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Correlations and scaling in one-dimensional heat conduction

J. M. Deutsch and Onuttom Narayan
Department of Physics, University of California, Santa Cruz, California 95064, USA

~Received 12 June 2003; published 14 October 2003!

We examine numerically the full spatiotemporal correlation functions for all hydrodynamic quantities for the
random collision model introduced recently. The autocorrelation function of the heat current, through the Kubo
formula, gives a thermal conductivity exponent of 1/3 in agreement with the analytical prediction and previous
numerical work. Remarkably, this result depends crucially on the choice of boundary conditions: for periodic
boundary conditions~as opposed to open boundary conditions with heat baths! the exponent is'1/2. All
primitive hydrodynamic quantities scale with the dynamic critical exponent predicted analytically.

DOI: 10.1103/PhysRevE.68.041203 PACS number~s!: 44.10.1i, 05.10.Ln, 75.40.Mg
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I. INTRODUCTION

Heat conduction in one-dimensional systems is a sim
example of the general problem of singular transport coe
cients @1#. Apart from this theoretical significance, there
increasing experimental relevance due to the tremendous
vances in nanotube technology@2,3#, and the importance o
understanding their thermal properties. It appears that
thermal conductivityk(L), as a function of the system siz
L, divergeswith increasingL for one-dimensional momen
tum conserving systems@4–7#. Recently @7#, a hydrody-
namic description has been proposed, which obtained
analytic prediction of

k~L !;L1/3 ~1!

for such momentum conserving systems@5,7#. Numerical re-
sults on various systems@5,6#, most recently work on Sina
and Chernov’s pencase model@8# and the random collision
~RC! model @9#, confirm this prediction.

Despite the numerical confirmation, there is reason to
vestigate the analytical predictions further. The hydrod
namic description makes detailed predictions about the
namical behavior of all conserved quantities in the syste
energy, momentum, and mass. The heat conductivity is o
a single, and rather indirect, verification of the theoreti
picture. In addition, there are significant corrections to
scaling form predicted fork(L), so that it is appropriate to
explore whether they are indeed simply corrections to s
ing for smallL, or reflect a departure from the hydrodynam
description. Finally, the connection between conductivity a
correlation functions through the Kubo formula@10#, exam-
ined briefly in our earlier paper, is worth further examinatio

In this paper, we study the RC model@9#, which was
recently introduced for one-dimensional transport, and
merically obtain the full spatiotemporal form of all correl
tion functions between the conserved hydrodynamic v
ables. We find both propagating and dispersive modes wi
dispersion relation in agreement with the analytical resul

The autocorrelation function of the heat current, whi
can be obtained in terms of the primitive hydrodynam
quantities has a spatiotemporal structure that is not amen
to any simple scaling description for length and time sca
much larger than~about thirty times! the interparticle spacing
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and collision time. However, as we will argue, the existen
of larger corrections to scaling for the heat current is perh
not surprising. Moreover, the continuity relation connects
heat current to the primitive hydrodynamic quantities,
these corrections must vanish on suitably large length
time scales. In accordance with this expectation, the auto
relation function of the total heat current~integrated over the
entire system!, CJJ(t), is much better behaved. The integr

I ~ t ![
1

LE0

t

dt8 CJJ~ t8! ~2!

scales witht with an exponent close to 1/3, although depen
ing on the model parameters chosenL can be as large a
;10 000 before the asymptotic scaling behavior is seen.

The autocorrelation functionCJJ(t) was measured with
two different boundary conditions: open boundary conditio
with heat baths at the ends and periodic boundary conditio
In both cases,I (t) looks the same at short times, and h
oscillatory behavior fort;L. For open boundary conditions
the oscillations damp out rapidly, and therefore asymptote
a time scale;L, as assumed in the analytical treatme
Thus I (t→`), which is connected to the conductivit
through the Kubo formula, scales as;L1/3. On the other
hand, with periodic boundary conditions,I (t) continues to
grow after the oscillations set in, andI (`);L1/2. This de-
pendence on boundary conditions, although highly unus
is consistent with the analytical picture: the dynamical exp
nent of 3/2 would normally convert at1/3 scaling toL1/2, but
with open boundary conditions the cutoff to the time integ
is set by the modes propagating to the heat baths at the e
i.e., att of O(L).

