred!ctlons of the sqahng
ditions are used fox, and the length of the systemlis=512. The  theory: two propagating modes which disperse according to
function is fitted to the sum of a propagating and diffusing GaussiardX~t**, and a heat transport mode. We have also seen that
with the width of both scaling as-t?2. The second peak does not the third mode, unlike fod>2, is not a simple diffusing

fit as well as the first one; as discussed in the text, the corrections tfiode. We now turn to the autocorrelation function of the
scaling for this peak are expected to be much stronger. heat current. For momentum conserving systems, it can be
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FIG. 6. Grayscale plot of the autocorrelation function of the heat  FIG. 8. Log-log plot ofl (t)/L*® vst/L for systems of different
current,Cj;(x,t). The vertical and horizontal directions arandt,  lengths, wherd(t) is defined in Eq(2). The particle masses alter-
respectively. Periodic boundary conditions are used foxttizec- ~ Nate between 1 and 2.62. Open boundary conditions with heat baths

tion. The length of the system is=512. The intensity peaks move &t the two ends are used. The data show a good scaling collapse,

out linearly fromx=0 as a function of time. indicating thatl (o) ~ L2,

shown on very general groun@$7] that this is the correla- Although the peaks shift putwards and broaden with time,
tion function that is related to the thermal conductivity unfortunately no clear scaling of any form can be seen at
through the Kubo formul&10]. smallt. This result might seem disturbing, since the values of

Figure 6 shows a grayscale platonlinear, to enhance tin Fig. 7, though not large, are sufficient to see good scaling
clarity) of the autocorrelation function of the heat current,in the basic conserved quantities, as shown in the preceding
Cj;(x,t), similar to that forC,, shown in the preceding sec- section. However, as seen in @), the hydrodynamic form
tion. The curreni(x,t) is defined as of the current has advective contributions that are bilinear in

the primitive conserved quantities, which dominate at long
o length and time scales, and other dissipative contributions as
j(x,t)=2 O(X;i—X)vi[ —(h/n)], (5)  well. In a diagrammatic field theoretic expansion, one ex-
! pects relatively larger contributions from short wavelength
modes, aggravated by the fact that although the first term on
where the sum is over particles agds the energy of theth  the right-hand side of Eq6) dominates the asymptotic scal-
particle. j(x,t) is the current that corresponds dpits hy-  ing behavior ofj(x,t), it is second order in fluctuations and

drodynamic form can be obtained from B¢) as will therefore have large corrections to scalifiig]. [The
correlation functionC;;(x,t) decays so quickly with that it
j(x,t)=v[8q+ Se]— koVT+O(v?). (6) is impossible to measure it for much largethan shown in

the figure]

The propagating nature of the heat current can be seen by Since we have argued that the lack of scaling seen for
following the intensity peaks in the figure; the range in timeCj;j(x,t) is a result of strong subleading corrections to its
over which this can be seen is not as large asgr, be-  asymptotic behavior, it is reasonable to examine its spatial
causeC;; decays much faster. As in the preceding sectionjntegral, i.e..Cj; at zero wave vector. An added motivation is
Fig. 7 showsCj; as a function of for different values ot.  that, if J(t)=/dxj(x,t), the Kubo formula obtains the con-

ductivity as
4 .
3 ﬁ A 1 B? [t
2r ;L FY - K=—f dt’Cyyt"), (7)
L k ] L Jo
0 W
© ; § ! | where B is the inverse temperature. From the definition of

3l ¥ ] Eq. (2), the right-hand side of this equation &1(t). We
4 b 1 first show the results fok(t) for somewhat different condi-
5k ] tions than those used so far in this paper.
6 : : : : : Figure 8 is a log-log plot of (t)/L*? as a function ot/L

0 50 100 150 200 250

for different values ol. Unlike the data shown before this,

the system does not have periodic boundary conditions, but
FIG. 7. Autocorrelation function of the heat curre@;(x,t), as is terminated by heat batliboth at unit temperatuyet both

a function ofx for t=32, 64, and 128. Periodic boundary conditions €nds. Also, the masses of the particles are not all equal, but

are used fox, and the length of the system lis=512. The peaks alternate between 1 and 2.GE9]. The figure shows a power

decay, broaden, and shift outwards as a function of time. No simpléaw rise for I (t) with exponentt3, which saturates at

scaling form fits the data. ~L. This is in accordance with the analytical predict[ath.