II. EARLIER RESULTS

A large number of systems with dimensiond51 have
been analytically@11–13# or numerically@2,5,6,13,14# found
to have a singular heat conductivity,k(L);La with a.0.
Various values ofa have been obtained for different model
Positive values ofa are seen either when a model is int
grable, when the value ofa depends on the details of th
model, or when the interparticle interactions in the model
momentum conserving.

For any nonintegrable system, it is possible to constru
©2003 The American Physical Society03-1
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hydrodynamic description, where it is assumed that lo
thermal equilibrium is reached@7,15#. Since long range orde
is precluded ind51, the hydrodynamic description is onl
in terms of conserved quantities: energy, number, and~when
momentum is conserved! momentum densities. This is th
standard hydrodynamic treatment of a normal fluid. Th
are two propagating sound modes and a diffusive mode
heat transport. The addition of thermal noise to the hydro
namic equations leads to singular corrections whend,2.
The spreading of a sound pulse is now superdiffusive:
width l is related to timet ast; l z, with a dynamic exponen
z exactly equal to 3/2 ford51. The heat diffusion mode is
no longer diffusive: contributions to the heat current that
propagating and bilinear in the primitive hydrodynamic de
sities, that are inconsequential ford.2, dominate~for long
wavelength and low frequency! for d51. The autocorrela-
tion function of the heat current decays asCJJ(t);t22/3. If
one integrates this function, with open boundary conditio
and heat baths, the propagating nature of the modes cut
the integralI (t) at t of O(L). Using the Kubo formula, one
obtainsk(L);La with a51/3.

III. THE MODEL

There have been numerical studies of heat conductio
various one-dimensional models@2,5,6,13,14#. One of the
simplest such models is that of a chain of point partic
undergoing one-dimensional elastic collisions with h
baths at the two ends of the chain. The drawback of
model is that it is not chaotic@5#; in fact, when the particles
in the chain are all of equal mass, the model is integrable
explained in the preceding section, the hydrodynamic
scription that yields a universal value ofa51/3 is only valid
if the system reaches local thermal equilibrium. Even wh
the masses of the particles in the chain alternate,a is found
to converge very slowly towards its asymptotic value, requ
ing system sizes of;16 000 or larger.

To alleviate this problem, we recently introduced the R
model@9#. This can be viewed as the limit of rough particl
confined to a narrow tube, with the width of the tube su
ciently small so that particles cannot pass each other, in
limit that the size of the particles~and the width of the tube!
approach zero. In this limit, the particles move along a o
dimensional line, but possess longitudinal as well as tra
verse momentum, both of which contribute to the parti
energy. Interparticle collisions are elastic. Owing to t
roughness of the particles, particles emerge from a collis
with random momenta~respecting energy momentum co
servation and detailed balance!. The transverse degree o
freedom effectively serves as a random source/sink of lo
tudinal kinetic energy in any collision, while strictly main
taining conservation of total energy. The extra randomizat
introduced by the transverse momentum is expected
equilibrate the system much more effectively. Numerica
the conductivityk(L) is found to scale much better, withLa

scaling observed forL;100–1000. However, depending o
the particle masses in the model, there is a slight variatio
the measureda, with a50.28 when all the particles have th
same mass, anda50.33 when the particle masses alterna
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with a mass ratio of 2.62. This indicates that corrections
the asymptotic scaling form, although much reduced, h
not been completely eliminated.

IV. SPATIOTEMPORAL CORRELATIONS

In this section, we present numerical results for the s
tiotemporal dependence of the correlation functions of
primitive hydrodynamic densities: energy, momentum, a
number. The motivation for carrying out this study has be
discussed at the beginning of this paper.

Figure 1 shows the autocorrelation function of the m
mentum density,Cvv(x,t), as a function of positionx and
time t. The size of the system isL5512, all particles have
unit mass, and periodic boundary conditions inx are used.
One can clearly see two pulses propagating in opposite
rections at constant speed, corresponding to the two so
modes. Even when the pulses collide with each other, t
emerge essentially unaffected. The figure also shows a s
broadening of the pulses ast is increased. To make this pic
ture quantitative, Fig. 2 plotsCvv(x,t) as a function ofx for
various values oft.

FIG. 1. Grayscale plot of the autocorrelation function of t
momentum density,Cvv(x,t). The vertical and horizontal direction
arex and t, respectively. Periodic boundary conditions are used
the x direction. The length of the system isL5512. The bright
regions correspond to intensity peaks, and clearly show the pr
gating sound modes.

FIG. 2. Autocorrelation function of the momentum densi
Cvv(x,t), as a function ofx for t532, 64, and 128. Periodic bound
ary conditions are used forx, and the length of the system isL
5512. SinceCvv is symmetric inx, only x.0 is shown. As is
shown in the figure, the data fit a Gaussian form excellently, pro
gating outwards at constant speed and broadening as;t2/3.
3-2
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The lines going through the data points are fits to
functional form Cvv(x,t)5(A/t2/3)exp@2B(x2ct)2/t4/3#,
with A, B, andc as fitting parameters that are independen
t @16#. The fitting form works surprisingly well. Although fo
spatial dimensiond.2 one indeed expects a propagati
Gaussian pulse, ford,2 the scaling theory only predicts tha
the pulse should spread out as;t2/3, and does not require
Gaussian form.

Similar results are shown in Fig. 3 for the cros
correlation function of the number and momentum densit
Cnv(x,t).

Figure 4 shows the autocorrelation function for the nu
ber density,Cnn(x,t). In addition to the propagating part
one can see a peak near the origin. This peak comes from
heat transport mode, which is diffusive ford.2. The same
structure is observed in the autocorrelation function for
energy density,Cee(x,t).

In order to extract the heat transport mode, suppres
the sound modes, in Fig. 5 we plotCqq(x,t), the autocorre-

FIG. 3. Cross-correlation function of the mass and momen
density,Cnv(x,t), as a function ofx for t532, 64, and 128. Peri-
odic boundary conditions are used forx, and the length of the sys
tem isL5512. Onlyx.0 is shown, since the function is antisym
metric. The large propagating peak, corresponding to the so
mode, is fitted to a Gaussian in the figure. The bump near the o
comes from the heat mode, and has not been fitted.

FIG. 4. Autocorrelation function of the mass density,Cnn(x,t),
as a function ofx for t532, 64, and 128. Periodic boundary co
ditions are used forx, and the length of the system isL5512. The
function is fitted to the sum of a propagating and diffusing Gauss
with the width of both scaling as;t2/3. The second peak does no
fit as well as the first one; as discussed in the text, the correction
scaling for this peak are expected to be much stronger.
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q~x,t !5e~x,t !2~ h̄/n̄!n~x,t !, ~3!

whereh̄ and n̄ are the spatially averaged enthalpy and nu
ber density, respectively. At long wavelengths and low f
quencies, this corresponds to the heat transport mode@15#.
The peak broadens with time with a width;t2/3, but the fit is
not as good as for the previous plots.

The scaling ofCqq(x,t) requires careful consideration fo
d,2. The hydrodynamic equation forq(x,t) is

] tq1“•~vdq1vade!5k0“
2T1O~v2!, ~4!

wherek0 is the bare heat conductivity,T is the temperature
dq andde are the deviations ofq ande from their average
values, anda5h̄/ē21. ~For the RC model,a51.! When
fluctuations around average values are small, the second
on the left-hand side of Eq.~4! is second order in the fluc
tuating fields and can be neglected, yielding diffusive tra
port for q. However, for d,2, one can see@7# that this
advective contribution to the heat current,vdq1vade,
dominates at long wavelengths and low frequencies. T
one expectsq to propagate, with the propagating behavi
becoming increasingly important at long length and tim
scales. This propagating behavior was used in Ref.@7# to
argue for a cutoff oft;L for correlations in a system of siz
L with heat baths at the ends. We will discuss this iss
further in the following section.

V. HEAT CURRENT

We have seen in the preceding section that the conse
hydrodynamic quantities satisfy the predictions of the scal
theory: two propagating modes which disperse according
dx;t2/3, and a heat transport mode. We have also seen
the third mode, unlike ford.2, is not a simple diffusing
mode. We now turn to the autocorrelation function of t
heat current. For momentum conserving systems, it can
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n
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FIG. 5. Autocorrelation function for the heat transport mod
Periodic boundary conditions are used forx, and the length of the
system isL5512. Comparing withCnn(x,t) one can see that the
sound peak has been eliminated. The fit shown in the figure is
diffusing form: a Gaussian that is centered at the origin, spread
out ast2/3. The fit is only approximate, as was the case for the p
at the origin forCnn in Fig. 4.
3-3
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shown on very general grounds@17# that this is the correla-
tion function that is related to the thermal conductiv
through the Kubo formula@10#.