X
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FIG. 9. Log-log plot ofl(t) vst for L=16 384, wherd((t) is FIG. 10. Log-log plot ofl (t)/LY3 vst/L for systems of different

defined in Eq(2). All particles have unit mass. The slope shows anlengths, wheré(t) is defined in Eq(2). The particle masses alter-

upward drift, from 0.24(from t=10 to t=100) to 0.29(from t nate between 1 and 2.62. Periodic boundary conditions are used.

=400 tot=20000), consistent with an eventual asymptotic slopeFor smallt, I(t) is the same as for open boundary conditions

of 1/3. The figure also shows a similar plot for a chain whose(shown in Fig. 8. However, beyond the oscillatory regime tat

masses alternate between 1 and 2.62, shifted downwards for clarity: O(L), I () keeps rising, andi(=) does not scale as L*".

Afit to a slope of 0.33 is shown; no upwatdr downward drift in

the slope is seen. Periodic boundary conditions are used; over tiBan propagate across it. It is not clear exactly why the

range fitted, the results are the same with open boundary conditionspreading cuts off the growth ¢{t), though from a scaling
viewpoint one could argue that in the absence of the propa-

i i ihili 2i3
There are a few damped oscillations at integer multiples Ogatlon time scale, the only possibility is~t==

t~L, presumably corresponding to successive reflections
from the ends of the system. V1. DISCUSSION

When all the particles in the chain are taken to have equal \ye nave seen that the dynamics of the primitive hydro-

mass, there is a slight discrepancy from the analytical pregynamic quantities, mass, momentum, and energy density, fit
diction. Figure 9 shows a log-log plot 6{t) for this case.  5scaling description with the predicted dynamic exponent.
The power law growth of(t) has an exponent close 0 0.25, The scaling of the heat current autocorrelation function is
but the saturation at~L is still very clear. Taken at face more problematic. However, we have argued that this is to be
value, this exponent would imply a conductivity exponent of oy hected, because the asymptotically dominant part of the
«=0.25, in contradiction to the analytical prediction. HOW- cyrrent operator is bilinear in the primitive quantities and has
ever, there are two reasons why this must be regarded simply smal| bare value in the sense of the renormalization group
as lack of complete convergence to the asymptotic formeompared to correction terms. The same slow convergence to
First, as seen in this paper, the dynamics of the primitive,symptotic scaling that afflicts the heat current autocorrela-
hydrodynamic varlabc!edo agree with the analytical predic- tjon function has been noticed for the thermal conductivity
tions; a fit with 5x~t * does not work. Second, and more and remarked on by various authors. However, the results for
directly, simulations on much larger systems, with  tne primitive hydrodynamic quantities make it clear that this

=16 384, show an upward drift of the slope ofi{f) versus is indeed simply a case of slow convergence to the
Int, towards 1/3. No such drift of the slope is seen for the

unequal mass case shown in Fig. 9. Note that there are also 4000 ; T T
deviations from the asymptotic value effor the equal mass I 4
chain when the conductivity is measured dire¢8y, which B
was in fact the motivation for the detailed spatiotemporal | + a
measurements reported in this paper. o
The most unusual result for the heat current autocorrela- 4
tion function is obtained foll (t) for the case of periodic — o
boundary conditions. 1000 L ”
Figure 10 is a log-log plot of (t)/L*® as a function of L S
t/L. As was the case with heat baths at the eh@3, grows e
initially with the form ~t3, has damped oscillations at I
~L, and saturates for large However,unlike the case with
heat bathsl| (t) continues to grow even after the oscillations <>
set in, and the eventual asymptotic value scales B2 In 300 s P
hindsight, this result is not inexplicable: without the heat 100 1000
baths, the dynamics are not cut off at the ends of the system,
and the dynamic scaling exponentzf 3/2 saturates the"® FIG. 11. Log-log plot ofl (=) vsL for open and periodic bound-
growth at~LY2 Alternatively, the saturation df(t) is set  ary conditions. The straight lines show fits teL*® and ~L2
by the time a pulse takes to spread across the system rathespectively.
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asymptotic limit rather than a discrepancy with the analyticalsystems with singular transport coefficients one must be
prediction. Most remarkably, the large time limit of the spa-careful about the boundary conditions being used.
tiotemporal integral (t) of the heat current autocorrelation
function scales with. as~ LY for a system terminated with
heat baths, and as L2 for periodic boundary conditions
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