Figure 6 shows a grayscale plot~nonlinear, to enhance
clarity! of the autocorrelation function of the heat curre
Cj j (x,t), similar to that forCvv shown in the preceding sec
tion. The currentj (x,t) is defined as

j ~x,t !5(
i

d~xi2x!v i@e i2~ h̄/n̄!#, ~5!

where the sum is over particles ande i is the energy of thei th
particle. j (x,t) is the current that corresponds toq; its hy-
drodynamic form can be obtained from Eq.~4! as

j ~x,t !5v@dq1de#2k0“T1O~v2!. ~6!

The propagating nature of the heat current can be see
following the intensity peaks in the figure; the range in tim
over which this can be seen is not as large as forCvv , be-
causeCj j decays much faster. As in the preceding secti
Fig. 7 showsCj j as a function ofx for different values oft.

FIG. 6. Grayscale plot of the autocorrelation function of the h
current,Cj j (x,t). The vertical and horizontal directions arex andt,
respectively. Periodic boundary conditions are used for thex direc-
tion. The length of the system isL5512. The intensity peaks mov
out linearly fromx50 as a function of time.

FIG. 7. Autocorrelation function of the heat current,Cj j (x,t), as
a function ofx for t532, 64, and 128. Periodic boundary conditio
are used forx, and the length of the system isL5512. The peaks
decay, broaden, and shift outwards as a function of time. No sim
scaling form fits the data.
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Although the peaks shift outwards and broaden with tim
unfortunately no clear scaling of any form can be seen
small t. This result might seem disturbing, since the values
t in Fig. 7, though not large, are sufficient to see good sca
in the basic conserved quantities, as shown in the prece
section. However, as seen in Eq.~6!, the hydrodynamic form
of the current has advective contributions that are bilinea
the primitive conserved quantities, which dominate at lo
length and time scales, and other dissipative contribution
well. In a diagrammatic field theoretic expansion, one e
pects relatively larger contributions from short waveleng
modes, aggravated by the fact that although the first term
the right-hand side of Eq.~6! dominates the asymptotic sca
ing behavior ofj (x,t), it is second order in fluctuations an
will therefore have large corrections to scaling@18#. @The
correlation functionCj j (x,t) decays so quickly witht that it
is impossible to measure it for much largert than shown in
the figure.#

Since we have argued that the lack of scaling seen
Cj j (x,t) is a result of strong subleading corrections to
asymptotic behavior, it is reasonable to examine its spa
integral, i.e.,Cj j at zero wave vector. An added motivation
that, if J(t)5*dx j(x,t), the Kubo formula obtains the con
ductivity as

k5
b2

L E
0

t

dt8CJJ~ t8!, ~7!

whereb is the inverse temperature. From the definition
Eq. ~2!, the right-hand side of this equation isb2I (t). We
first show the results forI (t) for somewhat different condi-
tions than those used so far in this paper.

Figure 8 is a log-log plot ofI (t)/L1/3 as a function oft/L
for different values ofL. Unlike the data shown before this
the system does not have periodic boundary conditions,
is terminated by heat baths~both at unit temperature! at both
ends. Also, the masses of the particles are not all equal,
alternate between 1 and 2.62@19#. The figure shows a powe
law rise for I (t) with exponentt1/3, which saturates att
;L. This is in accordance with the analytical prediction@7#.

t

le

FIG. 8. Log-log plot ofI (t)/L1/3 vs t/L for systems of different
lengths, whereI (t) is defined in Eq.~2!. The particle masses alter
nate between 1 and 2.62. Open boundary conditions with heat b
at the two ends are used. The data show a good scaling colla
indicating thatI (`);L1/3.
3-4
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There are a few damped oscillations at integer multiples
t;L, presumably corresponding to successive reflecti
from the ends of the system.

When all the particles in the chain are taken to have eq
mass, there is a slight discrepancy from the analytical p
diction. Figure 9 shows a log-log plot ofI (t) for this case.
The power law growth ofI (t) has an exponent close to 0.2
but the saturation att;L is still very clear. Taken at face
value, this exponent would imply a conductivity exponent
a50.25, in contradiction to the analytical prediction. How
ever, there are two reasons why this must be regarded sim
as lack of complete convergence to the asymptotic fo
First, as seen in this paper, the dynamics of the primit
hydrodynamic variablesdo agree with the analytical predic
tions; a fit withdx;t0.75 does not work. Second, and mo
directly, simulations on much larger systems, withL
516 384, show an upward drift of the slope of lnI(t) versus
ln t, towards 1/3. No such drift of the slope is seen for t
unequal mass case shown in Fig. 9. Note that there are
deviations from the asymptotic value ofa for the equal mass
chain when the conductivity is measured directly@9#, which
was in fact the motivation for the detailed spatiotempo
measurements reported in this paper.

The most unusual result for the heat current autocorr
tion function is obtained forI (t) for the case of periodic
boundary conditions.

Figure 10 is a log-log plot ofI (t)/L1/3 as a function of
t/L. As was the case with heat baths at the ends,I (t) grows
initially with the form ;t1/3, has damped oscillations att
;L, and saturates for larget. However,unlike the case with
heat baths,I (t) continues to grow even after the oscillatio
set in, and the eventual asymptotic value scales as'L1/2. In
hindsight, this result is not inexplicable: without the he
baths, the dynamics are not cut off at the ends of the sys
and the dynamic scaling exponent ofz53/2 saturates thet1/3

growth at;L1/2. Alternatively, the saturation ofI (t) is set
by the time a pulse takes to spread across the system r

FIG. 9. Log-log plot ofI (t) vs t for L516 384, whereI (t) is
defined in Eq.~2!. All particles have unit mass. The slope shows
upward drift, from 0.24~from t510 to t5100) to 0.29~from t
5400 to t520 000), consistent with an eventual asymptotic slo
of 1/3. The figure also shows a similar plot for a chain who
masses alternate between 1 and 2.62, shifted downwards for cl
A fit to a slope of 0.33 is shown; no upward~or downward! drift in
the slope is seen. Periodic boundary conditions are used; ove
range fitted, the results are the same with open boundary condit
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than propagate across it. It is not clear exactly why
spreading cuts off the growth ofI (t), though from a scaling
viewpoint one could argue that in the absence of the pro
gation time scale, the only possibility isL;t2/3.

VI. DISCUSSION

We have seen that the dynamics of the primitive hyd
dynamic quantities, mass, momentum, and energy densit
a scaling description with the predicted dynamic expone
The scaling of the heat current autocorrelation function
more problematic. However, we have argued that this is to
expected, because the asymptotically dominant part of
current operator is bilinear in the primitive quantities and h
a small bare value in the sense of the renormalization gr
compared to correction terms. The same slow convergenc
asymptotic scaling that afflicts the heat current autocorre
tion function has been noticed for the thermal conductiv
and remarked on by various authors. However, the results
the primitive hydrodynamic quantities make it clear that th
is indeed simply a case of slow convergence to

FIG. 11. Log-log plot ofI (`) vs L for open and periodic bound
ary conditions. The straight lines show fits to;L1/3 and ;L1/2,
respectively.
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ns.

FIG. 10. Log-log plot ofI (t)/L1/3 vs t/L for systems of different
lengths, whereI (t) is defined in Eq.~2!. The particle masses alter
nate between 1 and 2.62. Periodic boundary conditions are u
For small t, I (t) is the same as for open boundary conditio
~shown in Fig. 8!. However, beyond the oscillatory regime att
;O(L), I (t) keeps rising, andI (`) does not scale as;L1/3.
3-5
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J. M. DEUTSCH AND O. NARAYAN PHYSICAL REVIEW E68, 041203 ~2003!
asymptotic limit rather than a discrepancy with the analyti
prediction. Most remarkably, the large time limit of the sp
tiotemporal integralI (t) of the heat current autocorrelatio
function scales withL as;L1/3 for a system terminated with
heat baths, and as;L1/2 for periodic boundary conditions
~Fig. 11!. This implies that in applying the Kubo formula t
04120
l
-
systems with singular transport coefficients one must
careful about the boundary conditions being used.
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our numerical result for Cj j (k,v) is consistent with
(v2/k2)Cqq(k,v), but this does not lead to a good scalin
form for Cj j .

@19# In this case, one has to subtract (h̄/m̄)g(x,t) from the energy
current, wherem̄ is the average mass density andg(x,t) is the
momentum density. Thus the second term on the right-h
side of Eq.~5! is changed to (h̄/m̄)( id(x2xi)miv i .
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